51
|
Chung H, Jung H, Noh JY. Emerging Approaches for Solid Tumor Treatment Using CAR-T Cell Therapy. Int J Mol Sci 2021; 22:ijms222212126. [PMID: 34830003 PMCID: PMC8621681 DOI: 10.3390/ijms222212126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy is becoming more important in the clinical setting, especially for cancers resistant to conventional chemotherapy, including targeted therapy. Chimeric antigen receptor (CAR)-T cell therapy, which uses patient’s autologous T cells, combined with engineered T cell receptors, has shown remarkable results, with five US Food and Drug Administration (FDA) approvals to date. CAR-T cells have been very effective in hematologic malignancies, such as diffuse large B cell lymphoma (DLBCL), B cell acute lymphoblastic leukemia (B-ALL), and multiple myeloma (MM); however, its effectiveness in treating solid tumors has not been evaluated clearly. Therefore, many studies and clinical investigations are emerging to improve the CAR-T cell efficacy in solid tumors. The novel therapeutic approaches include modifying CARs in multiple ways or developing a combination therapy with immune checkpoint inhibitors and chemotherapies. In this review, we focus on the challenges and recent advancements in CAR-T cell therapy for solid tumors.
Collapse
Affiliation(s)
- Hyunmin Chung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea;
- College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon 34134, Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea;
- Department of Functional Genomics, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (H.J.); (J.-Y.N.)
| | - Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea;
- Correspondence: (H.J.); (J.-Y.N.)
| |
Collapse
|
52
|
Abstract
The steadfast advance of the synthetic biology field has enabled scientists to use genetically engineered cells, instead of small molecules or biologics, as the basis for the development of novel therapeutics. Cells endowed with synthetic gene circuits can control the localization, timing and dosage of therapeutic activities in response to specific disease biomarkers and thus represent a powerful new weapon in the fight against disease. Here, we conceptualize how synthetic biology approaches can be applied to programme living cells with therapeutic functions and discuss the advantages that they offer over conventional therapies in terms of flexibility, specificity and predictability, as well as challenges for their development. We present notable advances in the creation of engineered cells that harbour synthetic gene circuits capable of biological sensing and computation of signals derived from intracellular or extracellular biomarkers. We categorize and describe these developments based on the cell scaffold (human or microbial) and the site at which the engineered cell exerts its therapeutic function within its human host. The design of cell-based therapeutics with synthetic biology is a rapidly growing strategy in medicine that holds great promise for the development of effective treatments for a wide variety of human diseases.
Collapse
|
53
|
Lin Z, Wu Z, Luo W. A Novel Treatment for Ewing's Sarcoma: Chimeric Antigen Receptor-T Cell Therapy. Front Immunol 2021; 12:707211. [PMID: 34566963 PMCID: PMC8461297 DOI: 10.3389/fimmu.2021.707211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Ewing's sarcoma (EWS) is a malignant and aggressive tumor type that predominantly occurs in children and adolescents. Traditional treatments such as surgery, radiotherapy and chemotherapy, while successful in the early disease stages, are ineffective in patients with metastases and relapses who often have poor prognosis. Therefore, new treatments for EWS are needed to improve patient's outcomes. Chimeric antigen receptor (CAR)-T cells therapy, a novel adoptive immunotherapy, has been developing over the past few decades, and is increasingly popular in researches and treatments of various cancers. CAR-T cell therapy has been approved by the Food and Drug Administration (FDA) for the treatment of leukemia and lymphoma. Recently, this therapeutic approach has been employed for solid tumors including EWS. In this review, we summarize the safety, specificity and clinical transformation of the treatment targets of EWS, and point out the directions for further research.
Collapse
Affiliation(s)
| | | | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
54
|
Lin Z, Wu Z, Luo W. Chimeric Antigen Receptor T-Cell Therapy: The Light of Day for Osteosarcoma. Cancers (Basel) 2021; 13:cancers13174469. [PMID: 34503279 PMCID: PMC8431424 DOI: 10.3390/cancers13174469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary As a novel immunotherapy, chimeric antigen receptor (CAR) T-cell therapy has achieved encouraging results in leukemia and lymphoma. Furthermore, CAR-T cells have been explored in the treatment of osteosarcoma (OS). However, there is no strong comprehensive evidence to support their efficacy. Therefore, we reviewed the current evidence on CAR-T cells for OS to demonstrate their feasibility and provide new options for the treatment of OS. Abstract Osteosarcoma (OS) is the most common malignant bone tumor, arising mainly in children and adolescents. With the introduction of multiagent chemotherapy, the treatments of OS have remarkably improved, but the prognosis for patients with metastases is still poor, with a five-year survival rate of 20%. In addition, adverse effects brought by traditional treatments, including radical surgery and systemic chemotherapy, may seriously affect the survival quality of patients. Therefore, new treatments for OS await exploitation. As a novel immunotherapy, chimeric antigen receptor (CAR) T-cell therapy has achieved encouraging results in treating cancer in recent years, especially in leukemia and lymphoma. Furthermore, researchers have recently focused on CAR-T therapy in solid tumors, including OS. In this review, we summarize the safety, specificity, and clinical transformation of the targets in treating OS and point out the direction for further research.
Collapse
|
55
|
Zhang H, Li F, Cao J, Wang X, Cheng H, Qi K, Wang G, Xu K, Zheng J, Fu YX, Yang X. A chimeric antigen receptor with antigen-independent OX40 signaling mediates potent antitumor activity. Sci Transl Med 2021; 13:13/578/eaba7308. [PMID: 33504651 DOI: 10.1126/scitranslmed.aba7308] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 08/24/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Although chimeric antigen receptor (CAR)-modified T cells have shown great success in the treatment of B cell malignancies, this approach has limited efficacy in patients with solid tumors. Various modifications in CAR structure have been explored to improve this efficacy, including the incorporation of two costimulatory domains. Because costimulatory signals are transduced together with T cell receptor signals during T cell activation, we engineered a type of CAR-T cells with a costimulatory signal that was activated independently from the tumor antigen to recapitulate physiological stimulation. We screened 12 costimulatory receptors to identify OX40 as the most effective CAR-T function enhancer. Our data indicated that these new CAR-T cells showed superior proliferation capability compared to current second-generation CAR-T cells. OX40 signaling reduced CAR-T cell apoptosis through up-regulation of genes encoding Bcl-2 family members and enhanced proliferation through increased activation of the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase), and PI3K-AKT (phosphoinositide 3-kinase to the kinase AKT) pathways. OX40 signaling not only enhanced the cytotoxicity of CAR-T cells but also reduced exhaustion markers, thereby maintaining their function in immunosuppressive tumor microenvironments. In mouse tumor models and in patients with metastatic lymphoma, these CAR-T cells exhibited robust amplification and antitumor activity. Our findings provide an alternative option for CAR-T optimization with the potential to overcome the challenge of treating solid tumors.
Collapse
Affiliation(s)
- Huihui Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fanlin Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Cao
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xin Wang
- Shanghai Longyao Biotechnology Limited, Shanghai 201203, China
| | - Hai Cheng
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Kunming Qi
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Kailin Xu
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuanming Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China. .,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
56
|
Hou AJ, Chen LC, Chen YY. Navigating CAR-T cells through the solid-tumour microenvironment. Nat Rev Drug Discov 2021; 20:531-550. [PMID: 33972771 DOI: 10.1038/s41573-021-00189-2] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/04/2023]
Abstract
The adoptive transfer of T cells that are engineered to express chimeric antigen receptors (CARs) has shown remarkable success in treating B cell malignancies but only limited efficacy against other cancer types, especially solid tumours. Compared with haematological diseases, solid tumours present a unique set of challenges, including a lack of robustly expressed, tumour-exclusive antigen targets as well as highly immunosuppressive and metabolically challenging tumour microenvironments that limit treatment safety and efficacy. Here, we review protein- and cell-engineering strategies that seek to overcome these obstacles and produce next-generation T cells with enhanced tumour specificity and sustained effector function for the treatment of solid malignancies.
