51
|
Ferreira A, Brito da Silva J, Chuva MT, Costa JM, Pereira D. Challenges of Renal Function Assessment in Breast Cancer Patients Treated With Abemaciclib: A Case Report. Cureus 2024; 16:e67714. [PMID: 39318897 PMCID: PMC11420996 DOI: 10.7759/cureus.67714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Abemaciclib, a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor used for hormone-receptor-positive and human epidermal growth factor receptor 2 (HER-2)-negative breast cancer, can lead to elevated serum creatinine without implications on the true renal function. Although clinical trials have shown no increase in other kidney function biomarkers, this may still represent a challenge in cancer patients. We report a case of a 74-year-old female who presented with creatinine and cystatin-C elevation during treatment with abemaciclib without an equivalent decrease in measured glomerular filtration rate (GFR) with renal scintigraphy. The confirmation of adequate kidney function allowed for the maintenance of treatments that would otherwise be limited by renal impairment. Healthcare providers should be aware of abemaciclib's effect on serum creatinine but should not eliminate the possibility of actual kidney injury. Alternative biomarkers for GFR assessment are recommended, although the usefulness of cystatin-C in patients receiving abemaciclib should be investigated in greater depth.
Collapse
Affiliation(s)
- André Ferreira
- Department of Nephrology, Unidade Local de Saúde Viseu Dão-Lafões, Viseu, PRT
- Department of Nephrology, Instituto Português de Oncologia do Porto Francisco Gentil EPE, Porto, PRT
| | - José Brito da Silva
- Department of Medical Oncology, Instituto Português de Oncologia do Porto Francisco Gentil EPE, Porto, PRT
| | - Maria Teresa Chuva
- Department of Nephrology, Instituto Português de Oncologia do Porto Francisco Gentil EPE, Porto, PRT
| | - José Maximino Costa
- Department of Nephrology, Instituto Português de Oncologia do Porto Francisco Gentil EPE, Porto, PRT
| | - Deolinda Pereira
- Department of Medical Oncology, Instituto Português de Oncologia do Porto Francisco Gentil EPE, Porto, PRT
| |
Collapse
|
52
|
Nasser AM, Melamed L, Wetzel EA, Chang JCC, Nagashima H, Kitagawa Y, Muzyka L, Wakimoto H, Cahill DP, Miller JJ. CDKN2A/B Homozygous Deletion Sensitizes IDH-Mutant Glioma to CDK4/6 Inhibition. Clin Cancer Res 2024; 30:2996-3005. [PMID: 38718141 PMCID: PMC11250907 DOI: 10.1158/1078-0432.ccr-24-0562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE Treatment paradigms for isocitrate dehydrogenase (IDH)-mutant gliomas are rapidly evolving. Although typically indolent and responsive to initial treatment, these tumors invariably recur at a higher grade and require salvage treatment. Homozygous deletion of the tumor suppressor gene CDKN2A/B frequently emerges at recurrence in these tumors, driving poor patient outcomes. We investigated the effect of CDK-Rb pathway blockade on IDH-mutant glioma growth in vitro and in vivo using CDK4/6 inhibitors (CDKi). EXPERIMENTAL DESIGN Cell viability, proliferation assays, and flow cytometry were used to examine the pharmacologic effect of two distinct CDKi, palbociclib and abemaciclib, in multiple patient-derived IDH-mutant glioma lines. Isogenic models were used to directly investigate the influence of CDKN2A/B status on CDKi sensitivity. Orthotopic xenograft tumor models were used to examine the efficacy and tolerability of CDKi in vivo. RESULTS CDKi treatment leads to decreased cell viability and proliferative capacity in patient-derived IDH-mutant glioma lines, coupled with enrichment of cells in the G1 phase. CDKN2A inactivation sensitizes IDH-mutant glioma to CDKi in both endogenous and isogenic models with engineered CDKN2A deletion. CDK4/6 inhibitor administration improves survival in orthotopically implanted IDH-mutant glioma models. CONCLUSIONS IDH-mutant gliomas with deletion of CDKN2A/B are sensitized to CDK4/6 inhibitors. These results support the investigation of the use of these agents in a clinical setting.
Collapse
Affiliation(s)
- Ali M. Nasser
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lisa Melamed
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ethan A. Wetzel
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jenny Chia-Chen Chang
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Hiroaki Nagashima
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yosuke Kitagawa
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Logan Muzyka
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Hiroaki Wakimoto
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Daniel P. Cahill
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Julie J. Miller
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
53
|
Li Y, Sung Y, Choi YE, Choi Y, Goh SH. Synergistic Enhancement of Antitumor Effects by Combining Abemaciclib with Desipramine. Int J Mol Sci 2024; 25:7407. [PMID: 39000513 PMCID: PMC11242104 DOI: 10.3390/ijms25137407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, including abemaciclib, have been approved for the treatment of hormone receptor-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced, and metastatic breast cancer. Despite the high therapeutic efficacy of CDK4/6 inhibitors, they are associated with various adverse effects, including potentially fatal interstitial lung disease. Therefore, a combination of CDK4/6 inhibitors with letrozole or fulvestrant has been attempted but has demonstrated limitations in reducing adverse effects, highlighting the need to develop new combination therapies. This study proposes a combination strategy using CDK4/6 inhibitors and tricyclic antidepressants to enhance the therapeutic outcomes of these inhibitors while reducing their side effects. The therapeutic efficacies of abemaciclib and desipramine were tested in different cancer cell lines (H460, MCF7, and HCT-116). The antitumor effects of the combined abemaciclib and desipramine treatment were evaluated in a xenograft colon tumor model. In vitro cell studies have shown the synergistic anticancer effects of combination therapy in the HCT-116 cell line. The combination treatment significantly reduced tumor size compared with control or single treatment without causing apparent toxicity to normal tissues. Although additional in vivo studies are necessary, this study suggests that the combination therapy of abemaciclib and desipramine may represent a novel therapeutic approach for treating solid tumors.
Collapse
Affiliation(s)
- Yan Li
- Division of Technology Convergence, National Cancer Center, 323 Ilsan-ro, Goyang 10408, Gyeonggi-Do, Republic of Korea;
| | - Yeojin Sung
- Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Goyang 10408, Gyeonggi-Do, Republic of Korea; (Y.S.); (Y.E.C.)
| | - Young Eun Choi
- Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Goyang 10408, Gyeonggi-Do, Republic of Korea; (Y.S.); (Y.E.C.)
| | - Yongdoo Choi
- Division of Technology Convergence, National Cancer Center, 323 Ilsan-ro, Goyang 10408, Gyeonggi-Do, Republic of Korea;
| | - Sung-Ho Goh
- Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Goyang 10408, Gyeonggi-Do, Republic of Korea; (Y.S.); (Y.E.C.)
| |
Collapse
|
54
|
Tanaka Y, Kozuma L, Hino H, Takeya K, Eto M. Abemaciclib and Vacuolin-1 decrease aggregate-prone TDP-43 accumulation by accelerating autophagic flux. Biochem Biophys Rep 2024; 38:101705. [PMID: 38596406 PMCID: PMC11001778 DOI: 10.1016/j.bbrep.2024.101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
(Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to induce vacuoles characterized by an autophagosome and a lysosome component, suggesting that they facilitate autophagosome-lysosome fusion. However, it remains unknown whether Abe and Vac suppress the accumulation of aggregate-prone TDP-43 by accelerating autophagic flux. In the present study, the Abe and Vac treatment dose-dependently reduced the GFP/RFP ratio in SH-SY5Y neuroblastoma cells stably expressing the autophagic flux marker GFP-LC3-RFP-LC3ΔG. Abe and Vac also increased the omegasome marker GFP-ATG13 signal and the autophagosome marker mCherry-LC3 localized to the lysosome marker LAMP1-GFP. The Abe and Vac treatment decreased the intracellular level of the lysosome marker LAMP1-GFP in SH-SY5Y cells stably expressing LAMP1-GFP, but did not increase the levels of LAMP1-GFP, the autophagosome marker LC3-II, or the multivesicular body marker TSG101 in the extracellular vesicle-enriched fraction. Moreover, Abe and Vac treatment autophagy-dependently inhibited GFP-tagged aggregate-prone TDP-43 accumulation. The results of a PI(3)P reporter assay using the fluorescent protein tagged-2 × FYVE and LAMP1-GFP indicated that Abe and Vac increased the intensity of the PI(3)P signal on lysosomes. A treatment with the VPS34 inhibitor wortmannin (WM) suppressed Abe-/Vac-facilitated autophagic flux and the degradation of GFP-tagged aggregate-prone TDP-43. Collectively, these results suggest that Abe and Vac degrade aggregate-prone TDP-43 by accelerating autophagosome formation and autophagosome-lysosome fusion through the formation of PI(3)P.
Collapse
Affiliation(s)
- Yoshinori Tanaka
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
| | - Lina Kozuma
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
| | - Hirotsugu Hino
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Kosuke Takeya
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
| | - Masumi Eto
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
| |
Collapse
|
55
|
Cavalu S, Abdelhamid AM, Saber S, Elmorsy EA, Hamad RS, Abdel-Reheim MA, Yahya G, Salama MM. Cell cycle machinery in oncology: A comprehensive review of therapeutic targets. FASEB J 2024; 38:e23734. [PMID: 38847486 DOI: 10.1096/fj.202400769r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
The cell cycle is tightly regulated to ensure controlled cell proliferation. Dysregulation of the cell cycle machinery is a hallmark of cancer that leads to unchecked growth. This review comprehensively analyzes key molecular regulators of the cell cycle and how they contribute to carcinogenesis when mutated or overexpressed. It focuses on cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors, checkpoint kinases, and mitotic regulators as therapeutic targets. Promising strategies include CDK4/6 inhibitors like palbociclib, ribociclib, and abemaciclib for breast cancer treatment. Other possible targets include the anaphase-promoting complex/cyclosome (APC/C), Skp2, p21, and aurora kinase inhibitors. However, challenges with resistance have limited clinical successes so far. Future efforts should focus on combinatorial therapies, next-generation inhibitors, and biomarkers for patient selection. Targeting the cell cycle holds promise but further optimization is necessary to fully exploit it as an anti-cancer strategy across diverse malignancies.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia, Egypt
| | - Mohamed M Salama
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
56
|
Magge T, Rajendran S, Brufsky AM, Foldi J. CDK4/6 inhibitors: The Devil is in the Detail. Curr Oncol Rep 2024; 26:665-678. [PMID: 38713311 DOI: 10.1007/s11912-024-01540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE OF REVIEW Update on the most recent clinical evidence on CDK4/6 inhibitors (CDK4/6i) in the treatment of hormone receptor (HR)-positive, human epidermal growth factor receptor (HER)2-negative breast cancer. RECENT FINDINGS Over the past decade, CDK4/6i have become part of the standard of care treatment of patients with both metastatic and high-risk early HR + /HER2- breast cancers. The three available CDK4/6i (palbociclib, ribociclib and abemaciclib) have been extensively studied in combination with endocrine therapy (ET) in metastatic breast cancer (mBC) with consistent prolongation of progression free survival; however, ribociclib has emerged as the preferred first line agent in mBC given overall survival benefit over endocrine monotherapy. In early BC, abemaciclib is the only currently approved agent while ribociclib has early positive clinical trial data. Toxicities and financial burden limit the use of CDK4/6i in all patients and resource-poor settings, and optimal timing of their use in mBC remains unclear. There is considerable evidence for the use of CDK4/6i in metastatic and early HR + /HER2- breast cancer, but knowledge gaps remain, and further research is necessary to better define their optimal use.
Collapse
Affiliation(s)
- Tara Magge
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sneha Rajendran
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Adam M Brufsky
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Julia Foldi
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Breast Medical Oncology, Magee Women's Hospital, University of Pittsburgh Medical Center, 300 Halket Street, Suite 3524, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
57
|
Weisbrod LJ, Thiraviyam A, Vengoji R, Shonka N, Jain M, Ho W, Batra SK, Salehi A. Diffuse intrinsic pontine glioma (DIPG): A review of current and emerging treatment strategies. Cancer Lett 2024; 590:216876. [PMID: 38609002 PMCID: PMC11231989 DOI: 10.1016/j.canlet.2024.216876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a childhood malignancy of the brainstem with a dismal prognosis. Despite recent advances in its understanding at the molecular level, the prognosis of DIPG has remained unchanged. This article aims to review the current understanding of the genetic pathophysiology of DIPG and to highlight promising therapeutic targets. Various DIPG treatment strategies have been investigated in pre-clinical studies, several of which have shown promise and have been subsequently translated into ongoing clinical trials. Ultimately, a multifaceted therapeutic approach that targets cell-intrinsic alterations, the micro-environment, and augments the immune system will likely be necessary to eradicate DIPG.
Collapse
Affiliation(s)
- Luke J Weisbrod
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Anand Thiraviyam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Winson Ho
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Afshin Salehi
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Division of Pediatric Neurosurgery, Children's Nebraska, Omaha, NE, 68114, USA.
| |
Collapse
|
58
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
59
|
Li X, Tian S, Shi H, Ta N, Ni X, Bai C, Zhu Z, Chen Y, Shi D, Huang H, Chen L, Hu Z, Qu L, Fang Y, Bai C. The golden key to open mystery boxes of SMARCA4-deficient undifferentiated thoracic tumor: focusing immunotherapy, tumor microenvironment and epigenetic regulation. Cancer Gene Ther 2024; 31:687-697. [PMID: 38347129 PMCID: PMC11101339 DOI: 10.1038/s41417-024-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
SMARCA4-deficient undifferentiated thoracic tumor is extremely invasive. This tumor with poor prognosis is easily confused with SMARCA4-deficent non-small cell lung cancer or sarcoma. Standard and efficient treatment has not been established. In this review, we summarized the etiology, pathogenesis and diagnosis, reviewed current and proposed innovative strategies for treatment and improving prognosis. Immunotherapy, targeting tumor microenvironment and epigenetic regulator have improved the prognosis of cancer patients. We summarized clinicopathological features and immunotherapy strategies and analyzed the progression-free survival (PFS) and overall survival (OS) of patients with SMARCA4-UT who received immune checkpoint inhibitors (ICIs). In addition, we proposed the feasibility of epigenetic regulation in the treatment of SMARCA4-UT. To our knowledge, this is the first review that aims to explore innovative strategies for targeting tumor microenvironment and epigenetic regulation and identify potential benefit population for immunotherapy to improve the prognosis.
