51
|
Gao Z, Lu A, Daquinag AC, Yu Y, Huard M, Tseng C, Gao X, Huard J, Kolonin MG. Partial Ablation of Non-Myogenic Progenitor Cells as a Therapeutic Approach to Duchenne Muscular Dystrophy. Biomolecules 2021; 11:biom11101519. [PMID: 34680151 PMCID: PMC8534118 DOI: 10.3390/biom11101519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), caused by the loss of dystrophin, remains incurable. Reduction in muscle regeneration with DMD is associated with the accumulation of fibroadipogenic progenitors (FAPs) differentiating into myofibroblasts and leading to a buildup of the collagenous tissue aggravating DMD pathogenesis. Mesenchymal stromal cells (MSCs) expressing platelet-derived growth factor receptors (PDGFRs) are activated in muscle during DMD progression and give rise to FAPs promoting DMD progression. Here, we hypothesized that muscle dysfunction in DMD could be delayed via genetic or pharmacologic depletion of MSC-derived FAPs. In this paper, we test this hypothesis in dystrophin-deficient mdx mice. To reduce fibro/adipose infiltration and potentiate muscle progenitor cells (MPCs), we used a model for inducible genetic ablation of proliferating MSCs via a suicide transgene, viral thymidine kinase (TK), expressed under the Pdgfrb promoter. We also tested if MSCs from fat tissue, the adipose stromal cells (ASCs), contribute to FAPs and could be targeted in DMD. Pharmacological ablation was performed with a hunter-killer peptide D-CAN targeting ASCs. MSC depletion with these approaches resulted in increased endurance, measured based on treadmill running, as well as grip strength, without significantly affecting fibrosis. Although more research is needed, our results suggest that depletion of pathogenic MSCs mitigates muscle damage and delays the loss of muscle function in mouse models of DMD.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Proliferation/genetics
- Disease Models, Animal
- Dystrophin/genetics
- Humans
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Myofibroblasts/cytology
- Myofibroblasts/metabolism
- Promoter Regions, Genetic/genetics
- Receptors, Platelet-Derived Growth Factor/genetics
- Stem Cells/cytology
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Zhanguo Gao
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (Z.G.); (A.C.D.); (Y.Y.)
| | - Aiping Lu
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (A.L.); (M.H.); (X.G.)
| | - Alexes C. Daquinag
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (Z.G.); (A.C.D.); (Y.Y.)
| | - Yongmei Yu
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (Z.G.); (A.C.D.); (Y.Y.)
| | - Matthieu Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (A.L.); (M.H.); (X.G.)
| | - Chieh Tseng
- M.D. Anderson Cancer Center, The University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Xueqin Gao
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (A.L.); (M.H.); (X.G.)
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (A.L.); (M.H.); (X.G.)
- Correspondence: (J.H.); (M.G.K.); Tel.: +970-479-1595 (J.H.); +713-500-3146 (M.G.K.)
| | - Mikhail G. Kolonin
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (Z.G.); (A.C.D.); (Y.Y.)
- Correspondence: (J.H.); (M.G.K.); Tel.: +970-479-1595 (J.H.); +713-500-3146 (M.G.K.)
| |
Collapse
|
52
|
Saclier M, Ben Larbi S, My Ly H, Moulin E, Mounier R, Chazaud B, Juban G. Interplay between myofibers and pro-inflammatory macrophages controls muscle damage in mdx mice. J Cell Sci 2021; 134:272022. [PMID: 34471933 DOI: 10.1242/jcs.258429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy is a genetic muscle disease characterized by chronic inflammation and fibrosis mediated by a pro-fibrotic macrophage population expressing pro-inflammatory markers. Our aim was to characterize cellular events leading to the alteration of macrophage properties and to modulate macrophage inflammatory status using the gaseous mediator hydrogen sulfide (H2S). Using co-culture experiments, we first showed that myofibers derived from mdx mice strongly skewed the polarization of resting macrophages towards a pro-inflammatory phenotype. Treatment of mdx mice with NaHS, an H2S donor, reduced the number of pro-inflammatory macrophages in skeletal muscle, which was associated with a decreased number of nuclei per fiber, as well as reduced myofiber branching and fibrosis. Finally, we established the metabolic sensor AMP-activated protein kinase (AMPK) as a critical NaHS target in muscle macrophages. These results identify an interplay between myofibers and macrophages where dystrophic myofibers contribute to the maintenance of a highly inflammatory environment sustaining a pro-inflammatory macrophage status, which in turn favors myofiber damage, myofiber branching and establishment of fibrosis. Our results also highlight the use of H2S donors as a potential therapeutic strategy to improve the dystrophic muscle phenotype by dampening chronic inflammation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Marielle Saclier
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Sabrina Ben Larbi
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Ha My Ly
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Eugénie Moulin
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| |
Collapse
|
53
|
Ghori FF, Wahid M. Induced pluripotent stem cells from urine of Duchenne muscular dystrophy patients. Pediatr Int 2021; 63:1038-1047. [PMID: 33599058 DOI: 10.1111/ped.14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The most common muscular dystrophy, Duchenne muscular dystrophy (DMD), is a lethal, X-linked disorder with no widespread cure. Worldwide, in vitro studies involving new, mutation-specific cures and regenerative therapies are employing disease-specific patient-specific cells. However, these may not be completely relevant for Pakistani children because of the human genome diversities and geographic variation in mutation type and frequency. Therefore, this study aimed to generate DMD induced pluripotent stem cells (iPSCs) from the urine of Pakistani children with DMD, to serve as a precious source of differentiated cells, such as Pakistani DMD-cardiomyocytes, for future disease-modelling, drug testing, and gene therapy. METHODS Urine-derived cells (UDCs) isolated from mid-stream urine underwent molecular characterization and cellular reprogramming towards iPSCs using the episomal vector system followed by molecular profiling of the iPSCs. RESULTS Colonies of elongated and spindle-shaped or rounded rice-grain like UDCs were spotted 4-7 days after plating and expanded rapidly with a second passage at 2-3 weeks. Multicolor flow cytometry confirmed the expression of mesenchymal stem-cell markers. The reprogramed iPSCs consisted of colonies of round, tightly-packed cells with large nuclei that were positively fluorescent for the pluripotency markers octamer binding transcription factor-4 (OCT-4), tumour resistance antigen 1-60 (TRA-1-60), and stage specific embryonic 4 antigen (SSEA-4), but not for the negative pluripotency marker SSEA-1. To the best of our knowledge, this was the first time DMD-iPSCs have been generated for Pakistani children. CONCLUSION This integration-free, feeder-free, efficient, and reproducible reprogramming method employed UDCs. Urine is a low-cost, non-invasive, painless, and repeatable source of rapidly expandable cells from children and morbid individuals for obtaining autologous cells for drug-assays and disease-modelling, suitable for DMD and other debilitating diseases.
Collapse
Affiliation(s)
- Fareeha Faizan Ghori
- Stem Cells and Regenerative Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Mohsin Wahid
- Stem Cells and Regenerative Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan.,Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
54
|
Parente JM, Blascke de Mello MM, Silva PHLD, Omoto ACM, Pernomian L, Oliveira ISD, Mahmud Z, Fazan R, Arantes EC, Schulz R, Castro MMD. MMP inhibition attenuates hypertensive eccentric cardiac hypertrophy and dysfunction by preserving troponin I and dystrophin. Biochem Pharmacol 2021; 193:114744. [PMID: 34453903 DOI: 10.1016/j.bcp.2021.114744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE Cardiac transition from concentric (C-LVH) to eccentric left ventricle hypertrophy (E-LVH) is a maladaptive response of hypertension. Matrix metalloproteinases (MMPs), in particular MMP-2, may contribute to tissue remodeling by proteolyzing extra- and intracellular proteins. Troponin I and dystrophin are two potential targets of MMP-2 examined in this study and their proteolysis would impair cardiac contractile function. We hypothesized that MMP-2 contributes to the decrease in troponin I and dystrophin in the hypertensive heart and thereby controls the transition from C-LVH to E-LVH and cardiac dysfunction. METHODS Male Wistar rats were divided into sham or two kidney-1 clip (2K-1C) hypertensive groups and treated with water (vehicle) or doxycycline (MMP inhibitor, 15 mg/kg/day) by gavage from the tenth to the sixteenth week post-surgery. Tail-cuff plethysmography, echocardiography, gelatin zymography, confocal microscopy, western blot, mass spectrometry, in silico protein analysis and immunofluorescence were performed. RESULTS 6 out of 23 2K-1C rats (26%) had E-LVH followed by reduced ejection fraction. The remaining had C-LVH with preserved cardiac function. Doxycycline prevented the transition from C-LVH to E-LVH. MMP activity is increased in C-LVH and E-LVH hearts which was inhibited by doxycycline. This effect was associated with an increase in troponin I cleavage products and a decline in dystrophin in the left ventricle of E-LVH rats, which was prevented by doxycycline. CONCLUSION Hypertension causes increased cardiac MMP-2 activity which proteolyzes troponin I and dystrophin, contributing to the transition from C-LVH to E-LVH and cardiac dysfunction.
Collapse
Affiliation(s)
- Juliana Montenegro Parente
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Marcela Maria Blascke de Mello
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Pedro Henrique Leite da Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Ana Carolina Mieko Omoto
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Laena Pernomian
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Isadora Sousa de Oliveira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Zabed Mahmud
- Department of Biochemistry, 474 Medical Sciences Building, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Rubens Fazan
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Richard Schulz
- Departments of Pediatrics and Pharmacology, University of Alberta, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Center, T6G 2S2 Edmonton, AB, Canada
| | - Michele Mazzaron de Castro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
55
|
Fujikura Y, Sugihara H, Hatakeyama M, Oishi K, Yamanouchi K. Ketogenic diet with medium-chain triglycerides restores skeletal muscle function and pathology in a rat model of Duchenne muscular dystrophy. FASEB J 2021; 35:e21861. [PMID: 34416029 DOI: 10.1096/fj.202100629r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an intractable genetic disease associated with progressive skeletal muscle weakness and degeneration. Recently, it was reported that intraperitoneal injections of ketone bodies partially ameliorated muscular dystrophy by increasing satellite cell (SC) proliferation. Here, we evaluated whether a ketogenic diet (KD) with medium-chain triglycerides (MCT-KD) could alter genetically mutated DMD in model rats. We found that the MCT-KD significantly increased muscle strength and fiber diameter in these rats. The MCT-KD significantly suppressed the key features of DMD, namely, muscle necrosis, inflammation, and subsequent fibrosis. Immunocytochemical analysis revealed that the MCT-KD promoted the proliferation of muscle SCs, suggesting enhanced muscle regeneration. The muscle strength of DMD model rats fed with MCT-KD was significantly improved even at the age of 9 months. Our findings suggested that the MCT-KD ameliorates muscular dystrophy by inhibiting myonecrosis and promoting the proliferation of muscle SCs. As far as we can ascertain, this is the first study to apply a functional diet as therapy for DMD in experimental animals. Further studies are needed to elucidate the underlying mechanisms of the MCT-KD-induced improvement of DMD.