Collapse
Affiliation(s)
- Andrew J Hou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laurence C Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA. .,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA. .,Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
57
|
Lulla PD, Tzannou I, Vasileiou S, Carrum G, Ramos CA, Kamble R, Wang T, Wu M, Bilgi M, Gee AP, Mukhi S, Chung B, Wang L, Watanabe A, Kuvalekar M, Jeong M, Li Y, Ketkar S, French-Kim M, Grilley B, Brenner MK, Heslop HE, Vera JF, Leen AM. The safety and clinical effects of administering a multiantigen-targeted T cell therapy to patients with multiple myeloma. Sci Transl Med 2021; 12:12/554/eaaz3339. [PMID: 32727914 DOI: 10.1126/scitranslmed.aaz3339] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Multiple myeloma (MM) is an almost always incurable malignancy of plasma cells. Despite the advent of new therapies, most patients eventually relapse or become treatment-refractory. Consequently, therapies with nonoverlapping mechanisms of action that are nontoxic and provide long-term benefit to patients with MM are greatly needed. To this end, we clinically tested an autologous multitumor-associated antigen (mTAA)-specific T cell product for the treatment of patients with high-risk, relapsed or refractory MM. In this study, we expanded polyclonal T cells from 23 patients with MM. T cells whose native T cell receptors were reactive toward five myeloma-expressed target TAAs (PRAME, SSX2, MAGEA4, Survivin, and NY-ESO-1) were enriched ex vivo. To date, we have administered escalating doses of these nonengineered mTAA-specific T cells (0.5 × 107 to 2 × 107 cells/m2) to 21 patients with MM, 9 of whom were at high risk of relapse after a median of 3 lines of prior therapy and 12 with active, relapsed or refractory disease after a median of 3.5 prior lines. The cells were well tolerated, with only two transient, grade III infusion-related adverse events. Furthermore, patients with active relapsed or refractory myeloma enjoyed a longer than expected progression-free survival and responders included three patients who achieved objective responses concomitant with detection of functional TAA-reactive T cell clonotypes derived from the infused mTAA product.
Collapse
Affiliation(s)
- Premal D Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Ifigeneia Tzannou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - George Carrum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Rammurti Kamble
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Tao Wang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Mengfen Wu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Mrinalini Bilgi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Adrian P Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Shivani Mukhi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Betty Chung
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Linghua Wang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Mira Jeong
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Yumei Li
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Shamika Ketkar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Matthew French-Kim
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Bambi Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
58
|
Bell M, Gottschalk S. Engineered Cytokine Signaling to Improve CAR T Cell Effector Function. Front Immunol 2021; 12:684642. [PMID: 34177932 PMCID: PMC8220823 DOI: 10.3389/fimmu.2021.684642] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Adoptive immunotherapy with T cells genetically modified to express chimeric antigen receptors (CARs) is a promising approach to improve outcomes for cancer patients. While CAR T cell therapy is effective for hematological malignancies, there is a need to improve the efficacy of this therapeutic approach for patients with solid tumors and brain tumors. At present, several approaches are being pursued to improve the antitumor activity of CAR T cells including i) targeting multiple antigens, ii) improving T cell expansion/persistence, iii) enhancing homing to tumor sites, and iv) rendering CAR T cells resistant to the immunosuppressive tumor microenvironment (TME). Augmenting signal 3 of T cell activation by transgenic expression of cytokines or engineered cytokine receptors has emerged as a promising strategy since it not only improves CAR T cell expansion/persistence but also their ability to function in the immunosuppressive TME. In this review, we will provide an overview of cytokine biology and highlight genetic approaches that are actively being pursued to augment cytokine signaling in CAR T cells.
Collapse
Affiliation(s)
- Matthew Bell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
59
|
Prinzing B, Krenciute G. Hypoxia-inducible CAR expression: An answer to the on-target/off-tumor dilemma? Cell Rep Med 2021; 2:100244. [PMID: 33948575 PMCID: PMC8080122 DOI: 10.1016/j.xcrm.2021.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
On-target/off-tumor toxicity is one of the major concerns regarding CAR T-cell therapy. Kosti et al.1 demonstrate that this form of toxicity can be prevented by designing a CAR whose expression is controlled by oxygen levels in the tumor environment.
Collapse
Affiliation(s)
- Brooke Prinzing
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
60
|
Abstract
Purpose of Review Virus-associated malignancies are a global health burden, constituting 10-12% of cancers worldwide. As these tumors express foreign viral antigens that can elicit specific T cell responses, virus-directed immunotherapies are a promising treatment strategy. Specifically, adoptive cell transfer of virus-specific T cells (VSTs) has demonstrated the potential to eradicate cancers associated with certain viruses. Recent Findings Initial studies in 1990s first showed that VSTs specific for the Epstein-Barr virus (EBVSTs) can induce complete remissions in patients with post-transplant lymphoproliferative disease. Since then, studies have validated the specificity and safety of VSTs in multiple lymphomas and solid malignancies. However, challenges remain to optimize this platform for widespread use, including enhancing potency and persistence, overcoming the immunosuppressive tumor microenvironment, and streamlining manufacturing processes that comply with regulatory requirements. Summary This review focuses on data from clinical trials evaluating VSTs directed against three viruses (EBV, HPV and MCPyV), as well as recent preclinical and clinical advances, and potential future directions.
Collapse
|
61
|
Tan X, Letendre JH, Collins JJ, Wong WW. Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. Cell 2021; 184:881-898. [PMID: 33571426 PMCID: PMC7897318 DOI: 10.1016/j.cell.2021.01.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
Synthetic biology is a design-driven discipline centered on engineering novel biological functions through the discovery, characterization, and repurposing of molecular parts. Several synthetic biological solutions to critical biomedical problems are on the verge of widespread adoption and demonstrate the burgeoning maturation of the field. Here, we highlight applications of synthetic biology in vaccine development, molecular diagnostics, and cell-based therapeutics, emphasizing technologies approved for clinical use or in active clinical trials. We conclude by drawing attention to recent innovations in synthetic biology that are likely to have a significant impact on future applications in biomedicine.
Collapse
Affiliation(s)
- Xiao Tan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
| | - Justin H Letendre
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Synthetic Biology Center, MIT, 77 Massachusetts Ave., Cambridge, MA 02139, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
62
|
Abstract
Pancreatic cancer is a tumor with a high degree of malignancy, morbidity, and mortality. Immunotherapy is another important treatment for pancreatic cancer in addition to surgery and chemotherapy, but its application in pancreatic cancer is very limited, which is related to the unique biological behavior of pancreatic cancer and the tumor microenvironment. The immunosuppressive microenvironment of pancreatic cancer is highly heterogeneous and presents challenges for immunotherapy. The transformation of tumor immunosuppressive microenvironment contributes to the response to tumor immunotherapy, such that the tumor undergoes functional reprogramming to change from immunologically "cold" to immunologically "hot." In this review, we summarized the research and progress in immunotherapy for pancreatic cancer, including immune checkpoint inhibitors, vaccines, adoptive T cell therapy, oncolytic viruses, and immunomodulators, and suggest that individualized, combination, and precise therapy should be the main direction of future immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Jia Wu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Jianting Cai
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China.
| |
Collapse
|
63
|
Schmiechen ZC, Stromnes IM. Mechanisms Governing Immunotherapy Resistance in Pancreatic Ductal Adenocarcinoma. Front Immunol 2021; 11:613815. [PMID: 33584701 PMCID: PMC7876239 DOI: 10.3389/fimmu.2020.613815] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with an overall 5-year survival rate of 10%. Disease lethality is due to late diagnosis, early metastasis and resistance to therapy, including immunotherapy. PDA creates a robust fibroinflammatory tumor microenvironment that contributes to immunotherapy resistance. While previously considered an immune privileged site, evidence demonstrates that in some cases tumor antigen-specific T cells infiltrate and preferentially accumulate in PDA and are central to tumor cell clearance and long-term remission. Nonetheless, PDA can rapidly evade an adaptive immune response using a myriad of mechanisms. Mounting evidence indicates PDA interferes with T cell differentiation into potent cytolytic effector T cells via deficiencies in naive T cell priming, inducing T cell suppression or promoting T cell exhaustion. Mechanistic research indicates that immunotherapy combinations that change the suppressive tumor microenvironment while engaging antigen-specific T cells is required for treatment of advanced disease. This review focuses on recent advances in understanding mechanisms limiting T cell function and current strategies to overcome immunotherapy resistance in PDA.
