51
|
Childs BG, Li H, van Deursen JM. Senescent cells: a therapeutic target for cardiovascular disease. J Clin Invest 2018; 128:1217-1228. [PMID: 29608141 DOI: 10.1172/jci95146] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence, a major tumor-suppressive cell fate, has emerged from humble beginnings as an in vitro phenomenon into recognition as a fundamental mechanism of aging. In the process, senescent cells have attracted attention as a therapeutic target for age-related diseases, including cardiovascular disease (CVD), the leading cause of morbidity and mortality in the elderly. Given the aging global population and the inadequacy of current medical management, attenuating the health care burden of CVD would be transformative to clinical practice. Here, we review the evidence that cellular senescence drives CVD in a bimodal fashion by both priming the aged cardiovascular system for disease and driving established disease forward. Hence, the growing field of senotherapy (neutralizing senescent cells for therapeutic benefit) is poised to contribute to both prevention and treatment of CVD.
Collapse
Affiliation(s)
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, and
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
52
|
Feng Q, Tian T, Liu J, Zhang L, Qi J, Lin X. Deregulation of microRNA‑31a‑5p is involved in the development of primary hypertension by suppressing apoptosis of pulmonary artery smooth muscle cells via targeting TP53. Int J Mol Med 2018; 42:290-298. [PMID: 29620173 PMCID: PMC5979825 DOI: 10.3892/ijmm.2018.3597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to identify the association between microRNA (miRNA/miR)-31a-5p and the development of hypertension, and its potential molecular mechanism. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analyses were performed to validate the candidate miRNA and genes involved in hypertension, following which an online miRNA database search, luciferase assay, and RT-qPCR and western blot analyses were performed to confirm the interaction between miR-31a-5p and TP53. A MTT assay and flow cytometric analysis were utilized to determine the effect of miR-31a-5p on cell growth and apoptosis. The results revealed that miR-31a-5p and TP53 were the candidate miRNA and gene regulating hypertension, and that TP53 was the virtual target gene of miR-31a-5p with a binding site located in the TP53 3′ untranslated region (3′UTR). It was confirmed by luciferase activity that miR-31a-5p markedly reduced the luciferase activity of the Luc-wild-type-TP53-3′UTR, whereas the mutated putative miR-31a-5p binding located on the TP53-3′UTR was found to eliminate such an inhibitory effect. miR-31a-5p had no effect on specificity protein 1, E2F transcription factor 2 or forkhead box P3 luciferase activity. Smooth muscle cells collected from spontaneously hypertensive rats treated with gold nano-particles containing anti-rno-miR-31a-5p exhibited a lower growth rate and a higher apoptotic rate. The results of the RT-qPCR and western blot analyses showed that miR-31a-5p negatively regulated the expression of TP53, and transfection with the hsa-miR-31a-5p mimic significantly promoted cell growth and inhibited cell apoptosis, whereas transfection with the anti-hsa-miR-31a-5p mimic significantly suppressed cell growth and induced cell apoptosis. Taken together, these findings indicated that miR-31a-5p is involved in hypertension via the accelerated proliferation of arterial smooth muscle cells and inhibition of apoptosis through targeting TP53.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Laboratory, The People's Hospital of Tongchuan, Tongchuan, Shaanxi 727000, P.R. China
| | - Tao Tian
- Department of Laboratory, Second Affiliated Hospital of Shaanxi Chinese Traditional Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Junfeng Liu
- Department of Infection, The People's Hospital of Tongchuan, Tongchuan, Shaanxi 727000, P.R. China
| | - Li Zhang
- Department of Gynecology and Obstetrics, The People's Hospital of Tongchuan, Tongchuan, Shaanxi 727000, P.R. China
| | - Jiangang Qi
- Department of Laboratory, Tongchuan Hospital of Chinese Traditional Medicine, Tongchuan, Shaanxi 727000, P.R. China
| | - Xiaojuan Lin
- Department of Cardiology, The People's Hospital of Tongchuan, Tongchuan, Shaanxi 727000, P.R. China
| |
Collapse
|
53
|
Tan Z, Li J, Zhang X, Yang X, Zhang Z, Yin KJ, Huang H. P53 Promotes Retinoid Acid-induced Smooth Muscle Cell Differentiation by Targeting Myocardin. Stem Cells Dev 2018; 27:534-544. [PMID: 29482449 DOI: 10.1089/scd.2017.0244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TP53 is a widely studied tumor suppressor gene that controls various cellular functions, including cell differentiation. However, little is known about its functional roles in smooth muscle cells (SMCs) differentiation from embryonic stem cells (ESCs). SMC differentiation is at the heart of our understanding of vascular development, normal blood pressure homeostasis, and the pathogenesis of vascular diseases such as atherosclerosis, hypertension, restenosis, as well as aneurysm. Using retinoid acid (RA)-induced SMC differentiation models, we observed that p53 expression is increased during in vitro differentiation of mouse ESCs into SMCs. Meanwhile, suppression of p53 by shRNA reduced RA-induced SMC differentiation. Mechanistically, we have identified for the first time that Myocardin, a transcription factor that induces muscle cell differentiation and muscle-specific gene expression, is the direct target of p53 by bioinformatic analysis, luciferase reporter assay, and chromatin immunoprecipitation approaches. Moreover, in vivo SMC-selective p53 transgenic overexpression inhibited injury-induced neointimal formation. Taken together, our data demonstrate that p53 and its target gene, Myocardin, play regulatory roles in SMC differentiation. This study may lead to the identification of novel target molecules that may, in turn, lead to novel drug discoveries for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Zhou Tan