Collapse
Affiliation(s)
- Yuri Fujikura
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | | | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
56
|
Skeletal Muscle Mitochondria Dysfunction in Genetic Neuromuscular Disorders with Cardiac Phenotype. Int J Mol Sci 2021; 22:ijms22147349. [PMID: 34298968 PMCID: PMC8307986 DOI: 10.3390/ijms22147349] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction is considered the major contributor to skeletal muscle wasting in different conditions. Genetically determined neuromuscular disorders occur as a result of mutations in the structural proteins of striated muscle cells and therefore are often combined with cardiac phenotype, which most often manifests as a cardiomyopathy. The specific roles played by mitochondria and mitochondrial energetic metabolism in skeletal muscle under muscle-wasting conditions in cardiomyopathies have not yet been investigated in detail, and this aspect of genetic muscle diseases remains poorly characterized. This review will highlight dysregulation of mitochondrial representation and bioenergetics in specific skeletal muscle disorders caused by mutations that disrupt the structural and functional integrity of muscle cells.
Collapse
|
57
|
Cellular pathology of the human heart in Duchenne muscular dystrophy (DMD): lessons learned from in vitro modeling. Pflugers Arch 2021; 473:1099-1115. [DOI: 10.1007/s00424-021-02589-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
|
58
|
Sullivan RT, Lam NT, Haberman M, Beatka MJ, Afzal MZ, Lawlor MW, Strande JL. Cardioprotective effect of nicorandil on isoproterenol induced cardiomyopathy in the Mdx mouse model. BMC Cardiovasc Disord 2021; 21:302. [PMID: 34130633 PMCID: PMC8207777 DOI: 10.1186/s12872-021-02112-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/07/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) associated cardiomyopathy is a major cause of morbidity and mortality. In an in vitro DMD cardiomyocyte model, nicorandil reversed stress-induced cell injury through multiple pathways implicated in DMD. We aimed to test the efficacy of nicorandil on the progression of cardiomyopathy in mdx mice following a 10-day treatment protocol. METHODS A subset of mdx mice was subjected to low-dose isoproterenol injections over 5 days to induce a cardiac phenotype and treated with vehicle or nicorandil for 10 days. Baseline and day 10 echocardiograms were obtained to assess cardiac function. At 10 days, cardiac tissue was harvested for further analysis, which included histologic analysis and assessment of oxidative stress. Paired student's t test was used for in group comparison, and ANOVA was used for multiple group comparisons. RESULTS Compared to vehicle treated mice, isoproterenol decreased ejection fraction and fractional shortening on echocardiogram. Nicorandil prevented isoproterenol induced cardiac dysfunction. Isoproterenol increased cardiac fibrosis, which nicorandil prevented. Isoproterenol increased gene expression of NADPH oxidase, which decreased to baseline with nicorandil treatment. Superoxide dismutase 2 protein expression increased in those treated with nicorandil, and xanthine oxidase activity decreased in mice treated with nicorandil during isoproterenol stress compared to all other groups. CONCLUSIONS In conclusion, nicorandil is cardioprotective in mdx mice and warrants continued investigation as a therapy for DMD associated cardiomyopathy.
Collapse
Affiliation(s)
- Rachel T Sullivan
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| | - Ngoc T Lam
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Margaret Haberman
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Margaret J Beatka
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Muhammad Z Afzal
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Michael W Lawlor
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Jennifer L Strande
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| |
Collapse
|
59
|
Lin M, Hu X, Chang S, Chang Y, Bian W, Hu R, Wang J, Zhu Q, Qiu J. Advances of Antisense Oligonucleotide Technology in the Treatment of Hereditary Neurodegenerative Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6678422. [PMID: 34211575 PMCID: PMC8211492 DOI: 10.1155/2021/6678422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/13/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022]
Abstract
Antisense nucleic acids are single-stranded oligonucleotides that have been specially chemically modified, which can bind to RNA expressed by target genes through base complementary pairing and affect protein synthesis at the level of posttranscriptional processing or protein translation. In recent years, the application of antisense nucleic acid technology in the treatment of neuromuscular diseases has made remarkable progress. In 2016, the US FDA approved two antisense nucleic acid drugs for the treatment of Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), and the development to treat other neurodegenerative diseases has also entered the clinical stage. Therefore, ASO represents a treatment with great potential. The article will summarize ASO therapies in terms of mechanism of action, chemical modification, and administration methods and analyze their role in several common neurodegenerative diseases, such as SMA, DMD, and amyotrophic lateral sclerosis (ALS). This article systematically summarizes the great potential of antisense nucleic acid technology in the treatment of hereditary neurodegenerative diseases.
Collapse
Affiliation(s)
- Mengsi Lin
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xinyi Hu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Shiyi Chang
- School of Medicine, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Chang
- School of Life Sciences, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Wenjun Bian
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Ruikun Hu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jing Wang
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qingwen Zhu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| |
Collapse
|
60
|
Gaina G, Popa (Gruianu) A. Muscular dystrophy: Experimental animal models and therapeutic approaches (Review). Exp Ther Med 2021; 21:610. [PMID: 33936267 PMCID: PMC8082581 DOI: 10.3892/etm.2021.10042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
The muscular dystrophies are a heterogeneous group of genetically inherited diseases characterized by muscle weakness and progressive wasting, which can cause premature death in severe forms. Although >30 years have passed since the identification of the first protein involved in a type of muscular dystrophy, there is no effective treatment for these disabling disorders. In the last decade, several novel therapeutic approaches have been developed and investigated as promising therapeutic approaches aimed to ameliorate the dystrophic phenotype either by restoring dystrophin expression or by compensating for dystrophin deficiency. Concurrently, with the development of therapeutic approaches, in addition to naturally occurring animal models, a wide range of genetically engineered animal models has been generated. The use of animals as models of muscular dystrophies has greatly improved the understanding of the pathogenicity of these diseases and has proven useful in gene therapy studies. In this review, we summarize these latest innovative therapeutic approaches to muscular dystrophies and the usefulness of the various most common experimental animal models.
Collapse
Affiliation(s)
- Gisela Gaina
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alexandra Popa (Gruianu)
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Animal Production and Public Health, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania
| |
Collapse
|
61
|
Xin C, Chu X, Wei W, Kuang B, Wang Y, Tang Y, Chen J, You H, Li C, Wang B. Combined gene therapy via VEGF and mini-dystrophin synergistically improves pathologies in temporalis muscle of dystrophin/utrophin double knockout mice. Hum Mol Genet 2021; 30:1349-1359. [PMID: 33987645 DOI: 10.1093/hmg/ddab120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked inherited muscular disorder characterized by the loss of dystrophin. We have previously shown that monogene therapy using the mini-dystrophin gene improves muscle function in DMD. However, chronic inflammation plays an important role in progressive muscle degeneration in DMD as well. Vascular endothelial growth factor (VEGF) has been used to enhance muscle vasculature, reduce local inflammation and improve DMD muscle function. Temporalis muscles are the key skeletal muscles for mastication and loss of their function negatively affects DMD patient quality of life by reducing nutritional intake, but little is known about the pathology and treatment of the temporalis muscle in DMD. In this work, we tested the hypothesis that the combined delivery of the human mini-dystrophin and human VEGF genes to the temporalis muscles using separate recombinant adeno-associated viral (rAAV) vectors will synergistically improve muscle function and pathology in adult male dystrophin/utrophin double-knockout (mdx/utrn+/-) mice. The experimental mice were divided into four groups including: dystrophin + VEGF combined, dystrophin only, VEGF only and PBS control. After 2 months, gene expression and histological analysis of the temporalis muscles showed a synergistic improvement in temporalis muscle pathology and function coincident with increased restoration of dystrophin-associated protein complexes and nNOS in the dystrophin + VEGF combined group. We also observed significantly reduced inflammatory cell infiltration, central nucleation, and fibrosis in the dystrophin + VEGF combined group. We have demonstrated the efficacy of combined rAAV-mediated dystrophin and VEGF treatment of temporalis muscles in a DMD mouse model.
Collapse
Affiliation(s)
- Can Xin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Xiangyu Chu
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenzhong Wei
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,Department of Immunology, University of Pittsburgh, PA, 15213, USA
| | - Biao Kuang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,Department of Orthopedics, Xiangya Hospital, Zhongnan University, Changsha, Hunan, 410008, China
| | - Yiqing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,Center for Pulmonary Vascular Biology and Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengwen Li
- Gene Therapy Center, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| |
Collapse
|
62
|
Wang H, Marrosu E, Brayson D, Wasala NB, Johnson EK, Scott CS, Yue Y, Hau KL, Trask AJ, Froehner SC, Adams ME, Zhang L, Duan D, Montanaro F. Proteomic analysis identifies key differences in the cardiac interactomes of dystrophin and micro-dystrophin. Hum Mol Genet 2021; 30:1321-1336. [PMID: 33949649 PMCID: PMC8255133 DOI: 10.1093/hmg/ddab133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/16/2023] Open
Abstract
ΔR4-R23/ΔCT micro-dystrophin (μDys) is a miniaturized version of dystrophin currently evaluated in a Duchenne muscular dystrophy (DMD) gene therapy trial to treat skeletal and cardiac muscle disease. In pre-clinical studies, μDys efficiently rescues cardiac histopathology, but only partially normalizes cardiac function. To gain insights into factors that may impact the cardiac therapeutic efficacy of μDys, we compared by mass spectrometry the composition of purified dystrophin and μDys protein complexes in the mouse heart. We report that compared to dystrophin, μDys has altered associations with α1- and β2-syntrophins, as well as cavins, a group of caveolae-associated signaling proteins. In particular, we found that membrane localization of cavin-1 and cavin-4 in cardiomyocytes requires dystrophin and is profoundly disrupted in the heart of mdx5cv mice, a model of DMD. Following cardiac stress/damage, membrane-associated cavin-4 recruits the signaling molecule ERK to caveolae, which activates key cardio-protective responses. Evaluation of ERK signaling revealed a profound inhibition, below physiological baseline, in the mdx5cv mouse heart. Expression of μDys in mdx5cv mice prevented the development of cardiac histopathology but did not rescue membrane localization of cavins nor did it normalize ERK signaling. Our study provides the first comparative analysis of purified protein complexes assembled in vivo by full-length dystrophin and a therapeutic micro-dystrophin construct. This has revealed disruptions in cavins and ERK signaling that may contribute to DMD cardiomyopathy. This new knowledge is important for ongoing efforts to prevent and treat heart disease in DMD patients.
Collapse
Affiliation(s)
- Hong Wang
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus OH 43205, USA.,Department of Pediatric Cardiology, China Medical University, Liaoning 110004, China
| | - Elena Marrosu
- Developmental Neuroscience Research and Teaching Department, Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Daniel Brayson
- Developmental Neuroscience Research and Teaching Department, Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Nalinda B Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Eric K Johnson
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus OH 43205, USA
| | - Charlotte S Scott
- Developmental Neuroscience Research and Teaching Department, Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kwan-Leong Hau
- Developmental Neuroscience Research and Teaching Department, Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Aaron J Trask
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Stan C Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Marvin E Adams
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA.,Department of Neurology, School of Medicine, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.,Department of Bioengineering, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.,Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Federica Montanaro
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus OH 43205, USA.,Developmental Neuroscience Research and Teaching Department, Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| |
Collapse
|
63
|
Dong X, Hui T, Chen J, Yu Z, Ren D, Zou S, Wang S, Fei E, Jiao H, Lai X. Metformin Increases Sarcolemma Integrity and Ameliorates Neuromuscular Deficits in a Murine Model of Duchenne Muscular Dystrophy. Front Physiol 2021; 12:642908. [PMID: 34012406 PMCID: PMC8126699 DOI: 10.3389/fphys.2021.642908] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disease characterized by progressive muscle weakness and wasting. Stimulation of AMP-activated protein kinase (AMPK) has been demonstrated to increase muscle function and protect muscle against damage in dystrophic mice. Metformin is a widely used anti-hyperglycemic drug and has been shown to be an indirect activator of AMPK. Based on these findings, we sought to determine the effects of metformin on neuromuscular deficits in mdx murine model of DMD. In this study, we found metformin treatment increased muscle strength accompanied by elevated twitch and tetanic force of tibialis anterior (TA) muscle in mdx mice. Immunofluorescence and electron microscopy analysis of metformin-treated mdx muscles revealed an improvement in muscle fiber membrane integrity. Electrophysiological studies showed the amplitude of miniature endplate potentials (mEPP) was increased in treated mice, indicating metformin also improved neuromuscular transmission of the mdx mice. Analysis of mRNA and protein levels from muscles of treated mice showed an upregulation of AMPK phosphorylation and dystrophin-glycoprotein complex protein expression. In conclusion, metformin can indeed improve muscle function and diminish neuromuscular deficits in mdx mice, suggesting its potential use as a therapeutic drug in DMD patients.
