51
|
Ong KL, Wong LYF, Man YB, Leung RYH, Song YQ, Lam KSL, Cheung BMY. Haplotypes in the urotensin II gene and urotensin II receptor gene are associated with insulin resistance and impaired glucose tolerance. Peptides 2006; 27:1659-67. [PMID: 16597476 DOI: 10.1016/j.peptides.2006.02.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 02/24/2006] [Accepted: 02/24/2006] [Indexed: 11/26/2022]
Abstract
We studied single nucleotide polymorphisms (SNPs) and haplotypes in the urotensin-II (UTS2) and urotensin-II receptor gene (UTS2R) in Hong Kong Chinese (224 hypertensive and 306 normotensive unrelated subjects) and their relation to hypertension and the metabolic syndrome. For UTS2, the GGT haplotype (-605G, 143G and 3836T) was associated with higher plasma level of U-II and insulin, and higher homeostasis model assessment of insulin resistance index and beta-cell function. For UTS2R, the AC haplotype (-11640A and -8515C) was associated with higher 2 h plasma glucose after a 75 g oral glucose load. Therefore, U-II and its receptor may play a role in insulin resistance.
Collapse
Affiliation(s)
- Kwok Leung Ong
- Department of Medicine & Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
52
|
Rdzanek A, Filipiak KJ, Karpiński G, Grabowski M, Opolski G. Exercise urotensin II dynamics in myocardial infarction survivors with and without hypertension. Int J Cardiol 2006; 110:175-8. [PMID: 16198012 DOI: 10.1016/j.ijcard.2005.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 06/27/2005] [Accepted: 07/24/2005] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hypertension is diagnosed in approximately 50% of patients with acute myocardial infarction. Urotensin II (U-II) - a potent vasoactive peptide shown to be elevated in hypertensive subjects, can contribute to negative myocardial remodelling and development of left ventricular failure. Data concerning U-II activity under exercise conditions and its influence on blood pressure in patients after myocardial infarction is scant. Therefore we sought to determine U-II dynamics during exercise in myocardial infarction survivors with and without hypertension. METHODS Forty patients with acute myocardial infarction treated with successful primary coronary angioplasty, after four weeks of uneventful and symptom-free period following initial hospitalization underwent treadmill exercise test. U-II plasma concentration was measured before and shortly after the exercise. RESULTS Hypertension was diagnosed in 17 (42.5%) patients. We found no significant differences between normotensive and hypertensive subjects except higher smoking rate and lower calcium channel blockers prescription in normotensive patients. Both systolic and diastolic blood pressure were comparable between study groups before exercise. After exercise we observed higher systolic blood pressure in hypertensive subjects (169.06 +/- 30.23 vs. 150.0 +/- 18.97 mm Hg; p < 0.05). U-II concentration showed no significant difference in pretest sampling (54.93 +/- 38.11 vs. 73.97 +/- 48.52 ng/ml; p = NS). After exercise we noted significantly higher peptide level in hypertensive patients (63.32 +/- 36.11 vs. 98.03 +/- 40.47 ng/ml; p = 0.01). CONCLUSIONS The present study is the first one to show differences in U-II concentration exercise dynamics in hypertensive and normotensive myocardial infarction survivors. It sheds additional light on hypertension pathophysiology in myocardial infarction patients, and thus identifies a novel, potentially relevant, target for future therapeutic interventions.
Collapse
Affiliation(s)
- Adam Rdzanek
- 1st Chair and Department of Cardiology, Central University Hospital, Medical University of Warsaw, Poland.
| | | | | | | | | |
Collapse
|
53
|
Lacza Z, W Busija D. Urotensin-II is a nitric oxide-dependent vasodilator in the pial arteries of the newborn pig. Life Sci 2006; 78:2763-6. [PMID: 16337243 DOI: 10.1016/j.lfs.2005.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 11/01/2005] [Indexed: 11/25/2022]
Abstract
Urotensin-II (UT-II) is a small circular peptide and is described as the most potent endogenous vasoconstrictor in various vascular beds. However, the in vivo effects of UT-II can be either vasoconstriction or vasodilation depending on the species and the tissue investigated. The present study sought to characterize the vasoactive effect of UT-II in the piglet cerebral circulation in vivo. Pial arteries of 99 +/- 6 microm were visualized with intravital microscopy through a closed cranial window in anesthetized newborn piglets. Topical application of UT-II elicited a weak dose-dependent vasodilation of the arteries (0.001 microM: 3 +/- 3 microm, 0.1 microM: 10 +/- 5 microm, 10 microM: 14 +/- 7 microm). Smaller arteries with an initial diameter below 100 microm showed minimal or no vasodilation, while larger arteries between 100 and 120 microm had a pronounced dose-dependent effect. Systemic application of 15 mg/kg Nomega-nitro-L-arginine-methyl ester (L-NAME) completely inhibited the vasodilation. We conclude that UT-II, in contrast to most other vascular beds, is a weak NO-dependent vasodilator in the piglet pial vasculature.