Collapse
Affiliation(s)
- Zoe C. Schmiechen
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Ingunn M. Stromnes
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, United States
- Center for Genome Engineering, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
64
|
Klaus T, Deshmukh S. pH-responsive antibodies for therapeutic applications. J Biomed Sci 2021; 28:11. [PMID: 33482842 PMCID: PMC7821552 DOI: 10.1186/s12929-021-00709-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/15/2021] [Indexed: 11/29/2022] Open
Abstract
Therapeutic antibodies are instrumental in improving the treatment outcome for certain disease conditions. However, to enhance their efficacy and specificity, many efforts are continuously made. One of the approaches that are increasingly explored in this field are pH-responsive antibodies capable of binding target antigens in a pH-dependent manner. We reviewed suitability and examples of these antibodies that are functionally modulated by the tumor microenvironment. Provided in this review is an update about antigens targeted by pH-responsive, sweeping, and recycling antibodies. Applicability of the pH-responsive antibodies in the engineering of chimeric antigen receptor T-cells (CAR-T) and in improving drug delivery to the brain by the enhanced crossing of the blood-brain barrier is also discussed. The pH-responsive antibodies possess strong treatment potential. They emerge as next-generation programmable engineered biologic drugs that are active only within the targeted biological space. Thus, they are valuable in targeting acidified tumor microenvironment because of improved spatial persistence and reduced on-target off-tumor toxicities. We predict that the programmable pH-dependent antibodies become powerful tools in therapies of cancer.
Collapse
Affiliation(s)
- Tomasz Klaus
- Research and Development Department, Pure Biologics, Inc., Dunska 11, 54427, Wrocław, Poland
| | - Sameer Deshmukh
- Research and Development Department, Pure Biologics, Inc., Dunska 11, 54427, Wrocław, Poland.
| |
Collapse
|
65
|
Bonfá G, Blazquez-Roman J, Tarnai R, Siciliano V. Precision Tools in Immuno-Oncology: Synthetic Gene Circuits for Cancer Immunotherapy. Vaccines (Basel) 2020; 8:E732. [PMID: 33287392 PMCID: PMC7761833 DOI: 10.3390/vaccines8040732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Engineered mammalian cells for medical purposes are becoming a clinically relevant reality thanks to advances in synthetic biology that allow enhanced reliability and safety of cell-based therapies. However, their application is still hampered by challenges including time-consuming design-and-test cycle iterations and costs. For example, in the field of cancer immunotherapy, CAR-T cells targeting CD19 have already been clinically approved to treat several types of leukemia, but their use in the context of solid tumors is still quite inefficient, with additional issues related to the adequate quality control for clinical use. These limitations can be overtaken by innovative bioengineering approaches currently in development. Here we present an overview of recent synthetic biology strategies for mammalian cell therapies, with a special focus on the genetic engineering improvements on CAR-T cells, discussing scenarios for the next generation of genetic circuits for cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Velia Siciliano
- Synthetic and Systems Biology Lab for Biomedicine, Istituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, 80125 Naples, Italy; (G.B.); (J.B.-R.); (R.T.)
| |
Collapse
|
66
|
Wang X, Wu Z, Qiu W, Chen P, Xu X, Han W. Programming CAR T cells to enhance anti-tumor efficacy through remodeling of the immune system. Front Med 2020; 14:726-745. [PMID: 32794014 DOI: 10.1007/s11684-020-0746-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor (CAR) T cells have been indicated effective in treating B cell acute lymphoblastic leukemia and non-Hodgkin lymphoma and have shown encouraging results in preclinical and clinical studies. However, CAR T cells have achieved minimal success against solid malignancies because of the additional obstacles of their insufficient migration into tumors and poor amplification and persistence, in addition to antigen-negative relapse and an immunosuppressive microenvironment. Various preclinical studies are exploring strategies to overcome the above challenges. Mobilization of endogenous immune cells is also necessary for CAR T cells to obtain their optimal therapeutic effect given the importance of the innate immune responses in the elimination of malignant tumors. In this review, we focus on the recent advances in the engineering of CAR T cell therapies to restore the immune response in solid malignancies, especially with CAR T cells acting as cellular carriers to deliver immunomodulators to tumors to mobilize the endogenous immune response. We also explored the sensitizing effects of conventional treatment approaches, such as chemotherapy and radiotherapy, on CAR T cell therapy. Finally, we discuss the combination of CAR T cells with biomaterials or oncolytic viruses to enhance the anti-tumor outcomes of CAR T cell therapies in solid tumors.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Biotechnology, Southwest University, Chongqing, 400715, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Stem Cell & Regenerative Medicine, Daping Hospital and Research Institute of Surgery, Chongqing, 400042, China
- Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhiqiang Wu
- Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wei Qiu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Stem Cell & Regenerative Medicine, Daping Hospital and Research Institute of Surgery, Chongqing, 400042, China
| | - Ping Chen
- College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xiang Xu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Stem Cell & Regenerative Medicine, Daping Hospital and Research Institute of Surgery, Chongqing, 400042, China.
| | - Weidong Han
- Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
67
|
Andrea AE, Chiron A, Bessoles S, Hacein-Bey-Abina S. Engineering Next-Generation CAR-T Cells for Better Toxicity Management. Int J Mol Sci 2020; 21:E8620. [PMID: 33207607 PMCID: PMC7696189 DOI: 10.3390/ijms21228620] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Immunoadoptive therapy with genetically modified T lymphocytes expressing chimeric antigen receptors (CARs) has revolutionized the treatment of patients with hematologic cancers. Although clinical outcomes in B-cell malignancies are impressive, researchers are seeking to enhance the activity, persistence, and also safety of CAR-T cell therapy-notably with a view to mitigating potentially serious or even life-threatening adverse events like on-target/off-tumor toxicity and (in particular) cytokine release syndrome. A variety of safety strategies have been developed by replacing or adding various components (such as OFF- and ON-switch CARs) or by combining multi-antigen-targeting OR-, AND- and NOT-gate CAR-T cells. This research has laid the foundations for a whole new generation of therapeutic CAR-T cells. Here, we review the most promising CAR-T cell safety strategies and the corresponding preclinical and clinical studies.
Collapse
Affiliation(s)
- Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut 1100, Lebanon;
| | - Andrada Chiron
- Université de Paris, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France; (A.C.); (S.B.)
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, 94275 Le-Kremlin-Bicêtre, France
| | - Stéphanie Bessoles
- Université de Paris, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France; (A.C.); (S.B.)
| | - Salima Hacein-Bey-Abina
- Université de Paris, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France; (A.C.); (S.B.)
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, 94275 Le-Kremlin-Bicêtre, France
| |
Collapse
|
68
|
Prinzing B, Schreiner P, Bell M, Fan Y, Krenciute G, Gottschalk S. MyD88/CD40 signaling retains CAR T cells in a less differentiated state. JCI Insight 2020; 5:136093. [PMID: 33148882 PMCID: PMC7710311 DOI: 10.1172/jci.insight.136093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy for solid tumors has shown limited efficacy in early-phase clinical studies. The majority of CARs encode CD28 and/or 41BB costimulatory endodomains, and we explored whether MyD88 and CD40 (MC) costimulatory endodomains in CARs could improve their antitumor activity. We generated CD28-, 41BB-, and MC-CAR T cells and demonstrated that MC-CAR T cells have greater proliferative capacity and antitumor activity in repeat stimulation assays and in tumor models in vivo. Transcriptomic analysis revealed that MC-CAR T cells expressed higher levels of MYB and FOXM1, key cell cycle regulators, and were activated at baseline. After stimulation, MC-CAR T cells remained in a less differentiated state than CD28- and 41BB-CAR T cells as judged by low levels of transcription factor TBET and B lymphocyte induced maturation protein 1 expression and lower cytolytic activity in comparison with CD28- and 41BB-CAR T cells. Thus, including MyD88 and CD40 signaling domains in CARs may improve current CAR T cell therapy approaches for solid tumors.
Collapse
Affiliation(s)
- Brooke Prinzing
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | | | - Matthew Bell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
69
|
Watanabe N, McKenna MK, Rosewell Shaw A, Suzuki M. Clinical CAR-T Cell and Oncolytic Virotherapy for Cancer Treatment. Mol Ther 2020; 29:505-520. [PMID: 33130314 DOI: 10.1016/j.ymthe.2020.10.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has recently garnered success with the induction of clinical responses in tumors, which are traditionally associated with poor outcomes. Chimeric antigen receptor T (CAR-T) cells and oncolytic viruses (OVs) have emerged as promising cancer immunotherapy agents. Herein, we provide an overview of the current clinical status of CAR-T cell and OV therapies. While preclinical studies have demonstrated curative potential, the benefit of CAR-T cells and OVs as single-agent treatments remains limited to a subset of patients. Combinations of different targeted therapies may be required to achieve efficient, durable responses against heterogeneous tumors, as well as the microenvironment. Using a combinatorial approach to take advantage of the unique features of CAR-T cells and OVs with other treatments can produce additive therapeutic effects. This review also discusses ongoing clinical evaluations of these combination strategies for improved outcomes in treatment of resistant malignancies.