Collapse
Affiliation(s)
- Xiang Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan, China
| | - Sen Tian
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
- Department of Respiratory and Critical Care Medicine, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Hui Shi
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China.
| | - Na Ta
- Department of Pathology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Xiang Ni
- Department of Pathology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Chenguang Bai
- Department of Pathology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Zhanli Zhu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Yilin Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Dongchen Shi
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Longpei Chen
- Department of Oncology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Zhenhong Hu
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan, China
| | - Lei Qu
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan, China
| | - Yao Fang
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China.
| |
Collapse
|
60
|
Martorana F, Sanò MV, Valerio MR, Fogli S, Vigneri P, Danesi R, Gebbia V. Abemaciclib pharmacology and interactions in the treatment of HR+/HER2- breast cancer: a critical review. Ther Adv Drug Saf 2024; 15:20420986231224214. [PMID: 38665218 PMCID: PMC11044790 DOI: 10.1177/20420986231224214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/17/2023] [Indexed: 04/28/2024] Open
Abstract
Abemaciclib (ABE) in combination with endocrine therapy represents the mainstay treatment for either endocrine-resistant metastatic or high-risk early-stage HR+/HER2- breast cancer patients. Hence, an adequate knowledge of this agent pharmacodynamic, pharmacokinetic, and of its drug-drug interactions (DDIs) is crucial for an optimal patients management. Additionally, ABE interference with food and complementary/alternative medicines should be taken into account in the clinical practice. Several online tools allow to freely check DDIs and can be easily consulted before prescribing ABE. According to one of this instruments, ABE display the lowest number of interactions among the available cyclin-dependent kinase 4/6 inhibitors. Still, clinicians should be aware that online tools cannot replace the technical datasheet of the drug as well as a comprehensive clinical assessment for each patient. Here we critically review the main pharmacological features of ABE, then focusing on its potential interactions with drugs, food, and alternative medicine, in order to provide a guide for its optimal use in the treatment of HR+/HER2- breast cancer patients.
Collapse
Affiliation(s)
- Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Vita Sanò
- Medical Oncology Unit, Istituto Clinico Humanitas, Misterbianco, Catania, Italy
| | - Maria Rosaria Valerio
- Medical Oncology Unit, Policlinico P. Giaccone, University of Palermo, Palermo, Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Medical Oncology Unit, Istituto Clinico Humanitas, Misterbianco, Catania, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vittorio Gebbia
- Faculty of Medicine and Surgery, Kore University of Enna, Piazza dell’Università, Enna 94100, Italy
- Casa di Cura Torina, Palermo, Italy
| |
Collapse
|
61
|
Zhu X, Fu Z, Dutchak K, Arabzadeh A, Milette S, Steinberger J, Morin G, Monast A, Pilon V, Kong T, Adams BN, Prando Munhoz E, Hosein HJB, Fang T, Su J, Xue Y, Rayes R, Sangwan V, Walsh LA, Chen G, Quail DF, Spicer JD, Park M, Dankort D, Huang S. Cotargeting CDK4/6 and BRD4 Promotes Senescence and Ferroptosis Sensitivity in Cancer. Cancer Res 2024; 84:1333-1351. [PMID: 38277141 DOI: 10.1158/0008-5472.can-23-1749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/21/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are approved for breast cancer treatment and show activity against other malignancies, including KRAS-mutant non-small cell lung cancer (NSCLC). However, the clinical efficacy of CDK4/6 inhibitors is limited due to frequent drug resistance and their largely cytostatic effects. Through a genome-wide cDNA screen, we identified that bromodomain-containing protein 4 (BRD4) overexpression conferred resistance to the CDK4/6 inhibitor palbociclib in KRAS-mutant NSCLC cells. Inhibition of BRD4, either by RNA interference or small-molecule inhibitors, synergized with palbociclib to induce senescence in NSCLC cells and tumors, and the combination prolonged survival in a KRAS-mutant NSCLC mouse model. Mechanistically, BRD4-inhibition enhanced cell-cycle arrest and reactive oxygen species (ROS) accumulation, both of which are necessary for senescence induction; this in turn elevated GPX4, a peroxidase that suppresses ROS-triggered ferroptosis. Consequently, GPX4 inhibitor treatment selectively induced ferroptotic cell death in the senescent cancer cells, resulting in tumor regression. Cotargeting CDK4/6 and BRD4 also promoted senescence and ferroptosis vulnerability in pancreatic and breast cancer cells. Together, these findings reveal therapeutic vulnerabilities and effective combinations to enhance the clinical utility of CDK4/6 inhibitors. SIGNIFICANCE The combination of cytostatic CDK4/6 and BRD4 inhibitors induces senescent cancer cells that are primed for activation of ferroptotic cell death by targeting GPX4, providing an effective strategy for treating cancer.
Collapse
Affiliation(s)
- Xianbing Zhu
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Zheng Fu
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Kendall Dutchak
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Azadeh Arabzadeh
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Simon Milette
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Jutta Steinberger
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Geneviève Morin
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Anie Monast
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Virginie Pilon
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Tim Kong
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Bianca N Adams
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Erika Prando Munhoz
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Hannah J B Hosein
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Tianxu Fang
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Jing Su
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Yibo Xue
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Roni Rayes
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Veena Sangwan
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Logan A Walsh
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Guojun Chen
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Daniela F Quail
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Jonathan D Spicer
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - David Dankort
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
62
|
Ai D, Turashvili G, Gjeorgjievski SG, Wang Q, Ewaz AM, Gao Y, Nguyen T, Zhang C, Li X. Subspecialized breast pathologists have suboptimal interobserver agreement in Ki-67 evaluation using 20% as the cutoff. Breast Cancer Res Treat 2024; 204:415-422. [PMID: 38157098 DOI: 10.1007/s10549-023-07197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Ki-67 expression levels in breast cancer have prognostic and predictive significance. Therefore, accurate Ki-67 evaluation is important for optimal patient care. Although an algorithm developed by the International Ki-67 in Breast Cancer Working Group (IKWG) improves interobserver variability, it is tedious and time-consuming. In this study, we simplify IKWG algorithm and evaluate its interobserver agreement among breast pathologists in Ki-67 evaluation. METHODS Six subspecialized breast pathologists (4 juniors, 2 seniors) assessed the percentage of positive cells in 5% increments in 57 immunostained Ki-67 slides. The time spent on each slide was recorded. Two rounds of ring study (R1, R2) were performed before and after training with the modified IKWG algorithm (eyeballing method at 400× instead of counting 100 tumor nuclei per area). Concordance was assessed using Kendall's and Kappa coefficients. RESULTS Analysis of ordinal scale ratings for all categories with 5% increments showed almost perfect agreement in R1 (0.821) and substantial in R2 (0.793); Seniors and juniors had substantial agreement in R1 (0.718 vs. 0.649) and R2 (0.756 vs. 0.658). In dichotomous scale analysis using 20% as the cutoff, the overall agreement was moderate in R1 (0.437) and R2 (0.479), among seniors (R1: 0.436; R2: 0.437) and juniors (R1: 0.445; R2: 0.505). Average scoring time per case was higher in R2 (71 vs. 37 s). CONCLUSION The modified IKWG algorithm does not significantly improve interobserver agreement. A better algorithm or assistance from digital image analysis is needed to improve interobserver variability in Ki-67 evaluation.
Collapse
Affiliation(s)
- Di Ai
- Department of Pathology and Laboratory Medicine, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Gulisa Turashvili
- Department of Pathology and Laboratory Medicine, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA
| | | | - Qun Wang
- Department of Pathology and Laboratory Medicine, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Abdulwahab M Ewaz
- Department of Pathology and Laboratory Medicine, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Yuan Gao
- Department of Pathology and Laboratory Medicine, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Thi Nguyen
- Department of Pathology and Laboratory Medicine, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Chao Zhang
- General Dynamics Information Technology Inc., Falls Church, VA, USA
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
63
|
Hu J, Zhu BY, Niu ZX. Catalysts of Healing: A Symphony of Synthesis and Clinical Artistry in Small-Molecule Agents for Breast Cancer Alleviation. Molecules 2024; 29:1166. [PMID: 38474678 DOI: 10.3390/molecules29051166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer, characterized by its molecular intricacy, has witnessed a surge in targeted therapeutics owing to the rise of small-molecule drugs. These entities, derived from cutting-edge synthetic routes, often encompassing multistage reactions and chiral synthesis, target a spectrum of oncogenic pathways. Their mechanisms of action range from modulating hormone receptor signaling and inhibiting kinase activity, to impeding DNA damage repair mechanisms. Clinical applications of these drugs have resulted in enhanced patient survival rates, reduction in disease recurrence, and improved overall therapeutic indices. Notably, certain molecules have showcased efficacy in drug-resistant breast cancer phenotypes, highlighting their potential in addressing treatment challenges. The evolution and approval of small-molecule drugs have ushered in a new era for breast cancer therapeutics. Their tailored synthetic pathways and defined mechanisms of action have augmented the precision and efficacy of treatment regimens, paving the way for improved patient outcomes in the face of this pervasive malignancy. The present review embarks on a detailed exploration of small-molecule drugs that have secured regulatory approval for breast cancer treatment, emphasizing their clinical applications, synthetic pathways, and distinct mechanisms of action.
Collapse
Affiliation(s)
- Jing Hu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Bi-Yue Zhu
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Department of Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Zhen-Xi Niu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| |
Collapse
|
64
|
Foy R, Lew KX, Saurin AT. The search for CDK4/6 inhibitor biomarkers has been hampered by inappropriate proliferation assays. NPJ Breast Cancer 2024; 10:19. [PMID: 38438376 PMCID: PMC10912267 DOI: 10.1038/s41523-024-00624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
CDK4/6 inhibitors are effective at treating advanced HR+ /HER2- breast cancer, however biomarkers that can predict response are urgently needed. We demonstrate here that previous large-scale screens designed to identify which tumour types or genotypes are most sensitive to CDK4/6 inhibitors have misrepresented the responsive cell lines because of a reliance on metabolic proliferation assays. CDK4/6-inhibited cells arrest in G1 but continue to grow in size, thereby producing more mitochondria. We show that this growth obscures the arrest using ATP-based proliferation assays but not if DNA-based assays are used instead. Furthermore, lymphoma lines, previously identified as the most sensitive, simply appear to respond the best using ATP-based assays because they fail to overgrow during the G1 arrest. Similarly, the CDK4/6 inhibitor abemaciclib appears to inhibit proliferation better than palbociclib because it also restricts cellular overgrowth through off-target effects. DepMap analysis of screening data using reliable assay types, demonstrates that palbociclib-sensitive cell types are also sensitive to Cyclin D1, CDK4 and CDK6 knockout/knockdown, whereas the palbociclib-resistant lines are sensitive to Cyclin E1, CDK2 and SKP2 knockout/knockdown. Potential biomarkers of palbociclib-sensitive cells are increased expression of CCND1 and RB1, and reduced expression of CCNE1 and CDKN2A. Probing DepMap with similar data from metabolic assays fails to reveal these associations. Together, this demonstrates why CDK4/6 inhibitors, and any other anti-cancer drugs that arrest the cell cycle but permit continued cell growth, must now be re-screened against a wide-range of cell types using an appropriate proliferation assay. This would help to better inform clinical trials and to identify much needed biomarkers of response.
Collapse
Affiliation(s)
- Reece Foy
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Kah Xin Lew
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Adrian T Saurin
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
65
|
Dietrich C, Trub A, Ahn A, Taylor M, Ambani K, Chan KT, Lu KH, Mahendra CA, Blyth C, Coulson R, Ramm S, Watt AC, Matsa SK, Bisi J, Strum J, Roberts P, Goel S. INX-315, a Selective CDK2 Inhibitor, Induces Cell Cycle Arrest and Senescence in Solid Tumors. Cancer Discov 2024; 14:446-467. [PMID: 38047585 PMCID: PMC10905675 DOI: 10.1158/2159-8290.cd-23-0954] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023]
Abstract
Cyclin-dependent kinase 2 (CDK2) is thought to play an important role in driving proliferation of certain cancers, including those harboring CCNE1 amplification and breast cancers that have acquired resistance to CDK4/6 inhibitors (CDK4/6i). The precise impact of pharmacologic inhibition of CDK2 is not known due to the lack of selective CDK2 inhibitors. Here we describe INX-315, a novel and potent CDK2 inhibitor with high selectivity over other CDK family members. Using cell-based assays, patient-derived xenografts (PDX), and transgenic mouse models, we show that INX-315 (i) promotes retinoblastoma protein hypophosphorylation and therapy-induced senescence (TIS) in CCNE1-amplified tumors, leading to durable control of tumor growth; (ii) overcomes breast cancer resistance to CDK4/6i, restoring cell cycle control while reinstating the chromatin architecture of CDK4/6i-induced TIS; and (iii) delays the onset of CDK4/6i resistance in breast cancer by driving deeper suppression of E2F targets. Our results support the clinical development of selective CDK2 inhibitors. SIGNIFICANCE INX-315 is a novel, selective inhibitor of CDK2. Our preclinical studies demonstrate activity for INX-315 in both CCNE1-amplified cancers and CDK4/6i-resistant breast cancer. In each case, CDK2 inhibition induces cell cycle arrest and a phenotype resembling cellular senescence. Our data support the development of selective CDK2 inhibitors in clinical trials. See related commentary by Watts and Spencer, p. 386. This article is featured in Selected Articles from This Issue, p. 384.