Collapse
Affiliation(s)
- Zsombor Lacza
- Department of Physiology/Pharmacology, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
54
|
Jégou S, Cartier D, Dubessy C, Gonzalez BJ, Chatenet D, Tostivint H, Scalbert E, LePrince J, Vaudry H, Lihrmann I. Localization of the urotensin II receptor in the rat central nervous system. J Comp Neurol 2006; 495:21-36. [PMID: 16432902 DOI: 10.1002/cne.20845] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The vasoactive peptide urotensin II (UII) is primarily expressed in motoneurons of the brainstem and spinal cord. Intracerebroventricular injection of UII provokes various behavioral, cardiovascular, motor, and endocrine responses in the rat, but the distribution of the UII receptor in the central nervous system (CNS) has not yet been determined. In the present study, we have investigated the localization of UII receptor (GPR14) mRNA and UII binding sites in the rat CNS. RT-PCR analysis revealed that the highest density of GPR14 mRNA occurred in the pontine nuclei. In situ hybridization histochemistry showed that the GPR14 gene is widely expressed in the brain and spinal cord. In particular, a strong hybridization signal was observed in the olfactory system, hippocampus, olfactory and medial amygdala, hypothalamus, epithalamus, several tegmental nuclei, locus coeruleus, pontine nuclei, motor nuclei, nucleus of the solitary tract, dorsal motor nucleus of the vagus, inferior olive, cerebellum, and spinal cord. Autoradiographic labeling of brain slices with radioiodinated UII showed the presence of UII-binding sites in the lateral septum, bed nucleus of the stria terminalis, medial amygdaloid nucleus, anteroventral thalamus, anterior pretectal nucleus, pedunculopontine tegmental nucleus, pontine nuclei, geniculate nuclei, parabigeminal nucleus, dorsal endopiriform nucleus, and cerebellar cortex. Intense expression of the GPR14 gene in some hypothalamic nuclei (supraoptic, paraventricular, ventromedian, and arcuate nuclei), in limbic structures (amygdala and hippocampus), in medullary nuclei (solitary tract, dorsal motor nucleus of the vagus), and in motor control regions (cerebral and cerebellar cortex, substantia nigra, pontine nuclei) provides the anatomical substrate for the central effects of UII on behavioral, cardiovascular, neuroendocrine, and motor functions. The occurrence of GPR14 mRNA in cranial and spinal motoneurons is consistent with the reported autocrine/paracrine action of UII on motoneurons.
Collapse
Affiliation(s)
- Sylvie Jégou
- Institut National de la Santé et de la Recherche Médicale U-413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP23), University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Clozel M, Hess P, Qiu C, Ding SS, Rey M. The urotensin-II receptor antagonist palosuran improves pancreatic and renal function in diabetic rats. J Pharmacol Exp Ther 2006; 316:1115-21. [PMID: 16267137 DOI: 10.1124/jpet.105.094821] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Urotensin-II (U-II) is a cyclic peptide that acts through a specific G-protein-coupled receptor, UT receptor. Urotensin-II and UT receptors have been described in pancreas and kidney, but their function is not well understood. We studied the effects of chronic treatment of diabetic rats with the orally active selective U-II receptor antagonist palosuran. Streptozotocin treatment causes pancreatic beta-cell destruction and leads to the development of hyperglycemia, dyslipidemia, and renal dysfunction. Long-term treatment of streptozotocin-induced diabetic rats with palosuran improved survival, increased insulin, and slowed the increase in glycemia, glycosylated hemoglobin, and serum lipids. Furthermore, palosuran increased renal blood flow and delayed the development of proteinuria and renal damage. The U-II system is unique in that it plays a role both in insulin secretion and in the renal complications of diabetes. Urotensin receptor antagonism might be a new therapeutic approach for the treatment of diabetes.
Collapse
Affiliation(s)
- Martine Clozel
- Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland.
| | | | | | | | | |
Collapse
|
56
|
Abstract
The discovery of novel biologically active peptides has led to an explosion in our understanding of the molecular mechanisms that underlie the regulation of sleep and wakefulness. Urotensin II (UII), a peptide originally isolated from fish and known for its strong cardiovascular effects in mammals, is another surprising candidate in the regulatory network of sleep. The UII receptor was found to be expressed by cholinergic neurons of laterodorsal and pedunculopontine tegmental nuclei, an area known to be of utmost importance for the on- and offset of rapid eye movement (REM) sleep. Recently, physiological data have provided further evidence that UII is indeed a modulator of REM sleep. The peptide directly excites cholinergic mesopontine neurons and increases the rate of REM sleep episodes. These new results and its emerging behavioral effects establish UII as a neurotransmitter/neuromodulator in mammals and should spark further interest into the neurobiological role of the peptide.
Collapse
Affiliation(s)
- Hans-Peter Nothacker
- Department of Pharmacology, University of California, Irvine, CA 92697-4625, USA.