Collapse
Affiliation(s)
- Xia Dong
- School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China
| | - Tiankun Hui
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Jie Chen
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Zheng Yu
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China
| | - Dongyan Ren
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Suqi Zou
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Shunqi Wang
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Erkang Fei
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Huifeng Jiao
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xinsheng Lai
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
64
|
Effect of Verapamil, an L-Type Calcium Channel Inhibitor, on Caveolin-3 Expression in Septic Mouse Hearts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6667074. [PMID: 33927797 PMCID: PMC8052133 DOI: 10.1155/2021/6667074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022]
Abstract
Sepsis-induced myocardial dysfunction considerably increases mortality risk in patients with sepsis. Previous studies from our group have shown that sepsis alters the expression of structural proteins in cardiac cells, resulting in cardiomyocyte degeneration and impaired communication between cardiac cells. Caveolin-3 (CAV3) is a structural protein present in caveolae, located in the membrane of cardiac muscle cells, which regulates physiological processes such as calcium homeostasis. In sepsis, there is a disruption of calcium homeostasis, which increases the concentration of intracellular calcium, which can lead to the activation of potent cellular enzymes/proteases which cause severe cellular injury and death. The purpose of the present study was to test the hypotheses that sepsis induces CAV3 overexpression in the heart, and the regulation of L-type calcium channels directly relates to the regulation of CAV3 expression. Severe sepsis increases the expression of CAV3 in the heart, as immunostaining in our study showed CAV3 presence in the cardiomyocyte membrane and cytoplasm, in comparison with our control groups (without sepsis) that showed CAV3 presence predominantly in the plasma membrane. The administration of verapamil, an L-type calcium channel inhibitor, resulted in a decrease in mortality rates of septic mice. This effect was accompanied by a reduction in the expression of CAV3 and attenuation of cardiac lesions in septic mice treated with verapamil. Our results indicate that CAV3 has a vital role in cardiac dysfunction development in sepsis and that the regulation of L-type calcium channels may be related to its expression.
Collapse
|
65
|
Li B, Xiong W, Liang WM, Chiou JS, Lin YJ, Chang ACY. Targeting of CAT and VCAM1 as Novel Therapeutic Targets for DMD Cardiomyopathy. Front Cell Dev Biol 2021; 9:659177. [PMID: 33869226 PMCID: PMC8047121 DOI: 10.3389/fcell.2021.659177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) related cardiomyopathy is the leading cause of early mortality in DMD patients. There is an urgent need to gain a better understanding of the disease molecular pathogenesis and develop effective therapies to prevent the onset of heart failure. In the present study, we used DMD human induced pluripotent stem cells (DMD-hiPSCs) derived cardiomyocytes (CMs) as a platform to explore the active compounds in commonly used Chinese herbal medicine (CHM) herbs. Single CHM herb (DaH, ZK, and CQZ) reduced cell beating rate, decreased cellular ROS accumulation, and improved structure of DMD hiPSC-CMs. Cross-comparison of transcriptomic profiling data and active compound library identified nine active chemicals targeting ROS neutralizing Catalase (CAT) and structural protein vascular cell adhesion molecule 1 (VCAM1). Treatment with Quecetin, Kaempferol, and Vitamin C, targeting CAT, conferred ROS protection and improved contraction; treatment with Hesperidin and Allicin, targeting VCAM1, induced structure enhancement via induction of focal adhesion. Lastly, overexpression of CAT or VCAM1 in DMD hiPSC-CMs reconstituted efficacious effects and conferred increase in cardiomyocyte function. Together, our results provide a new insight in treating DMD cardiomyopathy via targeting of CAT and VCAM1, and serves as an example of translating Bed to Bench back to Bed using a muti-omics approach.
Collapse
Affiliation(s)
- Bin Li
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyao Xiong
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Jian-Shiun Chiou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Alex C Y Chang
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
66
|
Hamm SE, Fathalikhani DD, Bukovec KE, Addington AK, Zhang H, Perry JB, McMillan RP, Lawlor MW, Prom MJ, Vanden Avond MA, Kumar SN, Coleman KE, Dupont JB, Mack DL, Brown DA, Morris CA, Gonzalez JP, Grange RW. Voluntary wheel running complements microdystrophin gene therapy to improve muscle function in mdx mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:144-160. [PMID: 33850950 PMCID: PMC8020351 DOI: 10.1016/j.omtm.2021.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
We tested the hypothesis that voluntary wheel running would complement microdystrophin gene therapy to improve muscle function in young mdx mice, a model of Duchenne muscular dystrophy. mdx mice injected with a single dose of AAV9-CK8-microdystrophin or vehicle at age 7 weeks were assigned to three groups: mdxRGT (run, gene therapy), mdxGT (no run, gene therapy), or mdx (no run, no gene therapy). Wild-type (WT) mice were assigned to WTR (run) and WT (no run) groups. WTR and mdxRGT performed voluntary wheel running for 21 weeks; remaining groups were cage active. Robust expression of microdystrophin occurred in heart and limb muscles of treated mice. mdxRGT versus mdxGT mice showed increased microdystrophin in quadriceps but decreased levels in diaphragm. mdx final treadmill fatigue time was depressed compared to all groups, improved in mdxGT, and highest in mdxRGT. Both weekly running distance (km) and final treadmill fatigue time for mdxRGT and WTR were similar. Remarkably, mdxRGT diaphragm power was only rescued to 60% of WT, suggesting a negative impact of running. However, potential changes in fiber type distribution in mdxRGT diaphragms could indicate an adaptation to trade power for endurance. Post-treatment in vivo maximal plantar flexor torque relative to baseline values was greater for mdxGT and mdxRGT versus all other groups. Mitochondrial respiration rates from red quadriceps fibers were significantly improved in mdxGT animals, but the greatest bioenergetic benefit was observed in the mdxRGT group. Additional assessments revealed partial to full functional restoration in mdxGT and mdxRGT muscles relative to WT. These data demonstrate that voluntary wheel running combined with microdystrophin gene therapy in young mdx mice improved whole-body performance, affected muscle function differentially, mitigated energetic deficits, but also revealed some detrimental effects of exercise. With microdystrophin gene therapy currently in clinical trials, these data may help us understand the potential impact of exercise in treated patients.
Collapse
Affiliation(s)
- Shelby E Hamm
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Daniel D Fathalikhani
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Katherine E Bukovec
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Adele K Addington
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Haiyan Zhang
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Justin B Perry
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Ryan P McMillan
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mariah J Prom
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark A Vanden Avond
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Suresh N Kumar
- Department of Pathology and Laboratory Medicine and Children's Hospital of Wisconsin Research Institute Imaging Core, Milwaukee, WI 53226, USA
| | - Kirsten E Coleman
- Powell Gene Therapy Center Toxicology Core, University of Florida, Gainesville, FL 32610, USA
| | - J B Dupont
- Translational Gene Therapy for Genetic Diseases, INSERM UMR1089, IRS2 Nantes Biotech, Université de Nantes, Nantes 44200, France
| | - David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98104, USA.,Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98107, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | | | | | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
67
|
Botzenhart UU, Keil C, Tsagkari E, Zeidler-Rentzsch I, Gredes T, Gedrange T. Influence of botulinum toxin A on craniofacial morphology after injection into the right masseter muscle of dystrophin deficient (mdx-) mice. Ann Anat 2021; 236:151715. [PMID: 33675949 DOI: 10.1016/j.aanat.2021.151715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Severe craniofacial and dental abnormalities, typical for patients with progressive Duchenne muscular dystrophy (DMD), are an exellcent demonstration of Melvin L. Moss "functional matrix theory", highlighting the influence of muscle tissue on craniofacial growth and morphology. However, the currently best approved animal model for investigation of this interplay is the mdx-mouse, which offers only a limited time window for research, due to the ability of muscle regeneration, in contrast to the human course of the disease. The aim of this study was to evaluate craniofacial morphology after BTX-A induced muscle paralysis in C57Bl- and mdx-mice, to prove the suitability of BTX-A intervention to inhibit muscle regeneration in mdx-mice and thus, mimicking the human course of the DMD disease. METHODS Paralysis of the right masseter muscle was induced in 100 days old C57Bl- and mdx-mice by a single specific intramuscular BTX-A injection. Mice skulls were obtained at 21 days and 42 days after BTX-A injection and 3D radiological evaluation was performed in order to measure various craniofacial dimensions in the sagittal, transversal and vertical plane. Statstical analysis were performed using SigmaStat®Version 3.5. In case of normal distribution, unpaired t-test and otherwise the Mann-Whitney-U test was applied. A statistical significance was given in case of p ≤ 0.05. RESULTS In contrast to C57Bl-mice, in mdx-mice, three weeks after BTX-A treatment a significant decrease of skull dimensions was noted in most of the measurements followed by a significant increase at the second investigation period. CONCLUSIONS BTX-A can induce changes in craniofacial morphology and presumably partially inhibit muscle regeneration in mdx-mice, but cannot completely intensify craniofacial effects elicited by dystrophy. Further research is necessary in order to fully understand muscle-bone interplay after BTX-A injection into dystrophic muscles.
Collapse
Affiliation(s)
| | - Christiane Keil
- Medical Faculty Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany; Department of Orthodontics, Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany
| | - Eirini Tsagkari
- Department of Orthodontics, Faculty of Dentistry School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ines Zeidler-Rentzsch
- Department of Otorhinolaryngology, Head and Neck Surgery, Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany
| | - Tomasz Gredes
- Medical Faculty Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany; Department of Orthodontics, Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany
| | - Tomasz Gedrange
- Medical Faculty Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany
| |
Collapse
|
68
|
Mollanoori H, Rahmati Y, Hassani B, Havasi Mehr M, Teimourian S. Promising therapeutic approaches using CRISPR/Cas9 genome editing technology in the treatment of Duchenne muscular dystrophy. Genes Dis 2021; 8:146-156. [PMID: 33997161 PMCID: PMC8099695 DOI: 10.1016/j.gendis.2019.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/13/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy is an X-linked recessive hereditary monogenic disorder caused by inability to produce dystrophin protein. In most patients, the expression of dystrophin lost due to disrupting mutations in open reading frame. Despite the efforts in a large number of different therapeutic approaches to date, the treatments available for DMD remain mitigative and supportive to improve the symptoms of the disease, rather than to be curative. The advent of CRISPR/Cas9 technology has revolutionized genome editing scope and considered as pioneer in effective genomic engineering. Deletions or excisions of intragenic DNA by CRISPR as well as a similar strategy with exon skipping at the DNA level induced by antisense oligonucleotides, are new and promising approaches in correcting DMD gene, which restore the expression of a truncated but functional dystrophin protein. Also, CRISPR/Cas9 technology can be used to treat DMD by removing duplicated exons, precise correction of causative mutation by HDR-based pathway and inducing the expression of compensatory proteins such as utrophin. In this study, we briefly explained the molecular genetics of DMD and a historical overview of DMD gene therapy. We in particular focused on CRISPR/Cas9-mediated therapeutic approaches that used to treat DMD.
