51
|
The infusion of ex vivo, interleukin-15 and -21-activated donor NK cells after haploidentical HCT in high-risk AML and MDS patients-a randomized trial. Leukemia 2023; 37:807-819. [PMID: 36932165 DOI: 10.1038/s41375-023-01849-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/29/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023]
Abstract
Clinical effect of donor-derived natural killer cell infusion (DNKI) after HLA-haploidentical hematopoietic cell transplantation (HCT) was evaluated in high-risk myeloid malignancy in phase 2, randomized trial. Seventy-six evaluable patients (aged 21-70 years) were randomized to receive DNKI (N = 40) or not (N = 36) after haploidentical HCT. For the HCT conditioning, busulfan, fludarabine, and anti-thymocyte globulin were administered. DNKI was given twice 13 and 20 days after HCT. Four patients in the DNKI group failed to receive DNKI. In the remaining 36 patients, median DNKI doses were 1.0 × 108/kg and 1.4 × 108/kg on days 13 and 20, respectively. Intention-to-treat analysis showed a lower disease progression for the DNKI group (30-month cumulative incidence, 35% vs 61%, P = 0.040; subdistribution hazard ratio, 0.50). Furthermore, at 3 months after HCT, the DNKI patients showed a 1.8- and 2.6-fold higher median absolute blood count of NK and T cells, respectively. scRNA-sequencing analysis in seven study patients showed that there was a marked increase in memory-like NK cells in DNKI patients which, in turn, expanded the CD8+ effector-memory T cells. In high-risk myeloid malignancy, DNKI after haploidentical HCT reduced disease progression. This enhanced graft-vs-leukemia effect may be related to the DNKI-induced, post-HCT expansion of NK and T cells. Clinical trial number: NCT02477787.
Collapse
|
52
|
Berrien-Elliott MM, Jacobs MT, Fehniger TA. Allogeneic natural killer cell therapy. Blood 2023; 141:856-868. [PMID: 36416736 PMCID: PMC10023727 DOI: 10.1182/blood.2022016200] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Interest in adoptive cell therapy for treating cancer is exploding owing to early clinical successes of autologous chimeric antigen receptor (CAR) T lymphocyte therapy. However, limitations using T cells and autologous cell products are apparent as they (1) take weeks to generate, (2) utilize a 1:1 donor-to-patient model, (3) are expensive, and (4) are prone to heterogeneity and manufacturing failures. CAR T cells are also associated with significant toxicities, including cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and prolonged cytopenias. To overcome these issues, natural killer (NK) cells are being explored as an alternative cell source for allogeneic cell therapies. NK cells have an inherent ability to recognize cancers, mediate immune functions of killing and communication, and do not induce graft-versus-host disease, cytokine release syndrome, or immune effector cell-associated neurotoxicity syndrome. NK cells can be obtained from blood or cord blood or be derived from hematopoietic stem and progenitor cells or induced pluripotent stem cells, and can be expanded and cryopreserved for off-the-shelf availability. The first wave of point-of-care NK cell therapies led to the current allogeneic NK cell products being investigated in clinical trials with promising preliminary results. Basic advances in NK cell biology and cellular engineering have led to new translational strategies to block inhibition, enhance and broaden target cell recognition, optimize functional persistence, and provide stealth from patients' immunity. This review details NK cell biology, as well as NK cell product manufacturing, engineering, and combination therapies explored in the clinic leading to the next generation of potent, off-the-shelf cellular therapies for blood cancers.
Collapse
Affiliation(s)
| | - Miriam T. Jacobs
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Todd A. Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
53
|
Iyoda T, Yamasaki S, Ueda S, Shimizu K, Fujii SI. Natural Killer T and Natural Killer Cell-Based Immunotherapy Strategies Targeting Cancer. Biomolecules 2023; 13:biom13020348. [PMID: 36830717 PMCID: PMC9953375 DOI: 10.3390/biom13020348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Both natural killer T (NKT) and natural killer (NK) cells are innate cytotoxic lymphoid cells that produce inflammatory cytokines and chemokines, and their role in the innate immune response to tumors and microorganisms has been investigated. Especially, emerging evidence has revealed their status and function in the tumor microenvironment (TME) of tumor cells. Some bacteria producing NKT cell ligands have been identified to exert antitumor effects, even in the TME. By contrast, tumor-derived lipids or metabolites may reportedly suppress NKT and NK cells in situ. Since NKT and NK cells recognize stress-inducible molecules or inhibitory molecules on cancer cells, their status or function depends on the balance between inhibitory and activating receptor signals. As a recent strategy in cancer immunotherapy, the mobilization or restoration of endogenous NKT or NK cells by novel vaccines or therapies has become a focus of research. As a new biological evidence, after activation, effector memory-type NKT cells lasted in tumor-bearing models, and NK cell-based immune checkpoint inhibition potentiated the enhancement of NK cell cytotoxicity against cancer cells in preclinical and clinical trials. Furthermore, several new modalities based on the characteristics of NKT and NK cells, including artificial adjuvant vector cells, chimeric antigen receptor-expressing NK or NKT cell therapy, or their combination with immune checkpoint blockade have been developed. This review examines challenges and future directions for improving these therapies.
Collapse
Affiliation(s)
- Tomonori Iyoda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Shogo Ueda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama 230-0045, Japan
- Correspondence: (K.S.); (S.F.); Tel.:+ 81-45-503-7062 (S.F.); Fax: +81-45-503-7061 (S.F.)
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama 230-0045, Japan
- Correspondence: (K.S.); (S.F.); Tel.:+ 81-45-503-7062 (S.F.); Fax: +81-45-503-7061 (S.F.)
| |
Collapse
|
54
|
Mace EM. Human natural killer cells: Form, function, and development. J Allergy Clin Immunol 2023; 151:371-385. [PMID: 36195172 PMCID: PMC9905317 DOI: 10.1016/j.jaci.2022.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human natural killer (NK) cells are innate lymphoid cells that mediate important effector functions in the control of viral infection and malignancy. Their ability to distinguish "self" from "nonself" and lyse virally infected and tumorigenic cells through germline-encoded receptors makes them important players in maintaining human health and a powerful tool for immunotherapeutic applications and fighting disease. This review introduces our current understanding of NK cell biology, including key facets of NK cell differentiation and the acquisition and execution of NK cell effector function. Further, it addresses the clinical relevance of NK cells in both primary immunodeficiency and immunotherapy. It is intended to provide an up-to-date and comprehensive overview of this important and interesting innate immune effector cell subset.
Collapse
Affiliation(s)
- Emily M Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York.
| |
Collapse
|
55
|
Morimoto T, Nakazawa T, Maeoka R, Nakagawa I, Tsujimura T, Matsuda R. Natural Killer Cell-Based Immunotherapy against Glioblastoma. Int J Mol Sci 2023; 24:ijms24032111. [PMID: 36768432 PMCID: PMC9916747 DOI: 10.3390/ijms24032111] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and malignant primary brain tumor in adults. Despite multimodality treatment involving surgical resection, radiation therapy, chemotherapy, and tumor-treating fields, the median overall survival (OS) after diagnosis is approximately 2 years and the 5-year OS is poor. Considering the poor prognosis, novel treatment strategies are needed, such as immunotherapies, which include chimeric antigen receptor T-cell therapy, immune checkpoint inhibitors, vaccine therapy, and oncolytic virus therapy. However, these therapies have not achieved satisfactory outcomes. One reason for this is that these therapies are mainly based on activating T cells and controlling GBM progression. Natural killer (NK) cell-based immunotherapy involves the new feature of recognizing GBM via differing mechanisms from that of T cell-based immunotherapy. In this review, we focused on NK cell-based immunotherapy as a novel GBM treatment strategy.
Collapse
Affiliation(s)
- Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
- Department of Neurosurgery, Nara City Hospital, Nara 630-8305, Japan
- Correspondence: (T.M.); (T.N.); Tel.: +81-744-22-3051 (T.M.); +81-745-84-9335 (T.N.)
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Clinic Grandsoul Nara, Uda 633-2221, Japan
- Correspondence: (T.M.); (T.N.); Tel.: +81-744-22-3051 (T.M.); +81-745-84-9335 (T.N.)
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Clinic Grandsoul Nara, Uda 633-2221, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
56
|
Yang K, Zhao Y, Sun G, Zhang X, Cao J, Shao M, Liang X, Wang L. Clinical application and prospect of immune checkpoint inhibitors for CAR-NK cell in tumor immunotherapy. Front Immunol 2023; 13:1081546. [PMID: 36741400 PMCID: PMC9892943 DOI: 10.3389/fimmu.2022.1081546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells is an attractive research field in tumor immunotherapy. While CAR is genetically engineered to express certain molecules, it retains the intrinsic ability to recognize tumor cells through its own receptors. Additionally, NK cells do not depend on T cell receptors for cytotoxic killing. CAR-NK cells exhibit some differences to CAR-T cells in terms of more precise killing, numerous cell sources, and increased effectiveness in solid tumors. However, some problems still exist with CAR-NK cell therapy, such as cytotoxicity, low transfection efficiency, and storage issues. Immune checkpoints inhibit immune cells from performing their normal killing function, and the clinical application of immune checkpoint inhibitors for cancer treatment has become a key therapeutic strategy. The application of CAR-T cells and immune checkpoint inhibitors is being evaluated in numerous ongoing basic research and clinical studies. Immune checkpoints may affect the function of CAR-NK cell therapy. In this review, we describe the combination of existing CAR-NK cell technology with immune checkpoint therapy and discuss the research of CAR-NK cell technology and future clinical treatments. We also summarize the progress of clinical trials of CAR-NK cells and immune checkpoint therapy.
Collapse
Affiliation(s)
- Kangdi Yang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuze Zhao
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Guanqun Sun
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Xu Zhang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinjin Cao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Mingcong Shao
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xijun Liang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China,*Correspondence: Xijun Liang, ; Lina Wang,
| | - Lina Wang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Xijun Liang, ; Lina Wang,
| |
Collapse
|
57
|
He B, Mai Q, Pang Y, Deng S, He Y, Xue R, Xu N, Zhou H, Liu X, Xuan L, Li C, Liu Q. Cytokines induced memory-like NK cells engineered to express CD19 CAR exhibit enhanced responses against B cell malignancies. Front Immunol 2023; 14:1130442. [PMID: 37207215 PMCID: PMC10191231 DOI: 10.3389/fimmu.2023.1130442] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
CD19 chimeric antigen receptor (CAR) engineered NK cells have been used for treating patients with relapsed and/or refractory B cell malignancies and show encouraging outcomes and safety profile. However, the poor persistence of NK cells remains a major challenge for CAR NK cell therapy. Memory-like NK cells (MLNK) induced by IL-12, IL-15, and IL-18 have shown enhanced and prolonged responses to tumor re-stimulation, making them an attractive candidate for adoptive cellular immunotherapy. Here, we show efficient and stable gene delivery of CD19 CAR to memory-like NK cells using retroviral vectors with transduction efficiency comparable to those achieved with conventional NK cells. Analysis of surface molecules revealed a distinct phenotypic profile in CAR engineered memory-like NK cells (CAR MLNK), as evidenced by increased expression of CD94 and downregulation of NKp30 as well as KIR2DL1. Compared to conventional CAR NK cells, CAR MLNK cells exhibited significantly increased IFN-γ production and degranulation in response to CD19+ target cells, resulting in enhanced cytotoxic activity against CD19+ leukemia cells and lymphoma cells. Furthermore, memory properties induced by IL-12/-15/-18 improved the in vivo persistence of CAR MLNK cells and significantly suppressed tumor growth in a exnograft mouse model of lymphoma, leading to prolonged survival of CD19+ tumor-bearing mouse. Altogether, our data indicate that CD19 CAR engineered memory-like NK cells exhibited superior persistence and antitumor activity against CD19+ tumors, which might be an attractive approach for treating patient with relapse or refractory B cell malignancies.