Collapse
Affiliation(s)
- Catherine Dietrich
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Alec Trub
- Incyclix Bio, Durham, North Carolina
| | - Antonio Ahn
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Michael Taylor
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Krutika Ambani
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Keefe T. Chan
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kun-Hui Lu
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Christabella A. Mahendra
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Catherine Blyth
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Rhiannon Coulson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Susanne Ramm
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - April C. Watt
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - John Bisi
- Incyclix Bio, Durham, North Carolina
| | - Jay Strum
- Incyclix Bio, Durham, North Carolina
| | | | - Shom Goel
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
66
|
Ma J, Li L, Ma B, Liu T, Wang Z, Ye Q, Peng Y, Wang B, Chen Y, Xu S, Wang K, Dang F, Wang X, Zeng Z, Jian Y, Ren Z, Fan Y, Li X, Liu J, Gao Y, Wei W, Li L. MYC induces CDK4/6 inhibitors resistance by promoting pRB1 degradation. Nat Commun 2024; 15:1871. [PMID: 38424044 PMCID: PMC10904810 DOI: 10.1038/s41467-024-45796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) show anticancer activity in certain human malignancies, such as breast cancer. However, their application to other tumor types and intrinsic resistance mechanisms are still unclear. Here, we demonstrate that MYC amplification confers resistance to CDK4/6i in bladder, prostate and breast cancer cells. Mechanistically, MYC binds to the promoter of the E3 ubiquitin ligase KLHL42 and enhances its transcription, leading to RB1 deficiency by inducing both phosphorylated and total pRB1 ubiquitination and degradation. We identify a compound that degrades MYC, A80.2HCl, which induces MYC degradation at nanomolar concentrations, restores pRB1 protein levels and re-establish sensitivity of MYC high-expressing cancer cells to CDK4/6i. The combination of CDK4/6i and A80.2HCl result in marked regression in tumor growth in vivo. Altogether, these results reveal the molecular mechanisms underlying MYC-induced resistance to CDK4/6i and suggest the utilization of the MYC degrading molecule A80.2HCl to potentiate the therapeutic efficacy of CDK4/6i.
Collapse
Affiliation(s)
- Jian Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bohan Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zixi Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qi Ye
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yule Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zixuan Zeng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanlin Jian
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhihua Ren
- Kintor Parmaceutical, Inc, Suzhou, 215123, China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xudong Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China.
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
67
|
Prat A, Solovieff N, André F, O'Shaughnessy J, Cameron DA, Janni W, Sonke GS, Yap YS, Yardley DA, Partridge AH, Thuerigen A, Zarate JP, Lteif A, Su F, Carey LA. Intrinsic Subtype and Overall Survival of Patients with Advanced HR+/HER2- Breast Cancer Treated with Ribociclib and ET: Correlative Analysis of MONALEESA-2, -3, -7. Clin Cancer Res 2024; 30:793-802. [PMID: 37939142 PMCID: PMC10870119 DOI: 10.1158/1078-0432.ccr-23-0561] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/01/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE The MONALEESA-2, -3, -7 trials demonstrated statistically significant and clinically meaningful progression-free survival and overall survival (OS) benefits with ribociclib plus endocrine therapy (ET) versus ET alone in hormone receptor-positive, HER2-negative (HR+/HER2-) advanced breast cancer (ABC). Understanding the association of intrinsic subtypes with survival outcomes could potentially guide treatment decisions. Here, we evaluated the association of intrinsic subtypes with OS in MONALEESA-2, -3, -7. EXPERIMENTAL DESIGN Tumor samples from MONALEESA-2, -3, -7 underwent PAM50-based subtyping. The relationship between subtypes and OS was assessed using univariable and multivariable Cox proportional hazards models. Multivariable models were adjusted for clinical prognostic factors. RESULTS Overall, 990 tumors (among 2,066 patients) from ribociclib (n = 580) and placebo (n = 410) arms were profiled. Subtype distribution was luminal A, 54.5%; luminal B, 28.0%; HER2-enriched (HER2E) 14.6%; and basal-like, 2.8%; and was consistent across treatment arms. The luminal A subtype had the best OS outcomes in both arms, while basal-like had the worst. Patients with HER2E (HR, 0.60; P = 0.018), luminal B (HR, 0.69; P = 0.023), and luminal A (HR, 0.75; P = 0.021) subtypes derived OS benefit with ribociclib. Patients with basal-like subtype did not derive benefit from ribociclib (HR, 1.92; P = 0.137); however, patient numbers were small (n = 28). CONCLUSIONS The prognostic value of intrinsic subtypes for OS was confirmed in this pooled analysis of the MONALEESA trials (largest dataset in HR+/HER2- ABC). While basal-like subtype did not benefit, a consistent OS benefit was observed with ribociclib added to ET across luminal and HER2E subtypes.
Collapse
Affiliation(s)
- Aleix Prat
- Department of Medical Oncology, Hospital Clínic of Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- IOB-Quironsalud, Barcelona, Spain
| | - Nadia Solovieff
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Fabrice André
- Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France
| | - Joyce O'Shaughnessy
- Texas Oncology-Baylor University Medical Center and The US Oncology Research Network, Dallas, Texas
| | - David A. Cameron
- Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Wolfgang Janni
- Department of Gynecology, University of Ulm, Ulm, Germany
| | - Gabe S. Sonke
- Netherlands Cancer Institute/Borstkanker Onderzoek Groep Study Center, Amsterdam, the Netherlands
| | | | - Denise A. Yardley
- Sarah Cannon Research Institute at Tennessee Oncology, Nashville, Tennessee
| | | | | | | | - Agnes Lteif
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Fei Su
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Lisa A. Carey
- University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
68
|
Morrison L, Loibl S, Turner NC. The CDK4/6 inhibitor revolution - a game-changing era for breast cancer treatment. Nat Rev Clin Oncol 2024; 21:89-105. [PMID: 38082107 DOI: 10.1038/s41571-023-00840-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 01/27/2024]
Abstract
Cyclin-dependent kinase (CDK) 4/6 inhibition in combination with endocrine therapy is the standard-of-care treatment for patients with advanced-stage hormone receptor-positive, HER2 non-amplified (HR+HER2-) breast cancer. These agents can also be administered as adjuvant therapy to patients with higher-risk early stage disease. Nonetheless, the clinical success of these agents has created several challenges, such as how to address acquired resistance, identifying which patients are most likely to benefit from therapy prior to treatment, and understanding the optimal timing of administration and sequencing of these agents. In this Review, we describe the rationale for targeting CDK4/6 in patients with breast cancer, including a summary of updated clinical evidence and how this should inform clinical practice. We also discuss ongoing research efforts that are attempting to address the various challenges created by the widespread implementation of these agents.
Collapse
Affiliation(s)
- Laura Morrison
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, UK
- Breast Unit, The Royal Marsden Hospital, London, UK
| | - Sibylle Loibl
- German Breast Group, Goethe University, Frankfurt, Germany
| | - Nicholas C Turner
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, UK.
- Breast Unit, The Royal Marsden Hospital, London, UK.
| |
Collapse
|
69
|
Rej RK, Roy J, Allu SR. Therapies for the Treatment of Advanced/Metastatic Estrogen Receptor-Positive Breast Cancer: Current Situation and Future Directions. Cancers (Basel) 2024; 16:552. [PMID: 38339303 PMCID: PMC10854569 DOI: 10.3390/cancers16030552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The hormone receptor-positive (HR+) type is the most frequently identified subtype of breast cancer. HR+ breast cancer has a more positive prognosis when compared to other subtypes, such as human epidermal growth factor protein 2-positive disorder and triple-negative disease. The advancement in treatment outcomes for advanced HR+ breast cancer has been considerably elevated due to the discovery of cyclin-dependent kinase 4/6 inhibitors and their combination effects with endocrine therapy. However, despite the considerable effectiveness of tamoxifen, a selective estrogen receptor modulator (SERMs), and aromatase inhibitors (AI), the issue of treatment resistance still presents a significant challenge for HR+ breast cancer. As a result, there is a focus on exploring new therapeutic strategies such as targeted protein degradation and covalent inhibition for targeting ERα. This article discusses the latest progress in treatments like oral selective ER degraders (SERDs), complete estrogen receptor antagonists (CERANs), selective estrogen receptor covalent antagonists (SERCAs), proteolysis targeting chimera (PROTAC) degraders, and combinations of CDK4/6 inhibitors with endocrine therapy. The focus is specifically on those compounds that have transitioned into phases of clinical development.
Collapse
Affiliation(s)
- Rohan Kalyan Rej
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Joyeeta Roy
- Departments of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Srinivasa Rao Allu
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
70
|
Nayyar N, de Sauvage MA, Chuprin J, Sullivan EM, Singh M, Torrini C, Zhang BS, Bandyopadhyay S, Daniels KA, Alvarez-Breckenridge C, Dahal A, Brehm MA, Brastianos PK. CDK4/6 Inhibition Sensitizes Intracranial Tumors to PD-1 Blockade in Preclinical Models of Brain Metastasis. Clin Cancer Res 2024; 30:420-435. [PMID: 37611074 PMCID: PMC10872577 DOI: 10.1158/1078-0432.ccr-23-0433] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE Brain metastases are associated with high morbidity and are often resistant to immune checkpoint inhibitors. We evaluated whether CDK4/6 inhibitor (CDKi) abemaciclib can sensitize intracranial tumors to programmed cell death protein 1 (PD-1) inhibition in mouse models of melanoma and breast cancer brain metastasis. EXPERIMENTAL DESIGN Treatment response was evaluated in vivo using immunocompetent mouse models of brain metastasis bearing concurrent intracranial and extracranial tumors. Treatment effect on intracranial and extracranial tumor-immune microenvironments (TIME) was evaluated using immunofluorescence, multiplex immunoassays, high-parameter flow cytometry, and T-cell receptor profiling. Mice with humanized immune systems were evaluated using flow cytometry to study the effect of CDKi on human T-cell development. RESULTS We found that combining abemaciclib with PD-1 inhibition reduced tumor burden and improved overall survival in mice. The TIME, which differed on the basis of anatomic location of tumors, was altered with CDKi and PD-1 inhibition in an organ-specific manner. Combination abemaciclib and anti-PD-1 treatment increased recruitment and expansion of CD8+ effector T-cell subsets, depleted CD4+ regulatory T (Treg) cells, and reduced levels of immunosuppressive cytokines in intracranial tumors. In immunodeficient mice engrafted with human immune systems, abemaciclib treatment supported development and maintenance of CD8+ T cells and depleted Treg cells. CONCLUSIONS Our results highlight the distinct properties of intracranial and extracranial tumors and support clinical investigation of combination CDK4/6 and PD-1 inhibition in patients with brain metastases. See related commentary by Margolin, p. 257.
Collapse
Affiliation(s)
- Naema Nayyar
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
| | | | - Jane Chuprin
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA
| | - Emily M Sullivan
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
| | - Mohini Singh
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
| | - Consuelo Torrini
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
| | - Britney S Zhang
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
| | - Sushobhana Bandyopadhyay
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania
| | - Keith A Daniels
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA
| | - Christopher Alvarez-Breckenridge
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ashish Dahal
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
| | - Michael A Brehm
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
| | - Priscilla K Brastianos
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
71
|
Zhang C, Zhou F, Zou J, Fang Y, Liu Y, Li L, Hou J, Wang G, Wang H, Lai X, Xie L, Jiang J, Yang C, Huang Y, Chen Y, Zhang H, Li Y. Clinical considerations of CDK4/6 inhibitors in HER2 positive breast cancer. Front Oncol 2024; 13:1322078. [PMID: 38293701 PMCID: PMC10824891 DOI: 10.3389/fonc.2023.1322078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Deregulation of cell cycles can result in a variety of cancers, including breast cancer (BC). In fact, abnormal regulation of cell cycle pathways is often observed in breast cancer, leading to malignant cell proliferation. CDK4/6 inhibitors (CDK4/6i) can block the G1 cell cycle through the cyclin D-cyclin dependent kinase 4/6-inhibitor of CDK4-retinoblastoma (cyclinD-CDK4/6-INK4-RB) pathway, thus blocking the proliferation of invasive cells, showing great therapeutic potential to inhibit the spread of BC. So far, three FDA-approved drugs have been shown to be effective in the management of advanced hormone receptor positive (HR+) BC: palbociclib, abemaciclib, and ribociclib. The combination strategy of CDK4/6i and endocrine therapy (ET) has become the standard therapeutic regimen and is increasingly applied to advanced BC patients. The present study aims to clarify whether CDK4/6i can also achieve a certain therapeutic effect on Human epidermal growth factor receptor 2 positive (HER2+) BC. Studies of CDK4/6i are not limited to patients with estrogen receptor positive/human epidermal growth factor receptor 2 negative (ER+/HER2-) advanced BC, but have also expanded to other types of BC. Several pre-clinical and clinical trials have demonstrated the potential of CDK4/6i in treating HER2+ BC. Therefore, this review summarizes the current knowledge and recent findings on the use of CDK4/6i in this type of BC, and provides ideas for the discovery of new treatment modalities.