| | | |
Collapse
|
57
|
Do-Rego JC, Chatenet D, Orta MH, Naudin B, Le Cudennec C, Leprince J, Scalbert E, Vaudry H, Costentin J. Behavioral effects of urotensin-II centrally administered in mice. Psychopharmacology (Berl) 2005; 183:103-17. [PMID: 16160878 DOI: 10.1007/s00213-005-0140-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 07/21/2005] [Indexed: 11/28/2022]
Abstract
Urotensin-II (U-II) receptors are widely distributed in the central nervous system. Intracerebroventricular (i.c.v.) injection of U-II causes hypertension and bradycardia and stimulates prolactin and thyrotropin secretion. However, the behavioral effects of centrally administered U-II have received little attention. In the present study, we tested the effects of i.c.v. injections of U-II on behavioral, metabolic, and endocrine responses in mice. Administration of graded doses of U-II (1-10,000 ng/mouse) provoked: (1) a dose-dependent reduction in the number of head dips in the hole-board test; (2) a dose-dependent reduction in the number of entries in the white chamber in the black-and-white compartment test, and in the number of entries in the central platform and open arms in the plus-maze test; and (3) a dose-dependent increase in the duration of immobility in the forced-swimming test and tail suspension test. Intracerebroventricular injection of U-II also caused an increase in: food intake at doses of 100 and 1,000 ng/mouse, water intake at doses of 100-10,000 ng/mouse, and horizontal locomotion activity at a dose of 10,000 ng/mouse. Whatever was the dose, the central administration of U-II had no effect on body temperature, nociception, apomorphine-induced penile erection and climbing behavior, and stress-induced plasma corticosterone level. Taken together, the present study demonstrates that the central injection of U-II at doses of 1-10,000 ng/mouse induces anxiogenic- and depressant-like effects in mouse. These data suggest that U-II may be involved in some aspects of psychiatric disorders.
Collapse
Affiliation(s)
- Jean-Claude Do-Rego
- Institut Fédératif de Recherches Multidisciplinaires sur les Peptides (IFRMP 23), Laboratoire de Neuropsychopharmacologie Experimentale, CNRS FRE 2735, UFR de Medecine et Pharmacie, 76183 Rouen Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Douglas SA, Behm DJ, Aiyar NV, Naselsky D, Disa J, Brooks DP, Ohlstein EH, Gleason JG, Sarau HM, Foley JJ, Buckley PT, Schmidt DB, Wixted WE, Widdowson K, Riley G, Jin J, Gallagher TF, Schmidt SJ, Ridgers L, Christmann LT, Keenan RM, Knight SD, Dhanak D. Nonpeptidic urotensin-II receptor antagonists I: in vitro pharmacological characterization of SB-706375. Br J Pharmacol 2005; 145:620-35. [PMID: 15852036 PMCID: PMC1576177 DOI: 10.1038/sj.bjp.0706229] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. SB-706375 potently inhibited [(125)I]hU-II binding to both mammalian recombinant and 'native' UT receptors (K(i) 4.7+/-1.5 to 20.7+/-3.6 nM at rodent, feline and primate recombinant UT receptors and K(i) 5.4+/-0.4 nM at the endogenous UT receptor in SJRH30 cells). 2. Prior exposure to SB-706375 (1 microM, 30 min) did not alter [(125)I]hU-II binding affinity or density in recombinant cells (K(D) 3.1+/-0.4 vs 5.8+/-0.9 nM and B(max) 3.1+/-1.0 vs 2.8+/-0.8 pmol mg(-1)) consistent with a reversible mode of action. 3. The novel, nonpeptidic radioligand [(3)H]SB-657510, a close analogue of SB-706375, bound to the monkey UT receptor (K(D) 2.6+/-0.4 nM, B(max) 0.86+/-0.12 pmol mg(-1)) in a manner that was inhibited by both U-II isopeptides and SB-706375 (K(i) 4.6+/-1.4 to 17.6+/-5.4 nM) consistent with the sulphonamides and native U-II ligands sharing a common UT receptor binding domain. 4. SB-706375 was a potent, competitive hU-II antagonist across species with pK(b) 7.29-8.00 in HEK293-UT receptor cells (inhibition of [Ca(2+)](i)-mobilization) and pK(b) 7.47 in rat isolated aorta (inhibition of contraction). SB-706375 also reversed tone established in the rat aorta by prior exposure to hU-II (K(app) approximately 20 nM). 5. SB-706375 was a selective U-II antagonist with >/=100-fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (K(i)/IC(50)>1 microM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin-1 were unaltered by SB-706375 (1 microM). 6. In summary, SB-706375 is a high-affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross-species activity that will assist in delineating the pathophysiological actions of U-II in mammals.
Collapse
Affiliation(s)
- Stephen A Douglas
- CVU Department of Biology, Cardiovascular and Urogenital and Respiratory and Inflammation Centers of Excellence for Drug Discovery, GlaxoSmithKline, 709 Swedeland Road, UW2510 King of Prussia, PA 19406-0939, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Cowley E, Thompson JP, Sharpe P, Waugh J, Ali N, Lambert DG. Effects of pre-eclampsia on maternal plasma, cerebrospinal fluid, and umbilical cord urotensin II concentrations: a pilot study † †This work was presented at the Liverpool meeting of the Anaesthetic Research Society, July 8–9, 2004 (E. Cowley, J. Waugh, N. Ali, P. Sharpe, J. P. Thompson and D. G. Lambert. Urotensin II concentrations are not elevated in pre-eclampsia. Br J Anaesth 2004; 612P). Br J Anaesth 2005; 95:495-9. [PMID: 16126783 DOI: 10.1093/bja/aei222] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Urotensin II (UII) is the most potent endogenous vasoconstrictor identified to date. Pre-eclampsia is associated with arteriolar vasospasm but the precise underlying mechanism is uncertain and we hypothesized that UII concentrations might also be elevated. In this study we measured UII concentrations in maternal plasma and cerebrospinal fluid (CSF), and umbilical vein plasma from pre-eclamptic (PET) and normotensive patients undergoing elective Caesarean section under spinal or combined spinal-epidural anaesthesia. METHODS With LREC approval and informed consent we recruited two groups of 10 patients; control [mean (range) age, 29 (22-43) yr; BMI, 25 (20-32); gestation, 273 (267-281) days; mean arterial pressure (MAP) on day of delivery, 81 (75-96) mm Hg] and PET [age, 34 (22-40) yr; BMI, 25 (21-46); gestation, 253 (203-289) days; MAP on day of delivery, 106 (88-128) mm Hg]. Maternal blood and CSF samples and umbilical vein blood samples were taken. UII was extracted and concentrations measured using a radioimmunoassay. RESULTS Two plasma and two CSF samples in the control and two CSF samples in the PET group were below the assay detection limits. There were no differences in maternal plasma or CSF or umbilical vein UII concentrations between the groups. However, there was a small ( approximately 40%) but significant increase in cord UII concentrations when compared with paired plasma in the PET group. There was a weak but significant negative correlation (r=-0.4, P=0.049) between cord UII concentrations and gestation in the PET group. In addition, we observed a significant positive correlation between plasma and CSF (r(2)=+0.57, P=0.0009, n=16), plasma and cord (r(2)=+0.43, P=0.0031, n=18) and CSF and cord (r(2)=+0.32, P=0.022, n=16) UII concentrations for the whole data set. CONCLUSIONS Collectively the data indicate that UII concentrations do not increase in PET compared with controls but, in PET patients, cord UII concentrations are elevated relative to paired plasma samples. Elevated umbilical vein UII concentrations may simply indicate reduced placental viability and possibly UII metabolism as a result of reduced blood flow or possibly that the placenta is producing UII.