Collapse
Affiliation(s)
- Hasan Mollanoori
- Department of Medical Genetics, Iran University of Medical Sciences (IUMS), Tehran, 1449614535, Iran
| | - Yazdan Rahmati
- Department of Medical Genetics, Iran University of Medical Sciences (IUMS), Tehran, 1449614535, Iran
| | - Bita Hassani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, 1985717443, Iran
| | - Meysam Havasi Mehr
- Department of Physiology, Iran University of Medical Sciences (IUMS), Tehran, 1449614535, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, Iran University of Medical Sciences (IUMS), Tehran, 1449614535, Iran
| |
Collapse
|
69
|
Valera IC, Wacker AL, Hwang HS, Holmes C, Laitano O, Landstrom AP, Parvatiyar MS. Essential roles of the dystrophin-glycoprotein complex in different cardiac pathologies. Adv Med Sci 2021; 66:52-71. [PMID: 33387942 DOI: 10.1016/j.advms.2020.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The dystrophin-glycoprotein complex (DGC), situated at the sarcolemma dynamically remodels during cardiac disease. This review examines DGC remodeling as a common denominator in diseases affecting heart function and health. Dystrophin and the DGC serve as broad cytoskeletal integrators that are critical for maintaining stability of muscle membranes. The presence of pathogenic variants in genes encoding proteins of the DGC can cause absence of the protein and/or alterations in other complex members leading to muscular dystrophies. Targeted studies have allowed the individual functions of affected proteins to be defined. The DGC has demonstrated its dynamic function, remodeling under a number of conditions that stress the heart. Beyond genetic causes, pathogenic processes also impinge on the DGC, causing alterations in the abundance of dystrophin and associated proteins during cardiac insult such as ischemia-reperfusion injury, mechanical unloading, and myocarditis. When considering new therapeutic strategies, it is important to assess DGC remodeling as a common factor in various heart diseases. The DGC connects the internal F-actin-based cytoskeleton to laminin-211 of the extracellular space, playing an important role in the transmission of mechanical force to the extracellular matrix. The essential functions of dystrophin and the DGC have been long recognized. DGC based therapeutic approaches have been primarily focused on muscular dystrophies, however it may be a beneficial target in a number of disorders that affect the heart. This review provides an account of what we now know, and discusses how this knowledge can benefit persistent health conditions in the clinic.
Collapse
Affiliation(s)
- Isela C Valera
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Amanda L Wacker
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Hyun Seok Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Christina Holmes
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, FL, USA
| | - Orlando Laitano
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Michelle S Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
70
|
Rugowska A, Starosta A, Konieczny P. Epigenetic modifications in muscle regeneration and progression of Duchenne muscular dystrophy. Clin Epigenetics 2021; 13:13. [PMID: 33468200 PMCID: PMC7814631 DOI: 10.1186/s13148-021-01001-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a multisystemic disorder that affects 1:5000 boys. The severity of the phenotype varies dependent on the mutation site in the DMD gene and the resultant dystrophin expression profile. In skeletal muscle, dystrophin loss is associated with the disintegration of myofibers and their ineffective regeneration due to defective expansion and differentiation of the muscle stem cell pool. Some of these phenotypic alterations stem from the dystrophin absence-mediated serine-threonine protein kinase 2 (MARK2) misplacement/downregulation in activated muscle stem (satellite) cells and neuronal nitric oxide synthase loss in cells committed to myogenesis. Here, we trace changes in DNA methylation, histone modifications, and expression of regulatory noncoding RNAs during muscle regeneration, from the stage of satellite cells to myofibers. Furthermore, we describe the abrogation of these epigenetic regulatory processes due to changes in signal transduction in DMD and point to therapeutic treatments increasing the regenerative potential of diseased muscles based on this acquired knowledge.
Collapse
Affiliation(s)
- Anna Rugowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Alicja Starosta
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
71
|
Taetzsch T, Shapiro D, Eldosougi R, Myers T, Settlage RE, Valdez G. The microRNA miR-133b functions to slow Duchenne muscular dystrophy pathogenesis. J Physiol 2021; 599:171-192. [PMID: 32991751 PMCID: PMC8418193 DOI: 10.1113/jp280405] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS Impairment of muscle biogenesis contributes to the progression of Duchenne muscular dystrophy (DMD). As a muscle enriched microRNA that has been implicated in muscle biogenesis, the role of miR-133b in DMD remains unknown. To assess miR-133b function in DMD-affected skeletal muscles, we genetically ablated miR-133b in the mdx mouse model of DMD. We show that deletion of miR-133b exacerbates the dystrophic phenotype of DMD-afflicted skeletal muscle by dysregulating muscle stem cells involved in muscle biogenesis, in addition to affecting signalling pathways related to inflammation and fibrosis. Our results provide evidence that miR-133b may underlie DMD pathology by affecting the proliferation and differentiation of muscle stem cells. ABSTRACT Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle degeneration. No treatments are currently available to prevent the disease. While the muscle enriched microRNA miR-133b has been implicated in muscle biogenesis, its role in DMD remains unknown. To assess miR-133b function in DMD-affected skeletal muscles, we genetically ablated miR-133b in the mdx mouse model of DMD. In the absence of miR-133b, the tibialis anterior muscle of P30 mdx mice is smaller in size and exhibits a thickened interstitial space containing more mononucleated cells. Additional analysis revealed that miR-133b deletion influences muscle fibre regeneration, satellite cell proliferation and differentiation, and induces widespread transcriptomic changes in mdx muscle. These include known miR-133b targets as well as genes involved in cell proliferation and fibrosis. Altogether, our data demonstrate that skeletal muscles utilize miR-133b to mitigate the deleterious effects of DMD.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Dillon Shapiro
- Molecular Biology, Cell Biology, & Biochemistry Graduate Program, Brown University, Providence, RI, USA
| | - Randa Eldosougi
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Tracey Myers
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | | | - Gregorio Valdez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, United States
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, United States
| |
Collapse
|
72
|
Yuan C, Arora A, Garofalo AM, Grange RW. Potential cross-talk between muscle and tendon in Duchenne muscular dystrophy. Connect Tissue Res 2021; 62:40-52. [PMID: 32867551 DOI: 10.1080/03008207.2020.1810247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To describe potential signaling (cross-talk) between dystrophic skeletal muscle and tendon in Duchenne muscular dystrophy. MATERIALS AND METHODS Review of Duchenne muscular dystrophy and associated literature relevant to muscle-tendon cross-talk. RESULTS AND CONCLUSIONS Duchenne muscular dystrophy results from the absence of the protein dystrophin and the associated dystrophin - glycoprotein complex, which are thought to provide both structural support and signaling functions for the muscle fiber. In addition, there are other potential signal pathways that could represent cross-talk between muscle and tendon, particularly at the myotendinous junction. Duchenne muscular dystrophy is characterized by multiple pathophysiologic mechanisms. Herein, we explore three of these: (1) the extracellular matrix, fibrosis, and fat deposition; (2) satellite cells; and (3) tensegrity. A key signaling protein that emerged in each was transforming growth factor - beta one (TGF-β1).].
Collapse
Affiliation(s)
- Claire Yuan
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech , Blacksburg, Virginia, USA
| | - Ashwin Arora
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech , Blacksburg, Virginia, USA
| | - Anthony M Garofalo
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech , Blacksburg, Virginia, USA
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech , Blacksburg, Virginia, USA
| |
Collapse
|
73
|
Boycott HE, Nguyen MN, Vrellaku B, Gehmlich K, Robinson P. Nitric Oxide and Mechano-Electrical Transduction in Cardiomyocytes. Front Physiol 2020; 11:606740. [PMID: 33384614 PMCID: PMC7770138 DOI: 10.3389/fphys.2020.606740] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
The ability§ of the heart to adapt to changes in the mechanical environment is critical for normal cardiac physiology. The role of nitric oxide is increasingly recognized as a mediator of mechanical signaling. Produced in the heart by nitric oxide synthases, nitric oxide affects almost all mechano-transduction pathways within the cardiomyocyte, with roles mediating mechano-sensing, mechano-electric feedback (via modulation of ion channel activity), and calcium handling. As more precise experimental techniques for applying mechanical stresses to cells are developed, the role of these forces in cardiomyocyte function can be further understood. Furthermore, specific inhibitors of different nitric oxide synthase isoforms are now available to elucidate the role of these enzymes in mediating mechano-electrical signaling. Understanding of the links between nitric oxide production and mechano-electrical signaling is incomplete, particularly whether mechanically sensitive ion channels are regulated by nitric oxide, and how this affects the cardiac action potential. This is of particular relevance to conditions such as atrial fibrillation and heart failure, in which nitric oxide production is reduced. Dysfunction of the nitric oxide/mechano-electrical signaling pathways are likely to be a feature of cardiac pathology (e.g., atrial fibrillation, cardiomyopathy, and heart failure) and a better understanding of the importance of nitric oxide signaling and its links to mechanical regulation of heart function may advance our understanding of these conditions.
Collapse
Affiliation(s)
- Hannah E. Boycott
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - My-Nhan Nguyen
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - Besarte Vrellaku
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
74
|
Li Y, Chen Z, Zhang J, Zhang Q, He L, Xu M, Xu G, Geng H, Fang X. Quantitative Proteome of Infant Stenotic Ureters Reveals Extracellular Matrix Organization and Oxidative Stress Dysregulation Underlying Ureteropelvic Junction Obstruction. Proteomics Clin Appl 2020; 14:e2000030. [PMID: 32969194 DOI: 10.1002/prca.202000030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/21/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE Ureteropelvic junction obstruction (UPJO) is the most frequent cause of congenital hydronephrosis in child. To better investigate the molecular mechanisms of this pathological process, the stenotic ureter proteome of UPJO in infants is compared with their own normal pre-stenotic segments. EXPERIMENTAL DESIGN Data independent acquisition-based proteomics are performed to compare proteome between pre-stenotic and stenotic ureter from nine UPJO infants. Gene ontology analysis, hierarchical cluster analysis, and network interaction are performed to characterize biological functions of significantly altered proteins. Selected significantly altered proteins are validated by western blot on another three UPJO infants. RESULTS 15 proteins are up-regulated and 33 proteins are down-regulated during stenotic pathology. Significantly altered proteins are involved in decreased extracellular matrix and cytoskeleton organization, increased regulation of oxidative activity, and altered inflammatory associated exocytosis. Significant expression of biglycan, fibulin-1, myosin-10, cytochrome b5 are validated providing possible mechanism in UPJO which could be associated impaired smooth muscle cell, epithelial integrity, and increased oxidative stress. CONCLUSIONS AND CLINICAL RELEVANCE: This study provides molecular evidence of dysregulated extracellular matrix organization, impaired smooth muscle cell, and oxidative stress during UPJO pathology, indicating that biglycan, fibulin-1, myosin-10, cytochrome b5 might reflect the pathology of UPJO.