Collapse
Affiliation(s)
- Cui Zhang
- Zunyi Medical University, Zunyi, China
| | - Fulin Zhou
- Maternal and Child Health Care Hospital of Guiyang City, Guiyang, China
| | - Jiali Zou
- Maternal and Child Health Care Hospital of Guiyang City, Guiyang, China
| | - Yanman Fang
- Maternal and Child Health Care Hospital of Guiyang City, Guiyang, China
| | - Yuncong Liu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Libo Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jing Hou
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Guanghui Wang
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Hua Wang
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xiaolian Lai
- Department of Digestive, People’s Hospital of Songtao Miao Autonomous County, Tongren, China
| | - Lu Xie
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jia Jiang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Can Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | | | | | - Hanqun Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yong Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
72
|
Tolaney SM, Goel S, Nadal J, Denys H, Borrego MR, Litchfield LM, Liu J, Appiah AK, Chen Y, André F. Overall Survival and Exploratory Biomarker Analyses of Abemaciclib plus Trastuzumab with or without Fulvestrant versus Trastuzumab plus Chemotherapy in HR+, HER2+ Metastatic Breast Cancer Patients. Clin Cancer Res 2024; 30:39-49. [PMID: 37906649 PMCID: PMC10767303 DOI: 10.1158/1078-0432.ccr-23-1209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
PURPOSE The monarcHER trial has shown that abemaciclib, a cyclin-dependent kinase 4 and 6 inhibitor, combined with fulvestrant and trastuzumab, improves progression-free survival (PFS) in hormone receptor-positive (HR+), HER2-positive (HER2+) advanced breast cancer (ABC) compared with standard-of-care (SOC) chemotherapy combined with trastuzumab. We report the final overall survival (OS) analysis, updated safety and efficacy data, and exploratory biomarker results from monarcHER. PATIENTS AND METHODS monarcHER (NCT02675231), a randomized, multicenter, open-label, phase II trial, enrolled 237 patients across Arm A (abemaciclib, trastuzumab, fulvestrant), Arm B (abemaciclib, trastuzumab), and Arm C (SOC chemotherapy, trastuzumab). Following the statistical plan, OS and PFS were estimated in all arms. RNA sequencing (RNA-seq) was performed on archival tissue. RESULTS Median OS was 31.1 months in Arm A, 29.2 months in Arm B, and 20.7 months in Arm C [A vs. C: HR, 0.71; 95% confidence interval (CI), 0.48-1.05; nominal two-sided P value 0.086; B vs. C: HR 0.83 (95% CI, 0.57-1.23); nominal two-sided P value 0.365]. Updated PFS and safety findings were consistent with previous results. The most frequently reported treatment-emergent adverse events included diarrhea, fatigue, nausea, neutrophil count decrease, and anemia. In exploratory RNA-seq analyses, Luminal subtypes were associated with longer PFS [8.6 vs. 5.4 months (HR, 0.54; 95% CI, 0.38-0.79)] and OS [31.7 vs. 19.7 months (HR, 0.68; 95% CI, 0.46-1.00)] compared with non-Luminal. CONCLUSIONS In this phase II trial, abemaciclib + trastuzumab ± fulvestrant numerically improved median OS in women with HR+, HER2+ ABC compared with SOC chemotherapy + trastuzumab.
Collapse
Affiliation(s)
- Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shom Goel
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jorge Nadal
- Instituto Alexander Fleming, Buenos Aires, Argentina
| | - Hannelore Denys
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Manuel R. Borrego
- Medical Oncology Department, Hospital Universitario Virgen del Rocio, Seville, Spain
| | | | | | | | - Yanyun Chen
- Eli Lilly and Company, Indianapolis, Indiana
| | - Fabrice André
- Institut Gustave Roussy, INSERM Unité 981, Université Paris-Sud, Villejuif, France
| |
Collapse
|
73
|
Damoiseaux D, Schinkel AH, Beijnen JH, Huitema ADR, Dorlo TPC. Predictability of human exposure by human-CYP3A4-transgenic mouse models: A meta-analysis. Clin Transl Sci 2024; 17:e13668. [PMID: 38037826 PMCID: PMC10766057 DOI: 10.1111/cts.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
First-in-human dose predictions are primarily based on no-observed-adverse-effect levels in animal studies. Predictions from these animal models are only as effective as their ability to predict human results. To narrow the gap between human and animals, researchers have, among other things, focused on the replacement of animal cytochrome P450 (CYP) enzymes with their human counterparts (called humanization), especially in mice. Whereas research in humanized mice is extensive, the emphasis has been particularly on qualitative rather than quantitative predictions. Because the CYP3A4 enzyme is most involved in the metabolism of clinically used drugs, most benefit was expected from CYP3A4 models. There are several applications of these mouse models regarding in vivo CYP3A4 functionality, one of which might be their capacity to help improve first-in-human (FIH) dose predictions for CYP3A4-metabolized drugs. To evaluate whether human-CYP3A4-transgenic mouse models are better predictors of human exposure compared to the wild-type mouse model, we performed a meta-analysis comparing both mouse models in their ability to accurately predict human exposure of small-molecule drugs metabolized by CYP3A4. Results showed that, in general, the human-CYP3A4-transgenic mouse model had similar accuracy in the prediction of human exposure compared to the wild-type mouse model, suggesting that there is limited added value in humanization of the mouse Cyp3a enzymes if the primary aim is to acquire more accurate FIH dose predictions. Despite the results of this meta-analysis, corrections for interspecies differences through extension of human-CYP3A4-transgenic mouse models with pharmacokinetic modeling approaches seems a promising contribution to more accurate quantitative predictions of human pharmacokinetics.
Collapse
Affiliation(s)
- David Damoiseaux
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Alfred H. Schinkel
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Utrecht Institute of Pharmaceutical Sciences, Utrecht UniversityUtrechtThe Netherlands
| | - Alwin D. R. Huitema
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of PharmacologyPrincess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Clinical PharmacyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Thomas P. C. Dorlo
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of PharmacyUppsala UniversityUppsalaSweden
| |
Collapse
|
74
|
Rahman R, Trippa L, Lee EQ, Arrillaga-Romany I, Fell G, Touat M, McCluskey C, Wiley J, Gaffey S, Drappatz J, Welch MR, Galanis E, Ahluwalia MS, Colman H, Nabors LB, Hepel J, Elinzano H, Schiff D, Chukwueke UN, Beroukhim R, Nayak L, McFaline-Figueroa JR, Batchelor TT, Rinne ML, Kaley TJ, Lu-Emerson C, Mellinghoff IK, Bi WL, Arnaout O, Peruzzi PP, Haas-Kogan D, Tanguturi S, Cagney D, Aizer A, Doherty L, Lavallee M, Fisher-Longden B, Dowling S, Geduldig J, Watkinson F, Pisano W, Malinowski S, Ramkissoon S, Santagata S, Meredith DM, Chiocca EA, Reardon DA, Alexander BM, Ligon KL, Wen PY. Inaugural Results of the Individualized Screening Trial of Innovative Glioblastoma Therapy: A Phase II Platform Trial for Newly Diagnosed Glioblastoma Using Bayesian Adaptive Randomization. J Clin Oncol 2023; 41:5524-5535. [PMID: 37722087 DOI: 10.1200/jco.23.00493] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/17/2023] [Accepted: 07/24/2023] [Indexed: 09/20/2023] Open
Abstract
PURPOSE The Individualized Screening Trial of Innovative Glioblastoma Therapy (INSIGhT) is a phase II platform trial that uses response adaptive randomization and genomic profiling to efficiently identify novel therapies for phase III testing. Three initial experimental arms (abemaciclib [a cyclin-dependent kinase [CDK]4/6 inhibitor], neratinib [an epidermal growth factor receptor [EGFR]/human epidermal growth factor receptor 2 inhibitor], and CC-115 [a deoxyribonucleic acid-dependent protein kinase/mammalian target of rapamycin inhibitor]) were simultaneously evaluated against a common control arm. We report the results for each arm and examine the feasibility and conduct of the adaptive platform design. PATIENTS AND METHODS Patients with newly diagnosed O6-methylguanine-DNA methyltransferase-unmethylated glioblastoma were eligible if they had tumor genotyping to identify prespecified biomarker subpopulations of dominant glioblastoma signaling pathways (EGFR, phosphatidylinositol 3-kinase, and CDK). Initial random assignment was 1:1:1:1 between control (radiation therapy and temozolomide) and the experimental arms. Subsequent Bayesian adaptive randomization was incorporated on the basis of biomarker-specific progression-free survival (PFS) data. The primary end point was overall survival (OS), and one-sided P values are reported. The trial is registered with ClinicalTrials.gov (identifier: NCT02977780). RESULTS Two hundred thirty-seven patients were treated (71 control; 73 abemaciclib; 81 neratinib; 12 CC-115) in years 2017-2021. Abemaciclib and neratinib were well tolerated, but CC-115 was associated with ≥ grade 3 treatment-related toxicity in 58% of patients. PFS was significantly longer with abemaciclib (hazard ratio [HR], 0.72; 95% CI, 0.49 to 1.06; one-sided P = .046) and neratinib (HR, 0.72; 95% CI, 0.50 to 1.02; one-sided P = .033) relative to the control arm but there was no PFS benefit with CC-115 (one-sided P = .523). None of the experimental therapies demonstrated a significant OS benefit (P > .05). CONCLUSION The INSIGhT design enabled efficient simultaneous testing of three experimental agents using a shared control arm and adaptive randomization. Two investigational arms had superior PFS compared with the control arm, but none demonstrated an OS benefit. The INSIGhT design may promote improved and more efficient therapeutic discovery in glioblastoma. New arms have been added to the trial.
Collapse
Affiliation(s)
- Rifaquat Rahman
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
| | | | - Eudocia Q Lee
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
| | | | | | - Mehdi Touat
- Brigham and Women's Hospital, Boston, MA
- Sorbonne Universite, Hôpitaux Universitaires La Pitié Salpêtrière, Paris, France
| | | | | | | | | | - Mary R Welch
- Division of Neuro-Oncology, Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, NewYork-Presbyterian, New York, NY
| | | | | | - Howard Colman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | | | | | | | - Ugonma N Chukwueke
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
| | - Rameen Beroukhim
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
| | - Lakshmi Nayak
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
| | | | - Tracy T Batchelor
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
| | | | | | | | | | - Wenya Linda Bi
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
| | | | | | - Daphne Haas-Kogan
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
| | - Shyam Tanguturi
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
| | | | - Ayal Aizer
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
| | | | | | | | | | | | | | | | | | | | | | | | | | - David A Reardon
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
| | - Brian M Alexander
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
| | - Keith L Ligon
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
| | - Patrick Y Wen
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
75
|
Yamashiro H, Morii N. Abemaciclib-induced lung damage leading to discontinuation in brain metastases from breast cancer: A case report. World J Clin Cases 2023; 11:8425-8430. [PMID: 38130622 PMCID: PMC10731188 DOI: 10.12998/wjcc.v11.i35.8425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/30/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND This case report addresses the dearth of effective therapeutic interventions for central nervous system metastases in patients with HER2-negative breast cancer. It presents a unique case of a woman with estrogen receptor-positive, HER2-negative breast cancer who developed brain metastasis. The report highlights her initial favorable response to abemaciclib and letrozole therapy prior to the discontinuation due to drug-induced lung damage (DILD). CASE SUMMARY In this comprehensive case summary, we present the clinical course of a woman in her 60s, who 11 years following primary breast cancer surgery, was diagnosed with multiple brain metastases. As a third-line systemic therapy, she underwent treatment with abemaciclib and letrozole. This treatment approach yielded a near-partial response in her metastatic brain lesions. However, abemaciclib administration ceased due to the emergence of DILD, as confirmed by a computed tomography scan. The DILD improved after 1 mo of cessation. Despite ongoing therapeutic efforts, the patient's condition progressively deteriorated, ultimately resulting in death due to progression of the brain metastases. CONCLUSION This case underscores the challenge of managing adverse events in responsive brain metastasis patients, given the scarcity of therapeutic options.
Collapse
Affiliation(s)
- Hiroyasu Yamashiro
- Department of Breast Surgery, Tenri Hospital, Nara, Tenri 632-8552, Japan
| | - Nao Morii
- Department of Breast Surgery, Tenri Hospital, Nara, Tenri 632-8552, Japan
| |
Collapse
|
76
|
Wu Y, Chen S, Yang X, Sato K, Lal P, Wang Y, Shinkle AT, Wendl MC, Primeau TM, Zhao Y, Gould A, Sun H, Mudd JL, Hoog J, Mashl RJ, Wyczalkowski MA, Mo CK, Liu R, Herndon JM, Davies SR, Liu D, Ding X, Evrard YA, Welm BE, Lum D, Koh MY, Welm AL, Chuang JH, Moscow JA, Meric-Bernstam F, Govindan R, Li S, Hsieh J, Fields RC, Lim KH, Ma CX, Zhang H, Ding L, Chen F. Combining the Tyrosine Kinase Inhibitor Cabozantinib and the mTORC1/2 Inhibitor Sapanisertib Blocks ERK Pathway Activity and Suppresses Tumor Growth in Renal Cell Carcinoma. Cancer Res 2023; 83:4161-4178. [PMID: 38098449 PMCID: PMC10722140 DOI: 10.1158/0008-5472.can-23-0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/17/2023] [Accepted: 09/25/2023] [Indexed: 12/18/2023]
Abstract
Current treatment approaches for renal cell carcinoma (RCC) face challenges in achieving durable tumor responses due to tumor heterogeneity and drug resistance. Combination therapies that leverage tumor molecular profiles could offer an avenue for enhancing treatment efficacy and addressing the limitations of current therapies. To identify effective strategies for treating RCC, we selected ten drugs guided by tumor biology to test in six RCC patient-derived xenograft (PDX) models. The multitargeted tyrosine kinase inhibitor (TKI) cabozantinib and mTORC1/2 inhibitor sapanisertib emerged as the most effective drugs, particularly when combined. The combination demonstrated favorable tolerability and inhibited tumor growth or induced tumor regression in all models, including two from patients who experienced treatment failure with FDA-approved TKI and immunotherapy combinations. In cabozantinib-treated samples, imaging analysis revealed a significant reduction in vascular density, and single-nucleus RNA sequencing (snRNA-seq) analysis indicated a decreased proportion of endothelial cells in the tumors. SnRNA-seq data further identified a tumor subpopulation enriched with cell-cycle activity that exhibited heightened sensitivity to the cabozantinib and sapanisertib combination. Conversely, activation of the epithelial-mesenchymal transition pathway, detected at the protein level, was associated with drug resistance in residual tumors following combination treatment. The combination effectively restrained ERK phosphorylation and reduced expression of ERK downstream transcription factors and their target genes implicated in cell-cycle control and apoptosis. This study highlights the potential of the cabozantinib plus sapanisertib combination as a promising treatment approach for patients with RCC, particularly those whose tumors progressed on immune checkpoint inhibitors and other TKIs. SIGNIFICANCE The molecular-guided therapeutic strategy of combining cabozantinib and sapanisertib restrains ERK activity to effectively suppress growth of renal cell carcinomas, including those unresponsive to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yige Wu
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Xiaolu Yang
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Kazuhito Sato
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Preet Lal
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yuefan Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Andrew T. Shinkle
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Michael C. Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Tina M. Primeau
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Alanna Gould
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Hua Sun
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Jacqueline L. Mudd
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Jeremy Hoog
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - R. Jay Mashl
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Matthew A. Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Chia-Kuei Mo
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Ruiyang Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - John M. Herndon
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Sherri R. Davies
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Di Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Xi Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yvonne A. Evrard
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Bryan E. Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - David Lum
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Mei Yee Koh
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Alana L. Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jeffrey H. Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Jeffrey A. Moscow
- Investigational Drug Branch, National Cancer Institute, Bethesda, Maryland
| | | | - Ramaswamy Govindan
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Shunqiang Li
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - James Hsieh
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Ryan C. Fields
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Kian-Huat Lim
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Cynthia X. Ma
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
77
|
Jhaveri K, O’Shaughnessy J, Fasching PA, Tolaney SM, Yardley DA, Sharma VK, Biswas C, Thuerigen A, Pathak P, Rugo HS. Matching-adjusted indirect comparison of PFS and OS comparing ribociclib plus letrozole versus palbociclib plus letrozole as first-line treatment of HR+/HER2- advanced breast cancer. Ther Adv Med Oncol 2023; 15:17588359231216095. [PMID: 38107828 PMCID: PMC10722948 DOI: 10.1177/17588359231216095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023] Open
Abstract
Background Current standard-of-care first-line treatment of patients with hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR+/HER2-) advanced breast cancer (ABC) is cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) + endocrine therapy. In the MONALEESA-2 trial, first-line ribociclib + letrozole demonstrated statistically significant overall survival (OS) benefit versus placebo + letrozole in postmenopausal patients with HR+/HER2- ABC. In the PALOMA-2 trial, first-line palbociclib + letrozole did not show OS benefit versus placebo + letrozole in a similar patient population. Understanding OS outcomes in the respective trials is critical for treatment decisions; however, there are no head-to-head clinical trial data comparing ribociclib and palbociclib. Objectives To conduct a matching-adjusted indirect comparison (MAIC) to compare progression-free survival (PFS) and OS of first-line ribociclib + letrozole versus palbociclib + letrozole in postmenopausal patients with HR+/HER2- ABC. Design Letrozole-anchored MAIC using individual patient data from MONALEESA-2 and published summary data from PALOMA-2. Methods Using individual data, patients from MONALEESA-2 who matched inclusion criteria from PALOMA-2 were selected, and weighting was conducted to ensure baseline characteristics were similar to those in published aggregated data from PALOMA-2. The Bucher method was used to generate corresponding hazard ratios (HRs). Results The final effective sample size compared n = 150 (ribociclib) and n = 112 (placebo) MONALEESA-2 patients with n = 444 (palbociclib) and n = 222 (placebo) PALOMA-2 patients. After matching and weighting, patient characteristics were well balanced. MAIC analysis showed a numerical PFS benefit [HR, 0.80; 95% confidence interval (CI), 0.58-1.11; p = 0.187] and significant OS benefit (HR, 0.68; 95% CI, 0.48-0.96; p = 0.031) with ribociclib + letrozole versus palbociclib + letrozole. Conclusion Results of this cross-trial MAIC analysis showed a numerical PFS benefit and significantly greater OS benefit with first-line ribociclib + letrozole versus palbociclib + letrozole. These results support letrozole + ribociclib as the preferred first-line CDK4/6i for postmenopausal patients with HR+/HER2- ABC. Trial registration NCT01958021; https://www.clinicaltrials.gov/study/NCT01958021 (MONALEESA-2) and NCT01740427; https://clinicaltrials.gov/study/NCT01740427 (PALOMA-2).