Collapse
Affiliation(s)
- E Cowley
- University Department of Cardiovascular Sciences (Pharmacology and Therapeutics Group), Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester Royal Infirmary, UK
| | | | | | | | | | | |
Collapse
|
60
|
Abstract
Urotensin II (U-II) is the most potent vasoconstrictor known, even more potent than endothelin-1. It was first isolated from the fish spinal cord and has been recognized as a hormone in the neurosecretory system of teleost fish for over 30 years. After the identification of U-II in humans and the orphan human G-protein-coupled receptor 14 as the urotensin II receptor, UT, many studies have shown that U-II may play an important role in cardiovascular regulation. Human urotensin II (hU-II) is an 11 amino acid cyclic peptide, generated by proteolytic cleavage from a precursor prohormone. It is expressed in the central nervous system as well as other tissues, such as kidney, spleen, small intestine, thymus, prostate, pituitary, and adrenal gland and circulates in human plasma. The plasma U-II level is elevated in renal failure, congestive heart failure, diabetes mellitus, systemic hypertension and portal hypertension caused by liver cirrhosis. The effect of U-II on the vascular system is variable, depending on species, vascular bed and calibre of the vessel. The net effect on vascular tone is a balance between endothelium-independent vasoconstriction and endothelium-dependent vasodilatation. U-II is also a neuropeptide and may play a role in tumour development. The development of UT receptor antagonists may provide a useful research tool as well as a novel treatment for cardiorenal diseases.
Collapse
Affiliation(s)
- Kwok Leung Ong
- Department of Medicine and the Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
61
|
Hood SG, Watson AMD, May CN. Cardiac actions of central but not peripheral urotensin II are prevented by beta-adrenoceptor blockade. Peptides 2005; 26:1248-56. [PMID: 15949643 DOI: 10.1016/j.peptides.2005.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 01/11/2005] [Accepted: 01/11/2005] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) is a highly conserved peptide that has potent cardiovascular actions following central and systemic administration. To determine whether the cardiovascular actions of UII are mediated via beta-adrenoceptors, we examined the effect of intravenous (IV) propranolol on the responses to intracerebroventricular (ICV) and IV administration of UII in conscious sheep. Sheep were surgically instrumented with ICV guide tubes and flow probes or cardiac sympathetic nerve recording electrodes. ICV UII (0.2 nmol/kg over 1 h) caused prolonged increases in heart rate (HR; 33 +/- 11 beats/min; P < 0.01), dF/dt (581 +/- 83 L/min/s; P < 0.001) and cardiac output (2.3 +/- 0.4 L/min; P < 0.001), accompanied by increases in coronary (19.8 +/- 5.4 mL/min; P < 0.01), mesenteric (211 +/- 50 mL/min; P < 0.05) and iliac (162 +/- 31 mL/min; P < 0.001) blood flows and plasma glucose (7.0 +/- 2.6 mmol/L; P < 0.05). Propranolol (30 mg bolus followed by 0.5 mg/kg/h IV) prevented the cardiac responses to ICV UII and inhibited the mesenteric vasodilatation. At 2 h after ICV UII, when HR and mean arterial pressure (MAP) were increased, cardiac sympathetic nerve activity (CSNA) was unchanged and the relation between CSNA and diastolic pressure was shifted to the right (P < 0.05). The hyperglycemia following ICV UII was abolished by ganglion blockade but not propranolol. IV UII (20 nmol/kg) caused a transient increase in HR and fall in stroke volume; these effects were not blocked by propranolol. These results demonstrate that the cardiac actions of central UII depend on beta-adrenoreceptor stimulation, secondary to increased CSNA and epinephrine release, whereas the cardiac actions of systemic UII are not mediated by beta-adrenoreceptors and probably depend on a direct action of UII on the heart.