Collapse
Affiliation(s)
- Yueyan Li
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zhoutong Chen
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Junqi Zhang
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qimin Zhang
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Lei He
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Maosheng Xu
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Guofeng Xu
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Hongquan Geng
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiaoliang Fang
- Department of Pediatric Urology, Xin hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| |
Collapse
|
75
|
Teramoto N, Sugihara H, Yamanouchi K, Nakamura K, Kimura K, Okano T, Shiga T, Shirakawa T, Matsuo M, Nagata T, Daimon M, Matsuwaki T, Nishihara M. Pathological evaluation of rats carrying in-frame mutations in the dystrophin gene: a new model of Becker muscular dystrophy. Dis Model Mech 2020; 13:dmm044701. [PMID: 32859695 PMCID: PMC7541341 DOI: 10.1242/dmm.044701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/18/2020] [Indexed: 01/10/2023] Open
Abstract
Dystrophin, encoded by the DMD gene on the X chromosome, stabilizes the sarcolemma by linking the actin cytoskeleton with the dystrophin-glycoprotein complex (DGC). In-frame mutations in DMD cause a milder form of X-linked muscular dystrophy, called Becker muscular dystrophy (BMD), characterized by the reduced expression of truncated dystrophin. So far, no animal model with in-frame mutations in Dmd has been established. As a result, the effect of in-frame mutations on the dystrophin expression profile and disease progression of BMD remains unclear. In this study, we established a novel rat model carrying in-frame Dmd gene mutations (IF rats) and evaluated the pathology. We found that IF rats exhibited reduced expression of truncated dystrophin in a proteasome-independent manner. This abnormal dystrophin expression caused dystrophic changes in muscle tissues but did not lead to functional deficiency. We also found that the expression of additional dystrophin named dpX, which forms the DGC in the sarcolemma, was associated with the appearance of truncated dystrophin. In conclusion, the outcomes of this study contribute to the further understanding of BMD pathology and help elucidate the efficiency of dystrophin recovery treatments in Duchenne muscular dystrophy, a more severe form of X-linked muscular dystrophy.
Collapse
Affiliation(s)
- Naomi Teramoto
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Katsuyuki Nakamura
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Koichi Kimura
- Department of General Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoko Okano
- Department of Laboratory Medicine, The University of Tokyo Hospital, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takanori Shiga
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Taku Shirakawa
- Research Center for Locomotion Biology, Kobe Gakuin University, Nishi, Kobe, 651-2180, Japan
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Nishi, Kobe, 651-2180, Japan
| | - Masafumi Matsuo
- Research Center for Locomotion Biology, Kobe Gakuin University, Nishi, Kobe, 651-2180, Japan
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Nishi, Kobe, 651-2180, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masao Daimon
- Department of Laboratory Medicine, The University of Tokyo Hospital, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takashi Matsuwaki
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
76
|
Maya I, Smirin-Yosef P, Kahana S, Morag S, Yacobson S, Agmon-Fishman I, Matar R, Bitton E, Shohat M, Basel-Salmon L, Salmon-Divon M. A study of normal copy number variations in Israeli population. Hum Genet 2020; 140:553-563. [PMID: 32980975 DOI: 10.1007/s00439-020-02225-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
The population of Israel is ethnically diverse, and individuals from different ethnic groups share specific genetic variations. These variations, which have been passed on from common ancestors, are usually reported in public databases as rare variants. Here, we aimed to identify ethnicity-based benign copy number variants (CNVs) and generate the first Israeli CNV database. We applied a data-mining approach to the results of 10,193 chromosomal microarray tests, of which 2150 tests were from individuals of 13 common ethnic backgrounds (n ≥ 10). We found 165 CNV regions (> 50 kbp) that are unique to specific ethnic groups (uCNVRs). The frequency of more than 19% of these uCNVRs is between 1 and 20% of the common ethnic origin, while their frequency in the overall cohort is between 0.5 and 1.6%. Of these 165 uCNVRs, 98 are reported as variants of unknown significance or as not available in dbVar; we postulate that these uCNVRs should be annotated as either "likely benign" or "benign". The ethnic-specific CNVs extracted in this study will allow geneticists to distinguish between relevant pathogenic genomic aberrations and benign ethnicity-related variations, thus preventing variant misinterpretation that may lead to unnecessary pregnancy terminations.
Collapse
Affiliation(s)
- Idit Maya
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Pola Smirin-Yosef
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel.,Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Sarit Kahana
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Sne Morag
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Shiri Yacobson
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Ifaat Agmon-Fishman
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Reut Matar
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Elisheva Bitton
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Mordechai Shohat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel.,Maccabi Health Services, Rehovot, Israel
| | - Lina Basel-Salmon
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel.,Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Mali Salmon-Divon
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel. .,The Adelson School of Medicine, Ariel University, Ariel, Israel.
| |
Collapse
|
77
|
Krishnan VS, Thanigaiarasu LP, White R, Crew R, Larcher T, Le Guiner C, Grounds MD. Dystrophic Dmd mdx rats show early neuronal changes (increased S100β and Tau5) at 8 months, supporting severe dystropathology in this rodent model of Duchenne muscular dystrophy. Mol Cell Neurosci 2020; 108:103549. [PMID: 32890728 DOI: 10.1016/j.mcn.2020.103549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
The intrinsic necrosis of skeletal muscles in animal models of Duchenne muscular dystrophy (DMD) damages neuromuscular junctions (NMJs) with progressively altered NMJs associated with denervation and premature changes in dystrophic nerves. In the mdx mouse model of DMD, the proteins S100β and Tau5 are significantly increased in sciatic nerves by 13 months (M) of age, far earlier (by 9 M) than in normal wildtype (WT) nerves. Since dystrophic Dmdmdx rats are reported to have a more severe dystropathology than mdx mice, we hypothesised that Dmdmdx rat nerves would show earlier neuronal changes compared with mdx nerves. We quantified levels of 8 proteins (by immunoblotting) in sciatic and radial nerves from young adult Dmdmdx rats (aged 8 M) and mdx mice (9 M), plus levels of 7 mRNAs (by qPCR) in rat nerves only. Sciatic nerves of 8 M Dmdmdx rats had more consistently increased levels of S100β and Tau5 proteins, compared with 9 M mdx mice, supporting pronounced dystropathology in the rat model. There were no differences for mRNA levels, apart from higher gelsolin mRNA in Dmdmdx sciatic nerves. The pronounced protein changes in Dmdmdx nerves indicate a severe ongoing myonecrosis, and likely consequent myofibre denervation, for the dystrophic rat model. These data support increased neuronal proteins in dystrophic nerves as a novel pre-clinical readout of ongoing myonecrosis for DMD research. In older DMD boys, such progressive neuronal changes over many years are likely to contribute to loss of muscle function, and may complicate evaluation of late-onset clinical therapies.
Collapse
Affiliation(s)
- Vidya S Krishnan
- School of Human Sciences, the University of Western Australia, Australia, 6009
| | | | - Robert White
- School of Human Sciences, the University of Western Australia, Australia, 6009
| | - Rachael Crew
- School of Human Sciences, the University of Western Australia, Australia, 6009
| | | | - Caroline Le Guiner
- INSERM UMR1089, University of Nantes, Translational Research for Neuromuscular Diseases, Nantes, France
| | - Miranda D Grounds
- School of Human Sciences, the University of Western Australia, Australia, 6009.
| |
Collapse
|
78
|
Romo-Yáñez J, Rodríguez-Martínez G, Aragón J, Siqueiros-Márquez L, Herrera-Salazar A, Velasco I, Montanez C. Characterization of the expression of dystrophins and dystrophin-associated proteins during embryonic neural stem/progenitor cell differentiation. Neurosci Lett 2020; 736:135247. [DOI: 10.1016/j.neulet.2020.135247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
|
79
|
Pecorari I, Mestroni L, Sbaizero O. Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies. Int J Mol Sci 2020; 21:E5865. [PMID: 32824180 PMCID: PMC7461563 DOI: 10.3390/ijms21165865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Cardiomyopathies affect individuals worldwide, without regard to age, sex and ethnicity and are associated with significant morbidity and mortality. Inherited cardiomyopathies account for a relevant part of these conditions. Although progresses have been made over the years, early diagnosis and curative therapies are still challenging. Understanding the events occurring in normal and diseased cardiac cells is crucial, as they are important determinants of overall heart function. Besides chemical and molecular events, there are also structural and mechanical phenomena that require to be investigated. Cell structure and mechanics largely depend from the cytoskeleton, which is composed by filamentous proteins that can be cross-linked via accessory proteins. Alpha-actinin 2 (ACTN2), filamin C (FLNC) and dystrophin are three major actin cross-linkers that extensively contribute to the regulation of cell structure and mechanics. Hereby, we review the current understanding of the roles played by ACTN2, FLNC and dystrophin in the onset and progress of inherited cardiomyopathies. With our work, we aim to set the stage for new approaches to study the cardiomyopathies, which might reveal new therapeutic targets and broaden the panel of genes to be screened.
Collapse
Affiliation(s)
- Ilaria Pecorari
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy;
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
80
|
Selvaraj S, Kyba M, Perlingeiro RCR. Pluripotent Stem Cell-Based Therapeutics for Muscular Dystrophies. Trends Mol Med 2020; 25:803-816. [PMID: 31473142 DOI: 10.1016/j.molmed.2019.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/30/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Pluripotent stem cells (PSCs) represent an attractive cell source for treating muscular dystrophies (MDs) since they easily allow for the generation of large numbers of highly regenerative myogenic progenitors. Using reprogramming technology, patient-specific PSCs have been derived for several types of MDs, and genome editing has allowed correction of mutations, opening the opportunity for their therapeutic application in an autologous transplantation setting. However, there has been limited progress on preclinical studies that validate the therapeutic potential of these gene corrected PSC-derived myogenic progenitors. In this review, we highlight the major research advances, challenges, and future prospects towards the development of PSC-based therapeutics for MDs.
Collapse
Affiliation(s)
- Sridhar Selvaraj
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Michael Kyba
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
81
|
In Vivo Genome Engineering for the Treatment of Muscular Dystrophies. CURRENT STEM CELL REPORTS 2020. [DOI: 10.1007/s40778-020-00173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
82
|
Implications of Skeletal Muscle Extracellular Matrix Remodeling in Metabolic Disorders: Diabetes Perspective. Int J Mol Sci 2020; 21:ijms21113845. [PMID: 32481704 PMCID: PMC7312063 DOI: 10.3390/ijms21113845] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) provides a scaffold for cells, controlling biological processes and providing structural as well as mechanical support to surrounding cells. Disruption of ECM homeostasis results in several pathological conditions. Skeletal muscle ECM is a complex network comprising collagens, proteoglycans, glycoproteins, and elastin. Recent therapeutic approaches targeting ECM remodeling have been extensively deliberated. Various ECM components are typically found to be augmented in the skeletal muscle of obese and/or diabetic humans. Skeletal muscle ECM remodeling is thought to be a feature of the pathogenic milieu allied with metabolic dysregulation, obesity, and eventual diabetes. This narrative review explores the current understanding of key components of skeletal muscle ECM and their specific roles in the regulation of metabolic diseases. Additionally, we discuss muscle-specific integrins and their role in the regulation of insulin sensitivity. A better understanding of the importance of skeletal muscle ECM remodeling, integrin signaling, and other factors that regulate insulin activity may help in the development of novel therapeutics for managing diabetes and other metabolic disorders.