Collapse
Affiliation(s)
- Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Joyce O’Shaughnessy
- Texas Oncology-Baylor University Medical Center and the US Oncology Research Network, Dallas, TX, USA
| | - Peter A. Fasching
- Comprehensive Cancer Center Erlangen–European Metropolitan Region of Nuremberg, University Hospital Erlangen, Erlangen, Germany
- Department of Gynecology and Obstetrics, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Denise A. Yardley
- Sarah Cannon Research Institute at Tennessee Oncology, Nashville, TN, USA
| | | | | | | | - Purnima Pathak
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Hope S. Rugo
- Department of Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| |
Collapse
|
78
|
Ghanem P, Fatteh M, Kamson DO, Balan A, Chang M, Tao J, Blakeley J, Canzoniero J, Grossman SA, Marrone K, Schreck KC, Anagnostou V. Druggable genomic landscapes of high-grade gliomas. Front Med (Lausanne) 2023; 10:1254955. [PMID: 38143440 PMCID: PMC10749203 DOI: 10.3389/fmed.2023.1254955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
Background Despite the putatively targetable genomic landscape of high-grade gliomas, the long-term survival benefit of genomically-tailored targeted therapies remains discouraging. Methods Using glioblastoma (GBM) as a representative example of high-grade gliomas, we evaluated the clonal architecture and distribution of hotspot mutations in 388 GBMs from the Cancer Genome Atlas (TCGA). Mutations were matched with 54 targeted therapies, followed by a comprehensive evaluation of drug biochemical properties in reference to the drug's clinical efficacy in high-grade gliomas. We then assessed clinical outcomes of a cohort of patients with high-grade gliomas with targetable mutations reviewed at the Johns Hopkins Molecular Tumor Board (JH MTB; n = 50). Results Among 1,156 sequence alterations evaluated, 28.6% represented hotspots. While the frequency of hotspot mutations in GBM was comparable to cancer types with actionable hotspot alterations, GBMs harbored a higher fraction of subclonal mutations that affected hotspots (7.0%), compared to breast cancer (4.9%), lung cancer (4.4%), and melanoma (1.4%). In investigating the biochemical features of targeted therapies paired with recurring alterations, we identified a trend toward higher lipid solubility and lower IC50 in GBM cell lines among drugs with clinical efficacy. The drugs' half-life, molecular weight, surface area and binding to efflux transporters were not associated with clinical efficacy. Among the JH MTB cohort of patients with IDH1 wild-type high-grade gliomas who received targeted therapies, trametinib monotherapy or in combination with dabrafenib conferred radiographic partial response in 75% of patients harboring BRAF or NF1 actionable mutations. Cabozantinib conferred radiographic partial response in two patients harboring a MET and a PDGFRA/KDR amplification. Patients with IDH1 wild-type gliomas that harbored actionable alterations who received genotype-matched targeted therapy had longer progression-free (PFS) and overall survival (OS; 7.37 and 14.72 respectively) than patients whose actionable alterations were not targeted (2.83 and 4.2 months respectively). Conclusion While multiple host, tumor and drug-related features may limit the delivery and efficacy of targeted therapies for patients with high-grade gliomas, genotype-matched targeted therapies confer favorable clinical outcomes. Further studies are needed to generate more data on the impact of biochemical features of targeted therapies on their clinical efficacy for high-grade gliomas.
Collapse
Affiliation(s)
- Paola Ghanem
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Maria Fatteh
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David Olayinka Kamson
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Archana Balan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Chang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jessica Tao
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jaishri Blakeley
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jenna Canzoniero
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stuart A. Grossman
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristen Marrone
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Karisa C. Schreck
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Valsamo Anagnostou
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
79
|
Hu W, Wang L, Luo J, Zhang J, Li N. The Potent Novel CDK4/6 Inhibitor TQB3616 in Hormone Receptor Positive Breast Cancer: Preclinical Characterization with in vitro and Human Tumor Xenograft Models. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:899-912. [PMID: 38090281 PMCID: PMC10715022 DOI: 10.2147/bctt.s434973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/26/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE Inhibition of the cyclin-dependent kinase (CDK) 4/6-retinoblastoma (RB) pathway exerts a considerable inhibitory effect, preventing the spread and metastasis of breast cancer cells and promoting tumor regression. In this study, we examined the antitumor activity of TQB3616, a novel inhibitor of CDK4/6 activity, which showed a greater efficacy improvement in antitumor effects. METHODS TQB3616 group, abemaciclib group and endocrine or HER-2 targeted combination therapy group were set up respectively. The effects of drugs on cell proliferation activity, cell cycle, apoptosis, downstream protein expression and gene expression of HR positive (T47D, MCF-7) and HER-2 positive (BT474, MDA-MB-361) breast cancer cell lines were studied. The antiproliferative effect of TQB3616 was also measured in vivo. RESULTS TQB3616 showed a remarkable inhibitory effect on the proliferation of hormone receptor-positive breast cancer cells in vitro. In addition, TQB3616 combined with endocrine therapy or Human Epidermal Growth Factor Receptor 2 (HER2) targeted therapy showed significant synergistic antitumor activity in estrogen receptor (ER)-positive/HER2-negative or HER2-positive breast cancer. In contrast to abemaciclib, which targets the CDK4/6 pathway with proven efficacy, the oral agent TQB3616 not only induced G1 stalling, leading to a profound reduction in the level of RB protein phosphorylated at Ser807/811, but also showed enhanced tumor killing effects by promoting cell apoptosis. Oral administration of TQB3616 showed more potent antitumor activity than abemaciclib in an in vitro breast cancer xenograft model, causing significant tumor regression associated with sustained target inhibition in tumor tissue and manageable in vivo toxicity. CONCLUSION The results of this study indicate that TQB3616 is a novel CDK4/6 inhibitor, and its highly effective antitumor activity against breast cancer is expected to yield promising therapeutic effects in clinical studies.
Collapse
Affiliation(s)
- Wenyu Hu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Lei Wang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - JiaLing Luo
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Nanlin Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
80
|
Buller W, Pallan L, Chu T, Khoja L. CDK4/6 inhibitors in metastatic breast cancer, a comparison of toxicity and efficacy across agents in a real-world dataset. J Oncol Pharm Pract 2023; 29:1825-1835. [PMID: 36945886 DOI: 10.1177/10781552231163121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION CDK4/6 inhibitors (ribociclib, palbociclib and abemaciclib) are 1st line therapy in metastatic breast cancer (MBC). No comparative data exists between agents regarding toxicity or efficacy. METHODS A retrospective study was performed at our tertiary referral centre evaluating patients on a CDK4/6 inhibitor for MBC between July 2017 and December 2021. Toxicity was evaluated along with variability in full blood counts and liver function over the first 12 weeks of therapy. RESULTS Two hundred and seventeen patients were treated (palbociclib 59%, abemaciclib 25% and ribociclib 16%). 86% received the agent as 1st line therapy. Most patients were white women with a median age of 61 years (32-95) and ECOG 0/1. Twelve patients were switched to an alternative CDK4/6 inhibitor due to toxicity and two did not tolerate this. Toxicity profiles of agents were consistent with published trials. However, there was greater overlap in hepatitis, diarrhoea and bone marrow suppression. Blood results indicated a minimum of four weeks treatment before development of neutropenia. Forty percent of patients went onto have subsequent lines of therapy. The progression-free survival per agent was palbociclib 27.9 months (95% CI 23-32.5), ribociclib 29 months (95% CI 21.5-37.0) and abemaciclib 20.6 months (95% CI 15.0-26.0). The overall survival was palbociclib 38.0 months (95% CI 33.5-42.5), ribociclib 33.9 months (95% CI 26.7-41.1) and abemaciclib 27.3 months (95% CI 22.5-32.1). CONCLUSIONS Toxicity across CDK4/6 inhibitors overlaps. The optimal sequence of therapies post CDK4/6 inhibitors remains unknown but rechallenge with an alternative agent is possible.
Collapse
Affiliation(s)
- William Buller
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lalit Pallan
- Department of Oncology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Teresa Chu
- Department of Oncology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Leila Khoja
- Department of Oncology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
81
|
Bai Y, Zhou L, Zhang C, Guo M, Xia L, Tang Z, Liu Y, Deng S. Dual network analysis of transcriptome data for discovery of new therapeutic targets in non-small cell lung cancer. Oncogene 2023; 42:3605-3618. [PMID: 37864031 PMCID: PMC10691970 DOI: 10.1038/s41388-023-02866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
The drug therapy for non-small cell lung cancer (NSCLC) have always been issues of poisonous side effect, acquired drug resistance and narrow applicable population. In this study, we built a novel network analysis method (difference- correlation- enrichment- causality- node), which was based on the difference analysis, Spearman correlation network analysis, biological function analysis and Bayesian causality network analysis to discover new therapeutic target of NSCLC in the sequencing data of BEAS-2B and 7 NSCLC cell lines. Our results showed that, as a proteasome subunit coding gene in the central of cell cycle network, PSMD2 was associated with prognosis and was an independent prognostic factor for NSCLC patients. Knockout of PSMD2 inhibited the proliferation of NSCLC cells by inducing cell cycle arrest, and exhibited marked increase of cell cycle blocking protein p21, p27 and decrease of cell cycle driven protein CDK4, CDK6, CCND1 and CCNE1. IPA and molecular docking suggested bortezomib has stronger affinity to PSMD2 compared with reported targets PSMB1 and PSMB5. In vitro and In vivo experiments demonstrated the inhibitory effect of bortezomib in NSCLC with different driven mutations or with tyrosine kinase inhibitors resistance. Taken together, bortezomib could target PSMD2, PSMB1 and PSMB5 to inhibit the proteasome degradation of cell cycle check points, to block cell proliferation of NSCLC, which was potential optional drug for NSCLC patients.
Collapse
Affiliation(s)
- Yuquan Bai
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Zhou
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuanfen Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minzhang Guo
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Xia
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenying Tang
- College of Computer Science, Sichuan University, Chengdu, 610041, China
| | - Yi Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Senyi Deng
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
82
|
Stone A, Lin KM, Ghelani GH, Patel S, Benjamin S, Graziano S, Kotula L. Breast Cancer Treatment: To tARget or Not? That Is the Question. Cancers (Basel) 2023; 15:5664. [PMID: 38067367 PMCID: PMC10705204 DOI: 10.3390/cancers15235664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024] Open
Abstract
To assess AR's role in TNBC treatment, various existing and completed clinical trials targeting AR or co-targeting AR with other pertinent signaling molecules were analyzed. Cyclin-dependent kinase 4/6 (CDK4/6), cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17 lyase), and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway were some of the most prevalent biomarkers used in combination therapy with AR inhibitors in these trials. Studying how AR functions in tandem with these molecules can have increasing breakthroughs in the treatment options for TNBC. Previous studies have been largely unsuccessful in utilizing AR as the sole drug target for systemic targeted treatment in TNBC. However, there is a lack of other commonly used drug target biomarkers in the treatment of this disease, as well. Thus, analyzing the clinical benefit rate (CBR) within clinical trials that use combination therapy can prove to be imperative to the progression of improving treatment options and prognoses.