Collapse
Affiliation(s)
- Norihiro Watanabe
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Mary Kathryn McKenna
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Amanda Rosewell Shaw
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Masataka Suzuki
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
70
|
Nguyen P, Okeke E, Clay M, Haydar D, Justice J, O’Reilly C, Pruett-Miller S, Papizan J, Moore J, Zhou S, Throm R, Krenciute G, Gottschalk S, DeRenzo C. Route of 41BB/41BBL Costimulation Determines Effector Function of B7-H3-CAR.CD28ζ T Cells. Mol Ther Oncolytics 2020; 18:202-214. [PMID: 32728609 PMCID: PMC7369352 DOI: 10.1016/j.omto.2020.06.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/19/2020] [Indexed: 01/13/2023] Open
Abstract
B7-H3 is actively being explored as an immunotherapy target for pediatric patients with solid tumors using monoclonal antibodies or T cells expressing chimeric antigen receptors (CARs). B7-H3-CARs containing a 41BB costimulatory domain are currently favored by several groups based on preclinical studies. In this study, we initially performed a detailed analysis of T cells expressing B7-H3-CARs with different hinge/transmembrane (CD8α versus CD28) and CD28 or 41BB costimulatory domains (CD8α/CD28, CD8α/41BB, CD28/CD28, CD28/41BB). Only subtle differences in effector function were observed between CAR T cell populations in vitro. However, CD8α/CD28-CAR T cells consistently outperformed other CAR T cell populations in three animal models, resulting in a significant survival advantage. We next explored whether adding 41BB signaling to CD8α/CD28-CAR T cells would further enhance effector function. Surprisingly, incorporating 41BB signaling into the CAR endodomain had detrimental effects, while expressing 41BBL on the surface of CD8α/CD28-CAR T cells enhanced their ability to kill tumor cells in repeat stimulation assays. Furthermore, 41BBL expression enhanced CD8α/CD28-CAR T cell expansion in vivo and improved antitumor activity in one of four evaluated models. Thus, our study highlights the intricate interplay between CAR hinge/transmembrane and costimulatory domains. Based on our study, we selected CD8α/CD28-CAR T cells expressing 41BBL for early phase clinical testing.
Collapse
Affiliation(s)
- Phuong Nguyen
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Emmanuel Okeke
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Michael Clay
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Dalia Haydar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Julie Justice
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Carla O’Reilly
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shondra Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - James Papizan
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jennifer Moore
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sheng Zhou
- Experimental Cellular Therapeutics Laboratory, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Robert Throm
- Vector Development and Production Laboratory, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
71
|
Rafia C, Harly C, Scotet E. Beyond CAR T cells: Engineered Vγ9Vδ2 T cells to fight solid tumors. Immunol Rev 2020; 298:117-133. [DOI: 10.1111/imr.12920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Chirine Rafia
- INSERMCNRSCRCINAUniversité de Nantes Nantes France
- LabEx IGO “Immunotherapy, Graft, Oncology” Nantes France
- ImCheck Therapeutics Marseille France
| | - Christelle Harly
- INSERMCNRSCRCINAUniversité de Nantes Nantes France
- LabEx IGO “Immunotherapy, Graft, Oncology” Nantes France
| | - Emmanuel Scotet
- INSERMCNRSCRCINAUniversité de Nantes Nantes France
- LabEx IGO “Immunotherapy, Graft, Oncology” Nantes France
| |
Collapse
|
72
|
Date V, Nair S. Emerging vistas in CAR T-cell therapy: challenges and opportunities in solid tumors. Expert Opin Biol Ther 2020; 21:145-160. [PMID: 32882159 DOI: 10.1080/14712598.2020.1819978] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Despite advances in modern evidence-based medicine, cancer remains a major cause of global disease-associated mortality. CAR T-cell therapy is a major histocompatibility complex (MHC)-independent immunotherapy involving adoptive cell transfer. Cancer immunotherapy witnessed a major breakthrough with the US FDA approval of the first chimeric antigen receptor (CAR) T-cell therapy KymriahTM (tisagenlecleucel) for relapsed or refractory (R/R) acute lymphoblastic leukemia (ALL) in August 2017 followed by approval of Yescarta® (axicabtagene ciloleucel) for R/R non-Hodgkin's lymphoma (NHL) in October 2017. AREAS COVERED We review the potential of CAR T-cell therapy which, despite showing great promise in hematological malignancies, faces significant challenges in targeting solid tumors. We address these challenges and discuss proposed strategies to overcome them in solid tumors. We highlight the potential of CAR T-cell therapy as cancer precision medicine and briefly discuss the 'financial toxicity' of CAR T-cell therapy. EXPERT OPINION Taken together, we discuss various strategies to circumvent the limitations of CAR T-cell therapy in solid tumors. Despite the rapid advances in CAR NK-cell therapies, there is immense scope for CAR T-cell therapy in solid tumors. We provide a synthetic review of CAR T-cell therapy that will drive future research and harness its full potential in cancer precision medicine for solid tumors.
Collapse
Affiliation(s)
- Varada Date
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS University , Mumbai, India
| | - Sujit Nair
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai , Mumbai, India
| |
Collapse
|
73
|
Chen R, Jing J, Siwko S, Huang Y, Zhou Y. Intelligent cell-based therapies for cancer and autoimmune disorders. Curr Opin Biotechnol 2020; 66:207-216. [PMID: 32956902 DOI: 10.1016/j.copbio.2020.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022]
Abstract
Synthetic biology, when combined with immunoengineering (designated synthetic immunology), has enabled the invention of an arsenal of genetically encoded synthetic devices and systems to reprogram cells for therapeutic purposes. The engineered intelligent cells can serve as 'living' drugs to treat a wide range of human diseases including cancer, disorders of the immune system, and infectious diseases. As the most successful example, cells of the immune system engineered with chimeric antigen receptors (CARs) have shown curative potentials for the treatment of hematological malignancies. We present herein emerging approaches of designing smart CARs to improve their safety, specificity and efficacy in cellular immunotherapy, and describe latest advances in applying CAR-engineered immune cells to target cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Rui Chen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Stefan Siwko
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
74
|
Salzer B, Schueller CM, Zajc CU, Peters T, Schoeber MA, Kovacic B, Buri MC, Lobner E, Dushek O, Huppa JB, Obinger C, Putz EM, Holter W, Traxlmayr MW, Lehner M. Engineering AvidCARs for combinatorial antigen recognition and reversible control of CAR function. Nat Commun 2020; 11:4166. [PMID: 32820173 PMCID: PMC7441178 DOI: 10.1038/s41467-020-17970-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
T cells engineered to express chimeric antigen receptors (CAR-T cells) have shown impressive clinical efficacy in the treatment of B cell malignancies. However, the development of CAR-T cell therapies for solid tumors is hampered by the lack of truly tumor-specific antigens and poor control over T cell activity. Here we present an avidity-controlled CAR (AvidCAR) platform with inducible and logic control functions. The key is the combination of (i) an improved CAR design which enables controlled CAR dimerization and (ii) a significant reduction of antigen-binding affinities to introduce dependence on bivalent interaction, i.e. avidity. The potential and versatility of the AvidCAR platform is exemplified by designing ON-switch CARs, which can be regulated with a clinically applied drug, and AND-gate CARs specifically recognizing combinations of two antigens. Thus, we expect that AvidCARs will be a highly valuable platform for the development of controllable CAR therapies with improved tumor specificity.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cells, Cultured
- Cytokines/immunology
- Cytokines/metabolism
- Cytotoxicity, Immunologic/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocyte Activation/immunology
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Benjamin Salzer
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria
| | | | - Charlotte U Zajc
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria
| | - Timo Peters
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Michael A Schoeber
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
| | - Boris Kovacic
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
| | - Michelle C Buri
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
| | - Elisabeth Lobner
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Johannes B Huppa
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Eva M Putz
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
| | - Wolfgang Holter
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Department of Pediatrics, St. Anna Kinderspital, Medical University of Vienna, 1090, Vienna, Austria
| | - Michael W Traxlmayr
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria.
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria.
| | - Manfred Lehner
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria.
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria.