Collapse
Affiliation(s)
- Bailin He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiusui Mai
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yunyi Pang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shikai Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Rongtao Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoli Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- *Correspondence: Qifa Liu, ; Chengyao Li,
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Qifa Liu, ; Chengyao Li,
| |
Collapse
|
58
|
[Progress in chimeric antigen receptor NK cell therapy for hematological malignancies]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:1051-1056. [PMID: 36709115 PMCID: PMC9939332 DOI: 10.3760/cma.j.issn.0253-2727.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
59
|
Rahmani S, Yazdanpanah N, Rezaei N. Natural killer cells and acute myeloid leukemia: promises and challenges. Cancer Immunol Immunother 2022; 71:2849-2867. [PMID: 35639116 PMCID: PMC10991240 DOI: 10.1007/s00262-022-03217-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Acute myeloid leukemia (AML) is considered as one of the most malignant conditions of the bone marrow. Over the past few decades, despite substantial progresses in the management of AML, relapse remission remains a major problem. Natural killer cells (NK cells) are known as a unique component of the innate immune system. Due to swift tumor detection, distinct cytotoxic action, and extensive immune interaction, NK cells have been used in various cancer settings for decades. It has been a growing knowledge of therapeutic magnitudes ranging from adoptive NK cell transfer to chimeric antigen receptor NK cells, aiming to achieve better therapeutic responses in patients with AML. In this article, the potentials of NK cells for treatment of AML are highlighted, and challenges for such therapeutic methods are discussed. In addition, the clinical application of NK cells, mainly in patients with AML, is pictured according to the existing evidence.
Collapse
Affiliation(s)
- Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
60
|
Al-Kadhimi Z, Callahan M, Fehniger T, Cole KE, Vose J, Hinrichs S. Enrichment of innate immune cells from PBMC followed by triple cytokine activation for adoptive immunotherapy. Int Immunopharmacol 2022; 113:109387. [DOI: 10.1016/j.intimp.2022.109387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
61
|
Biederstädt A, Manzar GS, Daher M. Multiplexed engineering and precision gene editing in cellular immunotherapy. Front Immunol 2022; 13:1063303. [PMID: 36483551 PMCID: PMC9723254 DOI: 10.3389/fimmu.2022.1063303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
The advent of cellular immunotherapy in the clinic has entirely redrawn the treatment landscape for a growing number of human cancers. Genetically reprogrammed immune cells, including chimeric antigen receptor (CAR)-modified immune effector cells as well as T cell receptor (TCR) therapy, have demonstrated remarkable responses across different hard-to-treat patient populations. While these novel treatment options have had tremendous success in providing long-term remissions for a considerable fraction of treated patients, a number of challenges remain. Limited in vivo persistence and functional exhaustion of infused immune cells as well as tumor immune escape and on-target off-tumor toxicities are just some examples of the challenges which restrain the potency of today's genetically engineered cell products. Multiple engineering strategies are being explored to tackle these challenges.The advent of multiplexed precision genome editing has in recent years provided a flexible and highly modular toolkit to specifically address some of these challenges by targeted genetic interventions. This class of next-generation cellular therapeutics aims to endow engineered immune cells with enhanced functionality and shield them from immunosuppressive cues arising from intrinsic immune checkpoints as well as the hostile tumor microenvironment (TME). Previous efforts to introduce additional genetic modifications into immune cells have in large parts focused on nuclease-based tools like the CRISPR/Cas9 system or TALEN. However, nuclease-inactive platforms including base and prime editors have recently emerged and promise a potentially safer route to rewriting genetic sequences and introducing large segments of transgenic DNA without inducing double-strand breaks (DSBs). In this review, we discuss how these two exciting and emerging fields-cellular immunotherapy and precision genome editing-have co-evolved to enable a dramatic expansion in the possibilities to engineer personalized anti-cancer treatments. We will lay out how various engineering strategies in addition to nuclease-dependent and nuclease-inactive precision genome editing toolkits are increasingly being applied to overcome today's limitations to build more potent cellular therapeutics. We will reflect on how novel information-rich unbiased discovery approaches are continuously deepening our understanding of fundamental mechanisms governing tumor biology. We will conclude with a perspective of how multiplexed-engineered and gene edited cell products may upend today's treatment paradigms as they evolve into the next generation of more potent cellular immunotherapies.
Collapse
Affiliation(s)
- Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medicine III, Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Gohar Shahwar Manzar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
62
|
Tumino N, Fiore PF, Pelosi A, Moretta L, Vacca P. Myeloid derived suppressor cells in tumor microenvironment: Interaction with innate lymphoid cells. Semin Immunol 2022; 61-64:101668. [PMID: 36370673 DOI: 10.1016/j.smim.2022.101668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022]
Abstract
Human myeloid-derived suppressor cells (MDSC) represent a stage of immature myeloid cells and two main subsets can be identified: monocytic and polymorphonuclear. MDSC contribute to the establishment of an immunosuppressive tumor microenvironment (TME). The presence and the activity of MDSC in patients with different tumors correlate with poor prognosis. As previously reported, MDSC promote tumor growth and use different mechanisms to suppress the immune cell-mediated anti-tumor activity. Immunosuppression mechanisms used by MDSC are broad and depend on their differentiation stage and on the pathological context. It is known that some effector cells of the immune system can play an important role in the control of tumor progression and metastatic spread. In particular, innate lymphoid cells (ILC) contribute to control tumor growth representing a potential, versatile and, immunotherapeutic tool. Despite promising results obtained by using new cellular immunotherapeutic approaches, a relevant proportion of patients do not benefit from these therapies. Novel strategies have been investigated to overcome the detrimental effect exerted by the immunosuppressive component of TME (i.e. MDSC). In this review, we summarized the characteristics and the interactions occurring between MDSC and ILC in different tumors discussing how a deeper knowledge on MDSC biology could represent an important target for tumor immunotherapy capable of decreasing immunosuppression and enhancing anti-tumor activity exerted by immune cells.
Collapse
Affiliation(s)
- Nicola Tumino
- Innate lymphoid cells Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| | | | - Andrea Pelosi
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Paola Vacca
- Innate lymphoid cells Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
63
|
Haroun-Izquierdo A, Vincenti M, Netskar H, van Ooijen H, Zhang B, Bendzick L, Kanaya M, Momayyezi P, Li S, Wiiger MT, Hoel HJ, Krokeide SZ, Kremer V, Tjonnfjord G, Berggren S, Wikström K, Blomberg P, Alici E, Felices M, Önfelt B, Höglund P, Valamehr B, Ljunggren HG, Björklund A, Hammer Q, Kveberg L, Cichocki F, Miller JS, Malmberg KJ, Sohlberg E. Adaptive single-KIR +NKG2C + NK cells expanded from select superdonors show potent missing-self reactivity and efficiently control HLA-mismatched acute myeloid leukemia. J Immunother Cancer 2022; 10:jitc-2022-005577. [PMID: 36319065 PMCID: PMC9628692 DOI: 10.1136/jitc-2022-005577] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells hold great promise as a source for allogeneic cell therapy against hematological malignancies, including acute myeloid leukemia (AML). Current treatments are hampered by variability in NK cell subset responses, a limitation which could be circumvented by specific expansion of highly potent single killer immunoglobulin-like receptor (KIR)+NKG2C+ adaptive NK cells to maximize missing-self reactivity. METHODS We developed a GMP-compliant protocol to expand adaptive NK cells from cryopreserved cells derived from select third-party superdonors, that is, donors harboring large adaptive NK cell subsets with desired KIR specificities at baseline. We studied the adaptive state of the cell product (ADAPT-NK) by flow cytometry and mass cytometry as well as cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq). We investigated the functional responses of ADAPT-NK cells against a wide range of tumor target cell lines and primary AML samples using flow cytometry and IncuCyte as well as in a mouse model of AML. RESULTS ADAPT-NK cells were >90% pure with a homogeneous expression of a single self-HLA specific KIR and expanded a median of 470-fold. The ADAPT-NK cells largely retained their adaptive transcriptional signature with activation of effector programs without signs of exhaustion. ADAPT-NK cells showed high degranulation capacity and efficient killing of HLA-C/KIR mismatched tumor cell lines as well as primary leukemic blasts from AML patients. Finally, the expanded adaptive NK cells had preserved robust antibody-dependent cellular cytotoxicity potential and combination of ADAPT-NK cells with an anti-CD16/IL-15/anti-CD33 tri-specific engager led to near-complete killing of resistant CD45dim blast subtypes. CONCLUSIONS These preclinical data demonstrate the feasibility of off-the-shelf therapy with a non-engineered, yet highly specific, NK cell population with full missing-self recognition capability.
Collapse
Affiliation(s)
- Alvaro Haroun-Izquierdo
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marianna Vincenti
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Herman Netskar
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Hanna van Ooijen
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bin Zhang
- University of Minnesota, Masonic Cancer Center, Minneapolis, Minnesota, USA
| | - Laura Bendzick
- University of Minnesota, Masonic Cancer Center, Minneapolis, Minnesota, USA
| | - Minoru Kanaya
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pouria Momayyezi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Shuo Li
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Merete Thune Wiiger
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Hanna Julie Hoel
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Silje Zandstra Krokeide
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Veronika Kremer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Geir Tjonnfjord
- Department of Hematology, Oslo University Hospital and K.G. Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stéphanie Berggren
- Vecura, Karolinska Center for Cell Therapy Clinical Research Center, Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Wikström
- Vecura, Karolinska Center for Cell Therapy Clinical Research Center, Karolinska University Hospital, Stockholm, Sweden
| | - Pontus Blomberg
- Vecura, Karolinska Center for Cell Therapy Clinical Research Center, Karolinska University Hospital, Stockholm, Sweden
| | - Evren Alici
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Martin Felices
- University of Minnesota, Masonic Cancer Center, Minneapolis, Minnesota, USA
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Björklund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Lise Kveberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Frank Cichocki
- University of Minnesota, Masonic Cancer Center, Minneapolis, Minnesota, USA
| | - Jeffrey S Miller
- University of Minnesota, Masonic Cancer Center, Minneapolis, Minnesota, USA
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
64
|
Grottoli M, Carrega P, Zullo L, Dellepiane C, Rossi G, Parisi F, Barletta G, Zinoli L, Coco S, Alama A, Marconi S, Parodi M, Orecchia P, Bassi S, Vitale M, Mingari MC, Pfeffer U, Genova C, Pietra G. Immune Checkpoint Blockade: A Strategy to Unleash the Potential of Natural Killer Cells in the Anti-Cancer Therapy. Cancers (Basel) 2022; 14:cancers14205046. [PMID: 36291830 PMCID: PMC9599824 DOI: 10.3390/cancers14205046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Immune checkpoint blockade (ICB) with antibodies targeting CTLA-4 (Cytotoxic Lymphocyte Antigen 4) and/or programmed death-1 protein (PD-1)/programmed death ligand-1 (PD-L1) has significantly modified the therapeutic landscape of a broad range of human tumor types, including advanced non-small-cell lung cancer (NSCLC). Despite great advances of checkpoint immunotherapies, a minority of NSCLC patients (<20%) respond and/or experience long-term clinical benefits from these treatments. Limited response rates of T cell–based checkpoint immunotherapies suggest the presence of other checkpoints able to inhibit effective anti-tumor immune responses. Natural Killer (NK) cells represent a promising target for tumor immunotherapies, particularly against tumors that escape T-cell-mediated control. Like T cell function, NK cell function is also regulated by inhibitory immune-checkpoint molecules. In this review, we will provide an overview of the rationale, mechanisms of action, and clinical efficacy of these NK cell-based checkpoint therapy approaches. Finally, the future directions and current enhancements planned will be discussed. Abstract Immune checkpoint inhibitors (ICIs) immunotherapy has represented a breakthrough in cancer treatment. Clinical use of ICIs has shown an acceptable safety profile and promising antitumor activity. Nevertheless, some patients do not obtain clinical benefits after ICIs therapy. In order to improve and cure an increasing number of patients, the field has moved toward the discovery of new ICIs expressed by cells of innate immunity with an elevated inherent antitumor activity, such as natural killer cells. This review will focus on the recent findings concerning the role of classical and non-classical immune checkpoint molecules and receptors that regulate natural killer cell function, as potential targets, and their future clinical application.