Collapse
Affiliation(s)
- Alexandra Stone
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA; (A.S.); (K.M.L.); (S.P.)
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13210, USA
| | - Kevin M. Lin
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA; (A.S.); (K.M.L.); (S.P.)
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13210, USA
| | - Ghanshyam H. Ghelani
- Department of Hematology/Oncology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13210, USA; (G.H.G.); (S.B.); (S.G.)
- Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Sanik Patel
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA; (A.S.); (K.M.L.); (S.P.)
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13210, USA
| | - Sam Benjamin
- Department of Hematology/Oncology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13210, USA; (G.H.G.); (S.B.); (S.G.)
- Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Stephen Graziano
- Department of Hematology/Oncology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13210, USA; (G.H.G.); (S.B.); (S.G.)
- Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Leszek Kotula
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA; (A.S.); (K.M.L.); (S.P.)
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13210, USA
| |
Collapse
|
83
|
Crozier L, Foy R, Adib R, Kar A, Holt JA, Pareri AU, Valverde JM, Rivera R, Weston WA, Wilson R, Regnault C, Whitfield P, Badonyi M, Bennett LG, Vernon EG, Gamble A, Marsh JA, Staples CJ, Saurin AT, Barr AR, Ly T. CDK4/6 inhibitor-mediated cell overgrowth triggers osmotic and replication stress to promote senescence. Mol Cell 2023; 83:4062-4077.e5. [PMID: 37977118 DOI: 10.1016/j.molcel.2023.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/10/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Abnormal increases in cell size are associated with senescence and cell cycle exit. The mechanisms by which overgrowth primes cells to withdraw from the cell cycle remain unknown. We address this question using CDK4/6 inhibitors, which arrest cells in G0/G1 and are licensed to treat advanced HR+/HER2- breast cancer. We demonstrate that CDK4/6-inhibited cells overgrow during G0/G1, causing p38/p53/p21-dependent cell cycle withdrawal. Cell cycle withdrawal is triggered by biphasic p21 induction. The first p21 wave is caused by osmotic stress, leading to p38- and size-dependent accumulation of p21. CDK4/6 inhibitor washout results in some cells entering S-phase. Overgrown cells experience replication stress, resulting in a second p21 wave that promotes cell cycle withdrawal from G2 or the subsequent G1. We propose that the levels of p21 integrate signals from overgrowth-triggered stresses to determine cell fate. This model explains how hypertrophy can drive senescence and why CDK4/6 inhibitors have long-lasting effects in patients.
Collapse
Affiliation(s)
- Lisa Crozier
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Reece Foy
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Rozita Adib
- MRC Laboratory of Medical Sciences, London, UK
| | - Ananya Kar
- Molecular Cell and Developmental Biology, School of Life Sciences, Dundee, UK
| | | | - Aanchal U Pareri
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Juan M Valverde
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Rene Rivera
- Molecular Cell and Developmental Biology, School of Life Sciences, Dundee, UK
| | | | - Rona Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Clement Regnault
- Glasgow Polyomics College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK
| | - Phil Whitfield
- Glasgow Polyomics College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK
| | - Mihaly Badonyi
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Laura G Bennett
- North West Cancer Research Institute, School of Medical and Health Sciences, Brambell Building, Deiniol Rd, Bangor LL57 2UW, UK
| | - Ellen G Vernon
- North West Cancer Research Institute, School of Medical and Health Sciences, Brambell Building, Deiniol Rd, Bangor LL57 2UW, UK
| | - Amelia Gamble
- North West Cancer Research Institute, School of Medical and Health Sciences, Brambell Building, Deiniol Rd, Bangor LL57 2UW, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Christopher J Staples
- North West Cancer Research Institute, School of Medical and Health Sciences, Brambell Building, Deiniol Rd, Bangor LL57 2UW, UK
| | - Adrian T Saurin
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK.
| | - Alexis R Barr
- MRC Laboratory of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Tony Ly
- Molecular Cell and Developmental Biology, School of Life Sciences, Dundee, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Glasgow Polyomics College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
84
|
Foy R, Crozier L, Pareri AU, Valverde JM, Park BH, Ly T, Saurin AT. Oncogenic signals prime cancer cells for toxic cell overgrowth during a G1 cell cycle arrest. Mol Cell 2023; 83:4047-4061.e6. [PMID: 37977117 DOI: 10.1016/j.molcel.2023.10.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/10/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
CDK4/6 inhibitors are remarkable anti-cancer drugs that can arrest tumor cells in G1 and induce their senescence while causing only relatively mild toxicities in healthy tissues. How they achieve this mechanistically is unclear. We show here that tumor cells are specifically vulnerable to CDK4/6 inhibition because during the G1 arrest, oncogenic signals drive toxic cell overgrowth. This overgrowth causes permanent cell cycle withdrawal by either preventing progression from G1 or inducing genotoxic damage during the subsequent S-phase and mitosis. Inhibiting or reverting oncogenic signals that converge onto mTOR can rescue this excessive growth, DNA damage, and cell cycle exit in cancer cells. Conversely, inducing oncogenic signals in non-transformed cells can drive these toxic phenotypes and sensitize the cells to CDK4/6 inhibition. Together, this demonstrates that cell cycle arrest and oncogenic cell growth is a synthetic lethal combination that is exploited by CDK4/6 inhibitors to induce tumor-specific toxicity.
Collapse
Affiliation(s)
- Reece Foy
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Lisa Crozier
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Aanchal U Pareri
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Juan Manuel Valverde
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Ben Ho Park
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tony Ly
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Adrian T Saurin
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
85
|
Zagami P, Boscolo Bielo L, Nicolò E, Curigliano G. HER2-positive breast cancer: cotargeting to overcome treatment resistance. Curr Opin Oncol 2023; 35:461-471. [PMID: 37621172 DOI: 10.1097/cco.0000000000000971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
PURPOSE OF REVIEW The introduction in clinical practice of anti-HER2 agents changed the prognosis of patients with HER2-positive (HER2+) breast cancer in both metastatic and early setting. Although the incomparable results obtained in the last years with the approval of new drugs targeting HER2, not all patients derive benefit from these treatments, experiencing primary or secondary resistance. The aim of this article is to review the data about cotargeting HER2 with different pathways (or epitopes of receptors) involved in its oncogenic signaling, as a mechanism to overcome resistance to anti-HER2 agents. RECENT FINDINGS Concordantly to the knowledge of the HER2+ breast cancer heterogeneity as well as new drugs, novel predictive biomarkers of response to anti-HER2 treatments are always raised helping to define target to overcome resistance. Cotargeting HER2 and hormone receptors is the most well known mechanism to improve benefit in HER2+/HR+ breast cancer. Additional HER2-cotargeting, such as, with PI3K pathway, as well as different HERs receptors or immune-checkpoints revealed promising results. SUMMARY HER2+ breast cancer is an heterogenous disease. Cotargeting HER2 with other signaling pathways involved in its mechanism of resistance may improve patient outcomes. Research efforts will continue to investigate novel targets and combinations to create more effective treatment regimes.
Collapse
Affiliation(s)
- Paola Zagami
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Lineberger comprehensive cancer center, University of North Carolina, Chapel hill, North Carolina
| | - Luca Boscolo Bielo
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eleonora Nicolò
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
86
|
Pita JM, Raspé E, Coulonval K, Decaussin-Petrucci M, Tarabichi M, Dom G, Libert F, Craciun L, Andry G, Wicquart L, Leteurtre E, Trésallet C, Marlow LA, Copland JA, Durante C, Maenhaut C, Cavaco BM, Dumont JE, Costante G, Roger PP. CDK4 phosphorylation status and rational use for combining CDK4/6 and BRAF/MEK inhibition in advanced thyroid carcinomas. Front Endocrinol (Lausanne) 2023; 14:1247542. [PMID: 37964967 PMCID: PMC10641312 DOI: 10.3389/fendo.2023.1247542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Background CDK4/6 inhibitors (CDK4/6i) have been established as standard treatment against advanced Estrogen Receptor-positive breast cancers. These drugs are being tested against several cancers, including in combinations with other therapies. We identified the T172-phosphorylation of CDK4 as the step determining its activity, retinoblastoma protein (RB) inactivation, cell cycle commitment and sensitivity to CDK4/6i. Poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinomas, the latter considered one of the most lethal human malignancies, represent major clinical challenges. Several molecular evidence suggest that CDK4/6i could be considered for treating these advanced thyroid cancers. Methods We analyzed by two-dimensional gel electrophoresis the CDK4 modification profile and the presence of T172-phosphorylated CDK4 in a collection of 98 fresh-frozen tissues and in 21 cell lines. A sub-cohort of samples was characterized by RNA sequencing and immunohistochemistry. Sensitivity to CDK4/6i (palbociclib and abemaciclib) was assessed by BrdU incorporation/viability assays. Treatment of cell lines with CDK4/6i and combination with BRAF/MEK inhibitors (dabrafenib/trametinib) was comprehensively evaluated by western blot, characterization of immunoprecipitated CDK4 and CDK2 complexes and clonogenic assays. Results CDK4 phosphorylation was detected in all well-differentiated thyroid carcinomas (n=29), 19/20 PDTC, 16/23 ATC and 18/21 thyroid cancer cell lines, including 11 ATC-derived ones. Tumors and cell lines without phosphorylated CDK4 presented very high p16CDKN2A levels, which were associated with proliferative activity. Absence of CDK4 phosphorylation in cell lines was associated with CDK4/6i insensitivity. RB1 defects (the primary cause of intrinsic CDK4/6i resistance) were not found in 5/7 tumors without detectable phosphorylated CDK4. A previously developed 11-gene expression signature identified the likely unresponsive tumors, lacking CDK4 phosphorylation. In cell lines, palbociclib synergized with dabrafenib/trametinib by completely and permanently arresting proliferation. These combinations prevented resistance mechanisms induced by palbociclib, most notably Cyclin E1-CDK2 activation and a paradoxical stabilization of phosphorylated CDK4 complexes. Conclusion Our study supports further clinical evaluation of CDK4/6i and their combination with anti-BRAF/MEK therapies as a novel effective treatment against advanced thyroid tumors. Moreover, the complementary use of our 11 genes predictor with p16/KI67 evaluation could represent a prompt tool for recognizing the intrinsically CDK4/6i insensitive patients, who are potentially better candidates to immediate chemotherapy.
Collapse
Affiliation(s)
- Jaime M. Pita
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Eric Raspé
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Katia Coulonval
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Maxime Tarabichi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Geneviève Dom
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frederick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
- BRIGHTCore, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ligia Craciun
- Tumor Bank of the Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Guy Andry
- Department of Head & Neck and Thoracic Surgery, Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Wicquart
- Tumorothèque du Groupement de Coopération Sanitaire-Centre Régional de Référence en Cancérologie (C2RC) de Lille, Lille, France
| | - Emmanuelle Leteurtre
- Department of Pathology, Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Inserm, Centre Hospitalo-Universitaire (CHU) Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Christophe Trésallet
- Department of General and Endocrine Surgery - Pitié-Salpêtrière Hospital, Sorbonne University, Assistance Publique des Hôpitaux de Paris, Paris, France
- Department of Digestive, Bariatric and Endocrine Surgery - Avicenne University Hospital, Paris Nord - Sorbonne University, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Laura A. Marlow
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carine Maenhaut
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Branca M. Cavaco
- Molecular Endocrinology Group, Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacques E. Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giuseppe Costante
- Departments of Endocrinology and Medical Oncology, Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre P. Roger
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
87
|
van der Kleij MBA, Guchelaar NAD, Mathijssen RHJ, Versluis J, Huitema ADR, Koolen SLW, Steeghs N. Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology. Clin Pharmacokinet 2023; 62:1333-1364. [PMID: 37584840 PMCID: PMC10519871 DOI: 10.1007/s40262-023-01293-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
Although kinase inhibitors (KI) frequently portray large interpatient variability, a 'one size fits all' regimen is still often used. In the meantime, relationships between exposure-response and exposure-toxicity have been established for several KIs, so this regimen could lead to unnecessary toxicity and suboptimal efficacy. Dose adjustments based on measured systemic pharmacokinetic levels-i.e., therapeutic drug monitoring (TDM)-could therefore improve treatment efficacy and reduce the incidence of toxicities. Therefore, the aim of this comprehensive review is to give an overview of the available evidence for TDM for the 77 FDA/EMA kinase inhibitors currently approved (as of July 1st, 2023) used in hematology and oncology. We elaborate on exposure-response and exposure-toxicity relationships for these kinase inhibitors and provide practical recommendations for TDM and discuss corresponding pharmacokinetic targets when possible.
Collapse
Affiliation(s)
- Maud B A van der Kleij
- Division of Medical Oncology, Department of Clinical Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands.
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Niels A D Guchelaar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jurjen Versluis
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Neeltje Steeghs
- Division of Medical Oncology, Department of Clinical Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
88
|
Zeverijn LJ, Looze EJ, Thavaneswaran S, van Berge Henegouwen JM, Simes RJ, Hoes LR, Sjoquist KM, van der Wijngaart H, Sebastian L, Geurts BS, Lee CK, de Wit GF, Espinoza D, Roepman P, Lin FP, Jansen AML, de Leng WWJ, van der Noort V, Leek LVM, de Vos FYFL, van Herpen CML, Gelderblom H, Verheul HMW, Thomas DM, Voest EE. Limited clinical activity of palbociclib and ribociclib monotherapy in advanced cancers with cyclin D-CDK4/6 pathway alterations in the Dutch DRUP and Australian MoST trials. Int J Cancer 2023; 153:1413-1422. [PMID: 37424386 DOI: 10.1002/ijc.34649] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
The Dutch Drug Rediscovery Protocol (DRUP) and the Australian Cancer Molecular Screening and Therapeutic (MoST) Program are similar nonrandomized, multidrug, pan-cancer trial platforms that aim to identify signals of clinical activity of molecularly matched targeted therapies or immunotherapies outside their approved indications. Here, we report results for advanced or metastatic cancer patients with tumors harboring cyclin D-CDK4/6 pathway alterations treated with CDK4/6 inhibitors palbociclib or ribociclib. We included adult patients that had therapy-refractory solid malignancies with the following alterations: amplifications of CDK4, CDK6, CCND1, CCND2 or CCND3, or complete loss of CDKN2A or SMARCA4. Within MoST, all patients were treated with palbociclib, whereas in DRUP, palbociclib and ribociclib were assigned to different cohorts (defined by tumor type and alteration). The primary endpoint for this combined analysis was clinical benefit, defined as confirmed objective response or stable disease ≥16 weeks. We treated 139 patients with a broad variety of tumor types; 116 with palbociclib and 23 with ribociclib. In 112 evaluable patients, the objective response rate was 0% and clinical benefit rate at 16 weeks was 15%. Median progression-free survival was 4 months (95% CI: 3-5 months), and median overall survival 5 months (95% CI: 4-6 months). In conclusion, only limited clinical activity of palbociclib and ribociclib monotherapy in patients with pretreated cancers harboring cyclin D-CDK4/6 pathway alterations was observed. Our findings indicate that monotherapy use of palbociclib or ribociclib is not recommended and that merging data of two similar precision oncology trials is feasible.