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| | - Jingya Li
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| | - Xuejing Zhang
- 2 Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Xueqin Yang
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| | - Zunyi Zhang
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| | - Ke-Jie Yin
- 2 Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Huarong Huang
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| |
Collapse
|
54
|
Kolovou V, Tsipis A, Mihas C, Katsiki N, Vartela V, Koutelou M, Manolopoulou D, Leondiadis E, Iakovou I, Mavrogieni S, Kolovou G. Tumor Protein p53 (TP53) Gene and Left Main Coronary Artery Disease. Angiology 2018; 69:730-735. [PMID: 29482350 DOI: 10.1177/0003319718760075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Patients with left main (LM) coronary artery disease (CAD) are at the highest risk of cardiovascular events. We evaluated possible gene polymorphisms of tumor protein 53 ( TP53, rs1042522, p.Arg72Pro) that can differentiate LM-CAD from patients with more peripheral CAD (MP-CAD) and healthy participants (control group) in 520 individuals (LM-CAD, n = 175; MP-CAD, n = 185; and control group, n = 160). Patients with LM-CAD had the lowest Arg/Arg genotype frequency (36.0%) compared with the MP-CAD (57.3%) and control groups (61.9%), P < .001 for both comparisons. Similarly, the Arg allele was more frequent in the control group than in patients with MP-CAD (78.8% vs 73.2%; P = .007) and LM-CAD (78.8% vs 64.0%; P < .001). The Arg/Pro genotype was more frequent in the LM-CAD group compared with the MP-CAD and control groups (56.0, 31.9, and 33.8, respectively, P < .001 for both comparisons). Furthermore, the frequency of Arg/Arg genotypes was the lowest in the LM-CAD group compared with the MP-CAD and control groups. Knowing that TP53 is an antioncogene protein that acts as a tumor suppressor and regulator of apoptosis, the lowest frequency of Arg/Arg genotype observed in these high-risk patients may indicate lower protection from the atherosclerosis process. Replication studies are needed to evaluate this association.
Collapse
Affiliation(s)
- Vana Kolovou
- 1 Molecular Immunology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece.,2 Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Angelos Tsipis
- 1 Molecular Immunology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece
| | - Constantinos Mihas
- 3 1st Department of Internal Medicine and Diabetes Center, Tzaneio General Hospital of Piraeus, Pireas, Greece
| | - Niki Katsiki
- 4 2nd Propedeutic Department of Internal Medicine, Hippokration University Hospital, Thessaloniki, Greece
| | - Vasiliki Vartela
- 1 Molecular Immunology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece
| | - Maria Koutelou
- 5 Nuclear Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | | | - Evaggelos Leondiadis
- 1 Molecular Immunology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece
| | - Ioannis Iakovou
- 1 Molecular Immunology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece
| | - Sophie Mavrogieni
- 1 Molecular Immunology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece
| | - Genovefa Kolovou
- 1 Molecular Immunology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece
| |
Collapse
|
55
|
Docherty CK, Carswell A, Friel E, Mercer JR. Impaired mitochondrial respiration in human carotid plaque atherosclerosis: A potential role for Pink1 in vascular smooth muscle cell energetics. Atherosclerosis 2018; 268:1-11. [PMID: 29156421 PMCID: PMC6565844 DOI: 10.1016/j.atherosclerosis.2017.11.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/30/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS DNA damage and mitochondrial dysfunction are thought to play an essential role in ageing and the energetic decline of vascular smooth muscle cells (VSMCs) essential for maintaining plaque integrity. We aimed to better understand VSMCs and identify potentially useful compensatory pathways that could extend their lifespan. Moreover, we wanted to assess if defects in mitochondrial respiration exist in human atherosclerotic plaques and to identify the appropriate markers that may reflect a switch in VSMC energy metabolism. METHODS Human plaque tissue and cells were assessed for composition and evidence of DNA damage, repair capacity and mitochondrial dysfunction. Fresh plaque tissue was evaluated using high resolution oxygen respirometry to assess oxidative metabolism. Recruitment and processing of the mitochondrial regulator of autophagy Pink1 kinase was investigated