Collapse
Affiliation(s)
- Melania Grottoli
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, 98122 Messina, Italy
| | - Lodovica Zullo
- UO Oncologia Medica 2 IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Chiara Dellepiane
- UO Oncologia Medica 2 IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Giovanni Rossi
- UO Oncologia Medica 2 IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Francesca Parisi
- UO Oncologia Medica 2 IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Giulia Barletta
- UO Oncologia Medica 2 IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Linda Zinoli
- DiMI, Department of Internal Medicine and Medical Specialties, University of Genova, 16132 Genova, Italy
| | - Simona Coco
- UOS Tumori Polmonari IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Angela Alama
- UOS Tumori Polmonari IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Silvia Marconi
- UOS Tumori Polmonari IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Monica Parodi
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Orecchia
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sara Bassi
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Massimo Vitale
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Maria Cristina Mingari
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- DiMES, Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Ulrich Pfeffer
- Laboratory of Tumor Epigenetics IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Carlo Genova
- DiMI, Department of Internal Medicine and Medical Specialties, University of Genova, 16132 Genova, Italy
- UO Clinica di Oncologia Medica IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (C.G.); (G.P.)
| | - Gabriella Pietra
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- DiMES, Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
- Correspondence: (C.G.); (G.P.)
| |
Collapse
|
65
|
Abstract
Natural killer (NK) cells comprise a unique population of innate lymphoid cells endowed with intrinsic abilities to identify and eliminate virally infected cells and tumour cells. Possessing multiple cytotoxicity mechanisms and the ability to modulate the immune response through cytokine production, NK cells play a pivotal role in anticancer immunity. This role was elucidated nearly two decades ago, when NK cells, used as immunotherapeutic agents, showed safety and efficacy in the treatment of patients with advanced-stage leukaemia. In recent years, following the paradigm-shifting successes of chimeric antigen receptor (CAR)-engineered adoptive T cell therapy and the advancement in technologies that can turn cells into powerful antitumour weapons, the interest in NK cells as a candidate for immunotherapy has grown exponentially. Strategies for the development of NK cell-based therapies focus on enhancing NK cell potency and persistence through co-stimulatory signalling, checkpoint inhibition and cytokine armouring, and aim to redirect NK cell specificity to the tumour through expression of CAR or the use of engager molecules. In the clinic, the first generation of NK cell therapies have delivered promising results, showing encouraging efficacy and remarkable safety, thus driving great enthusiasm for continued innovation. In this Review, we describe the various approaches to augment NK cell cytotoxicity and longevity, evaluate challenges and opportunities, and reflect on how lessons learned from the clinic will guide the design of next-generation NK cell products that will address the unique complexities of each cancer.
Collapse
Affiliation(s)
- Tamara J Laskowski
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine III: Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
66
|
Valeri A, García-Ortiz A, Castellano E, Córdoba L, Maroto-Martín E, Encinas J, Leivas A, Río P, Martínez-López J. Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Front Immunol 2022; 13:953849. [PMID: 35990652 PMCID: PMC9381932 DOI: 10.3389/fimmu.2022.953849] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the impressive results of autologous CAR-T cell therapy in refractory B lymphoproliferative diseases, CAR-NK immunotherapy emerges as a safer, faster, and cost-effective approach with no signs of severe toxicities as described for CAR-T cells. Permanently scrutinized for its efficacy, recent promising data in CAR-NK clinical trials point out the achievement of deep, high-quality responses, thus confirming its potential clinical use. Although CAR-NK cell therapy is not significantly affected by the loss or downregulation of its CAR tumor target, as in the case of CAR-T cell, a plethora of common additional tumor intrinsic or extrinsic mechanisms that could also disable NK cell function have been described. Therefore, considering lessons learned from CAR-T cell therapy, the emergence of CAR-NK cell therapy resistance can also be envisioned. In this review we highlight the processes that could be involved in its development, focusing on cytokine addiction and potential fratricide during manufacturing, poor tumor trafficking, exhaustion within the tumor microenvironment (TME), and NK cell short in vivo persistence on account of the limited expansion, replicative senescence, and rejection by patient’s immune system after lymphodepletion recovery. Finally, we outline new actively explored alternatives to overcome these resistance mechanisms, with a special emphasis on CRISPR/Cas9 mediated genetic engineering approaches, a promising platform to optimize CAR-NK cell function to eradicate refractory cancers.
Collapse
Affiliation(s)
- Antonio Valeri
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Almudena García-Ortiz
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Eva Castellano
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Córdoba
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Elena Maroto-Martín
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jessica Encinas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alejandra Leivas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Joaquín Martínez-López
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- *Correspondence: Joaquín Martínez-López,
| |
Collapse
|
67
|
Natural killer cell awakening: unleash cancer-immunity cycle against glioblastoma. Cell Death Dis 2022; 13:588. [PMID: 35803912 PMCID: PMC9270460 DOI: 10.1038/s41419-022-05041-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Due to the negligence of the complex tumor immune microenvironment, traditional treatment for glioblastoma has reached its limitation and cannot achieve a satisfying outcome in the past decade. The emergence of immunotherapy based on the theory of cancer-immunity cycle has brought a new dawn to glioblastoma patients. However, the results of most phase II and phase III clinical trials are not optimistic due to the simple focus on T cells activation rather than other immune cells involved in anti-tumor immunity. NK cells play a critical role in both innate and adaptive immunity, having the ability to coordinate immune response in inflammation, autoimmune disease and cancer. They are expected to cooperate with T cells to maximize the anti-tumor immune effect and have great potential in treating glioblastoma. Here, we describe the traditional treatment methods and current immunotherapy strategies for glioblastoma. Then, we list a microenvironment map and discuss the reasons for glioblastoma inhibitory immunity from multiple perspectives. More importantly, we focus on the advantages of NK cells as potential immune regulatory cells and the ways to maximize their anti-tumor immune effect. Finally, our outlook on the directions and potential applications of NK cell-based therapy combining with the advance technologies is presented. This review depicts NK cell awakening as the precondition to unleash the cancer-immunity cycle against glioblastoma and elaborate this idea from biology to clinical treatment.
Collapse
|
68
|
Dong H, Ham JD, Hu G, Xie G, Vergara J, Liang Y, Ali A, Tarannum M, Donner H, Baginska J, Abdulhamid Y, Dinh K, Soiffer RJ, Ritz J, Glimcher LH, Chen J, Romee R. Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute myeloid leukemia. Proc Natl Acad Sci U S A 2022; 119:e2122379119. [PMID: 35696582 PMCID: PMC9231490 DOI: 10.1073/pnas.2122379119] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/05/2022] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) remains a therapeutic challenge, and a paucity of tumor-specific targets has significantly hampered the development of effective immune-based therapies. Recent paradigm-changing studies have shown that natural killer (NK) cells exhibit innate memory upon brief activation with IL-12 and IL-18, leading to cytokine-induced memory-like (CIML) NK cell differentiation. CIML NK cells have enhanced antitumor activity and have shown promising results in early phase clinical trials in patients with relapsed/refractory AML. Here, we show that arming CIML NK cells with a neoepitope-specific chimeric antigen receptor (CAR) significantly enhances their antitumor responses to nucleophosphmin-1 (NPM1)-mutated AML while avoiding off-target toxicity. CIML NK cells differentiated from peripheral blood NK cells were efficiently transduced to express a TCR-like CAR that specifically recognizes a neoepitope derived from the cytosolic oncogenic NPM1-mutated protein presented by HLA-A2. These CAR CIML NK cells displayed enhanced activity against NPM1-mutated AML cell lines and patient-derived leukemic blast cells. CAR CIML NK cells persisted in vivo and significantly improved AML outcomes in xenograft models. Single-cell RNA sequencing and mass cytometry analyses identified up-regulation of cell proliferation, protein folding, immune responses, and major metabolic pathways in CAR-transduced CIML NK cells, resulting in tumor-specific, CAR-dependent activation and function in response to AML target cells. Thus, efficient arming of CIML NK cells with an NPM1-mutation-specific TCR-like CAR substantially improves their innate antitumor responses against an otherwise intracellular mutant protein. These preclinical findings justify evaluating this approach in clinical trials in HLA-A2+ AML patients with NPM1c mutations.
Collapse
Affiliation(s)
- Han Dong
- Department of Cancer Immunology and Virology, Dana–Farber Cancer Institute, Boston, MA 02215
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02215
| | - James Dongjoo Ham
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Guangan Hu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Guozhu Xie
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Juliana Vergara
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Yong Liang
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Alaa Ali
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Mubin Tarannum
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Hannah Donner
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Joanna Baginska
- Center for Immuno-oncology, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Yasmin Abdulhamid
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Khanhlinh Dinh
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Robert J. Soiffer
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Jerome Ritz
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Laurie H. Glimcher
- Department of Cancer Immunology and Virology, Dana–Farber Cancer Institute, Boston, MA 02215
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02215
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Rizwan Romee
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
69
|
Shapiro RM, Birch GC, Hu G, Vergara Cadavid J, Nikiforow S, Baginska J, Ali AK, Tarannum M, Sheffer M, Abdulhamid YZ, Rambaldi B, Arihara Y, Reynolds C, Halpern MS, Rodig SJ, Cullen N, Wolff JO, Pfaff KL, Lane AA, Lindsley RC, Cutler CS, Antin JH, Ho VT, Koreth J, Gooptu M, Kim HT, Malmberg KJ, Wu CJ, Chen J, Soiffer RJ, Ritz J, Romee R. Expansion, persistence, and efficacy of donor memory-like NK cells infused for posttransplant relapse. J Clin Invest 2022; 132:e154334. [PMID: 35349491 PMCID: PMC9151697 DOI: 10.1172/jci154334] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
BackgroundResponses to conventional donor lymphocyte infusion for postallogeneic hematopoietic cell transplantation (HCT) relapse are typically poor. Natural killer (NK) cell-based therapy is a promising modality to treat post-HCT relapse.MethodsWe initiated this ongoing phase I trial of adoptively transferred cytokine-induced memory-like (CIML) NK cells in patients with myeloid malignancies who relapsed after haploidentical HCT. All patients received a donor-derived NK cell dose of 5 to 10 million cells/kg after lymphodepleting chemotherapy, followed by systemic IL-2 for 7 doses. High-resolution profiling with mass cytometry and single-cell RNA sequencing characterized the expanding and persistent NK cell subpopulations in a longitudinal manner after infusion.ResultsIn the first 6 enrolled patients on the trial, infusion of CIML NK cells led to a rapid 10- to 50-fold in vivo expansion that was sustained over months. The infusion was well tolerated, with fever and pancytopenia as the most common adverse events. Expansion of NK cells was distinct from IL-2 effects on endogenous post-HCT NK cells, and not dependent on CMV viremia. Immunophenotypic and transcriptional profiling revealed a dynamic evolution of the activated CIML NK cell phenotype, superimposed on the natural variation in donor NK cell repertoires.ConclusionGiven their rapid expansion and long-term persistence in an immune-compatible environment, CIML NK cells serve as a promising platform for the treatment of posttransplant relapse of myeloid disease. Further characterization of their unique in vivo biology and interaction with both T cells and tumor targets will lead to improvements in cell-based immunotherapies.Trial RegistrationClinicalTrials.gov NCT04024761.FundingDunkin' Donuts, NIH/National Cancer Institute, and the Leukemia and Lymphoma Society.