Collapse
Affiliation(s)
- Laurien J Zeverijn
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Eleonora J Looze
- Division of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Subotheni Thavaneswaran
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - J Maxime van Berge Henegouwen
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert J Simes
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Louisa R Hoes
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Katrin M Sjoquist
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Hanneke van der Wijngaart
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Lucille Sebastian
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Birgit S Geurts
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Chee K Lee
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Gijsbrecht F de Wit
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - David Espinoza
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - Frank P Lin
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Anne M L Jansen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Lindsay V M Leek
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Filip Y F L de Vos
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carla M L van Herpen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - David M Thomas
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Emile E Voest
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
| |
Collapse
|
89
|
Chiorean EG, Picozzi V, Li C, Peeters M, Maurel J, Singh J, Golan T, Blanc J, Chapman SC, Hussain AM, Johnston EL, Hochster HS. Efficacy and safety of abemaciclib alone and with PI3K/mTOR inhibitor LY3023414 or galunisertib versus chemotherapy in previously treated metastatic pancreatic adenocarcinoma: A randomized controlled trial. Cancer Med 2023; 12:20353-20364. [PMID: 37840530 PMCID: PMC10652308 DOI: 10.1002/cam4.6621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/07/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinomas (PDAC) are characterized by frequent cell cycle pathways aberrations. This study evaluated safety and efficacy of abemaciclib, a cyclin-dependent kinase 4 and 6 inhibitor, as monotherapy or in combination with PI3K/mTOR dual inhibitor LY3023414 or TGFβ inhibitor galunisertib versus standard of care (SOC) chemotherapy in patients with pretreated metastatic PDAC. METHODS This Phase 2 open-label study enrolled patients with metastatic PDAC who progressed after 1-2 prior therapies. Patients were enrolled in a safety lead-in (abemaciclib plus galunisertib) followed by a 2-stage randomized design. Stage 1 randomization was planned 1:1:1:1 for abemaciclib, abemaciclib plus LY3023414, abemaciclib plus galunisertib, or SOC gemcitabine or capecitabine. Advancing to Stage 2 required a disease control rate (DCR) difference ≥0 in abemaciclib-containing arms versus SOC. Primary objectives for Stages 1 and 2 were DCR and progression-free survival (PFS), respectively. Secondary objectives included response rate, overall survival, safety, and pharmacokinetics. RESULTS One hundred and six patients were enrolled. Abemaciclib plus galunisertib did not advance to Stage 1 for reasons unrelated to safety or efficacy. Stage 1 DCR was 15.2% with abemaciclib monotherapy, 12.1% with abemaciclib plus LY3023414, and 36.4% with SOC. Median PFS was 1.7 months (95% CI: 1.4-1.8), 1.8 months (95% CI: 1.3-1.9), and 3.3 months (95% CI: 1.1-5.7), respectively. No arms advanced to Stage 2. No new safety signals were identified. CONCLUSION In patients with pretreated metastatic PDAC, abemaciclib-based therapy did not improve DCRs or PFS compared with SOC chemotherapy. No treatment arms advanced to Stage 2. Abemaciclib remains investigational in patients with PDAC.
Collapse
Affiliation(s)
- E. Gabriela Chiorean
- University of Washington School of MedicineSeattleWashingtonUSA
- Fred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Vincent Picozzi
- Virginia Mason Hospital and Medical CenterSeattleWashingtonUSA
| | - Chung‐Pin Li
- Division of Clinical Skills Training, Department of Medical EducationTaipei Veterans General HospitalTaipeiTaiwan
- Division of Gastroenterology and Hepatology, Department of MedicineTaipei Veterans General HospitalTaipeiTaiwan
- Therapeutic and Research Center of Pancreatic CancerTaipei Veterans General HospitalTaipeiTaiwan
- School of Medicine, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Marc Peeters
- Department of OncologyAntwerp University HospitalAntwerpBelgium
- Department of Oncology, Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Joan Maurel
- Medical Oncology Department, Hospital Clinic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, IDIBAPSUniversity of BarcelonaBarcelonaSpain
| | - Jaswinder Singh
- Sarah Cannon Cancer Institute at Research Medical CenterKansas CityMissouriUSA
| | - Talia Golan
- Oncology Institute, Sheba M9edical Center at Tel‐HashomerTel Aviv UniversityTel AvivIsrael
| | - Jean‐Frédéric Blanc
- Service d'Hépato‐Gastroentérologie et d'Oncologie DigestiveGroupe Hospitalier Haut‐LévêqueCHU BordeauxPessacFrance
| | | | | | | | | |
Collapse
|
90
|
Xiao S, Qin D, Hou X, Tian L, Yu Y, Zhang R, Lyu H, Guo D, Chen XZ, Zhou C, Tang J. Cellular senescence: a double-edged sword in cancer therapy. Front Oncol 2023; 13:1189015. [PMID: 37771436 PMCID: PMC10522834 DOI: 10.3389/fonc.2023.1189015] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023] Open
Abstract
Over the past few decades, cellular senescence has been identified in cancer patients undergoing chemotherapy and radiotherapy. Senescent cells are generally characterized by permanent cell cycle arrest as a response to endogenous and exogenous stresses. In addition to exiting the cell cycle process, cellular senescence also triggers profound phenotypic changes such as senescence-associated secretory phenotype (SASP), autophagy modulation, or metabolic reprograming. Consequently, cellular senescence is often considered as a tumor-suppressive mechanism that permanently arrests cells at risk of malignant transformation. However, accumulating evidence shows that therapy-induced senescence can promote epithelial-mesenchymal transition and tumorigenesis in neighboring cells, as well as re-entry into the cell cycle and activation of cancer stem cells, thereby promoting cancer cell survival. Therefore, it is particularly important to rapidly eliminate therapy-induced senescent cells in patients with cancer. Here we review the hallmarks of cellular senescence and the relationship between cellular senescence and cancer. We also discuss several pathways to induce senescence in tumor therapy, as well as strategies to eliminate senescent cells after cancer treatment. We believe that exploiting the intersection between cellular senescence and tumor cells is an important means to defeat tumors.
Collapse
Affiliation(s)
- Shuai Xiao
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Dongmin Qin
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Xueyang Hou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Lingli Tian
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Yeping Yu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| |
Collapse
|
91
|
Nduom EK, Glod J, Brown DA, Fagan M, Dalmage M, Heiss J, Steinberg SM, Peer C, Figg WD, Jackson S. Clinical protocol: Feasibility of evaluating abemaciclib neuropharmacokinetics of diffuse midline glioma using intratumoral microdialysis. PLoS One 2023; 18:e0291068. [PMID: 37682953 PMCID: PMC10490936 DOI: 10.1371/journal.pone.0291068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Diffuse midline gliomas (DMG) are the most aggressive brain tumors of childhood and young adults, with documented 2-year survival rates <10%. Treatment failure is due in part to the function of the BBB. Intratumoral microdialysis sampling is an effective tool to determine brain entry of varied agents and could help to provide a better understanding of the relationship of drug permeability to DMG treatment responsivity. This is a non-randomized, single-center, phase 1 clinical trial. Up to seven young adult (18-39 years) patients with recurrent high-grade or diffuse midline glioma will be enrolled with the goal of 5 patients completing the trial over an anticipated 24 months. All patients will take abemaciclib pre-operatively for 4.5 days at twice daily dosing. Patients will undergo resection or biopsy, placement of a microdialysis catheter, and 48 hours of dialysate sampling coupled with timed plasma collections. If intratumoral tumor or brain dialysate sampling concentrations are >10nmol/L, or tumor tissue studies demonstrate CDK inhibition, then restart of abemaciclib therapy along with temozolomide will be administered for maintenance therapy and discontinued with evidence of radiologic or clinical disease progression. The poor survival associated with diffuse midline gliomas underscore the need for improved means to evaluate efficacy of drug delivery to tumor and peritumoral tissue. The findings of this novel study, will provide real-time measurements of BBB function which have the potential to influence future prognostic and diagnostic decisions in such a lethal disease with limited treatment options. Trial registration: Clinicaltrials.gov, NCT05413304. Registered June 10, 2022, Abemaciclib Neuropharmacokinetics of Diffuse Midline Glioma Using Intratumoral Microdialysis.
Collapse
Affiliation(s)
- Edjah K. Nduom
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States of America
| | - John Glod
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Desmond A. Brown
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Margaret Fagan
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Mahalia Dalmage
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - John Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Cody Peer
- Clinical Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - William D. Figg
- Clinical Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Sadhana Jackson
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
92
|
Liu M, Li N, Tang H, Chen L, Liu X, Wang Y, Lin Y, Luo Y, Wei S, Wen W, Chen M, Wang J, Zhang N, Chen J. The Mutational, Prognostic, and Therapeutic Landscape of Neuroendocrine Neoplasms. Oncologist 2023; 28:e723-e736. [PMID: 37086484 PMCID: PMC10485279 DOI: 10.1093/oncolo/oyad093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/11/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Neuroendocrine neoplasms (NENs) represent clinically and genetically heterogeneous malignancies, thus a comprehensive understanding of underlying molecular characteristics, prognostic signatures, and potential therapeutic targets is urgently needed. METHODS Next-generation sequencing (NGS) and immunohistochemistry were applied to acquire genomic and immune profiles of NENs from 47 patients. RESULTS Difference was distinguished based on differentiation grade and primary localization. Poorly differentiated neuroendocrine carcinomas (NECs) and well-differentiated neuroendocrine tumors (NETs) harbored distinct molecular features; we observed that tumor mutational burden (TMB) and tumor neoantigen burden (TNB) were significantly higher in NECs versus NETs. Notably, we identified a 7-gene panel (MLH3, NACA, NOTCH1, NPAP1, RANBP17, TSC2, and ZFHX4) as a novel prognostic signature in NENs; patients who carried mutations in any of the 7 genes exhibited significantly poorer survival. Furthermore, loss of heterozygosity (LOH) and germline homogeneity in human leukocyte antigen (HLA) are common in NENs, accounting for 39% and 36%, respectively. Notably, HLA LOH was an important prognostic biomarker for a subgroup of NEN patients. Finally, we analyzed clinically actionable targets in NENs, revealing that TMB high (TMB-H) or gene mutations in TP53, KRAS, and HRAS were the most frequently observed therapeutic indicators, which granted eligibility to immune checkpoint blockade (ICB) and targeted therapy. CONCLUSION Our study revealed heterogeneity of NENs, and identified novel prognostic signatures and potential therapeutic targets, which directing improvements of clinical management for NEN patients in the foreseeable future.
Collapse
Affiliation(s)
- Man Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Na Li
- Department of Translational Medicine, YuceBio Technology Co., Ltd, Shenzhen, People’s Republic of China
| | - Hongzhen Tang
- Department of Medicine, YuceBio Technology Co., Ltd, Shenzhen, People’s Republic of China
| | - Luohai Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Yu Wang
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yuan Lin
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shaozhen Wei
- Department of Translational Medicine, YuceBio Technology Co., Ltd, Shenzhen, People’s Republic of China
| | - Wenli Wen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jiaqian Wang
- Department of Translational Medicine, YuceBio Technology Co., Ltd, Shenzhen, People’s Republic of China
| | - Ning Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jie Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| |
Collapse
|
93
|
Chappell JC, Chiang AY, Royalty J, Coleman H, Kulanthaivel P, Turner PK. Abemaciclib does not increase the corrected QT interval in healthy participants. Clin Transl Sci 2023; 16:1617-1627. [PMID: 37337637 PMCID: PMC10499409 DOI: 10.1111/cts.13573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
Abemaciclib is an orally administered, potent, and selective small molecule inhibitor of cyclin-dependent kinases 4 and 6, approved for advanced or metastatic breast cancer. This study aimed to use an exposure-response approach to investigate the effect of abemaciclib and its active metabolites (M2 and M20) on QTc interval and delay in cardiac repolarization at clinically relevant exposures. This was a single-blind, randomized, and placebo-controlled study of ascending doses of abemaciclib. Thirty-five healthy participants were administered a single dose of 200-600 mg abemaciclib. Twelve-lead electrocardiogram tracings and pharmacokinetic samples were collected serially pre- and post-dose. The primary objective was to study the relationship between abemaciclib and its active metabolites (M2 and M20) and QTc interval following ascending oral doses of abemaciclib. The secondary objective included evaluating the safety and tolerability of single ascending doses of abemaciclib in healthy participants. Exposure-response analysis demonstrated that there was no significant relationship between placebo-corrected change from baseline QTcF (ΔΔQTcF), abemaciclib, and metabolite plasma concentrations. Additionally, the ΔΔQTcF slopes of abemaciclib, its metabolites, and total analyte concentrations were not statistically different from zero. Single doses of abemaciclib, up to 400 mg, were well-tolerated by healthy participants; however, at the 600 mg dose (three times the highest registered dose), the frequency and severity of treatment-related gastrointestinal events (primarily diarrhea, nausea, and vomiting) increased. In conclusion, single doses of abemaciclib, up to 400 mg, had no statistically or clinically relevant effects on QTc, and abemaciclib was well tolerated up to a dose of 400 mg in this study.