Collapse
|
83
|
Gaetani R, Zizzi EA, Deriu MA, Morbiducci U, Pesce M, Messina E. When Stiffness Matters: Mechanosensing in Heart Development and Disease. Front Cell Dev Biol 2020; 8:334. [PMID: 32671058 PMCID: PMC7326078 DOI: 10.3389/fcell.2020.00334] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
During embryonic morphogenesis, the heart undergoes a complex series of cellular phenotypic maturations (e.g., transition of myocytes from proliferative to quiescent or maturation of the contractile apparatus), and this involves stiffening of the extracellular matrix (ECM) acting in concert with morphogenetic signals. The maladaptive remodeling of the myocardium, one of the processes involved in determination of heart failure, also involves mechanical cues, with a progressive stiffening of the tissue that produces cellular mechanical damage, inflammation, and ultimately myocardial fibrosis. The assessment of the biomechanical dependence of the molecular machinery (in myocardial and non-myocardial cells) is therefore essential to contextualize the maturation of the cardiac tissue at early stages and understand its pathologic evolution in aging. Because systems to perform multiscale modeling of cellular and tissue mechanics have been developed, it appears particularly novel to design integrated mechano-molecular models of heart development and disease to be tested in ex vivo reconstituted cells/tissue-mimicking conditions. In the present contribution, we will discuss the latest implication of mechanosensing in heart development and pathology, describe the most recent models of cell/tissue mechanics, and delineate novel strategies to target the consequences of heart failure with personalized approaches based on tissue engineering and induced pluripotent stem cell (iPSC) technologies.
Collapse
Affiliation(s)
- Roberto Gaetani
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy.,Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, United States
| | - Eric Adriano Zizzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco Agostino Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Maurizio Pesce
- Tissue Engineering Research Unit, "Centro Cardiologico Monzino," IRCCS, Milan, Italy
| | - Elisa Messina
- Department of Maternal, Infantile, and Urological Sciences, "Umberto I" Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
84
|
Himelman E, Lillo MA, Nouet J, Gonzalez JP, Zhao Q, Xie LH, Li H, Liu T, Wehrens XH, Lampe PD, Fishman GI, Shirokova N, Contreras JE, Fraidenraich D. Prevention of connexin-43 remodeling protects against Duchenne muscular dystrophy cardiomyopathy. J Clin Invest 2020; 130:1713-1727. [PMID: 31910160 PMCID: PMC7108916 DOI: 10.1172/jci128190] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Aberrant expression of the cardiac gap junction protein connexin-43 (Cx43) has been suggested as playing a role in the development of cardiac disease in the mdx mouse model of Duchenne muscular dystrophy (DMD); however, a mechanistic understanding of this association is lacking. Here, we identified a reduction of phosphorylation of Cx43 serines S325/S328/S330 in human and mouse DMD hearts. We hypothesized that hypophosphorylation of Cx43 serine-triplet triggers pathological Cx43 redistribution to the lateral sides of cardiomyocytes (remodeling). Therefore, we generated knockin mdx mice in which the Cx43 serine-triplet was replaced with either phospho-mimicking glutamic acids (mdxS3E) or nonphosphorylatable alanines (mdxS3A). The mdxS3E, but not mdxS3A, mice were resistant to Cx43 remodeling, with a corresponding reduction of Cx43 hemichannel activity. MdxS3E cardiomyocytes displayed improved intracellular Ca2+ signaling and a reduction of NADPH oxidase 2 (NOX2)/ROS production. Furthermore, mdxS3E mice were protected against inducible arrhythmias, related lethality, and the development of cardiomyopathy. Inhibition of microtubule polymerization by colchicine reduced both NOX2/ROS and oxidized CaMKII, increased S325/S328/S330 phosphorylation, and prevented Cx43 remodeling in mdx hearts. Together, these results demonstrate a mechanism of dystrophic Cx43 remodeling and suggest that targeting Cx43 may be a therapeutic strategy for preventing heart dysfunction and arrhythmias in DMD patients.
Collapse
Affiliation(s)
| | | | - Julie Nouet
- Department of Cell Biology and Molecular Medicine
| | | | - Qingshi Zhao
- Department of Cell Biology and Molecular Medicine
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine
| | - Hong Li
- Center for Advanced Proteomics Research, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Tong Liu
- Center for Advanced Proteomics Research, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Xander H.T. Wehrens
- Department of Molecular Physiology and Biophysics, Medicine, Neuroscience, and Pediatrics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Paul D. Lampe
- Fred Hutchinson Cancer Research Center, Translational Research Program, Public Health Sciences Division, Seattle, Washington, USA
| | - Glenn I. Fishman
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, USA
| | | | | | | |
Collapse
|
85
|
Nouet J, Himelman E, Lahey KC, Zhao Q, Fraidenraich D. Connexin-43 reduction prevents muscle defects in a mouse model of manifesting Duchenne muscular dystrophy female carriers. Sci Rep 2020; 10:5683. [PMID: 32231219 PMCID: PMC7105483 DOI: 10.1038/s41598-020-62844-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked neuromuscular disorder that affects males. However, 8% of female carriers are symptomatic and underrepresented in research due to the lack of animal models. We generated a symptomatic mouse model of DMD carriers via injection of mdx (murine DMD) embryonic stem cells (ESCs) into wild-type (WT) blastocysts (mdx/WT chimera). mdx/WT chimeras developed cardiomyopathic features and dystrophic skeletal muscle phenotypes including elevated mononuclear invasion, central nucleation, fibrosis and declined forelimb grip strength. The disease was accompanied by connexin-43 (Cx43) aberrantly enhanced in both cardiac and skeletal muscles and remodeled in the heart. Genetic reduction of Cx43-copy number in mdx/WT-Cx43(+/-) chimeras protected them from both cardiac and skeletal muscle fiber damage. In dystrophic skeletal muscle, Cx43 expression was not seen in the fibers but in adjacent F4/80+ mononuclear cells. Ethidium Bromide uptake in purified F4/80+/CD11b+ mdx macrophages revealed functional activity of Cx43, which was inhibited by administration of Gap19 peptide mimetic, a Cx43 hemichannel-specific inhibitor. Thus, we suggest that Cx43 reduction in symptomatic DMD carrier mice leads to prevention of Cx43 remodeling in the heart and prevention of aberrant Cx43 hemichannel activity in the skeletal muscle macrophages neighboring Cx43 non-expressing fibers.
Collapse
Affiliation(s)
- Julie Nouet
- Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA
| | - Eric Himelman
- Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA
| | - Kevin C Lahey
- Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA
| | - Qingshi Zhao
- Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
86
|
Wood AJ, Cohen N, Joshi V, Li M, Costin A, Hersey L, McKaige EA, Manneken JD, Sonntag C, Miles LB, Siegel A, Currie PD. RGD inhibition of itgb1 ameliorates laminin-α2-deficient zebrafish fibre pathology. Hum Mol Genet 2020; 28:1403-1413. [PMID: 30566586 DOI: 10.1093/hmg/ddy426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 01/27/2023] Open
Abstract
Deficiency of muscle basement membrane (MBM) component laminin-α2 leads to muscular dystrophy congenital type 1A (MDC1A), a currently untreatable myopathy. Laminin--α2 has two main binding partners within the MBM, dystroglycan and integrin. Integrins coordinate both cell adhesion and signalling; however, there is little mechanistic insight into integrin's function at the MBM. In order to study integrin's role in basement membrane development and how this relates to the MBM's capacity to handle force, an itgβ1.b-/- zebrafish line was created. Histological examination revealed increased extracellular matrix (ECM) deposition at the MBM in the itgβ1.b-/- fish when compared with controls. Surprisingly, both laminin and collagen proteins were found to be increased in expression at the MBM of the itgβ1.b-/- larvae when compared with controls. This increase in ECM components resulted in a decrease in myotomal elasticity as determined by novel passive force analyses. To determine if it was possible to control ECM deposition at the MBM by manipulating integrin activity, RGD peptide, a potent inhibitor of integrin-β1, was injected into a zebrafish model of MDC1A. As postulated an increase in laminin and collagen was observed in the lama2-/- mutant MBM. Importantly, there was also an improvement in fibre stability at the MBM, judged by a reduction in fibre pathology. These results therefore show that blocking ITGβ1 signalling increases ECM deposition at the MBM, a process that could be potentially exploited for treatment of MDC1A.
Collapse
Affiliation(s)
- Alasdair J Wood
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Naomi Cohen
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Veronica Joshi
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Mei Li
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Adam Costin
- Ramaciotti Centre for Electron Microscopy, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Lucy Hersey
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Emily A McKaige
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Jessica D Manneken
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Carmen Sonntag
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Lee B Miles
- Department of Physiology, Anatomy and Microbiology, Latrobe University, Melbourne (Bundoora), VIC, Australia
| | - Ashley Siegel
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Innovation Walk, Clayton Campus, Wellington Road, Clayton, VIC, Australia.,Victorian Node, EMBL Australia, Clayton, VIC, Australia
| |
Collapse
|
87
|
The role of the dystrophin glycoprotein complex on the neuromuscular system. Neurosci Lett 2020; 722:134833. [DOI: 10.1016/j.neulet.2020.134833] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/26/2022]
|
88
|
Accorsi A, Cramer ML, Girgenrath M. Fibrogenesis in LAMA2-Related Muscular Dystrophy Is a Central Tenet of Disease Etiology. Front Mol Neurosci 2020; 13:3. [PMID: 32116541 PMCID: PMC7010923 DOI: 10.3389/fnmol.2020.00003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
LAMA2-related congenital muscular dystrophy, also known as MDC1A, is caused by loss-of-function mutations in the alpha2 chain of Laminin-211. Loss of this protein interrupts the connection between the muscle cell and its extracellular environment and results in an aggressive, congenital-onset muscular dystrophy characterized by severe hypotonia, lack of independent ambulation, and early mortality driven by respiratory complications and/or failure to thrive. Of the pathomechanisms of MDC1A, the earliest and most prominent is widespread and rampant fibrosis. Here, we will discuss some of the key drivers of fibrosis including TGF-beta and renin–angiotensin system signaling and consequences of these pathways including myofibroblast transdifferentiation and matrix remodeling. We will also highlight some of the differences in fibrogenesis in congenital muscular dystrophy (CMD) with that seen in Duchenne muscular dystrophy (DMD). Finally, we will connect the key signaling pathways in the pathogenesis of MDC1A to the current status of the therapeutic approaches that have been tested in the preclinical models of MDC1A to treat fibrosis.