- Department of Pediatrics, St. Anna Kinderspital, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
75
|
Rana J, Biswas M. Regulatory T cell therapy: Current and future design perspectives. Cell Immunol 2020; 356:104193. [PMID: 32823038 DOI: 10.1016/j.cellimm.2020.104193] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Tregs) maintain immune equilibrium by suppressing immune responses through various multistep contact dependent and independent mechanisms. Cellular therapy using polyclonal Tregs in transplantation and autoimmune diseases has shown promise in preclinical models and clinical trials. Although novel approaches have been developed to improve specificity and efficacy of antigen specific Treg based therapies, widespread application is currently restricted. To date, design-based approaches to improve the potency and persistence of engineered chimeric antigen receptor (CAR) Tregs are limited. Here, we describe currently available Treg based therapies, their advantages and limitations for implementation in clinical studies. We also examine various strategies for improving CAR T cell design that can potentially be applied to CAR Tregs, such as identifying co-stimulatory signalling domains that enhance suppressive ability, determining optimal scFv affinity/avidity, and co-expression of accessory molecules. Finally, we discuss the importance of tailoring CAR Treg design to suit the individual disease.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
76
|
Huang M, Deng J, Gao L, Zhou J. Innovative strategies to advance CAR T cell therapy for solid tumors. Am J Cancer Res 2020; 10:1979-1992. [PMID: 32774996 PMCID: PMC7407347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023] Open
Abstract
Current cancer treatment strategies have been advanced by chimeric antigen receptor (CAR) cell therapy, a rapidly emerging cellular immunotherapy. The numerous revolutionary achievements of CAR T cells against hematological malignancies initiated an upsurge in research on translating this therapy into a treatment for solid tumors. Unfortunately, no equivalent success has yet been achieved in treating solid tumors. The main challenges posed by solid tumors have gradually been recognized and include a lack of unique antigen targets, antigen heterogeneity, limited infiltration into the tumor, and an immunosuppressive tumor microenvironment. Surmounting the limitations of solid tumors remains critical in popularizing CAR T cell applications. Various approaches to augmenting the efficiency of CAR T cells through directly optimizing CAR constructs or through innovative combination strategies such as vaccines, biomaterials, and oncolytic virus have arisen. In addition to describing the main obstacles that restrict the promotion of CAR T cells, this paper focuses on reviewing new ongoing strategies to circumvent these limitations.
Collapse
Affiliation(s)
- Meijuan Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Jinniu Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Lili Gao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
77
|
Crowther MD, Svane IM, Met Ö. T-Cell Gene Therapy in Cancer Immunotherapy: Why It Is No Longer Just CARs on The Road. Cells 2020; 9:cells9071588. [PMID: 32630096 PMCID: PMC7407663 DOI: 10.3390/cells9071588] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/26/2022] Open
Abstract
T-cells have a natural ability to fight cancer cells in the tumour microenvironment. Due to thymic selection and tissue-driven immunomodulation, these cancer-fighting T-cells are generally low in number and exhausted. One way to overcome these issues is to genetically alter T-cells to improve their effectiveness. This process can involve introducing a receptor that has high affinity for a tumour antigen, with two promising candidates known as chimeric-antigen receptors (CARs), or T-cell receptors (TCRs) with high tumour specificity. This review focuses on the editing of immune cells to introduce such novel receptors to improve immune responses to cancer. These new receptors redirect T-cells innate killing abilities to the appropriate target on cancer cells. CARs are modified receptors that recognise whole proteins on the surface of cancer cells. They have been shown to be very effective in haematological malignancies but have limited documented efficacy in solid cancers. TCRs recognise internal antigens and therefore enable targeting of a much wider range of antigens. TCRs require major histocompatibility complex (MHC) restriction but novel TCRs may have broader antigen recognition. Moreover, there are multiple cell types which can be used as targets to improve the “off-the-shelf” capabilities of these genetic engineering methods.
Collapse
Affiliation(s)
- Michael D. Crowther
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, 2730 Herlev, Denmark;
- Correspondence: (M.D.C.); (Ö.M.)
| | - Inge Marie Svane
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, 2730 Herlev, Denmark;
| | - Özcan Met
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, 2730 Herlev, Denmark;
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: (M.D.C.); (Ö.M.)
| |
Collapse
|
78
|
Rath JA, Arber C. Engineering Strategies to Enhance TCR-Based Adoptive T Cell Therapy. Cells 2020; 9:E1485. [PMID: 32570906 PMCID: PMC7349724 DOI: 10.3390/cells9061485] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
T cell receptor (TCR)-based adoptive T cell therapies (ACT) hold great promise for the treatment of cancer, as TCRs can cover a broad range of target antigens. Here we summarize basic, translational and clinical results that provide insight into the challenges and opportunities of TCR-based ACT. We review the characteristics of target antigens and conventional αβ-TCRs, and provide a summary of published clinical trials with TCR-transgenic T cell therapies. We discuss how synthetic biology and innovative engineering strategies are poised to provide solutions for overcoming current limitations, that include functional avidity, MHC restriction, and most importantly, the tumor microenvironment. We also highlight the impact of precision genome editing on the next iteration of TCR-transgenic T cell therapies, and the discovery of novel immune engineering targets. We are convinced that some of these innovations will enable the field to move TCR gene therapy to the next level.
Collapse
MESH Headings
- Biomedical Engineering
- Cell Engineering
- Cell- and Tissue-Based Therapy/adverse effects
- Cell- and Tissue-Based Therapy/methods
- Cell- and Tissue-Based Therapy/trends
- Gene Editing
- Genetic Therapy
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Lymphocyte Activation
- Molecular Targeted Therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Safety
- Synthetic Biology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Translational Research, Biomedical
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
| | - Caroline Arber
- Department of oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
79
|
Rodriguez-Garcia A, Palazon A, Noguera-Ortega E, Powell DJ, Guedan S. CAR-T Cells Hit the Tumor Microenvironment: Strategies to Overcome Tumor Escape. Front Immunol 2020; 11:1109. [PMID: 32625204 PMCID: PMC7311654 DOI: 10.3389/fimmu.2020.01109] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapies have demonstrated remarkable efficacy for the treatment of hematological malignancies. However, in patients with solid tumors, objective responses to CAR-T cell therapy remain sporadic and transient. A major obstacle for CAR-T cells is the intrinsic ability of tumors to evade immune responses. Advanced solid tumors are largely composed of desmoplastic stroma and immunosuppressive modulators, and characterized by aberrant cell proliferation and vascularization, resulting in hypoxia and altered nutrient availability. To mount a curative response after infusion, CAR-T cells must infiltrate the tumor, recognize their cognate antigen and perform their effector function in this hostile tumor microenvironment, to then differentiate and persist as memory T cells that confer long-term protection. Fortunately, recent advances in synthetic biology provide a wide set of tools to genetically modify CAR-T cells to overcome some of these obstacles. In this review, we provide a comprehensive overview of the key tumor intrinsic mechanisms that prevent an effective CAR-T cell antitumor response and we discuss the most promising strategies to prevent tumor escape to CAR-T cell therapy.
Collapse
Affiliation(s)
- Alba Rodriguez-Garcia
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Laboratory, Ikerbasque Basque Foundation for Science, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Estela Noguera-Ortega
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J. Powell
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sonia Guedan
- Department of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| |
Collapse
|
80
|
Sahlolbei M, Dehghani M, Kheiri Yeghane Azar B, Vafaei S, Roviello G, D'Angelo A, Madjd Z, Kiani J. Evaluation of targetable biomarkers for chimeric antigen receptor T-cell (CAR-T) in the treatment of pancreatic cancer: a systematic review and meta-analysis of preclinical studies. Int Rev Immunol 2020; 39:223-232. [PMID: 32546036 DOI: 10.1080/08830185.2020.1776274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/02/2020] [Accepted: 05/15/2020] [Indexed: 12/09/2022]
Abstract
One of the cutting edge techniques for treating cancer is the use of the patient's immune system to prevail cancerous disease. The versatility of the chimeric antigen receptor (CAR) T-cell approach in conjugation with promising treatments in haematological cancer has led to countless cases of research literature for the treatment of solid cancer. A systematic search of online databases as well as gray literature and reference lists of retrieved studies were carried out up to March 2019 to identify experimental animal studies that investigated the antigens targeted by CAR T-cell for pancreatic cancer treatment. Studies were evaluated for methodological quality using the SYstematic Review Center for Laboratory Animal Experimentation bias risk tool (SYRCLE's ROB tool). Pooled cytotoxicity ratio/percentage and 95% confidence intervals were calculated using the inverse-variance method while random-effects meta-analysis was used, taking into account conceptual heterogeneity. Heterogeneity was assessed with the Cochran Q statistic and quantified with the I2 statistic using Stata 13.0. Of the 485 identified studies, 56 were reviewed in-depth with 16 preclinical animal studies eligible for inclusion in the systematic review and 11 studies included in our meta-analysis. CAR immunotherapy significantly increased the cytotoxicity assay (percentage: 65%; 95% CI: 46%, 82%). There were no evidence for significant heterogeneity across studies [P = 0.38 (Q statistics), I2 = 7.14%] and for publication bias. The quality assessment of included studies revealed that the evidence was moderate to low quality and none of studies was judged as having a low risk of bias across all domains. CAR T-cell therapy is effective for pancreatic cancer treatment in preclinical animal studies. Further high-quality studies are needed to confirm our finding and a standard approach of this type of studies is necessary according to our assessment.