Collapse
Affiliation(s)
- S G Hood
- Howard Florey Institute, University of Melbourne, Parkville, Vic. 3010, Australia
| | | | | |
Collapse
|
62
|
Doggrell SA. Urotensin-II and the cardiovascular system – the importance of developing modulators. Expert Opin Investig Drugs 2005; 13:479-87. [PMID: 15155123 DOI: 10.1517/13543784.13.5.479] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urotensin-II (U-II) potently contracts some large isolated blood vessels and cardiac tissue. However, the maximum effects on human blood vessels and heart are relatively small. U-II dilates human resistance arteries. It markedly decreased myocardial function and increased vascular resistance in cynomolgus monkeys, but the major effects of U-II have not been observed in healthy humans. A major role for U-II in human cardiovascular disease has not been clearly established despite studies in patients with coronary artery disease, heart failure, essential hypertension and diabetes. Peptide and non-peptide agonists and antagonists of the U-II receptor are being developed and will be useful in the characterisation of the effects of U-II, and may have some therapeutic potential.
Collapse
Affiliation(s)
- Sheila A Doggrell
- Doggrell Biomedical Communications, 47 Caronia Crescent, Lynfield, Auckland, New Zealand.
| |
Collapse
|
63
|
Abstract
Urotensin II is a peptide present, together with its receptor, in the central nervous system and many peripheral tissues (including heart, blood vessels, kidneys and endocrine organs) of many species. The bioactive, mature form contains a cyclic heptapeptide perfectly preserved across species spanning 550 million years of evolution Its biological activity has been explored in cultured cells, in isolated vessels from several species, in the isolated perfused heart and in intact animals and man. Initial demonstration of potent vasoconstriction and cardiac depression by the human isoform in non-human primates has been followed by a series of reports indicating potent but highly variable and generally modest vascular responses dependent on species and vascular region. In man short term cardiovascular responses to administered urotensin II are small or absent. The place of urotensin II in the chronic trophic responses to cardiac and vascular injury and its possible roles as a neurotransmitter and/or regulator of renal and endocrine function remain largely unexplored.
Collapse
Affiliation(s)
- A Mark Richards
- Christchurch Cardioendocrine Research Group, Department of Medicine, Christchurch School of Medicine and Health Sciences, Riccarton Avenue, P.O. Box 4345, Christchurch, New Zealand.
| | | |
Collapse
|
64
|
Yoshimoto T, Matsushita M, Hirata Y. Role of urotensin II in peripheral tissue as an autocrine/paracrine growth factor. Peptides 2004; 25:1775-81. [PMID: 15476945 DOI: 10.1016/j.peptides.2004.03.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 03/04/2004] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII), originally isolated from goby urophysis, has been shown to be an endogenous ligand for an orphan G-protein-coupled receptor, GPR14. Recent development of PCR quantitative method revealed that UII and UT receptor (GPR14) were expressed in a broad range of tissues and organs, including cardiovascular and renal system, and assumed to function as an autocrine/paracrine factor. UII is a potent vasoconstrictor peptide, whose potency is greater than any other vasoconstrictors thus far known. However, its physiological roles have been found to extend far beyond the regulation of vascular tone. In this review, we focused on the mitogenic action of UII and discuss its underlying cellular mechanisms and potential physiological/pathophysiological role in various human diseases.
Collapse
Affiliation(s)
- Takanobu Yoshimoto
- Department of Clinical and Molecular Endocrinology, Tokyo Medical and Dental University Graduate School, Tokyo 113-8519, Japan
| | | | | |
Collapse
|
65
|
Gardiner SM, March JE, Kemp PA, Bennett T. Bolus injection of human UII in conscious rats evokes a biphasic haemodynamic response. Br J Pharmacol 2004; 143:422-30. [PMID: 15339862 PMCID: PMC1575352 DOI: 10.1038/sj.bjp.0705954] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 06/10/2004] [Accepted: 07/14/2004] [Indexed: 01/22/2023] Open
Abstract
A biphasic cardiovascular response to bolus i.v. injection of human urotensin II (hUII, 3 nmol kg(-1)) in conscious, male, Sprague-Dawley (SD) rats was identified and underlying mechanisms were explored. Initially (0-5 min) there was tachycardia, hypotension and mesenteric and hindquarters vasodilatation; later (30-120 min), tachycardia, hindquarters vasodilatation and a modest rise in blood pressure occurred. Pretreatment with indomethacin or N(G) nitro-l-arginine methylester (l-NAME) reduced the mesenteric vasodilator response to hUII, and abolished the late tachycardia and hindquarters vasodilatation. Indomethacin also abolished the hypotension and early hindquarters vasodilatation, and substantially reduced the initial tachycardia. Indomethacin and l-NAME together prevented all haemodynamic responses to hUII. Inhibition of inducible NOS had no effect on responses to hUII, whereas inhibition of neuronal NOS reduced the delayed tachycardic response to hUII but did not significantly affect the vasodilatation. Only the initial tachycardic response to hUII was antagonised by propranolol. In spontaneously hypertensive rats (SHR), the initial haemodynamic responses to hUII were qualitatively similar to those in SD rats, although there was also a modest renal vasodilatation. The secondary response comprised a smaller tachycardia and a small rise in blood pressure, with no significant hindquarters vasodilatation. Haemodynamic responses to hUII were not enhanced by endothelin and angiotensin receptor antagonism in either SD rats or in SHRs. One interpretation of these results is that the primary response to bolus injection of hUII is prostanoid- or prostanoid- and NO-mediated (mesenteric vasodilatation) and that this triggers secondary events, which are dependent on eNOS (hindquarters vasodilatation) and neuronal NOS (tachycardia).