Collapse
Affiliation(s)
- Roman M. Shapiro
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Grace C. Birch
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Guangan Hu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Juliana Vergara Cadavid
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Nikiforow
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Joanna Baginska
- Center for Immuno-oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Alaa K. Ali
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Mubin Tarannum
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Michal Sheffer
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yasmin Z. Abdulhamid
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Benedetta Rambaldi
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- University of Milano-Bicocca, Monza, Italy
| | - Yohei Arihara
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Carol Reynolds
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Max S. Halpern
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | - Andrew A. Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - R. Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Corey S. Cutler
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph H. Antin
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Vincent T. Ho
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - John Koreth
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Mahasweta Gooptu
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Haesook T. Kim
- Department of Data Science, Dana-Farber Cancer Institute/Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, The University of Oslo, Oslo, Norway
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Catherine J. Wu
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Robert J. Soiffer
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jerome Ritz
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Rizwan Romee
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
70
|
Terrén I, Orrantia A, Astarloa-Pando G, Amarilla-Irusta A, Zenarruzabeitia O, Borrego F. Cytokine-Induced Memory-Like NK Cells: From the Basics to Clinical Applications. Front Immunol 2022; 13:884648. [PMID: 35603208 PMCID: PMC9114299 DOI: 10.3389/fimmu.2022.884648] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes with a key role in the defense against viral infections and tumor cells. Although NK cells are classified as innate lymphoid cells (ILCs), under certain circumstances they exhibit adaptive and memory-like features. The latter may be achieved, among others, by a brief stimulation with interleukin (IL)-12, IL-15 and IL-18. These cytokine-induced memory-like (CIML) NK cells resemble the trained immunity observed in myeloid cells. CIML NK cells undergo transcriptional, epigenetic and metabolic reprogramming that, along with changes in the expression of cell surface receptors and components of cytotoxic granules, are responsible for their enhanced effector functions after a resting period. In addition, these memory-like NK cells persist for a long time, which make them a good candidate for cancer immunotherapy. Currently, several clinical trials are testing CIML NK cells infusions to treat tumors, mostly hematological malignancies. In relapse/refractory acute myeloid leukemia (AML), the adoptive transfer of CIML NK cells is safe and complete clinical remissions have been observed. In our review, we sought to summarize the current knowledge about the generation and molecular basis of NK cell memory-like responses and the up-to-date results from clinical trials with CIML NK cells.
Collapse
Affiliation(s)
- Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | | | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
71
|
Li Z, Ma R, Ma S, Tian L, Lu T, Zhang J, Mundy-Bosse BL, Zhang B, Marcucci G, Caligiuri MA, Yu J. ILC1s control leukemia stem cell fate and limit development of AML. Nat Immunol 2022; 23:718-730. [PMID: 35487987 PMCID: PMC9106917 DOI: 10.1038/s41590-022-01198-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
Abstract
Type I innate lymphoid cells (ILC1s) are critical regulators of inflammation and immunity in mammalian tissues. However, their function in cancer is mostly undefined. Here, we show that a high density of ILC1s induces leukemia stem cell (LSC) apoptosis in mice. At a lower density, ILC1s prevent LSCs from differentiating into leukemia progenitors and promote their differentiation into non-leukemic cells, thus blocking the production of terminal myeloid blasts. All of these effects, which require ILC1s to produce interferon-γ after cell-cell contact with LSCs, converge to suppress leukemogenesis in vivo. Conversely, the antileukemia potential of ILC1s wanes when JAK-STAT or PI3K-AKT signaling is inhibited. The relevant antileukemic properties of ILC1s are also functional in healthy individuals and impaired in individuals with acute myeloid leukemia (AML). Collectively, these findings identify ILC1s as anticancer immune cells that might be suitable for AML immunotherapy and provide a potential strategy to treat AML and prevent relapse of the disease.
Collapse
Affiliation(s)
- Zhenlong Li
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Rui Ma
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Shoubao Ma
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Lei Tian
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Ting Lu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Bethany L Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bin Zhang
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Michael A Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA.
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, USA.
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA.
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, USA.
- Department of Immuno-Oncology, City of Hope, Los Angeles, CA, USA.
| |
Collapse
|
72
|
Qiu D, Liu X, Wang W, Jiang X, Wu X, Zheng J, Zhou K, Kong X, Wu X, Jin Z. TIGIT axis: novel immune checkpoints in anti-leukemia immunity. Clin Exp Med 2022; 23:165-174. [PMID: 35419661 DOI: 10.1007/s10238-022-00817-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 12/01/2022]
Abstract
Hematologic malignancy evades immune-mediated recognition through upregulating various checkpoint inhibitory receptors (IRs) on several types of lymphocytes. Immunotherapies targeting IRs have provided ample evidence supporting regulating innate and adaptive immunity and obtaining clinical benefits. Newly described IRs have received considerable attention and are under investigation in cancer immunotherapy. Specifically, T cell immunoglobulin and ITIM domain is a novel inhibitory checkpoint receptor, and its immune checkpoint axis includes additional receptors such as CD96 and CD226, which are very promising targets. However, how the dynamics and functions of these receptor networks remain unknown, this review addresses the recent findings of the relevance of this complex receptor-ligand system and discusses their potential approaches in translating these preclinical findings into novel clinical agents in anti-leukemia immunotherapy.
Collapse
Affiliation(s)
- Dan Qiu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaxin Liu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wandi Wang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xuan Jiang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaofang Wu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiamian Zheng
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Kai Zhou
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xueting Kong
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiuli Wu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Zhenyi Jin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
73
|
Tarannum M, Romee R, Shapiro RM. Innovative Strategies to Improve the Clinical Application of NK Cell-Based Immunotherapy. Front Immunol 2022; 13:859177. [PMID: 35401529 PMCID: PMC8990319 DOI: 10.3389/fimmu.2022.859177] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022] Open
Abstract
Natural killer cells constitute a part of the innate immune system that mediates an effective immune response towards virus-infected and malignant cells. In recent years, research has focused on exploring and advancing NK cells as an active immunotherapy platform. Despite major advances, there are several key challenges that need to be addressed for the effective translation of NK cell research to clinical applications. This review highlights some of these challenges and the innovative strategies being developed to overcome them, including in vitro expansion, in vivo persistence, infiltration to the tumor site, and prevention of exhaustion.
Collapse
Affiliation(s)
- Mubin Tarannum
- Division of Stem Cell Transplant and Cellular Therapy, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Rizwan Romee
- Division of Stem Cell Transplant and Cellular Therapy, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Roman M Shapiro
- Division of Stem Cell Transplant and Cellular Therapy, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
74
|
Ward JP, Berrien-Elliott MM, Gomez F, Luo J, Becker-Hapak M, Cashen AF, Wagner-Johnston ND, Maddocks K, Mosior M, Foster M, Krysiak K, Schmidt A, Skidmore ZL, Desai S, Watkins MP, Fischer A, Griffith M, Griffith OL, Fehniger TA, Bartlett NL. Phase 1/dose expansion trial of brentuximab vedotin and lenalidomide in relapsed or refractory diffuse large B-cell lymphoma. Blood 2022; 139:1999-2010. [PMID: 34780623 PMCID: PMC8972094 DOI: 10.1182/blood.2021011894] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
New therapies are needed for patients with relapsed/refractory (rel/ref) diffuse large B-cell lymphoma (DLBCL) who do not benefit from or are ineligible for stem cell transplant and chimeric antigen receptor therapy. The CD30-targeted, antibody-drug conjugate brentuximab vedotin (BV) and the immunomodulator lenalidomide (Len) have demonstrated promising activity as single agents in this population. We report the results of a phase 1/dose expansion trial evaluating the combination of BV/Len in rel/ref DLBCL. Thirty-seven patients received BV every 21 days, with Len administered continuously for a maximum of 16 cycles. The maximum tolerated dose of the combination was 1.2 mg/kg BV with 20 mg/d Len. BV/Len was well tolerated with a toxicity profile consistent with their use as single agents. Most patients required granulocyte colony-stimulating factor support because of neutropenia. The overall response rate was 57% (95% CI, 39.6-72.5), complete response rate, 35% (95% CI, 20.7-52.6); median duration of response, 13.1 months; median progression-free survival, 10.2 months (95% CI, 5.5-13.7); and median overall survival, 14.3 months (95% CI, 10.2-35.6). Response rates were highest in patients with CD30+ DLBCL (73%), but they did not differ according to cell of origin (P = .96). NK cell expansion and phenotypic changes in CD8+ T-cell subsets in nonresponders were identified by mass cytometry. BV/Len represents a potential treatment option for patients with rel/ref DLBCL. This combination is being further explored in a phase 3 study (registered on https://clinicaltrials.org as NCT04404283). This trial was registered on https://clinicaltrials.gov as NCT02086604.
Collapse
Affiliation(s)
- Jeffrey P Ward
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Melissa M Berrien-Elliott
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Felicia Gomez
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Jingqin Luo
- Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO
| | - Michelle Becker-Hapak
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Amanda F Cashen
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Nina D Wagner-Johnston
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Kami Maddocks
- Division of Hematology, The Ohio State University, Columbus, OH; and
| | - Matthew Mosior
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Mark Foster
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Kilannin Krysiak
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Alina Schmidt
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Zachary L Skidmore
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Sweta Desai
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Marcus P Watkins
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Anne Fischer
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Malachi Griffith
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Obi L Griffith
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Todd A Fehniger
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Nancy L Bartlett
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
75
|
Zhang L, Meng Y, Feng X, Han Z. CAR-NK cells for cancer immunotherapy: from bench to bedside. Biomark Res 2022; 10:12. [PMID: 35303962 PMCID: PMC8932134 DOI: 10.1186/s40364-022-00364-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are unique innate immune cells and manifest rapid and potent cytotoxicity for cancer immunotherapy and pathogen removal without the requirement of prior sensitization or recognition of peptide antigens. Distinguish from the T lymphocyte-based cythotherapy with toxic side effects, chimeric antigen receptor-transduced NK (CAR-NK) cells are adequate to simultaneously improve efficacy and control adverse effects including acute cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GVHD). Moreover, considering the inherent properties of NK cells, the CAR-NK cells are “off-the-shelf” product satisfying the clinical demand for large-scale manufacture for cancer immunotherapy attribute to the cytotoxic effect via both NK cell receptor-dependent and CAR-dependent signaling cascades. In this review, we mainly focus on the latest updates of CAR-NK cell-based tactics, together with the opportunities and challenges for cancer immunotherapies, which represent the paradigm for boosting the immune system to enhance antitumor responses and ultimately eliminate malignancies. Collectively, we summarize and highlight the auspicious improvement in CAR-NK cells and will benefit the large-scale preclinical and clinical investigations in adoptive immunotherapy.