Collapse
Affiliation(s)
| | - Megan L Cramer
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, United States
| | | |
Collapse
|
89
|
Elimination of fukutin reveals cellular and molecular pathomechanisms in muscular dystrophy-associated heart failure. Nat Commun 2019; 10:5754. [PMID: 31848331 PMCID: PMC6917736 DOI: 10.1038/s41467-019-13623-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/11/2019] [Indexed: 01/06/2023] Open
Abstract
Heart failure is the major cause of death for muscular dystrophy patients, however, the molecular pathomechanism remains unknown. Here, we show the detailed molecular pathogenesis of muscular dystrophy-associated cardiomyopathy in mice lacking the fukutin gene (Fktn), the causative gene for Fukuyama muscular dystrophy. Although cardiac Fktn elimination markedly reduced α-dystroglycan glycosylation and dystrophin-glycoprotein complex proteins in sarcolemma at all developmental stages, cardiac dysfunction was observed only in later adulthood, suggesting that membrane fragility is not the sole etiology of cardiac dysfunction. During young adulthood, Fktn-deficient mice were vulnerable to pathological hypertrophic stress with downregulation of Akt and the MEF2-histone deacetylase axis. Acute Fktn elimination caused severe cardiac dysfunction and accelerated mortality with myocyte contractile dysfunction and disordered Golgi-microtubule networks, which were ameliorated with colchicine treatment. These data reveal fukutin is crucial for maintaining myocyte physiology to prevent heart failure, and thus, the results may lead to strategies for therapeutic intervention. Mutations in Ftkn cause Fukuyama muscular dystrophy, and heart failure is the main cause of death in thes patients. Here the authors show that acute elimination of Fktn in adult mice causes early mortality, and this is associated with myocyte dysfunction, with disorganised Golg-microtubule networks, and that the pathology can be ameliorated with colchicine treatment.
Collapse
|
90
|
Juban G, Saclier M, Yacoub-Youssef H, Kernou A, Arnold L, Boisson C, Ben Larbi S, Magnan M, Cuvellier S, Théret M, Petrof BJ, Desguerre I, Gondin J, Mounier R, Chazaud B. AMPK Activation Regulates LTBP4-Dependent TGF-β1 Secretion by Pro-inflammatory Macrophages and Controls Fibrosis in Duchenne Muscular Dystrophy. Cell Rep 2019; 25:2163-2176.e6. [PMID: 30463013 DOI: 10.1016/j.celrep.2018.10.077] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 09/06/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022] Open
Abstract
Chronic inflammation and fibrosis characterize Duchenne muscular dystrophy (DMD). We show that pro-inflammatory macrophages are associated with fibrosis in mouse and human DMD muscle. DMD-derived Ly6Cpos macrophages exhibit a profibrotic activity by sustaining fibroblast production of collagen I. This is mediated by the high production of latent-TGF-β1 due to the higher expression of LTBP4, for which polymorphisms are associated with the progression of fibrosis in DMD patients. Skewing macrophage phenotype via AMPK activation decreases ltbp4 expression by Ly6Cpos macrophages, blunts the production of latent-TGF-β1, and eventually reduces fibrosis and improves DMD muscle force. Moreover, fibro-adipogenic progenitors are the main providers of TGF-β-activating enzymes in mouse and human DMD, leading to collagen production by fibroblasts. In vivo pharmacological inhibition of TGF-β-activating enzymes improves the dystrophic phenotype. Thus, an AMPK-LTBP4 axis in inflammatory macrophages controls the production of TGF-β1, which is further activated by and acts on fibroblastic cells, leading to fibrosis in DMD.
Collapse
Affiliation(s)
- Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Marielle Saclier
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Houda Yacoub-Youssef
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Amel Kernou
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Ludovic Arnold
- Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, Université Pierre et Marie Curie, Sorbonne Universités, Paris 75013, France
| | - Camille Boisson
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Sabrina Ben Larbi
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Mélanie Magnan
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Sylvain Cuvellier
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Marine Théret
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Basil J Petrof
- Meakins-Christie Laboratories, McGill University, Montreal, QC H4A3J1, Canada; Research Institute of the McGill University Health Centre, Montreal, QC H4A3J1, Canada
| | - Isabelle Desguerre
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Julien Gondin
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France.
| |
Collapse
|
91
|
Valenti MT, Serena M, Carbonare LD, Zipeto D. CRISPR/Cas system: An emerging technology in stem cell research. World J Stem Cells 2019; 11:937-956. [PMID: 31768221 PMCID: PMC6851009 DOI: 10.4252/wjsc.v11.i11.937] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The identification of new and even more precise technologies for modifying and manipulating the genome has been a challenge since the discovery of the DNA double helix. The ability to modify selectively specific genes provides a powerful tool for characterizing gene functions, performing gene therapy, correcting specific genetic mutations, eradicating diseases, engineering cells and organisms to achieve new and different functions and obtaining transgenic animals as models for studying specific diseases. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology has recently revolutionized genome engineering. The application of this new technology to stem cell research allows disease models to be developed to explore new therapeutic tools. The possibility of translating new systems of molecular knowledge to clinical research is particularly appealing for addressing degenerative diseases. In this review, we describe several applications of CRISPR/Cas9 to stem cells related to degenerative diseases. In addition, we address the challenges and future perspectives regarding the use of CRISPR/Cas9 as an important technology in the medical sciences.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Medicine, Section of Internal Medicine D, University of Verona, Verona 37134, Italy.
| | - Michela Serena
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Luca Dalle Carbonare
- Department of Medicine, Section of Internal Medicine D, University of Verona, Verona 37134, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, Laboratory of Molecular Biology, Verona 37134, Italy
| |
Collapse
|
92
|
Cai W, Zhang J, de Lange WJ, Gregorich ZR, Karp H, Farrell ET, Mitchell SD, Tucholski T, Lin Z, Biermann M, McIlwain SJ, Ralphe JC, Kamp TJ, Ge Y. An Unbiased Proteomics Method to Assess the Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Circ Res 2019; 125:936-953. [PMID: 31573406 PMCID: PMC6852699 DOI: 10.1161/circresaha.119.315305] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
RATIONALE Human pluripotent stem cell (hPSC)-derived cardiomyocytes exhibit the properties of fetal cardiomyocytes, which limits their applications. Various methods have been used to promote maturation of hPSC-cardiomyocytes; however, there is a lack of an unbiased and comprehensive method for accurate assessment of the maturity of hPSC-cardiomyocytes. OBJECTIVE We aim to develop an unbiased proteomics strategy integrating high-throughput top-down targeted proteomics and bottom-up global proteomics for the accurate and comprehensive assessment of hPSC-cardiomyocyte maturation. METHODS AND RESULTS Utilizing hPSC-cardiomyocytes from early- and late-stage 2-dimensional monolayer culture and 3-dimensional engineered cardiac tissue, we demonstrated the high reproducibility and reliability of a top-down proteomics method, which enabled simultaneous quantification of contractile protein isoform expression and associated post-translational modifications. This method allowed for the detection of known maturation-associated contractile protein alterations and, for the first time, identified contractile protein post-translational modifications as promising new markers of hPSC-cardiomyocytes maturation. Most notably, decreased phosphorylation of α-tropomyosin was found to be associated with hPSC-cardiomyocyte maturation. By employing a bottom-up global proteomics strategy, we identified candidate maturation-associated markers important for sarcomere organization, cardiac excitability, and Ca2+ homeostasis. In particular, upregulation of myomesin 1 and transmembrane 65 was associated with hPSC-cardiomyocyte maturation and validated in cardiac development, making these promising markers for assessing maturity of hPSC-cardiomyocytes. We have further validated α-actinin isoforms, phospholamban, dystrophin, αB-crystallin, and calsequestrin 2 as novel maturation-associated markers, in the developing mouse cardiac ventricles. CONCLUSIONS We established an unbiased proteomics method that can provide accurate and specific assessment of the maturity of hPSC-cardiomyocytes and identified new markers of maturation. Furthermore, this integrated proteomics strategy laid a strong foundation for uncovering the molecular pathways involved in cardiac development and disease using hPSC-cardiomyocytes.
Collapse
Affiliation(s)
- Wenxuan Cai
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jianhua Zhang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Willem J. de Lange
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachery R. Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah Karp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Emily T. Farrell
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Stanford D. Mitchell
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mitch Biermann
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sean J. McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - J. Carter Ralphe
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Timothy J. Kamp
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
93
|
Kolwicz SC, Hall JK, Moussavi-Harami F, Chen X, Hauschka SD, Chamberlain JS, Regnier M, Odom GL. Gene Therapy Rescues Cardiac Dysfunction in Duchenne Muscular Dystrophy Mice by Elevating Cardiomyocyte Deoxy-Adenosine Triphosphate. JACC Basic Transl Sci 2019; 4:778-791. [PMID: 31998848 PMCID: PMC6978556 DOI: 10.1016/j.jacbts.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 01/13/2023]
Abstract
Mutations in the gene encoding for dystrophin leads to structural and functional deterioration of cardiomyocytes and is a hallmark of cardiomyopathy in Duchenne muscular dystrophy (DMD) patients. Administration of recombinant adeno-associated viral vectors delivering microdystrophin or ribonucleotide reductase (RNR), under muscle-specific regulatory control, rescues both baseline and high workload-challenged hearts in an aged, DMD mouse model. However, only RNR treatments improved both systolic and diastolic function under those conditions. Cardiac-specific recombinant adeno-associated viral treatment of RNR holds therapeutic promise for improvement of cardiomyopathy in DMD patients.
Collapse
Key Words
- CK8, miniaturized murine creatine kinase regulatory cassette
- CMV, cytomegalovirus
- DMD, Duchenne muscular dystrophy
- RNR, ribonucleotide reductase
- cTnT, cardiac troponin T
- cardiomyopathy
- dADP, deoxy-adenosine diphosphate
- dATP, deoxy-adenosine triphosphate
- diastolic dysfunction
- dystrophin
- mdx, mouse muscular dystrophy model
- rAAV, recombinant adeno-associated viral vector
- recombinant adeno-associated virus vectors
- ribonucleotide reductase
- μDys, microdystrophin
Collapse
Affiliation(s)
- Stephen C. Kolwicz
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington
| | - John K. Hall
- Department of Neurology, University of Washington, Seattle, Washington
| | - Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Xiolan Chen
- Department of Biochemistry, University of Washington, Seattle, Washington
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
| | - Stephen D. Hauschka
- Department of Biochemistry, University of Washington, Seattle, Washington
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
| | - Jeffrey S. Chamberlain
- Department of Neurology, University of Washington, Seattle, Washington
- Department of Biochemistry, University of Washington, Seattle, Washington
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
| | - Michael Regnier
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
| | - Guy L. Odom
- Department of Neurology, University of Washington, Seattle, Washington
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
| |
Collapse
|
94
|
Flinn MA, Link BA, O'Meara CC. Upstream regulation of the Hippo-Yap pathway in cardiomyocyte regeneration. Semin Cell Dev Biol 2019; 100:11-19. [PMID: 31606277 DOI: 10.1016/j.semcdb.2019.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
The response of the adult mammalian heart to injury such as myocardial infarction has long been described as primarily fibrotic scarring and adverse remodeling with little to no regeneration of cardiomyocytes. Emerging studies have challenged this paradigm by demonstrating that, indeed, adult mammalian cardiomyocytes are capable of completing cytokinesis albeit at levels vastly insufficient to compensate for the loss of functional cardiomyocytes following ischemic injury. Thus, there is great interest in identifying mechanisms to guide adult cardiomyocyte cell cycle re-entry and facilitate endogenous heart regeneration. The Hippo signaling pathway is a core kinase cascade that functions to suppress the transcriptional co-activators Yap and Taz by phosphorylation and therefore cytoplasmic retention or phospho-degradation. This pathway has recently sparked interest in the field of cardiac regeneration as inhibition of Hippo kinase signaling or overdriving the transcriptional co-activator, Yap, significantly promotes proliferation of terminally differentiated adult mammalian cardiomyocytes and can restore function in failing mouse hearts. Thus, the Hippo pathway is an attractive therapeutic target for promoting cardiomyocyte renewal and cardiac regeneration. Although the core kinases and transcriptional activators of the Hippo pathway have been studied extensively over the last twenty years, the regulatory inputs of this pathway, particularly in vertebrates, are poorly understood. Recent studies have elucidated several upstream regulatory inputs to the Hippo pathway in adult mammalian cardiomyocytes that influence cell proliferation and heart regeneration. Considering upstream inputs to the Hippo pathway are thought to be context and cell type specific, targeting these various components could serve as a therapeutic approach for refining Hippo-Yap signaling in the heart. Here, we provide an overview of the emerging regulatory inputs to the Hippo pathway as they relate to mammalian cardiomyocytes and heart regeneration.