Collapse
Affiliation(s)
- Sheila M Gardiner
- Centre for Integrated Systems Biology & Medicine, School of Biomedical Sciences, University of Nottingham, Nottingham.
| | | | | | | |
Collapse
|
66
|
Lancien F, Leprince J, Mimassi N, Mabin D, Vaudry H, Le Mével JC. Central effects of native urotensin II on motor activity, ventilatory movements, and heart rate in the trout Oncorhynchus mykiss. Brain Res 2004; 1023:167-74. [PMID: 15374742 DOI: 10.1016/j.brainres.2004.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2004] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) has been originally isolated from fish urophysis. However, in fish as in mammals, UII is also produced in brain neurons. Although UII binding sites are widely distributed in the fish central nervous system (CNS), little is known regarding its central activities. In the present study, we have investigated the effects of intracerebroventricular (ICV) administration of synthetic trout UII on the duration of motor activity (ACT; evidenced by bursts of activity on the trace of the ventilatory signal), ventilatory frequency (VF), ventilatory amplitude (VA), and heart rate (HR) in unanesthesized trout, Oncorhynchus mykiss. ICV injection of very low doses of UII (1 and 5 pmol) produced a dose-dependent increase of ACT without affecting VF, VA, or HR. At a higher dose (50 pmol), UII stimulated ACT as well as VF, VA, and HR. ICV injection of trout angiotensin II (5 pmol) did not affect ACT, VF, and VA, but provoked a robust increase in HR. These data provide the first evidence that central administration of UII stimulates motor activity in a nonmammalian vertebrate.
Collapse
Affiliation(s)
- Frédéric Lancien
- Laboratoire de Traitement de l'Information Médicale, INSERM U650, EA 2218, Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest Cedex 3 29238, France
| | | | | | | | | | | |
Collapse
|
67
|
Kompa AR, Thomas WG, See F, Tzanidis A, Hannan RD, Krum H. Cardiovascular role of urotensin II: effect of chronic infusion in the rat. Peptides 2004; 25:1783-8. [PMID: 15476946 DOI: 10.1016/j.peptides.2004.03.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 03/29/2004] [Indexed: 11/28/2022]
Abstract
Urotensin II (UII) is a potent vaso-active peptide thought to have multiple roles in the regulation of cardiovascular physiology and pathophysiology. The actions of UII are complex and difficult to interpret given its systemic hemodynamic effects and variable action on different vascular beds and isolated vessels. Direct effects of UII on the myocardium, include myocyte hypertrophy, extracellular matrix deposition and contractility. These observations, together with elevated plasma levels found in disease, are common traits reported in other pathophysiologically implicated neurohormonal systems. In this review, we include original data obtained from chronic infusion of UII in rats. We report a reduction in first derivative of left ventricular pressure (+dP/dt), as well as an increase in the ratio of left ventricular collagen I:III, that may contribute to the reduced myocardial contractility observed in these animals.
Collapse
Affiliation(s)
- Andrew R Kompa
- NHMRC Centre of Clinical Research Excellence in Therapeutics, Departments of Medicine and Epidemiology & Preventive Medicine, Central and Eastern Clinical School, Monash University, Alfred Hospital, Commercial Road, Prahran, Vic. 3181, Australia
| | | | | | | | | | | |
Collapse
|
68
|
Abstract
Urotensin II (UII) has been found to be a potent vasoactive peptide in humans and in a number of relevant animal models of cardiovascular disease such as the mouse, rat and other non-human primates. This peptide with structural homology to somatostatin was first isolated from the urophysis of fish and was recently found to bind to an orphan receptor in mouse and human. Initially found to have potent vasoconstrictive activities in a variety of vessels from diverse species, it has also been shown to exert vasodilatation in certain vessels in the rat and human by various endothelium-dependent mechanisms. The various vasoactive properties of UII suggest that the peptide may have a physiological role in maintaining vascular tone and therefore may have a role in the pathophysiology of a number of human diseases such as heart failure. Moreover, UII has also been implicated as a mitogen of vascular smooth muscle cells suggesting a deleterious role in atherosclerosis and coronary artery disease. In addition, there is evidence to demonstrate that UII has multiple metabolic effects on cholesterol metabolism, glycemic control and hypertension and therefore may be implicated in the development of insulin resistance and the metabolic syndrome.
Collapse
Affiliation(s)
- George Thanassoulis
- Department of Medicine, Montreal General Hospital, McGill University Health Center, 1650 Cedar Avenue, Suite L3-109, Montreal, Quebec H3G 1A4, Canada
| | | | | |
Collapse
|
69
|
Watson AMD, May CN. Urotensin II, a novel peptide in central and peripheral cardiovascular control. Peptides 2004; 25:1759-66. [PMID: 15476943 DOI: 10.1016/j.peptides.2004.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 04/15/2004] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) is a peptide that was originally isolated and characterized in fish. Interest in its effects in mammals increased with the identification of its receptor, G-protein coupled receptor 14, and its localization in humans. UII and its receptor have a wide distribution, including brain and spinal cord as well as heart, kidney and liver, implying that UII has important physiological actions. Recent studies suggest that UII may play an important role in the central nervous system. In conscious sheep, intracerebroventricular administration of UII induced large, prolonged increases in plasma epinephrine, adrenocorticotropic hormone, cardiac output and arterial pressure. Potent chronotropic and inotropic actions accompanied this, as well as peripheral vasodilatation. Administered intravenously, UII is an extremely potent vasoconstrictor in anesthetized monkeys, but reduces pressure in conscious and anesthetized rats, and causes a transient increase in conscious sheep, however vasomotor responses vary depending on species and vessel type. UII is elevated in conditions such as essential hypertension and heart failure suggesting a role in pathology. The results of studies with UII to date, together with its possible role in disease, emphasize the importance of examining the central and peripheral roles of UII in more detail.