Collapse
Affiliation(s)
- Leisheng Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China. .,Center for Cellular Therapies, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, 250014, China. .,Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, 230031, Anhui Province, China. .,Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China. .,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 Donggangxi Road, Chengguan District, Lanzhou City, 730013, Gansu Province, China.
| | - Yuan Meng
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Zhongchao Han
- Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China. .,State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China. .,Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, 550000, China.
| |
Collapse
|
76
|
Cubitt CC, McClain E, Becker-Hapak M, Foltz JA, Wong P, Wagner JA, Neal CC, Marin ND, Marsala L, Foster M, Schappe T, Soon-Shiong P, Lee J, Berrien-Elliott MM, Fehniger TA. A novel fusion protein scaffold 18/12/TxM activates the IL-12, IL-15, and IL-18 receptors to induce human memory-like natural killer cells. Mol Ther Oncolytics 2022; 24:585-596. [PMID: 35284622 PMCID: PMC8889352 DOI: 10.1016/j.omto.2022.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/11/2022] [Indexed: 12/28/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic innate lymphoid cells that are emerging as a cellular immunotherapy for various malignancies. NK cells are particularly dependent on interleukin (IL)-15 for their survival, proliferation, and cytotoxic function. NK cells differentiate into memory-like cells with enhanced effector function after a brief activation with IL-12, IL-15, and IL-18. N-803 is an IL-15 superagonist composed of an IL-15 mutant (IL-15N72D) bound to the sushi domain of IL-15Rα fused to the Fc region of IgG1, which results in physiological trans-presentation of IL-15. Here, we describe the creation of a novel triple-cytokine fusion molecule, 18/12/TxM, using the N-803 scaffold fused to IL-18 via the IL-15N72D domain and linked to a heteromeric single-chain IL-12 p70 by the sushi domain of the IL-15Rα. This molecule displays trispecific cytokine activity through its binding and signaling through the individual cytokine receptors. Compared with activation with the individual cytokines, 18/12/TxM induces similar short-term activation and memory-like differentiation of NK cells on both the transcriptional and protein level and identical in vitro and in vivo anti-tumor activity. Thus, N-803 can be modified as a functional scaffold for the creation of cytokine immunotherapies with multiple receptor specificities to activate NK cells for adoptive cellular therapy.
Collapse
Affiliation(s)
- Celia C. Cubitt
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Ethan McClain
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Michelle Becker-Hapak
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Jennifer A. Foltz
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Pamela Wong
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Julia A. Wagner
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Carly C. Neal
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Nancy D. Marin
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Lynne Marsala
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Mark Foster
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Timothy Schappe
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | | | - John Lee
- ImmunityBio, Culver City, CA 90232, USA
| | - Melissa M. Berrien-Elliott
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Todd A. Fehniger
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| |
Collapse
|
77
|
Bednarski JJ, Zimmerman C, Berrien-Elliott MM, Foltz JA, Becker-Hapak M, Neal CC, Foster M, Schappe T, McClain E, Pence PP, Desai S, Kersting-Schadek S, Wong P, Russler-Germain DA, Fisk B, Lie WR, Eisele J, Hyde S, Bhatt ST, Griffith OL, Griffith M, Petti AA, Cashen AF, Fehniger TA. Donor memory-like NK cells persist and induce remissions in pediatric patients with relapsed AML after transplant. Blood 2022; 139:1670-1683. [PMID: 34871371 PMCID: PMC8931511 DOI: 10.1182/blood.2021013972] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Pediatric and young adult (YA) patients with acute myeloid leukemia (AML) who relapse after allogeneic hematopoietic cell transplantation (HCT) have an extremely poor prognosis. Standard salvage chemotherapy and donor lymphocyte infusions (DLIs) have little curative potential. Previous studies showed that natural killer (NK) cells can be stimulated ex vivo with interleukin-12 (IL-12), -15, and -18 to generate memory-like (ML) NK cells with enhanced antileukemia responses. We treated 9 pediatric/YA patients with post-HCT relapsed AML with donor ML NK cells in a phase 1 trial. Patients received fludarabine, cytarabine, and filgrastim followed 2 weeks later by infusion of donor lymphocytes and ML NK cells from the original HCT donor. ML NK cells were successfully generated from haploidentical and matched-related and -unrelated donors. After infusion, donor-derived ML NK cells expanded and maintained an ML multidimensional mass cytometry phenotype for >3 months. Furthermore, ML NK cells exhibited persistent functional responses as evidenced by leukemia-triggered interferon-γ production. After DLI and ML NK cell adoptive transfer, 4 of 8 evaluable patients achieved complete remission at day 28. Two patients maintained a durable remission for >3 months, with 1 patient in remission for >2 years. No significant toxicity was experienced. This study demonstrates that, in a compatible post-HCT immune environment, donor ML NK cells robustly expand and persist with potent antileukemic activity in the absence of exogenous cytokines. ML NK cells in combination with DLI present a novel immunotherapy platform for AML that has relapsed after allogeneic HCT. This trial was registered at https://clinicaltrials.gov as #NCT03068819.
Collapse
Affiliation(s)
| | - Clare Zimmerman
- Division of Hematology and Oncology, Department of Pediatrics, and
| | - Melissa M Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jennifer A Foltz
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michelle Becker-Hapak
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Carly C Neal
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mark Foster
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Timothy Schappe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ethan McClain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Patrick P Pence
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Sweta Desai
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Samantha Kersting-Schadek
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Pamela Wong
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - David A Russler-Germain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Bryan Fisk
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Jeremy Eisele
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Stephanie Hyde
- Division of Hematology and Oncology, Department of Pediatrics, and
| | - Sima T Bhatt
- Division of Hematology and Oncology, Department of Pediatrics, and
| | - Obi L Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Allegra A Petti
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO
| | - Amanda F Cashen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
78
|
Memory NK cells to forget relapsed AML. Blood 2022; 139:1607-1608. [PMID: 35298605 DOI: 10.1182/blood.2021014906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
|
79
|
N-803: a double-edged sword in haplo-NK therapy. Blood 2022; 139:1122-1124. [PMID: 35201335 DOI: 10.1182/blood.2021014789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 01/09/2023] Open
|
80
|
Berrien-Elliott MM, Becker-Hapak M, Cashen AF, Jacobs M, Wong P, Foster M, McClain E, Desai S, Pence P, Cooley S, Brunstein C, Gao F, Abboud CN, Uy GL, Westervelt P, Jacoby MA, Pusic I, Stockerl-Goldstein KE, Schroeder MA, DiPersio JF, Soon-Shiong P, Miller JS, Fehniger TA. Systemic IL-15 promotes allogeneic cell rejection in patients treated with natural killer cell adoptive therapy. Blood 2022; 139:1177-1183. [PMID: 34797911 PMCID: PMC9211446 DOI: 10.1182/blood.2021011532] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cells are a promising alternative to T cells for cancer immunotherapy. Adoptive therapies with allogeneic, cytokine-activated NK cells are being investigated in clinical trials. However, the optimal cytokine support after adoptive transfer to promote NK cell expansion, and persistence remains unclear. Correlative studies from 2 independent clinical trial cohorts treated with major histocompatibility complex-haploidentical NK cell therapy for relapsed/refractory acute myeloid leukemia revealed that cytokine support by systemic interleukin-15 (IL-15; N-803) resulted in reduced clinical activity, compared with IL-2. We hypothesized that the mechanism responsible was IL-15/N-803 promoting recipient CD8 T-cell activation that in turn accelerated donor NK cell rejection. This idea was supported by increased proliferating CD8+ T-cell numbers in patients treated with IL-15/N-803, compared with IL-2. Moreover, mixed lymphocyte reactions showed that IL-15/N-803 enhanced responder CD8 T-cell activation and proliferation, compared with IL-2 alone. Additionally, IL-15/N-803 accelerated the ability of responding T cells to kill stimulator-derived memory-like NK cells, demonstrating that additional IL-15 can hasten donor NK cell elimination. Thus, systemic IL-15 used to support allogeneic cell therapy may paradoxically limit their therapeutic window of opportunity and clinical activity. This study indicates that stimulating patient CD8 T-cell allo-rejection responses may critically limit allogeneic cellular therapy supported with IL-15. This trial was registered at www.clinicaltrials.gov as #NCT03050216 and #NCT01898793.
Collapse
Affiliation(s)
- Melissa M Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michelle Becker-Hapak
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Amanda F Cashen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Miriam Jacobs
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Pamela Wong
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mark Foster
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ethan McClain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Sweta Desai
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Patrick Pence
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Sarah Cooley
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | | | - Feng Gao
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Camille N Abboud
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Geoffrey L Uy
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Peter Westervelt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Meagan A Jacoby
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Iskra Pusic
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Mark A Schroeder
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Patrick Soon-Shiong
- ImmunityBio Inc., Culver City, CA; and
- Department of Surgery, University of California, Los Angeles, CA
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
81
|
Berrien-Elliott MM, Foltz JA, Russler-Germain DA, Neal CC, Tran J, Gang M, Wong P, Fisk B, Cubitt CC, Marin ND, Zhou AY, Jacobs MT, Foster M, Schappe T, McClain E, Kersting-Schadek S, Desai S, Pence P, Becker-Hapak M, Eisele J, Mosior M, Marsala L, Griffith OL, Griffith M, Khan SM, Spencer DH, DiPersio JF, Romee R, Uy GL, Abboud CN, Ghobadi A, Westervelt P, Stockerl-Goldstein K, Schroeder MA, Wan F, Lie WR, Soon-Shiong P, Petti AA, Cashen AF, Fehniger TA. Hematopoietic cell transplantation donor-derived memory-like NK cells functionally persist after transfer into patients with leukemia. Sci Transl Med 2022; 14:eabm1375. [PMID: 35196021 PMCID: PMC9210521 DOI: 10.1126/scitranslmed.abm1375] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural killer (NK) cells are innate lymphoid cells that eliminate cancer cells, produce cytokines, and are being investigated as a nascent cellular immunotherapy. Impaired NK cell function, expansion, and persistence remain key challenges for optimal clinical translation. One promising strategy to overcome these challenges is cytokine-induced memory-like (ML) differentiation, whereby NK cells acquire enhanced antitumor function after stimulation with interleukin-12 (IL-12), IL-15, and IL-18. Here, reduced-intensity conditioning (RIC) for HLA-haploidentical hematopoietic cell transplantation (HCT) was augmented with same-donor ML NK cells on day +7 and 3 weeks of N-803 (IL-15 superagonist) to treat patients with relapsed/refractory acute myeloid leukemia (AML) in a clinical trial (NCT02782546). In 15 patients, donor ML NK cells were well tolerated, and 87% of patients achieved a composite complete response at day +28, which corresponded with clearing high-risk mutations, including TP53 variants. NK cells were the major blood lymphocytes for 2 months after HCT with 1104-fold expansion (over 1 to 2 weeks). Phenotypic and transcriptional analyses identified donor ML NK cells as distinct from conventional NK cells and showed that ML NK cells persisted for over 2 months. ML NK cells expressed CD16, CD57, and high granzyme B and perforin, along with a unique transcription factor profile. ML NK cells differentiated in patients had enhanced ex vivo function compared to conventional NK cells from both patients and healthy donors. Overall, same-donor ML NK cell therapy with 3 weeks of N-803 support safely augmented RIC haplo-HCT for AML.