Collapse
Affiliation(s)
- Maryam Sahlolbei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Dehghani
- Department of, Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Behghat Kheiri Yeghane Azar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - G Roviello
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Alberto D'Angelo
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
81
|
Etxeberria I, Olivera I, Bolaños E, Cirella A, Teijeira Á, Berraondo P, Melero I. Engineering bionic T cells: signal 1, signal 2, signal 3, reprogramming and the removal of inhibitory mechanisms. Cell Mol Immunol 2020; 17:576-586. [PMID: 32433539 PMCID: PMC7264123 DOI: 10.1038/s41423-020-0464-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gene engineering and combinatorial approaches with other cancer immunotherapy agents may confer capabilities enabling full tumor rejection by adoptive T cell therapy (ACT). The provision of proper costimulatory receptor activity and cytokine stimuli, along with the repression of inhibitory mechanisms, will conceivably make the most of these treatment strategies. In this sense, T cells can be genetically manipulated to become refractory to suppressive mechanisms and exhaustion, last longer and differentiate into memory T cells while endowed with the ability to traffic to malignant tissues. Their antitumor effects can be dramatically augmented with permanent or transient gene transfer maneuvers to express or delete/repress genes. A combination of such interventions seeks the creation of the ultimate bionic T cell, perfected to seek and destroy cancer cells upon systemic or local intratumor delivery.
Collapse
Affiliation(s)
- Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Asunta Cirella
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
82
|
Wu L, Wei Q, Brzostek J, Gascoigne NRJ. Signaling from T cell receptors (TCRs) and chimeric antigen receptors (CARs) on T cells. Cell Mol Immunol 2020; 17:600-612. [PMID: 32451454 DOI: 10.1038/s41423-020-0470-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
T cells react to foreign or self-antigens through T cell receptor (TCR) signaling. Several decades of research have delineated the mechanism of TCR signal transduction and its impact on T cell performance. This knowledge provides the foundation for chimeric antigen receptor T cell (CAR-T cell) technology, by which T cells are redirected in a major histocompatibility complex-unrestricted manner. TCR and CAR signaling plays a critical role in determining the T cell state, including exhaustion and memory. Given its artificial nature, CARs might affect or rewire signaling differently than TCRs. A better understanding of CAR signal transduction would greatly facilitate improvements to CAR-T cell technology and advance its usefulness in clinical practice. Herein, we systematically review the knowns and unknowns of TCR and CAR signaling, from the contact of receptors and antigens, proximal signaling, immunological synapse formation, and late signaling outcomes. Signaling through different T cell subtypes and how signaling is translated into practice are also discussed.
Collapse
Affiliation(s)
- Ling Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Qianru Wei
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore. .,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
83
|
Schurich A, Magalhaes I, Mattsson J. Metabolic regulation of CAR T cell function by the hypoxic microenvironment in solid tumors. Immunotherapy 2020; 11:335-345. [PMID: 30678555 DOI: 10.2217/imt-2018-0141] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The field of immunometabolism has attracted growing attention as an area at the heart of immune regulation. Upon activation, T cells undergo significant metabolic changes allowing them to mediate effector responses. The advent of chimeric antigen receptor T cell-adoptive therapy has shown some striking clinical efficacy but fails to induce sufficient antitumor response in many patients. Solid tumors put up significant opposition creating a microenvironment deficient of oxygen and glucose, depriving T cells of energy and pushing them to exhaustion. Here, we focus on immune suppressive mechanisms related to hypoxia in the tumor microenvironment and the resulting metabolic changes in T cells. New therapeutic approaches such as generating chimeric antigen receptor T cells able to withstand the challenging solid tumor microenvironment are needed.
Collapse
Affiliation(s)
- Anna Schurich
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Clinical Immunology, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
84
|
'Off-the-shelf' allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov 2020; 19:185-199. [PMID: 31900462 DOI: 10.1038/s41573-019-0051-2] [Citation(s) in RCA: 735] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Autologous chimeric antigen receptor (CAR) T cells have changed the therapeutic landscape in haematological malignancies. Nevertheless, the use of allogeneic CAR T cells from donors has many potential advantages over autologous approaches, such as the immediate availability of cryopreserved batches for patient treatment, possible standardization of the CAR-T cell product, time for multiple cell modifications, redosing or combination of CAR T cells directed against different targets, and decreased cost using an industrialized process. However, allogeneic CAR T cells may cause life-threatening graft-versus-host disease and may be rapidly eliminated by the host immune system. The development of next-generation allogeneic CAR T cells to address these issues is an active area of research. In this Review, we analyse the different sources of T cells for optimal allogeneic CAR-T cell therapy and describe the different technological approaches, mainly based on gene editing, to produce allogeneic CAR T cells with limited potential for graft-versus-host disease. These improved allogeneic CAR-T cell products will pave the way for further breakthroughs in the treatment of cancer.
Collapse
|
85
|
Sheppard AD, Lysaght J. Immunometabolism and Its Potential to Improve the Current Limitations of Immunotherapy. Methods Mol Biol 2020; 2184:233-263. [PMID: 32808230 DOI: 10.1007/978-1-0716-0802-9_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The last century of research in tumor immunology has culminated in the advent of immunotherapy, most notably immune checkpoint inhibitors. These drugs have shown encouraging results across a multitude of malignancies and have shifted the paradigm of cancer treatment. However, no more than 40% of patients treated with these immune checkpoint blockade inhibitors respond. Thus, resistance is a barrier to therapy that remains poorly understood. All cells require energy and biosynthetic precursors for survival, growth, and functioning, where multiple metabolic pathways allow for flexibility in how nutrients are utilized. A defining hallmark of many cancers is altered cellular metabolism, creating an imbalanced demand for nutrients within the tumor microenvironment. Immunometabolism is increasingly understood to be vital to the functions and phenotypes of a myriad of immune cell subsets. In tumors, the high demand for nutrients by the tumor drives competition between tumor cells and infiltrating immune cells, culminating in dysfunctional immune responses. This chapter discusses the recent successes in cancer immunotherapy and highlights challenges to therapy. We also outline the major metabolic processes involved in the generation of an immune response, how this can become dysregulated in the context of the tumor microenvironment, and how this contributes to resistance to immunotherapy. Finally, we explore the potential for targeting immunometabolic pathways to improve immunotherapy, and examine current trials targeting various aspects of metabolism in an attempt to improve the outcomes from immunotherapy.
Collapse
Affiliation(s)
- Andrew D Sheppard
- Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
86
|
Iwahori K. Cytotoxic CD8 + Lymphocytes in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1224:53-62. [PMID: 32036604 DOI: 10.1007/978-3-030-35723-8_4] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the tumor microenvironment, CD8+ T cells play a major role in tumor immunity. CD8+ T cells differentiate to cytotoxic T cells, traffic into the tumor microenvironment, and exhibit cytotoxicity against tumor cells. These processes have both positive and negative effects. Enhancements in the cytotoxic activity of tumor antigen-specific cytotoxic T cells in the tumor microenvironment are crucial for the development of cancer immunotherapy. To achieve this, several immunotherapies, including cancer vaccines, T cells engineered to express chimeric antigen receptors (CAR T cells), and bispecific T-cell engagers (BiTEs), have been developed. In contrast to cancer vaccines, CAR T cells, and BiTEs, immune checkpoint inhibitors enhance the activity of cytotoxic T cells by inhibiting the negative regulators of T cells.The total number, type, and activity of tumor antigen-specific cytotoxic T cells in the tumor microenvironment need to be clarified, particularly for the development of companion diagnostics to identify patients for whom these therapies are effective. Therefore, technologies including TCR repertoire, single-cell, and T-cell cytotoxicity analyses using BiTEs have been developed.Based on these and future innovations, the generation of effective cancer immunotherapies is anticipated.