Collapse
Affiliation(s)
- Michael A Flinn
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Caitlin C O'Meara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
95
|
Nguyen Q, Lim KRQ, Yokota T. Current understanding and treatment of cardiac and skeletal muscle pathology in laminin-α2 chain-deficient congenital muscular dystrophy. APPLICATION OF CLINICAL GENETICS 2019; 12:113-130. [PMID: 31308722 PMCID: PMC6618038 DOI: 10.2147/tacg.s187481] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023]
Abstract
Congenital muscular dystrophy (CMD) is a class of severe early-onset muscular dystrophies affecting skeletal/cardiac muscles as well as the central nervous system (CNS). Laminin-α2 chain-deficient congenital muscular dystrophy (LAMA2 MD), also known as merosin-deficient congenital muscular dystrophy type 1A (MDC1A), is an autosomal recessive CMD characterized by severe muscle weakness and degeneration apparent at birth or in the first 6 months of life. LAMA2 MD is the most common congenital muscular dystrophy, affecting approximately 4 in 500,000 children. The most common cause of death in early-onset LAMA2 MD is respiratory tract infection, with 30% of them dying within the first decade of life. LAMA2 MD is caused by loss-of-function mutations in the LAMA2 gene encoding for the laminin-α2 chain, one of the subunits of laminin-211. Laminin-211 is an extracellular matrix protein that functions to stabilize the basement membrane and muscle fibers during contraction. Since laminin-α2 is expressed in many tissue types including skeletal muscle, cardiac muscle, Schwann cells, and trophoblasts, patients with LAMA2 MD experience a multi-systemic clinical presentation depending on the extent of laminin-α2 chain deficiency. Cardiac manifestations are typically associated with a complete absence of laminin-α2; however, recent case reports highlight cardiac involvement in partial laminin-α2 chain deficiency. Laminin-211 is also expressed in the brain, and many patients have abnormalities on brain imaging; however, mental retardation and/or seizures are rarely seen. Currently, there is no cure for LAMA2 MD, but various therapies are being investigated in an effort to lessen the severity of LAMA2 MD. For example, antisense oligonucleotide-mediated exon skipping and CRISPR-Cas9 genome editing have efficiently restored the laminin-α2 chain in mouse models in vivo. This review consolidates information on the clinical presentation, genetic basis, pathology, and current treatment approaches for LAMA2 MD.
Collapse
Affiliation(s)
- Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada
| |
Collapse
|
96
|
Khokhar A, Nair A, Midya V, Kumar A, Sinharoy A, Ahmad TA, Abu-Hasan M, Mondal P. Association between pulmonary function and left ventricular volume and function in duchenne muscular dystrophy. Muscle Nerve 2019; 60:286-291. [PMID: 31250930 DOI: 10.1002/mus.26623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is characterized by absence of the subsarcolemmal protein dystrophin, present in skeletal muscles and cardiomyocytes. We hypothesized that progressive respiratory and left ventricular (LV) insufficiencies in DMD could be parallel and interrelated phenomena. METHODS We conducted a retrospective chart review of 27 patients with DMD. Our primary objective was to compare the rates of decline between pulmonary function test (PFT) measures (forced expiratory volume in the first second, forced vital capacity, peak expiratory flow rate, maximal inspiratory/expiratory pressure) and echocardiographic estimates of LV end-diastolic volume and LV ejection fraction. RESULTS The rates of decline/year of PFTs and LV estimates were not significantly different. Pulmonary function test measures of ventilatory efficiency and strength had strong intercorrelations. Pulmonary function tests and LV estimates had weak but statistically significant correlations. DISCUSSION A comparable rate of decline in PFTs and LV indices in DMD provides evidence for concurrently progressive deterioration in respiratory and LV functions. Muscle Nerve, 2019.
Collapse
Affiliation(s)
| | - Athira Nair
- Department of Pediatrics, Division of Pediatric Cardiology, University of California, San Francisco, California, USA
| | - Vishal Midya
- Department of Biostatistics and Bioinformatics, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Ashutosh Kumar
- Department of Pediatrics, Division of Pediatric Neurology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Ankita Sinharoy
- Department of Public Health, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Tariq Ali Ahmad
- Department of Medicine, Division of Cardiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Mutasim Abu-Hasan
- Department of Pediatrics, Division of Pulmonology, University of Florida, Gainesville, Florida, USA
| | - Pritish Mondal
- Department of Pediatrics, Division of Pediatric Pulmonology, Penn State College of Medicine, 500 University Drive, PO Box 850, Hershey, Pennsylvania, 17033, USA
| |
Collapse
|
97
|
Abstract
The ECM (extracellular matrix) network plays a crucial role in cardiac homeostasis, not only by providing structural support, but also by facilitating force transmission, and by transducing key signals to cardiomyocytes, vascular cells, and interstitial cells. Changes in the profile and biochemistry of the ECM may be critically implicated in the pathogenesis of both heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. The patterns of molecular and biochemical ECM alterations in failing hearts are dependent on the type of underlying injury. Pressure overload triggers early activation of a matrix-synthetic program in cardiac fibroblasts, inducing myofibroblast conversion, and stimulating synthesis of both structural and matricellular ECM proteins. Expansion of the cardiac ECM may increase myocardial stiffness promoting diastolic dysfunction. Cardiomyocytes, vascular cells and immune cells, activated through mechanosensitive pathways or neurohumoral mediators may play a critical role in fibroblast activation through secretion of cytokines and growth factors. Sustained pressure overload leads to dilative remodeling and systolic dysfunction that may be mediated by changes in the interstitial protease/antiprotease balance. On the other hand, ischemic injury causes dynamic changes in the cardiac ECM that contribute to regulation of inflammation and repair and may mediate adverse cardiac remodeling. In other pathophysiologic conditions, such as volume overload, diabetes mellitus, and obesity, the cell biological effectors mediating ECM remodeling are poorly understood and the molecular links between the primary insult and the changes in the matrix environment are unknown. This review article discusses the role of ECM macromolecules in heart failure, focusing on both structural ECM proteins (such as fibrillar and nonfibrillar collagens), and specialized injury-associated matrix macromolecules (such as fibronectin and matricellular proteins). Understanding the role of the ECM in heart failure may identify therapeutic targets to reduce geometric remodeling, to attenuate cardiomyocyte dysfunction, and even to promote myocardial regeneration.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
98
|
Sit B, Gutmann D, Iskratsch T. Costameres, dense plaques and podosomes: the cell matrix adhesions in cardiovascular mechanosensing. J Muscle Res Cell Motil 2019; 40:197-209. [PMID: 31214894 PMCID: PMC6726830 DOI: 10.1007/s10974-019-09529-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022]
Abstract
The stiffness of the cardiovascular environment changes during ageing and in disease and contributes to disease incidence and progression. For instance, increased arterial stiffness can lead to atherosclerosis, while stiffening of the heart due to fibrosis can increase the chances of heart failure. Cells can sense the stiffness of the extracellular matrix through integrin adhesions and other mechanosensitive structures and in response to this initiate mechanosignalling pathways that ultimately change the cellular behaviour. Over the past decades, interest in mechanobiology has steadily increased and with this also our understanding of the molecular basis of mechanosensing and transduction. However, much of our knowledge about the mechanisms is derived from studies investigating focal adhesions in non-muscle cells, which are distinct in several regards from the cell-matrix adhesions in cardiomyocytes (costameres) or vascular smooth muscle cells (dense plaques or podosomes). Therefore, we will look here first at the evidence for mechanical sensing in the cardiovascular system, before comparing the different cytoskeletal arrangements and adhesion sites in cardiomyocytes and vascular smooth muscle cells and what is known about mechanical sensing through the various structures.
Collapse
Affiliation(s)
- Brian Sit
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Daniel Gutmann
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK.
| |
Collapse
|
99
|
Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol 2019; 16:361-378. [PMID: 30683889 PMCID: PMC6525041 DOI: 10.1038/s41569-019-0155-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intact heart undergoes complex and multiscale remodelling processes in response to altered mechanical cues. Remodelling of the myocardium is regulated by a combination of myocyte and non-myocyte responses to mechanosensitive pathways, which can alter gene expression and therefore function in these cells. Cellular mechanotransduction and its downstream effects on gene expression are initially compensatory mechanisms during adaptations to the altered mechanical environment, but under prolonged and abnormal loading conditions, they can become maladaptive, leading to impaired function and cardiac pathologies. In this Review, we summarize mechanoregulated pathways in cardiac myocytes and fibroblasts that lead to altered gene expression and cell remodelling under physiological and pathophysiological conditions. Developments in systems modelling of the networks that regulate gene expression in response to mechanical stimuli should improve integrative understanding of their roles in vivo and help to discover new combinations of drugs and device therapies targeting mechanosignalling in heart disease.
Collapse
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Philip M Tan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kyle S Buchholz
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jeffrey H Omens
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
100
|
Fenwick AJ, Awinda PO, Yarbrough-Jones JA, Eldridge JA, Rodgers BD, Tanner BCW. Demembranated skeletal and cardiac fibers produce less force with altered cross-bridge kinetics in a mouse model for limb-girdle muscular dystrophy 2i. Am J Physiol Cell Physiol 2019; 317:C226-C234. [PMID: 31091146 DOI: 10.1152/ajpcell.00524.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Limb-girdle muscular dystrophy 2i (LGMD2i) is a dystroglycanopathy that compromises myofiber integrity and primarily reduces power output in limb muscles but can influence cardiac muscle as well. Previous studies of LGMD2i made use of a transgenic mouse model in which a proline-to-leucine (P448L) mutation in fukutin-related protein severely reduces glycosylation of α-dystroglycan. Muscle function is compromised in P448L mice in a manner similar to human patients with LGMD2i. In situ studies reported lower maximal twitch force and depressed force-velocity curves in medial gastrocnemius (MG) muscles from male P448L mice. Here, we measured Ca2+-activated force generation and cross-bridge kinetics in both demembranated MG fibers and papillary muscle strips from P448L mice. Maximal activated tension was 37% lower in MG fibers and 18% lower in papillary strips from P448L mice than controls. We also found slightly faster rates of cross-bridge recruitment and detachment in MG fibers from P448L than control mice. These increases in skeletal cross-bridge cycling could reduce the unitary force output from individual cross bridges by lowering the ratio of time spent in a force-bearing state to total cycle time. This suggests that the decreased force production in LGMD2i may be due (at least in part) to altered cross-bridge kinetics. This finding is notable, as the majority of studies germane to muscular dystrophies have focused on sarcolemma or whole muscle properties, whereas our findings suggest that the disease pathology is also influenced by potential downstream effects on cross-bridge behavior.
Collapse
Affiliation(s)
- Axel J Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - Jacob A Yarbrough-Jones
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - Jennifer A Eldridge
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - Buel D Rodgers
- Washington Center for Muscle Biology, Washington State University , Pullman, Washington.,AAVogen, Inc. , Rockville, Maryland
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| |
Collapse
|