Collapse
Affiliation(s)
- Melissa M. Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer A. Foltz
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David A. Russler-Germain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carly C. Neal
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer Tran
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Margery Gang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pamela Wong
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bryan Fisk
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Celia C. Cubitt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nancy D. Marin
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alice Y. Zhou
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Miriam T. Jacobs
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark Foster
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy Schappe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ethan McClain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samantha Kersting-Schadek
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sweta Desai
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patrick Pence
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michelle Becker-Hapak
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeremy Eisele
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew Mosior
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lynne Marsala
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Obi L. Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Saad M. Khan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H. Spencer
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rizwan Romee
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Geoffrey L. Uy
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Camille N. Abboud
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Armin Ghobadi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter Westervelt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Keith Stockerl-Goldstein
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark A. Schroeder
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fei Wan
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | - Allegra A. Petti
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amanda F. Cashen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Todd A. Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
82
|
Michel T, Ollert M, Zimmer J. A Hot Topic: Cancer Immunotherapy and Natural Killer Cells. Int J Mol Sci 2022; 23:ijms23020797. [PMID: 35054985 PMCID: PMC8776043 DOI: 10.3390/ijms23020797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/24/2022] Open
Abstract
Despite significant progress in recent years, the therapeutic approach of the multiple different forms of human cancer often remains a challenge. Besides the well-established cancer surgery, radiotherapy and chemotherapy, immunotherapeutic strategies gain more and more attention, and some of them have already been successfully introduced into the clinic. Among these, immunotherapy based on natural killer (NK) cells is considered as one of the most promising options. In the present review, we will expose the different possibilities NK cells offer in this context, compare data about the theoretical background and mechanism(s) of action, report some results of clinical trials and identify several very recent trends. The pharmaceutical industry is quite interested in NK cell immunotherapy, which will benefit the speed of progress in the field.
Collapse
Affiliation(s)
- Tatiana Michel
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (T.M.); (M.O.)
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (T.M.); (M.O.)
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (T.M.); (M.O.)
- Correspondence:
| |
Collapse
|
83
|
Lau CM, Wiedemann GM, Sun JC. Epigenetic regulation of natural killer cell memory. Immunol Rev 2022; 305:90-110. [PMID: 34908173 PMCID: PMC8955591 DOI: 10.1111/imr.13031] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023]
Abstract
Immunological memory is the underlying mechanism by which the immune system remembers previous encounters with pathogens to produce an enhanced secondary response upon re-encounter. It stands as the hallmark feature of the adaptive immune system and the cornerstone of vaccine development. Classic recall responses are executed by conventional T and B cells, which undergo somatic recombination and modify their receptor repertoire to ensure recognition of a vast number of antigens. However, recent evidence has challenged the dogma that memory responses are restricted to the adaptive immune system, which has prompted a reevaluation of what delineates "immune memory." Natural killer (NK) cells of the innate immune system have been at the forefront of these pushed boundaries, and have proved to be more "adaptable" than previously thought. Like T cells, we now appreciate that their "natural" abilities actually require a myriad of signals for optimal responses. In this review, we discuss the many signals required for effector and memory NK cell responses and the epigenetic mechanisms that ultimately endow their enhanced features.
Collapse
Affiliation(s)
- Colleen M. Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gabriela M. Wiedemann
- Department of Internal Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
84
|
Kumar A, Lee SJ, Liu Q, Chan AK, Pokharel SP, Yu J, Chen CW, Swaminathan S. Generation and validation of CRISPR-engineered human natural killer cell lines for research and therapeutic applications. STAR Protoc 2021; 2:100874. [PMID: 34746857 PMCID: PMC8551845 DOI: 10.1016/j.xpro.2021.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cytotoxic natural killer cells kill tumors and infected cells. We carried out CRISPR-based gene editing and transcriptional regulation in hard-to-manipulate NK-92 cells. NK-92-based therapies were found to be safe and efficacious in preclinical studies of cancers. Here, we have pioneered the generation and validation of NK-92 cells constitutively expressing Cas9 or dCas9 for knockout (CRISPRko), transcriptional activation (CRISPRa), or transcriptional repression (CRISPRi) of genes. Our CRISPR-engineered NK-92 cell platforms can be modified for research and off-the-shelf therapeutic applications.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Sung June Lee
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Qiao Liu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Anthony K.N. Chan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Sheela Pangeni Pokharel
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| |
Collapse
|
85
|
Tarannum M, Romee R. Cytokine-induced memory-like natural killer cells for cancer immunotherapy. Stem Cell Res Ther 2021; 12:592. [PMID: 34863287 PMCID: PMC8642969 DOI: 10.1186/s13287-021-02655-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer cells are an important part of the innate immune system mediating robust responses to virus-infected and malignant cells without needing prior antigen priming. NK cells have always been thought to be short-lived and with no antigen specificity; however, recent data support the presence of NK cell memory including in the hapten-specific contact hypersensitivity model and in certain viral infections. The memory-like features can also be generated by short-term activation of both murine and human NK cells with cytokine combination of IL-12, IL-15 and IL-18, imparting increased longevity and enhanced anticancer functionality. Preclinical studies and very early clinical trials demonstrate safety and very promising clinical activity of these cytokine-induced memory-like (CIML) NK cells, making them an attractive cell type for developing novel adoptive cellular immunotherapy strategies. Furthermore, efforts are on to arm them with novel gene constructs for enhanced tumor targeting and function.
Collapse
Affiliation(s)
- Mubin Tarannum
- Division of Cellular Therapy and Stem Cell Transplantation, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Rizwan Romee
- Division of Cellular Therapy and Stem Cell Transplantation, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
86
|
Pearson AD, Rossig C, Mackall C, Shah NN, Baruchel A, Reaman G, Ricafort R, Heenen D, Bassan A, Berntgen M, Bird N, Bleickardt E, Bouchkouj N, Bross P, Brownstein C, Cohen SB, de Rojas T, Ehrlich L, Fox E, Gottschalk S, Hanssens L, Hawkins DS, Horak ID, Taylor DH, Johnson C, Karres D, Ligas F, Ludwinski D, Mamonkin M, Marshall L, Masouleh BK, Matloub Y, Maude S, McDonough J, Minard-Colin V, Norga K, Nysom K, Pappo A, Pearce L, Pieters R, Pule M, Quintás-Cardama A, Richardson N, Schüßler-Lenz M, Scobie N, Sersch MA, Smith MA, Sterba J, Tasian SK, Weigel B, Weiner SL, Zwaan CM, Lesa G, Vassal G. Paediatric Strategy Forum for medicinal product development of chimeric antigen receptor T-cells in children and adolescents with cancer: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2021; 160:112-133. [PMID: 34840026 DOI: 10.1016/j.ejca.2021.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022]
Abstract
The seventh multi-stakeholder Paediatric Strategy Forum focused on chimeric antigen receptor (CAR) T-cells for children and adolescents with cancer. The development of CAR T-cells for patients with haematological malignancies, especially B-cell precursor acute lymphoblastic leukaemia (BCP-ALL), has been spectacular. However, currently, there are scientific, clinical and logistical challenges for use of CAR T-cells in BCP-ALL and other paediatric malignancies, particularly in acute myeloid leukaemia (AML), lymphomas and solid tumours. The aims of the Forum were to summarise the current landscape of CAR T-cell therapy development in paediatrics, too identify current challenges and future directions, with consideration of other immune effector modalities and ascertain the best strategies to accelerate their development and availability to children. Although the effect is of limited duration in about half of the patients, anti-CD19 CAR T-cells produce high response rates in relapsed/refractory BCP-ALL and this has highlighted previously unknown mechanisms of relapse. CAR T-cell treatment as first- or second-line therapy could also potentially benefit patients whose disease has high-risk features associated with relapse and failure of conventional therapies. Identifying patients with very early and early relapse in whom CAR T-cell therapy may replace haematopoietic stem cell transplantation and be definitive therapy versus those in whom it provides a more effective bridge to haematopoietic stem cell transplantation is a very high priority. Development of approaches to improve persistence, either by improving T cell fitness or using more humanised/fully humanised products and co-targeting of multiple antigens to prevent antigen escape, could potentially further optimise therapy. Many differences exist between paediatric B-cell non-Hodgkin lymphomas (B-NHL) and BCP-ALL. In view of the very small patient numbers with relapsed lymphoma, careful prioritisation is needed to evaluate CAR T-cells in children with Burkitt lymphoma, primary mediastinal B cell lymphoma and other NHL subtypes. Combination trials of alternative targets to CD19 (CD20 or CD22) should also be explored as a priority to improve efficacy in this population. Development of CD30 CAR T-cell immunotherapy strategies in patients with relapsed/refractory Hodgkin lymphoma will likely be most efficiently accomplished by joint paediatric and adult trials. CAR T-cell approaches are early in development for AML and T-ALL, given the unique challenges of successful immunotherapy actualisation in these diseases. At this time, CD33 and CD123 appear to be the most universal targets in AML and CD7 in T-ALL. The results of ongoing or planned first-in-human studies are required to facilitate further understanding. There are promising early results in solid tumours, particularly with GD2 targeting cell therapies in neuroblastoma and central nervous system gliomas that represent significant unmet clinical needs. Further understanding of biology is critical to success. The comparative benefits of autologous versus allogeneic CAR T-cells, T-cells engineered with T cell receptors T-cells engineered with T cell receptor fusion constructs, CAR Natural Killer (NK)-cell products, bispecific T-cell engager antibodies and antibody-drug conjugates require evaluation in paediatric malignancies. Early and proactive academia and multi-company engagement are mandatory to advance cellular immunotherapies in paediatric oncology. Regulatory advice should be sought very early in the design and preparation of clinical trials of innovative medicines, for which regulatory approval may ultimately be sought. Aligning strategic, scientific, regulatory, health technology and funding requirements from the inception of a clinical trial is especially important as these are very expensive therapies. The model for drug development for cell therapy in paediatric oncology could also involve a 'later stage handoff' to industry after early development in academic hands. Finally, and very importantly, strategies must evolve to ensure appropriate ease of access for children who need and could potentially benefit from these therapies.
Collapse
Affiliation(s)
| | - Claudia Rossig
- University Children´s Hospital Muenster, Pediatric Hematology and Oncology, Germany
| | - Crystal Mackall
- Department of Pediatrics and Medicine, Stanford University, Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford, CA, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, National Cancer Institute, USA
| | - Andre Baruchel
- Hôpital Universitaire Robert Debré (APHP) and Université de Paris, France
| | | | | | | | | | - Michael Berntgen
- Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | | | | | - Lynley Marshall
- The Royal Marsden Hospital and the Institute of Cancer Research, London, UK
| | | | | | - Shannon Maude
- Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | - Veronique Minard-Colin
- Department of Pediatric and Adolescent Oncology, INSERM U1015, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Koen Norga
- Antwerp University Hospital, Paediatric Committee of the European Medicines Agency, Federal Agency for Medicines and Health Products, Belgium
| | | | | | | | - Rob Pieters
- Princess Maxima Center for Pediatric Oncology, Netherlands
| | | | | | | | - Martina Schüßler-Lenz
- Chair of CAT (Committee for Advanced Therapies), European Medicines Agency (EMA), Amsterdam, Netherlands; Paul-Ehrlich-Institut, Germany
| | | | | | | | - Jaroslav Sterba
- University Hospital Brno, Masaryk University, Brno, Czech Republic
| | - Sarah K Tasian
- Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | - Christian Michel Zwaan
- Princess Maxima Center for Pediatric Oncology, Netherlands; Haematological Malignancies Co-Chair Innovative Therapies for Children with Cancer Consortium (ITCC), Europe; Erasmus University Medical Center Rotterdam, Netherlands
| | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | - Gilles Vassal
- ACCELERATE, Europe; Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
87
|
Heslop HE, Stadtmauer EA, Levine JE, Ballen KK, Chen YB, DeZern AE, Eapen M, Hamadani M, Hamilton BK, Hari P, Jones RJ, Logan BR, Kean LS, Leifer ES, Locke FL, Maziarz RT, Nemecek ER, Pasquini M, Phelan R, Riches ML, Shaw BE, Walters MC, Foley A, Devine SM, Horowitz MM. Blood and Marrow Transplant Clinical Trials Network State of the Science Symposium 2021: Looking Forward as the Network Celebrates its 20th Year. Transplant Cell Ther 2021; 27:885-907. [PMID: 34461278 PMCID: PMC8556300 DOI: 10.1016/j.jtct.2021.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
In 2021 the BMT CTN held the 4th State of the Science Symposium where the deliberations of 11 committees concerning major topics pertinent to a particular disease, modality, or complication of transplant, as well as two committees to consider clinical trial design and inclusion, diversity, and access as cross-cutting themes were reviewed. This article summarizes the individual committee reports and their recommendations on the highest priority questions in hematopoietic stem cell transplant and cell therapy to address in multicenter trials.