Collapse
Affiliation(s)
- Kota Iwahori
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan. .,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
87
|
Stern LA, Jonsson VD, Priceman SJ. CAR T Cell Therapy Progress and Challenges for Solid Tumors. Cancer Treat Res 2020; 180:297-326. [PMID: 32215875 DOI: 10.1007/978-3-030-38862-1_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The past two decades have marked the beginning of an unprecedented success story for cancer therapy through redirecting antitumor immunity [1]. While the mechanisms that control the initial and ongoing immune responses against tumors remain a strong research focus, the clinical development of technologies that engage the immune system to target and kill cancer cells has become a translational research priority. Early attempts documented in the late 1800s aimed at sparking immunity with cancer vaccines were difficult to interpret but demonstrated an opportunity that more than 100 years later has blossomed into the current field of cancer immunotherapy. Perhaps the most recent and greatest illustration of this is the widespread appreciation that tumors actively shut down antitumor immunity, which has led to the emergence of checkpoint pathway inhibitors that re-invigorate the body's own immune system to target cancer [2, 3]. This class of drugs, with first FDA approvals in 2011, has demonstrated impressive durable clinical responses in several cancer types, including melanoma, lung cancer, Hodgkin's lymphoma, and renal cell carcinoma, with the ongoing investigation in others. The biology and ultimate therapeutic successes of these drugs led to the 2018 Nobel Prize in Physiology or Medicine, awarded to Dr. James Allison and Dr. Tasuku Honjo for their contributions to cancer therapy [4]. In parallel to the emerging science that aided in unleashing the body's own antitumor immunity with checkpoint pathway inhibitors, researchers were also identifying ways to re-engineer antitumor immunity through adoptive cellular immunotherapy approaches. Chimeric antigen receptor (CAR)-based T cell therapy has achieved an early head start in the field, with two recent FDA approvals in 2017 for the treatment of B-cell malignancies [5]. There is an explosion of preclinical and clinical efforts to expand the therapeutic indications for CAR T cell therapies, with a specific focus on improving their clinical utility, particularly for the treatment of solid tumors. In this chapter, we will highlight the recent progress, challenges, and future perspectives surrounding the development of CAR T cell therapies for solid tumors.
Collapse
Affiliation(s)
- Lawrence A Stern
- Department of Hematology and Hematopoietic Cell Transplantation, Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Vanessa D Jonsson
- Department of Hematology and Hematopoietic Cell Transplantation, Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
88
|
Abstract
The capacity of single-agent therapy with immune checkpoint inhibitors to control solid cancers by unleashing preexisting local antitumor T cell responses has renewed interest in the broader use of T cells as anticancer therapeutics. At the same time, durable responses of refractory B-lineage malignancies to chimeric-receptor engineered T cells illustrate that T cells can be effectively redirected to cancers that lack preexisting tumor antigen-specific T cells, as most typical childhood cancers. This review summarizes strategies by which T cells can be modified to recognize defined antigens, with a focus on chimeric-receptor engineering. We provide an overview of candidate target antigens currently investigated in advanced preclinical and early clinical trials in pediatric malignancies and discuss the prerequisites for an adequate in vivo function of engineered T cells in the microenvironment of solid tumors and intrinsic and extrinsic limitations of current redirected T cell therapies. We further address innovative solutions to recruit therapeutic T cells to tumors, overcome the unreliable and heterogenous expression of most known tumor-associated antigens, and prevent functional inactivation of T cells in the hostile microenvironment of solid childhood tumors.
Collapse
Affiliation(s)
- Kerstin K Rauwolf
- Department of Pediatric Hematology and Oncology Albert-Schweitzer Campus 1, University Children's Hospital Muenster, 48149, Münster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology Albert-Schweitzer Campus 1, University Children's Hospital Muenster, 48149, Münster, Germany.
| |
Collapse
|
89
|
Zhai Y, Li G, Jiang T, Zhang W. CAR-armed cell therapy for gliomas. Am J Cancer Res 2019; 9:2554-2566. [PMID: 31911846 PMCID: PMC6943349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023] Open
Abstract
Chimeric antigen receptor (CAR)-armed cell therapy has developed rapidly in recent years, especially in the treatment of leukemia. However, the treatment methods for solid tumors represented by glioma have not achieved the ideal therapeutic effect. This situation necessitates learning from chimeric antigen receptor T cell (CAR-T) treatment in other malignancies and discovering the differences between gliomas and other solid tumors. The current design idea is to enhance the targeting, regulatory effects, and adaptation of CAR-armed cells. This review traced not only clinical trials, but also several animal experiments, which might promote the development of CAR-T treatment in glioma. Furthermore, we have discussed the obstacles to CAR-T in the treatment of glioma and the current possible solutions.
Collapse
Affiliation(s)
- You Zhai
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)Beijing, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)Beijing, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain DisordersBeijing, China
- China National Clinical Research Center for Neurological DiseasesBeijing, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)Beijing, China
| |
Collapse
|
90
|
Han X, Wang Y, Wei J, Han W. Multi-antigen-targeted chimeric antigen receptor T cells for cancer therapy. J Hematol Oncol 2019; 12:128. [PMID: 31783889 PMCID: PMC6884912 DOI: 10.1186/s13045-019-0813-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/27/2019] [Indexed: 12/16/2022] Open
Abstract
The approval of two chimeric antigen receptor-modified T cell types by the US Food and Drug Administration (FDA) for the treatment of hematologic malignancies is a milestone in immunotherapy; however, the application of CAR-T cells has been limited by antigen escape and on-target, off-tumor toxicities. Therefore, it may be a potentially effective strategy to select appropriate targets and to combine multi-antigen-targeted CAR-T cells with "OR", "AND" and "NOT" Boolean logic gates. We summarize the current limitations of CAR-T cells as well as the efficacy and safety of logic-gated CAR-T cells in antitumor therapy. This review will help to explore more optimized strategies to expand the CAR-T cell therapeutic window.
Collapse
Affiliation(s)
- Xiao Han
- Molecular and Immunological Department, Bio-therapeutic Department Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Yao Wang
- Molecular and Immunological Department, Bio-therapeutic Department Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Jianshu Wei
- Molecular and Immunological Department, Bio-therapeutic Department Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Weidong Han
- Molecular and Immunological Department, Bio-therapeutic Department Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
91
|
Torres Chavez A, McKenna MK, Canestrari E, Dann CT, Ramos CA, Lulla P, Leen AM, Vera JF, Watanabe N. Expanding CAR T cells in human platelet lysate renders T cells with in vivo longevity. J Immunother Cancer 2019; 7:330. [PMID: 31779709 PMCID: PMC6883585 DOI: 10.1186/s40425-019-0804-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pre-clinical and clinical studies have shown that the infusion of CAR T cells with a naive-like (TN) and central memory (TCM) phenotype is associated with prolonged in vivo T cell persistence and superior anti-tumor effects. To optimize the maintenance of such populations during the in vitro preparation process, we explored the impact of T cell exposure to both traditional [fetal bovine serum (FBS), human AB serum (ABS)] and non-traditional [human platelet lysate (HPL) - a xeno-free protein supplement primarily used for the production of clinical grade mesenchymal stromal / stem cells (MSCs)] serum supplements. METHODS Second generation chimeric antigen receptor with CD28 and CD3ζ endodomain targeting prostate stem cell antigen (PSCA) (P28z) or CD19 (1928z) were constructed and used for this study. After retroviral transduction, CAR T cells were divided into 3 conditions containing either FBS, ABS or HPL and expanded for 7 days. To evaluate the effect of different sera on CAR T cell function, we performed a series of in vitro and in vivo experiments. RESULTS HPL-exposed CAR T cells exhibited the less differentiated T cell phenotype and gene signature, which displayed inferior short-term killing abilities (compared to their FBS- or ABS-cultured counterparts) but superior proliferative and anti-tumor effects in long-term in vitro coculture experiments. Importantly, in mouse xenograft model, HPL-exposed CAR T cells outperformed their ABS or FBS counterparts against both subcutaneous tumor (P28z T cells against Capan-1PSCA) and systemic tumor (1928z T cells against NALM6). We further observed maintenance of less differentiated T cell phenotype in HPL-exposed 1928z T cells generated from patient's PBMCs with superior anti-tumor effect in long-term in vitro coculture experiments. CONCLUSIONS Our study highlights the importance of serum choice in the generation of CAR T cells for clinical use.