Collapse
Affiliation(s)
| | | | - Jane Royalty
- Covance Early Clinical DevelopmentMadisonWisconsinUSA
| | - Hugh Coleman
- Covance Clinical Research UnitDaytona BeachFloridaUSA
| | | | | |
Collapse
|
94
|
Feng W, Jiang D, Xu Y, Li Y, Chen L, Zhao M, Shen Y, Liao W, Yang H, Li J. CDK4/6i enhances the antitumor effect of PD1 antibody by promoting TLS formation in ovarian cancer. Heliyon 2023; 9:e19760. [PMID: 37809574 PMCID: PMC10559077 DOI: 10.1016/j.heliyon.2023.e19760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Ovarian cancer is insensitive to immunotherapy and has a high mortality rate. CDK4/6 inhibitors (CDK4/6i) regulate the tumor microenvironment and play an antitumor role. Our previous research demonstrated that lymphocyte aggregation (tertiary lymphoid structures, TLSs) was observed after CDK4/6i treatment. This may explain the synergistic action of CDK4/6i with the anti-PD1 antibody. However, the key mechanism by which CDK4/6i promotes TLS formation has not been elucidated. We examine the link between TLS and prognosis. Animal models and high-throughput sequencing were used to explore the potential mechanism by which CDK4/6i promotes TLS formation. Our results showed the presence of TLSs was associated with a favorable prognosis for ovarian cancer. CDK4/6i promoted TLS formation and enhanced the immunotherapeutic effect of the anti-PD1 antibody. The potential mechanism of CDK4/6i affecting the formation of TLS may be through modulating SCD1 and its regulatory molecules ATF3 and CCL4. Our findings provide a theoretical basis for the application of CDK4/6i in ovarian cancer.
Collapse
Affiliation(s)
- Wangyou Feng
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Dongbo Jiang
- Department of Immunology, School of Basic Medicine, Air Force Medical University (the Fourth Military Medical University), 169 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Ying Xu
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Yuanfeng Li
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Lin Chen
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Minye Zhao
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Yujie Shen
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Wenjing Liao
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Hong Yang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Jia Li
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| |
Collapse
|
95
|
Shu Y, Wang L, Ding Y, Zhang Q. Disproportionality Analysis of Abemaciclib in the FDA Adverse Event Reporting System: A Real-World Post-Marketing Pharmacovigilance Assessment. Drug Saf 2023; 46:881-895. [PMID: 37418089 DOI: 10.1007/s40264-023-01334-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Abemaciclib, a cyclin-dependent kinase 4 and 6 inhibitor, demonstrated efficacy in women with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer. Because of the limitations of clinical trials, which are not representative of large real-world populations, rare events and long-term safety concerns cannot be detected. The current study aimed to evaluate the adverse events of abemaciclib through data mining of the Food and Drug Administration Adverse Event Reporting System (FAERS). METHODS Reporting odds ratio and Bayesian confidence propagation neural network of information components were used to quantify the adverse event signals of abemaciclib from the third quarter of 2017 to the first quarter of 2022. Serious and non-serious cases were compared using the Mann-Whitney U test or Chi-squared test, and clinical priority was assigned to signals by scoring (range 0-10 points) five features using a rating scale. RESULTS A total of 6125 reports of abemaciclib as the "primary suspected" and 72 significant adverse events of abemaciclib were identified. Common adverse events, such as diarrhea, neutropenia, alanine transaminase, aspartate transaminase, and serum creatinine increases, and other adverse events, including thrombosis, deep vein thrombosis, pulmonary embolism, interstitial lung disease, and pneumonitis were of high concern. Of note, 17 preferred terms were classified as unexpected adverse events that uncovered in the label. In addition, 1, 26, and 45 adverse events were identified as strong, moderate, and weak clinical priorities. The median time to onset for strong, moderate, and weak clinical priority signals was 49, 22, and 28 days, respectively. All of the disproportionality signals had early failure type features, suggesting that adverse events of abemaciclib gradually decreased over time. CONCLUSIONS The discovery of disproportionality signals could potentially prompt improved awareness of toxicities for abemaciclib, and the results of time to onset, serious and non-serious reports, and clinical priority analyses provided some supporting evidence for clinicians to manage adverse events.
Collapse
Affiliation(s)
- Yamin Shu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Wang
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yiling Ding
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Qilin Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
96
|
Liang XB, Dai ZC, Zou R, Tang JX, Yao CW. The Therapeutic Potential of CDK4/6 Inhibitors, Novel Cancer Drugs, in Kidney Diseases. Int J Mol Sci 2023; 24:13558. [PMID: 37686364 PMCID: PMC10487876 DOI: 10.3390/ijms241713558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Inflammation is a crucial pathological feature in cancers and kidney diseases, playing a significant role in disease progression. Cyclin-dependent kinases CDK4 and CDK6 not only contribute to cell cycle progression but also participate in cell metabolism, immunogenicity and anti-tumor immune responses. Recently, CDK4/6 inhibitors have gained approval for investigational treatment of breast cancer and various other tumors. Kidney diseases and cancers commonly exhibit characteristic pathological features, such as the involvement of inflammatory cells and persistent chronic inflammation. Remarkably, CDK4/6 inhibitors have demonstrated impressive efficacy in treating non-cancerous conditions, including certain kidney diseases. Current studies have identified the renoprotective effect of CDK4/6 inhibitors, presenting a novel idea and potential direction for treating kidney diseases in the future. In this review, we briefly reviewed the cell cycle in mammals and the role of CDK4/6 in regulating it. We then provided an introduction to CDK4/6 inhibitors and their use in cancer treatment. Additionally, we emphasized the importance of these inhibitors in the treatment of kidney diseases. Collectively, growing evidence demonstrates that targeting CDK4 and CDK6 through CDK4/6 inhibitors might have therapeutic benefits in various cancers and kidney diseases and should be further explored in the future.
Collapse
Affiliation(s)
| | | | | | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Cui-Wei Yao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
97
|
Li M, Zhi Z, Jiang X, Duan GC, Zhu WN, Pang Z, Wang L, Ge R, Dai X, Liu JM, Chen TY, Jia JJ, Li JM, Sun LN. METTL9 derived circular RNA circ-METTL9 sponges miR-551b-5p to accelerate colorectal cancer progression by upregulating CDK6. Carcinogenesis 2023; 44:463-475. [PMID: 37158456 DOI: 10.1093/carcin/bgad031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023] Open
Abstract
Circular RNAs (circRNAs) have been accepted to play key roles in the development and progression of mutiple cancers including colorectal cancer (CRC). Here, we identified circ-METTL9, derived from 2 to 4 exons of METTL9 gene, may promote CRC progression by accelerating cell cycle progression. However, the role and mechanism of circ-METTL9 in CRC remains unclear. Based on our data, the expression of circ-METTL9 was significantly upregulated in CRC tissues and markedly increased in advanced tumors in CRC patients. Functional experiments demonstrated that circ-METTL9 overexpression promoted CRC cells proliferation and migration in vitro, and simultaneously enhanced CRC tumor growth and metastasis in vivo. Mechanistically, RNA immunoprecipitation (RIP) assays proved that circ-METTL9 might be a miRNA sponge, and RNA pulldown assays showed the interaction between circ-METTL9 and miR-551b-5p. Notably, cyclin-dependent kinase 6 (CDK6), a key regulator in cell cycle, is a conserved downstream target of miR-551b-5p. Taken together, our findings highlight a novel oncogenic function of circ-METTL9 in CRC progression via circ-METTL9/miR-551b-5p/CDK6 axis, which may serve as a prognostic biomarker and therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Ming Li
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
- Department of Pathology, Suzhou Municipal Hospital affiliated to Nanjing Medical University, Suzhou 215008, People's Republic of China
| | - Zheng Zhi
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
- Department of Pathology, Suzhou Municipal Hospital affiliated to Nanjing Medical University, Suzhou 215008, People's Republic of China
| | - Xuan Jiang
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | - Guo-Cai Duan
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | - Wei-Na Zhu
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, People's Republic of China
| | - Zheng Pang
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | - Lian Wang
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | - Rui Ge
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | - Xin Dai
- Department of Pathology, Suzhou Science and Technology Town Hospital, Suzhou 215163, People's Republic of China
| | - Jia-Meng Liu
- Department of Pathology, Suzhou Municipal Hospital affiliated to Nanjing Medical University, Suzhou 215008, People's Republic of China
| | - Ting-Yue Chen
- Department of Pathology, Suzhou Municipal Hospital affiliated to Nanjing Medical University, Suzhou 215008, People's Republic of China
| | - Jin-Jing Jia
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | - Jian-Ming Li
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | - Li-Na Sun
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
98
|
Fang M, Wu HK, Pei Y, Zhang Y, Gao X, He Y, Chen G, Lv F, Jiang P, Li Y, Li W, Jiang P, Wang L, Ji J, Hu X, Xiao RP. E3 ligase MG53 suppresses tumor growth by degrading cyclin D1. Signal Transduct Target Ther 2023; 8:263. [PMID: 37414783 PMCID: PMC10326024 DOI: 10.1038/s41392-023-01458-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/09/2023] [Accepted: 04/22/2023] [Indexed: 07/08/2023] Open
Abstract
Due to the essential role of cyclin D1 in regulating transition from G1 to S phase in cell cycle, aberrant cyclin D1 expression is a major oncogenic event in many types of cancers. In particular, the dysregulation of ubiquitination-dependent degradation of cyclin D1 contributes to not only the pathogenesis of malignancies but also the refractory to cancer treatment regiments with CDK4/6 inhibitors. Here we show that in colorectal and gastric cancer patients, MG53 is downregulated in more than 80% of tumors compared to the normal gastrointestinal tissues from the same patient, and the reduced MG53 expression is correlated with increased cyclin D1 abundance and inferior survival. Mechanistically, MG53 catalyzes the K48-linked ubiquitination and subsequent degradation of cyclin D1. Thus, increased expression of MG53 leads to cell cycle arrest at G1, and thereby markedly suppresses cancer cell proliferation in vitro as well as tumor growth in mice with xenograft tumors or AOM/DSS induced-colorectal cancer. Consistently, MG53 deficiency results in accumulation of cyclin D1 protein and accelerates cancer cell growth both in culture and in animal models. These findings define MG53 as a tumor suppressor via facilitating cyclin D1 degradation, highlighting the therapeutic potential of targeting MG53 in treating cancers with dysregulated cyclin D1 turnover.
Collapse
Affiliation(s)
- Meng Fang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Hong-Kun Wu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, 310003, Hangzhou, China
| | - Yumeng Pei
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Tumor Center, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Yanyun He
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Gengjia Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Peng Jiang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Yumei Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Wenwen Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Tumor Center, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
| | - Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China.
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China.
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China.
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China.
| |
Collapse
|
99
|
Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, Vishakha, Behl T, Jha SK, Tang H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer 2023; 22:105. [PMID: 37415164 PMCID: PMC10324146 DOI: 10.1186/s12943-023-01805-y] [Citation(s) in RCA: 219] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Breast cancer is the second leading cause of death for women worldwide. The heterogeneity of this disease presents a big challenge in its therapeutic management. However, recent advances in molecular biology and immunology enable to develop highly targeted therapies for many forms of breast cancer. The primary objective of targeted therapy is to inhibit a specific target/molecule that supports tumor progression. Ak strain transforming, cyclin-dependent kinases, poly (ADP-ribose) polymerase, and different growth factors have emerged as potential therapeutic targets for specific breast cancer subtypes. Many targeted drugs are currently undergoing clinical trials, and some have already received the FDA approval as monotherapy or in combination with other drugs for the treatment of different forms of breast cancer. However, the targeted drugs have yet to achieve therapeutic promise against triple-negative breast cancer (TNBC). In this aspect, immune therapy has come up as a promising therapeutic approach specifically for TNBC patients. Different immunotherapeutic modalities including immune-checkpoint blockade, vaccination, and adoptive cell transfer have been extensively studied in the clinical setting of breast cancer, especially in TNBC patients. The FDA has already approved some immune-checkpoint blockers in combination with chemotherapeutic drugs to treat TNBC and several trials are ongoing. This review provides an overview of clinical developments and recent advancements in targeted therapies and immunotherapies for breast cancer treatment. The successes, challenges, and prospects were critically discussed to portray their profound prospects.
Collapse
Affiliation(s)
- Feng Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Yuehua Li
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Ankush Kumar
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Vishakha
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
100
|
Wang Y, Li Y, Liu D, Zheng D, Li X, Li C, Huang C, Wang Y, Wang X, Li Q, Xu J. A Potential Anti-Glioblastoma Compound LH20 Induces Apoptosis and Arrest of Human Glioblastoma Cells via CDK4/6 Inhibition. Molecules 2023; 28:5047. [PMID: 37446710 DOI: 10.3390/molecules28135047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma (GBM) is a deadly brain tumor characterized by signaling dysregulation and aberrant cell cycle control. The CDK4/6-Rb axis is dysregulated in approximately 80% of all GBM cases. In this study, the anti-GBM effect of a novel pyrimidin-2-amine, LH20 was evaluated in vitro using the primary GBM cell lines U87MG and U251. GBM cells were administered LH20 at concentrations of 0.1, 1, 4, 8, 10, 20, 100, and 200 µM for 24 and 48 h, and the proliferation rate was evaluated using a CCK8 assay. Migration, apoptosis, and cell cycle were also assessed using a wound healing assay, Annexin V-FITC/PI apoptosis assay, and cell cycle staining, respectively. The targets of LH20 were predicted using SwissTargetPrediction and molecular docking. Western blotting analysis was performed to confirm the anti-GBM mechanism of LH20. We found that at concentrations of 4, 8, and 10 µM, LH20 significantly inhibited the proliferation and migration of U87MG and U251 cells, induced late phase apoptosis, promoted tumor cell necrosis, and arrested the G2/M phase of the cell cycle. LH20 also inhibited CDK4 and CDK6 activities by decreasing the phosphorylation of Rb. Our results suggest LH20 as a potential treatment strategy against GBM.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Dong Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Danyang Zheng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Xiaogang Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Chang Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571100, China
| | - Caihui Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Yun Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571100, China
| | - Xuesong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Qifu Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571100, China
| | - Junyu Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| |
Collapse
|