Collapse
Affiliation(s)
| | | | - John E Levine
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Yi-Bin Chen
- Massachusetts General Hospital, Boston, Massachusetts
| | | | - Mary Eapen
- Center for International Blood & Marrow Transplant Research, Minneapolis, Minnesota
| | - Mehdi Hamadani
- Center for International Blood & Marrow Transplant Research, Minneapolis, Minnesota
| | | | - Parameswaran Hari
- Center for International Blood & Marrow Transplant Research, Minneapolis, Minnesota
| | | | - Brent R Logan
- Center for International Blood & Marrow Transplant Research, Minneapolis, Minnesota
| | | | | | | | | | | | - Marcelo Pasquini
- Center for International Blood & Marrow Transplant Research, Minneapolis, Minnesota
| | - Rachel Phelan
- Center for International Blood & Marrow Transplant Research, Minneapolis, Minnesota
| | | | - Bronwen E Shaw
- Center for International Blood & Marrow Transplant Research, Minneapolis, Minnesota
| | - Mark C Walters
- University of California San Francisco, San Francisco, California
| | - Amy Foley
- National Marrow Donor Program, Minneapolis, Minnesota
| | | | - Mary M Horowitz
- Center for International Blood & Marrow Transplant Research, Minneapolis, Minnesota
| |
Collapse
|
88
|
Blocking HIF to Enhance NK Cells: Hints for New Anti-Tumor Therapeutic Strategies? Vaccines (Basel) 2021; 9:vaccines9101144. [PMID: 34696251 PMCID: PMC8539190 DOI: 10.3390/vaccines9101144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
Natural Killer (NK) cells are becoming an ever more promising tool to design new anti-tumor strategies. However, two major issues are still a challenge to obtain versatile and effective NK-based therapies: the way to maximize the persistency of powerful NK effectors in the patient, and the way to overcome the multiple escape mechanisms that keep away or suppress NK cells at the tumor site. In this regard, targeting the hypoxia-inducible factors (HIFs), which is important for both tumor progression and immune suppression, may be an opportunity. Especially, in the context of the ongoing studies focused on more effective NK-based therapeutic products.
Collapse
|
89
|
Mikelez-Alonso I, Magadán S, González-Fernández Á, Borrego F. Natural killer (NK) cell-based immunotherapies and the many faces of NK cell memory: A look into how nanoparticles enhance NK cell activity. Adv Drug Deliv Rev 2021; 176:113860. [PMID: 34237404 DOI: 10.1016/j.addr.2021.113860] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Natural killer (NK) cells are lymphocytes able to exert potent antitumor and antiviral functions by different means. Besides their classification as innate lymphoid cells (ILCs), NK cells exhibit memory-like and memory responses after cytokine preactivation, viral infections and hapten exposure. Multiple NK cell-based immunotherapies have been developed and are currently being tested, including the possibility to translate the NK cell memory responses into the clinic. Nevertheless, still there is a need to improve these therapies, especially for the treatment of solid tumors, and nanotechnology represents an attractive option to increase NK cell effector functions against transformed cells. In this article, we review the basis of NK cell activity, the diversity of the NK cell memory responses and the current NK cell-based immunotherapies that are being used in the clinic. Furthermore, we take a look into nanotechnology-based strategies targeting NK cells to modulate their responses for effective immunotherapy.
Collapse
Affiliation(s)
- Idoia Mikelez-Alonso
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia - San Sebastián, Spain
| | - Susana Magadán
- CINBIO, Universidade de Vigo, Immunology Group, Vigo, Spain; Galicia Sur Health Research Institute (IIS-GS), Hospital Alvaro Cunqueiro, Vigo, Spain
| | - África González-Fernández
- CINBIO, Universidade de Vigo, Immunology Group, Vigo, Spain; Galicia Sur Health Research Institute (IIS-GS), Hospital Alvaro Cunqueiro, Vigo, Spain
| | - Francisco Borrego
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
90
|
Becker-Hapak MK, Shrestha N, McClain E, Dee MJ, Chaturvedi P, Leclerc GM, Marsala LI, Foster M, Schappe T, Tran J, Desai S, Neal CC, Pence P, Wong P, Wagner JA, Russler-Germain DA, Zhu X, Spanoudis CM, Gallo VL, Echeverri CA, Ramirez LL, You L, Egan JO, Rhode PR, Jiao JA, Muniz GJ, Jeng EK, Prendes CA, Sullivan RP, Berrien-Elliott MM, Wong HC, Fehniger TA. A Fusion Protein Complex that Combines IL-12, IL-15, and IL-18 Signaling to Induce Memory-Like NK Cells for Cancer Immunotherapy. Cancer Immunol Res 2021; 9:1071-1087. [PMID: 34244297 PMCID: PMC8416787 DOI: 10.1158/2326-6066.cir-20-1002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/14/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells are a promising cellular therapy for cancer, with challenges in the field including persistence, functional activity, and tumor recognition. Briefly, priming blood NK cells with recombinant human (rh)IL-12, rhIL-15, and rhIL-18 (12/15/18) results in memory-like NK cell differentiation and enhanced responses against cancer. However, the lack of available, scalable Good Manufacturing Process (GMP)-grade reagents required to advance this approach beyond early-phase clinical trials is limiting. To address this challenge, we developed a novel platform centered upon an inert tissue factor scaffold for production of heteromeric fusion protein complexes (HFPC). The first use of this platform combined IL-12, IL-15, and IL-18 receptor engagement (HCW9201), and the second adds CD16 engagement (HCW9207). This unique HFPC expression platform was scalable with equivalent protein quality characteristics in small- and GMP-scale production. HCW9201 and HCW9207 stimulated activation and proliferation signals in NK cells, but HCW9207 had decreased IL-18 receptor signaling. RNA sequencing and multidimensional mass cytometry revealed parallels between HCW9201 and 12/15/18. HCW9201 stimulation improved NK cell metabolic fitness and resulted in the DNA methylation remodeling characteristic of memory-like differentiation. HCW9201 and 12/15/18 primed similar increases in short-term and memory-like NK cell cytotoxicity and IFNγ production against leukemia targets, as well as equivalent control of leukemia in NSG mice. Thus, HFPCs represent a protein engineering approach that solves many problems associated with multisignal receptor engagement on immune cells, and HCW9201-primed NK cells can be advanced as an ideal approach for clinical GMP-grade memory-like NK cell production for cancer therapy.
Collapse
Affiliation(s)
| | | | - Ethan McClain
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | | | | | | | - Lynne I Marsala
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | - Mark Foster
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | - Timothy Schappe
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | - Jennifer Tran
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | - Sweta Desai
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | - Carly C Neal
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | - Patrick Pence
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | - Pamela Wong
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | - Julia A Wagner
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Todd A Fehniger
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri.
| |
Collapse
|
91
|
Marin ND, Krasnick BA, Becker-Hapak M, Conant L, Goedegebuure SP, Berrien-Elliott MM, Robbins KJ, Foltz JA, Foster M, Wong P, Cubitt CC, Tran J, Wetzel CB, Jacobs M, Zhou AY, Russler-Germain D, Marsala L, Schappe T, Fields RC, Fehniger TA. Memory-like Differentiation Enhances NK Cell Responses to Melanoma. Clin Cancer Res 2021; 27:4859-4869. [PMID: 34187852 PMCID: PMC8416927 DOI: 10.1158/1078-0432.ccr-21-0851] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/01/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Treatment of advanced melanoma is a clinical challenge. Natural killer (NK) cells are a promising cellular therapy for T cell-refractory cancers, but are frequently deficient or dysfunctional in patients with melanoma. Thus, new strategies are needed to enhance NK-cell antitumor responses. Cytokine-induced memory-like (ML) differentiation overcomes many barriers in the NK-cell therapeutics field, resulting in potent cytotoxicity and enhanced cytokine production against blood cancer targets. However, the preclinical activity of ML NK against solid tumors remains largely undefined. EXPERIMENTAL DESIGN Phenotypic and functional alterations of blood and advanced melanoma infiltrating NK cells were evaluated using mass cytometry. ML NK cells from healthy donors (HD) and patients with advanced melanoma were evaluated for their ability to produce IFNγ and kill melanoma targets in vitro and in vivo using a xenograft model. RESULTS NK cells in advanced melanoma exhibited a decreased cytotoxic potential compared with blood NK cells. ML NK cells differentiated from HD and patients with advanced melanoma displayed enhanced IFNγ production and cytotoxicity against melanoma targets. This included ML differentiation enhancing melanoma patients' NK-cell responses against autologous targets. The ML NK-cell response against melanoma was partially dependent on the NKG2D- and NKp46-activating receptors. Furthermore, in xenograft NSG mouse models, human ML NK cells demonstrated superior control of melanoma, compared with conventional NK cells. CONCLUSIONS Blood NK cells from allogeneic HD or patients with advanced melanoma can be differentiated into ML NK cells for use as a novel immunotherapeutic treatment for advanced melanoma, which warrants testing in early-phase clinical trials.