Collapse
Affiliation(s)
- Alejandro Torres Chavez
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA
| | - Mary Kathryn McKenna
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA
| | | | | | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
92
|
Baybutt TR, Flickinger JC, Caparosa EM, Snook AE. Advances in Chimeric Antigen Receptor T-Cell Therapies for Solid Tumors. Clin Pharmacol Ther 2019; 105:71-78. [PMID: 30406956 DOI: 10.1002/cpt.1280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/01/2018] [Indexed: 12/27/2022]
Abstract
In 2017, the US Food and Drug Administration approved the first two novel cellular immunotherapies using synthetic, engineered receptors known as chimeric antigen receptors (CARs), tisagenlecleucel (Kymriah) and axicabtagene ciloleucel (Yescarta), expressed by patient-derived T cells for the treatment of hematological malignancies expressing the B-cell surface antigen CD19 in both pediatric and adult patients. This approval marked a major milestone in the use of antigen-directed "living drugs" for the treatment of relapsed or refractory blood cancers, and with these two approvals, there is increased impetus to expand not only the target antigens but also the tumor types that can be targeted. This state-of-the-art review will focus on the challenges, advances, and novel approaches being used to implement CAR T-cell immunotherapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Trevor R Baybutt
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ellen M Caparosa
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
93
|
Current status and hurdles for CAR-T cell immune therapy. BLOOD SCIENCE 2019; 1:148-155. [PMID: 35402809 PMCID: PMC8974909 DOI: 10.1097/bs9.0000000000000025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells have emerged as novel and promising immune therapies for the treatment of multiple types of cancer in patients with hematological malignancies. There are several key components critical for development and application of CAR-T therapy. First, the design of CAR vectors can considerably affect several aspects of the physiological functions of these T cells. Moreover, despite the wide use of γ-retrovirus and lentivirus in mediating gene transfer into T cells, optimal CAR delivery systems are also being developed and evaluated. In addition, several classes of mouse models have been used to evaluate the efficacies of CAR-T cells; however, each model has its own limitations. Clinically, although surprising complete remission (CR) rates were observed in acute lymphoblastic leukemia (ALL), lymphoma, and multiple myeloma (MM), there is still a lack of specific targets for acute myeloid leukemia (AML). Leukemia relapse remains a major challenge, and its mechanism is presently under investigation. Cytokine release syndrome (CRS) and neurotoxicity are life-threatening adverse effects that need to be carefully treated. Several factors that compromise the activities of anti-solid cancer CAR-T cells have been recognized, and further improvements targeting these factors are the focus of the development of novel CAR-T cells. Overcoming the current hurdles will lead to optimal responses of CAR-T cells, thus paving the way for their wide clinical application.
Collapse
|
94
|
Li T, Li H, Li S, Xu S, Zhang W, Gao H, Xu H, Wu C, Wang W, Yu X, Liu L. Research progress and design optimization of CAR-T therapy for pancreatic ductal adenocarcinoma. Cancer Med 2019; 8:5223-5231. [PMID: 31339230 PMCID: PMC6718528 DOI: 10.1002/cam4.2430] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant cancer with limited treatment options. Chimeric antigen receptor T cells (CAR-T) are genetically engineered T cells that can specifically kill tumor cells without major histocompatibility complex restriction. Encouraging progress in CAR-T therapy for PDAC has been made in preclinical and early phase clinical trials. Challenges in CAR-T therapy for solid tumors still exist, including immunosuppressive microenvironment, interstitial barrier, poor chemotaxis, and the "on-target, off-tumor" effect. Applying neoantigens of PDAC as targets for CAR-T therapy, recognizing the CAR-T subgroup with better antitumor effect, and designing a CAR-T system targeting stroma of PDAC may contribute to develop a powerful CAR-T therapy for PDAC in the future.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm
- Biomarkers, Tumor
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/therapy
- Chemotaxis/immunology
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Research
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Tianjiao Li
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Hao Li
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Shuo Li
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Shuaishuai Xu
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Heli Gao
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Chuntao Wu
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Wenquan Wang
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Liang Liu
- Department of Pancreatic Surgery, Shanghai Cancer CentreFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| |
Collapse
|
95
|
Azimi CS, Tang Q, Roybal KT, Bluestone JA. NextGen cell-based immunotherapies in cancer and other immune disorders. Curr Opin Immunol 2019; 59:79-87. [PMID: 31071513 DOI: 10.1016/j.coi.2019.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 12/27/2022]
Abstract
T lymphocyte and other cell therapies have the potential to transform how we treat cancers and other diseases that have few therapeutic options. Here, we review the current progress in engineered T cell therapies and look to the future of what will establish cell therapy as the next pillar of medicine. The tools of synthetic biology along with fundamental knowledge in cell biology and immunology have enabled the development of approaches to engineer cells with enhanced capacity to recognize and treat disease safely and effectively. This along with new modes of engineering cells with CRISPR and strategies to make universal 'off-the-shelf' cell therapies will provide more rapid, flexible, and cheaper translation to the clinic.
Collapse
Affiliation(s)
- Camillia S Azimi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Qizhi Tang
- UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA, USA; Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kole T Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Jeffrey A Bluestone
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
96
|
Hull CM, Maher J. Novel approaches to promote CAR T-cell function in solid tumors. Expert Opin Biol Ther 2019; 19:789-799. [DOI: 10.1080/14712598.2019.1614164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Caroline M Hull
- School of Cancer and Pharmaceutical Sciences, King’s College London, Division of Cancer Studies, Guy’s Hospital, London, UK
| | - John Maher
- School of Cancer and Pharmaceutical Sciences, King’s College London, Division of Cancer Studies, Guy’s Hospital, London, UK
- Department of Clinical Immunology and Allergy, King’s College Hospital NHS Foundation Trust, London UK
- Department of Immunology, Eastbourne Hospital, Eastbourne, UK
| |
Collapse
|
97
|
Li F, Zhang Y. Targeting NR4As, a new strategy to fine-tune CAR-T cells against solid tumors. Signal Transduct Target Ther 2019; 4:7. [PMID: 30937188 PMCID: PMC6438967 DOI: 10.1038/s41392-019-0041-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Feng Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| |
Collapse
|
98
|
Chen LC, Chen YY. Outsmarting and outmuscling cancer cells with synthetic and systems immunology. Curr Opin Biotechnol 2019; 60:111-118. [PMID: 30822698 DOI: 10.1016/j.copbio.2019.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/01/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022]
Abstract
Adoptive T-cell therapy has shown remarkable clinical efficacy in treating refractory hematological cancers. However, challenges presented by solid tumors impede the applicability of adoptive T-cell therapy to the majority of cancers. In order to engineer effective T-cell therapies targeting solid tumors, two synergistic design criteria-T-cell therapeutic programs and anti-tumor T-cell chassis-should be taken into consideration. Recent advances in synthetic biology have enabled genetic programming of therapeutic sense-and-respond modalities in T cells. Furthermore, systems-level integration of multi-omics datum have allowed researchers to holistically profile robust anti-tumor T-cell populations. In this review, we feature novel strategies that can be incorporated into adoptive T-cell therapy design-ushering in a new paradigm of solid tumor treatment options.
Collapse
Affiliation(s)
- Laurence C Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA 90095, United States; Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA 90095, United States.
| |
Collapse
|
99
|
DeRenzo C, Gottschalk S. Genetic Modification Strategies to Enhance CAR T Cell Persistence for Patients With Solid Tumors. Front Immunol 2019; 10:218. [PMID: 30828333 PMCID: PMC6384227 DOI: 10.3389/fimmu.2019.00218] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023] Open
Abstract
Immunotherapy with chimeric antigen receptor (CAR) T cells offers a promising method to improve cure rates and decrease morbidities for patients with cancer. In this regard, CD19-specific CAR T cell therapies have achieved dramatic objective responses for a high percent of patients with CD19-positive leukemia or lymphoma. Most patients with solid tumors however, have experienced transient or no benefit from CAR T cell therapies. Novel strategies are therefore needed to improve CAR T cell function for patients with solid tumors. One obstacle for the field is limited CAR T cell persistence after infusion into patients. In this review we highlight genetic engineering strategies to improve CAR T cell persistence for enhancing antitumor activity for patients with solid tumors.
Collapse
Affiliation(s)
- Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
100
|
Ellerman D. Bispecific T-cell engagers: Towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods 2018; 154:102-117. [PMID: 30395966 DOI: 10.1016/j.ymeth.2018.10.026] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
Bispecific molecules redirecting the cytotoxicity of T-cells are a growing class of therapeutics with numerous molecules being tested in clinical trials. However, it has been a long way since the proof of concept studies in the mid 1980's. In the process we have learnt about the impact of different variables related to the bispecific molecule and the target antigen on the potency of this type of drugs. This work reviews the insights gained and how that knowledge has been used to design more potent bispecific T-cell engagers. The more recent advancement of antibodies with this modality into safety studies in non-human primates and as well as in clinical studies has revealed potential toxicity liabilities for the mode of action. Modifications in existing antibody formats and new experimental molecules designed to mitigate these problems are discussed.
Collapse
|