Collapse
Affiliation(s)
- Anna M D Watson
- Howard Florey Institute, University of Melbourne, Parkville, Vic. 3010, Australia
| | | |
Collapse
|
70
|
Abstract
Urotensin-II (UII) is a highly potent endogenous peptide within the cardiovascular system. Through stimulation of Galphaq-coupled UT receptors, UII mediates contraction of vascular smooth muscle and endothelial-dependent vasorelaxation, and positive inotropy in human right atrium and ventricle. A pathogenic role of the UT receptor system is emerging in cardiovascular disease states, with evidence for up-regulation of the UT receptor system in patients with congestive heart failure (CHF), pulmonary hypertension, cirrhosis and portal hypertension, and chronic renal failure. In vitro and in vivo studies show that under pathophysiological conditions, UII might contribute to cardiomyocyte hypertrophy, extracellular matrix production, enhanced vasoconstriction, vascular smooth muscle cell hyperplasia, and endothelial cell hyper-permeability. Single nucleotide polymorphisms of the UII gene may also impart a genetic predisposition of patients to diabetes. Therefore, the UT receptor system is a potential therapeutic target in the treatment of cardiac, pulmonary, and renal diseases. UT receptor antagonists are currently being developed to prevent and/or reverse the effects of over-activated UT receptors by the endogenous ligand. This review describes UII peptide and converting enzymes, and UT receptors in the cardiovascular system, focusing on pathophysiological roles of UII in the heart and blood vessels.
Collapse
Affiliation(s)
- Fraser D Russell
- Vascular Biology Laboratory, Department of Medicine, The University of Queensland, Brisbane, The Prince Charles Hospital, Pathology Building, Rode Road, Ground Floor, Room 3, Chermside 4032, Queensland, Australia.
| |
Collapse
|
71
|
Douglas SA, Naselsky D, Ao Z, Disa J, Herold CL, Lynch F, Aiyar NV. Identification and pharmacological characterization of native, functional human urotensin-II receptors in rhabdomyosarcoma cell lines. Br J Pharmacol 2004; 142:921-32. [PMID: 15210573 PMCID: PMC1575108 DOI: 10.1038/sj.bjp.0705743] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 In an effort to identify endogenous, native mammalian urotensin-II (U-II) receptors (UT), a diverse range of human, primate and rodent cell lines (49 in total) were screened for the presence of detectable [125I]hU-II binding sites. 2 UT mRNA (Northern blot, PCR) and protein (immunocytochemistry) were evident in human skeletal muscle tissue and cells. 3 [(125)I]hU-II bound to a homogenous population of high-affinity, saturable (Kd 67.0+/-11.8 pm, Bmax 9687+/-843 sites cell(-1)) receptors in the skeletal muscle (rhabdomyosarcoma) cell line SJRH30. Radiolabel was characteristically slow to dissociate (< or =15% dissociation 90 min). A lower density of high-affinity U-II binding sites was also evident in the rhabdomyosarcoma cell line TE671 (1667+/-165 sites cell(-1), Kd 74+/-8 pm). 4 Consistent with the profile recorded in human recombinant UT-HEK293 cells, [125I]hU-II binding to SJRH30 cells was selectively displaced by both mammalian and fish U-II isopeptides (Kis 0.5+/-0.1-1.2+/-0.3 nm) and related analogues (hU-II[4-11]>[Cys(5,10)]Acm hU-II; Kis 0.4+/-0.1 and 864+/-193 nm, respectively). 5 U-II receptor activation was functionally coupled to phospholipase C-mediated [Ca2+]i mobilization (EC50 6.9+/-2.2 nm) in SJRH30 cells. 6 The present study is the first to identify the presence of 'endogenous' U-II receptors in SJRH30 and TE671 cells. SJRH30 cells, in particular, might prove to be of utility for (a) investigating the pharmacological properties of hU-II and related small molecule antagonists at native human UT and (b) delineating the role of this neuropeptide in the (patho)physiological regulation of mammalian neuromuscular function.