Collapse
Affiliation(s)
- Nancy D. Marin
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Bradley A. Krasnick
- Section of Surgical Oncology, Department of Surgery, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Michelle Becker-Hapak
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Leah Conant
- Section of Surgical Oncology, Department of Surgery, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Simon P. Goedegebuure
- Section of Surgical Oncology, Department of Surgery, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Melissa M. Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Keenan J. Robbins
- Section of Surgical Oncology, Department of Surgery, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Jennifer A. Foltz
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Mark Foster
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Pamela Wong
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Celia C. Cubitt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Jennifer Tran
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Christopher B. Wetzel
- Section of Surgical Oncology, Department of Surgery, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Miriam Jacobs
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Alice Y. Zhou
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - David Russler-Germain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Lynne Marsala
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Timothy Schappe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri
| | - Ryan C. Fields
- Section of Surgical Oncology, Department of Surgery, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri.,Corresponding Authors: Todd A. Fehniger, Department of Medicine, Division of Oncology, Washington University in St. Louis, School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110. Phone: 314-747-1385; E-mail: ; and Ryan C. Fields, Section of Surgical Oncology, Department of Surgery, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, Campus Box 8109, St. Louis, MO 63110. Phone: 314-286-1694; E-mail:
| | - Todd A. Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Siteman Cancer Center, St. Louis, Missouri.,Corresponding Authors: Todd A. Fehniger, Department of Medicine, Division of Oncology, Washington University in St. Louis, School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110. Phone: 314-747-1385; E-mail: ; and Ryan C. Fields, Section of Surgical Oncology, Department of Surgery, Washington University in St. Louis School of Medicine, 660 S Euclid Ave, Campus Box 8109, St. Louis, MO 63110. Phone: 314-286-1694; E-mail:
| |
Collapse
|
92
|
Magadán S, Mikelez-Alonso I, Borrego F, González-Fernández Á. Nanoparticles and trained immunity: Glimpse into the future. Adv Drug Deliv Rev 2021; 175:113821. [PMID: 34087325 DOI: 10.1016/j.addr.2021.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022]
Abstract
Emerging evidences show that innate immune cells can display changes in their functional programs after infection or vaccination, which lead to immunomodulation (increased or reduced responsiveness) upon secondary activation to the same stimuli or even to a different one. Innate cells acquire features of immunological memory, nowadays using the new term of "trained immunity" or "innate immune memory", which is different from the specific memory immune response elicited by B and T lymphocytes. The review focused on the concept of trained immunity, mostly on myeloid cells. Special attention is dedicated to the pathogen recognition along the evolution (bacteria, plants, invertebrate and vertebrate animals), and to techniques used to study epigenetic reprogramming and metabolic rewiring. Nanomaterials can be recognized by immune cells offering a very promising way to learn about trained immunity. Nanomaterials could be modified in order to immunomodulate the responses ad hoc. Many therapeutic possibilities are opened, and they should be explored.
Collapse
|
93
|
Kerbauy LN, Marin ND, Kaplan M, Banerjee PP, Berrien-Elliott MM, Becker-Hapak M, Basar R, Foster M, Garcia Melo L, Neal CC, McClain E, Daher M, Nunez Cortes AK, Desai S, Inng Lim FW, Mendt MC, Schappe T, Li L, Shaim H, Shanley M, Ensley EL, Uprety N, Wong P, Liu E, Ang SO, Cai R, Nandivada V, Mohanty V, Miao Q, Shen Y, Baran N, Fowlkes NW, Chen K, Muniz-Feliciano L, Champlin RE, Nieto YL, Koch J, Treder M, Fischer W, Okamoto OK, Shpall EJ, Fehniger TA, Rezvani K. Combining AFM13, a Bispecific CD30/CD16 Antibody, with Cytokine-Activated Blood and Cord Blood-Derived NK Cells Facilitates CAR-like Responses Against CD30 + Malignancies. Clin Cancer Res 2021; 27:3744-3756. [PMID: 33986022 PMCID: PMC8254785 DOI: 10.1158/1078-0432.ccr-21-0164] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Natural killer (NK)-cell recognition and function against NK-resistant cancers remain substantial barriers to the broad application of NK-cell immunotherapy. Potential solutions include bispecific engagers that target NK-cell activity via an NK-activating receptor when simultaneously targeting a tumor-specific antigen, as well as enhancing functionality using IL12/15/18 cytokine pre-activation. EXPERIMENTAL DESIGN We assessed single-cell NK-cell responses stimulated by the tetravalent bispecific antibody AFM13 that binds CD30 on leukemia/lymphoma targets and CD16A on various types of NK cells using mass cytometry and cytotoxicity assays. The combination of AFM13 and IL12/15/18 pre-activation of blood and cord blood-derived NK cells was investigated in vitro and in vivo. RESULTS We found heterogeneity within AFM13-directed conventional blood NK cell (cNK) responses, as well as consistent AFM13-directed polyfunctional activation of mature NK cells across donors. NK-cell source also impacted the AFM13 response, with cNK cells from healthy donors exhibiting superior responses to those from patients with Hodgkin lymphoma. IL12/15/18-induced memory-like NK cells from peripheral blood exhibited enhanced killing of CD30+ lymphoma targets directed by AFM13, compared with cNK cells. Cord-blood NK cells preactivated with IL12/15/18 and ex vivo expanded with K562-based feeders also exhibited enhanced killing with AFM13 stimulation via upregulation of signaling pathways related to NK-cell effector function. AFM13-NK complex cells exhibited enhanced responses to CD30+ lymphomas in vitro and in vivo. CONCLUSIONS We identify AFM13 as a promising combination with cytokine-activated adult blood or cord-blood NK cells to treat CD30+ hematologic malignancies, warranting clinical trials with these novel combinations.
Collapse
Affiliation(s)
- Lucila N Kerbauy
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Departments of Stem Cell Transplantation and Hemotherapy/Cellular Therapy, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), Sao Paulo, Brazil
| | - Nancy D Marin
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pinaki P Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa M Berrien-Elliott
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michelle Becker-Hapak
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark Foster
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Luciana Garcia Melo
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carly C Neal
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Ethan McClain
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sweta Desai
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Francesca Wei Inng Lim
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mayela Carolina Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy Schappe
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Li Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hila Shaim
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emily L Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pamela Wong
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sonny O Ang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rong Cai
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vandana Nandivada
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Qi Miao
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Yifei Shen
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Natalia Baran
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yago L Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Oswaldo Keith Okamoto
- Departments of Stem Cell Transplantation and Hemotherapy/Cellular Therapy, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), Sao Paulo, Brazil
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Todd A Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri.
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
94
|
Quatrini L, Della Chiesa M, Sivori S, Mingari MC, Pende D, Moretta L. Human NK cells, their receptors and function. Eur J Immunol 2021; 51:1566-1579. [PMID: 33899224 PMCID: PMC9292411 DOI: 10.1002/eji.202049028] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
NK cells are cytotoxic components of innate lymphoid cells (ILC) that provide a first line of defense against viral infections and contribute to control tumor growth and metastasis. Their function is finely regulated by an array of HLA-specific and non-HLA-specific inhibitory and activating receptors which allow to discriminate between healthy and altered cells. Human NK cells gained a major attention in recent years because of the important progresses in understanding their biology and of some promising data in tumor therapy. In this review, we will outline well-established issues of human NK cells and discuss some of the open questions, debates, and recent advances regarding their origin, differentiation, and tissue distribution. Newly defined NK cell specializations, including the impact of inhibitory checkpoints on their function, their crosstalk with other cell types, and the remarkable adaptive features acquired in response to certain virus infections will also be discussed.
Collapse
Affiliation(s)
- Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Immunology Laboratory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela Pende
- Immunology Laboratory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
95
|
Shaver KA, Croom-Perez TJ, Copik AJ. Natural Killer Cells: The Linchpin for Successful Cancer Immunotherapy. Front Immunol 2021; 12:679117. [PMID: 33995422 PMCID: PMC8115550 DOI: 10.3389/fimmu.2021.679117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy is a highly successful and rapidly evolving treatment modality that works by augmenting the body’s own immune system. While various immune stimulation strategies such as PD-1/PD-L1 or CTLA-4 checkpoint blockade result in robust responses, even in patients with advanced cancers, the overall response rate is low. While immune checkpoint inhibitors are known to enhance cytotoxic T cells’ antitumor response, current evidence suggests that immune responses independent of cytotoxic T cells, such as Natural Killer (NK) cells, play crucial role in the efficacy of immunotherapeutic interventions. NK cells hold a distinct role in potentiating the innate immune response and activating the adaptive immune system. This review highlights the importance of the early actions of the NK cell response and the pivotal role NK cells hold in priming the immune system and setting the stage for successful response to cancer immunotherapy. Yet, in many patients the NK cell compartment is compromised thus lowering the chances of successful outcomes of many immunotherapies. An overview of mechanisms that can drive NK cell dysfunction and hinder immunotherapy success is provided. Rather than relying on the likely dysfunctional endogenous NK cells to work with immunotherapies, adoptive allogeneic NK cell therapies provide a viable solution to increase response to immunotherapies. This review highlights the advances made in development of NK cell therapeutics for clinical application with evidence supporting their combinatorial application with other immune-oncology approaches to improve outcomes of immunotherapies.
Collapse
Affiliation(s)
- Kari A Shaver
- College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Tayler J Croom-Perez
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Alicja J Copik
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
96
|
Terrén I, Orrantia A, Mosteiro A, Vitallé J, Zenarruzabeitia O, Borrego F. Metabolic changes of Interleukin-12/15/18-stimulated human NK cells. Sci Rep 2021; 11:6472. [PMID: 33742092 PMCID: PMC7979769 DOI: 10.1038/s41598-021-85960-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Natural Killer (NK) cells acquire memory-like properties following a brief stimulation with IL-12, IL-15 and IL-18. These IL-12/15/18-preactivated NK cells, also known as cytokine-induced memory-like (CIML) NK cells, have been revealed as a powerful tool in cancer immunotherapy due to their persistence in the host and their increased effector functions. Several studies have shown that NK cells modulate their metabolism in response to cytokine-stimulation and other stimuli, suggesting that there is a link between metabolism and cellular functions. In this paper, we have analyzed metabolic changes associated to IL-12/15/18-stimulation and the relevance of glycolytic pathway for NK cell effector functions. We have found CIML NK cells are able to retain a metabolic profile shifted towards glycolysis seven days after cytokine withdrawal. Furthermore, we found that treatment with 2-DG differently affects distinct NK cell effector functions and is stimuli-dependent. These findings may have implications in the design of NK cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Alba Mosteiro
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
97
|
Killing the Invaders: NK Cell Impact in Tumors and Anti-Tumor Therapy. Cancers (Basel) 2021; 13:cancers13040595. [PMID: 33546248 PMCID: PMC7913353 DOI: 10.3390/cancers13040595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary NK cells are innate lymphoid cells involved in the control of tumor growth and metastatic spread. Given their significant cytolytic capacity, several promising strategies have been developed to target NK cells in cancer immunotherapy. Abstract Natural Killer cells belong to group 1 innate lymphoid cells, which also includes ILC1s. NK/ILC1s are highly heterogeneous cell types showing distinct phenotypes across tissues and conditions. NK cells have long been described as innate lymphocytes able to directly and rapidly kill tumor cells without antigen-restriction. Different mechanisms were shown to modulate NK cell activation and tumor resistance, mainly based on cytokine stimulation and receptor–ligand interactions, and several strategies have been developed to target NK cells in tumor immunotherapy to promote NK cell function and overcome tumor evasion. The characterization of ILC1 distinct phenotype and function and the specific role in tumors still needs further investigation and will be essential to better understand the impact of innate lymphoid cells in tumors. Here, we review key aspects of NK cell biology that are relevant in tumor immune surveillance, emphasizing the most recent findings in the field. We describe the novel therapeutical strategies that have been developed in tumor immunotherapy targeting NK cells, and we summarize some recent findings related to NK cell/ILC1 transition in tumor models.
Collapse
|
98
|
Xu J, Niu T. Natural killer cell-based immunotherapy for acute myeloid leukemia. J Hematol Oncol 2020; 13:167. [PMID: 33287858 PMCID: PMC7720594 DOI: 10.1186/s13045-020-00996-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Despite considerable progress has been achieved in the treatment of acute myeloid leukemia over the past decades, relapse remains a major problem. Novel therapeutic options aimed at attaining minimal residual disease-negative complete remission are expected to reduce the incidence of relapse and prolong survival. Natural killer cell-based immunotherapy is put forward as an option to tackle the unmet clinical needs. There have been an increasing number of therapeutic dimensions ranging from adoptive NK cell transfer, chimeric antigen receptor-modified NK cells, antibodies, cytokines to immunomodulatory drugs. In this review, we will summarize different forms of NK cell-based immunotherapy for AML based on preclinical investigations and clinical trials.
Collapse
Affiliation(s)
- Jing Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|