Collapse
Affiliation(s)
- Stephen A Douglas
- Department of Vascular Biology and Thrombosis, Cardiovascular and Urogenital Center of Excellence for Drug Discovery, GlaxoSmithKline, King of Prussia, PA 19406, USA.
| | | | | | | | | | | | | |
Collapse
|
72
|
Behm DJ, Doe CPA, Johns DG, Maniscalco K, Stankus GP, Wibberley A, Willette RN, Douglas SA. Urotensin-II: a novel systemic hypertensive factor in the cat. Naunyn Schmiedebergs Arch Pharmacol 2004; 369:274-80. [PMID: 14985938 DOI: 10.1007/s00210-004-0873-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 01/19/2004] [Indexed: 02/07/2023]
Abstract
Urotensin-II, a potent mammalian vasoconstrictor, may play a role in the etiology of essential hypertension. However, a species suitable for assessing such a role, one where a "classical" systemic hypertensive response (increase in mean blood pressure and systemic vascular resistance) is observed following bolus i.v. urotensin-II administration, has yet to be identified. The present study demonstrates that the cat may represent such a species since urotensin-II potently (pEC(50)s 9.68+/-0.24-8.73+/-0.08) and efficaciously (E(max) 73+/-15%-205+/-21% KCl) constricts all feline isolated arteries studied (aortae, renal, femoral, carotid, and mesenteric conduit/resistance). Accordingly, exogenous urotensin-II (1 nmol/kg, i.v.) effectively doubles both mean blood pressure (from 99+/-14 to 183+/-15 mmHg) and systemic vascular resistance (from 0.36+/-0.12 to 0.86+/-0.20 mmHg/ml/min) in the anaesthetized cat (without altering heart rate or stroke volume). Thus, in view of these profound contractile effects, the cat could be suitable for determining the effects of urotensin-II receptor antagonism on cardiovascular homeostasis in both normal and diseased states.
Collapse
Affiliation(s)
- David J Behm
- Cardiovascular and Urogenital Center of Excellence for Drug Discovery, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406-0939, USA.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Zhu YC, Zhu YZ, Moore PK. Magnifying endoscopic observation of the gastric mucosa, particularly in patients with atrophic gastritis. Br J Pharmacol 1978; 148:884-901. [PMID: 16783414 PMCID: PMC1751922 DOI: 10.1038/sj.bjp.0706800] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gastric mucosal surface was observed using the magnifying fibergastroscope (FGS-ML), and the fine gastric mucosal patterns, which were even smaller than one unit of gastric area, were examined at a magnification of about 30. For simplicification, we classified these patterns by magnifying endoscopy in the following ways; FP, FIP, FSP, SP and MP, modifying Yoshii's classification under the dissecting microscope. The FIP, which was found to have round and long elliptical gastric pits, is a new addition to our endoscopic classification. The relationship between the FIP and the intermediate zone was evaluated by superficial and histological studies of surgical and biopsy specimens. The width of the band of FIP seems to be related to the severity of atrophic gastritis. Also, the transformation of FP to FIP was assessed by comparing specimens taken from the resected and residual parts of the stomach, respectively. Moreover, it appears that severe gastritis occurs in the gastric mucosa which shows a FIP. Therefore, we consider that the FIP indicates the position of the atrophic border.
Collapse
Affiliation(s)
- Yi-Chun Zhu
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China.
| | | | | |
Collapse
|
74
|
Douglas SA, Dhanak D, Johns DG. Magnifying endoscopic observation of the gastric mucosa, particularly in patients with atrophic gastritis. Endoscopy 1978; 25:76-85. [PMID: 15102493 DOI: 10.1016/j.tips.2003.12.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gastric mucosal surface was observed using the magnifying fibergastroscope (FGS-ML), and the fine gastric mucosal patterns, which were even smaller than one unit of gastric area, were examined at a magnification of about 30. For simplicification, we classified these patterns by magnifying endoscopy in the following ways; FP, FIP, FSP, SP and MP, modifying Yoshii's classification under the dissecting microscope. The FIP, which was found to have round and long elliptical gastric pits, is a new addition to our endoscopic classification. The relationship between the FIP and the intermediate zone was evaluated by superficial and histological studies of surgical and biopsy specimens. The width of the band of FIP seems to be related to the severity of atrophic gastritis. Also, the transformation of FP to FIP was assessed by comparing specimens taken from the resected and residual parts of the stomach, respectively. Moreover, it appears that severe gastritis occurs in the gastric mucosa which shows a FIP. Therefore, we consider that the FIP indicates the position of the atrophic border.
Collapse
Affiliation(s)
- Stephen A Douglas
- Department of Vascular Biology, Cardiovascular and Urogenital Centre of Excellence for Drug Discovery, GlaxoSmithKline, PO Box 1539, 709 Swedeland Road, King of Prussia PA 19406-0939, USA.
| | | | | |
Collapse
|
75
|
Sakaki N, Iida Y, Okazaki Y, Kawamura S, Takemoto T. Magnifying endoscopic observation of the gastric mucosa, particularly in patients with atrophic gastritis. Endoscopy 1978; 37:921-9. [PMID: 738222 DOI: 10.3109/02713683.2012.688181] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The gastric mucosal surface was observed using the magnifying fibergastroscope (FGS-ML), and the fine gastric mucosal patterns, which were even smaller than one unit of gastric area, were examined at a magnification of about 30. For simplicification, we classified these patterns by magnifying endoscopy in the following ways; FP, FIP, FSP, SP and MP, modifying Yoshii's classification under the dissecting microscope. The FIP, which was found to have round and long elliptical gastric pits, is a new addition to our endoscopic classification. The relationship between the FIP and the intermediate zone was evaluated by superficial and histological studies of surgical and biopsy specimens. The width of the band of FIP seems to be related to the severity of atrophic gastritis. Also, the transformation of FP to FIP was assessed by comparing specimens taken from the resected and residual parts of the stomach, respectively. Moreover, it appears that severe gastritis occurs in the gastric mucosa which shows a FIP. Therefore, we consider that the FIP indicates the position of the atrophic border.
Collapse
|