in combination with transcriptional and protein markers associated with a potential switch to a more glycolytic metabolism. RESULTS Human VSMC have increased nuclear (nDNA) and mitochondrial (mtDNA) damage and reduced repair capacity. A subset of VSMCs within plaque cap had decreased oxidative phosphorylation and expression of Pink1 kinase. Plaque cells demonstrated increased glycolytic activity in response to loss of mitochondrial function. A potential compensatory glycolytic program may act as energetic switch via AMP kinase (AMPK) and hexokinase 2 (Hex2). CONCLUSIONS We have identified a subset of plaque VSMCs required for plaque stability that have increased mitochondrial dysfunction and decreased oxidative phosphorylation. Pink1 kinase may initiate a cellular response to promote a compensatory glycolytic program associated with upregulation of AMPK and Hex2.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Carotid Arteries/enzymology
- Carotid Arteries/pathology
- Carotid Artery Diseases/enzymology
- Carotid Artery Diseases/genetics
- Carotid Artery Diseases/pathology
- Cells, Cultured
- DNA Damage
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Energy Metabolism
- Glycolysis
- Hexokinase/metabolism
- Humans
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/pathology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Oxidative Phosphorylation
- Oxidative Stress
- Plaque, Atherosclerotic
- Protein Kinases/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Craig K Docherty
- Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University Avenue, University of Glasgow, Glasgow, G12 8TA, Scotland, United Kingdom
| | - Andy Carswell
- Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University Avenue, University of Glasgow, Glasgow, G12 8TA, Scotland, United Kingdom
| | - Elaine Friel
- Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University Avenue, University of Glasgow, Glasgow, G12 8TA, Scotland, United Kingdom
| | - John R Mercer
- Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University Avenue, University of Glasgow, Glasgow, G12 8TA, Scotland, United Kingdom.
| |
Collapse
|
56
|
Vendrov AE, Stevenson MD, Alahari S, Pan H, Wickline SA, Madamanchi NR, Runge MS. Attenuated Superoxide Dismutase 2 Activity Induces Atherosclerotic Plaque Instability During Aging in Hyperlipidemic Mice. J Am Heart Assoc 2017; 6:e006775. [PMID: 29079564 PMCID: PMC5721769 DOI: 10.1161/jaha.117.006775] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/14/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Atherosclerosis progression during aging culminates in the development of vulnerable plaques, which may increase the risk of cardiovascular events. Increased generation and/or decreased scavenging of reactive oxygen species in the vascular wall are major contributors to atherogenesis. We previously showed that superoxide dismutase 2 deficiency increased vascular oxidative stress and reduced aortic compliance in aged wild-type mice and that young Apoe-/-/Sod2+/- had increased mitochondrial DNA damage and atherosclerosis versus young Apoe-/- mice. Here we investigated the effects of superoxide dismutase 2 deficiency on atherosclerosis progression and plaque morphology in middle-aged Apoe-/- mice. METHODS AND RESULTS Compared with Apoe-/-, middle-aged Apoe-/-/Sod2+/- mice had increased vascular wall reactive oxygen species (P<0.05) and higher atherosclerotic lesion area (P<0.001). The atherosclerotic plaques in middle-aged Apoe-/-/Sod2+/- mice had an increased necrotic core with higher inflammatory cell infiltration, a thinned fibrous cap with depleted smooth muscle content, and intraplaque hemorrhage. In addition, the plaque shoulder area had higher levels of calpain-2, caspase-3, and matrix metalloproteinase-2 in intimal smooth muscle cells and depleted fibrous cap collagen. Targeting mitochondrial reactive oxygen species with MitoTEMPO attenuated features of atherosclerotic plaque vulnerability in middle-aged Apoe-/-/Sod2+/- mice by lowering expression of calpain-2, caspase-3, and matrix metalloproteinase-2 and decreasing smooth muscle cell apoptosis and matrix degradation. CONCLUSIONS Enhanced mitochondrial oxidative stress under hyperlipidemic conditions in aging induces plaque instability, in part by increasing smooth muscle cell apoptosis, necrotic core expansion, and matrix degradation. Targeting mitochondrial reactive oxygen species or its effectors may be a viable therapeutic strategy to prevent aging-associated and oxidative stress-related atherosclerosis complications.
Collapse
MESH Headings
- Age Factors
- Aging/genetics
- Aging/metabolism
- Aging/pathology
- Animals
- Aorta/enzymology
- Aorta/pathology
- Aortic Diseases/blood
- Aortic Diseases/enzymology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Apoptosis
- Apoptosis Regulatory Proteins/metabolism
- Atherosclerosis/blood
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Cells, Cultured
- DNA Damage
- Disease Models, Animal
- Extracellular Matrix Proteins/metabolism
- Fibrosis
- Genetic Predisposition to Disease
- Hyperlipidemias/blood
- Hyperlipidemias/enzymology
- Hyperlipidemias/genetics
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/pathology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Necrosis
- Oxidative Stress
- Phenotype
- Plaque, Atherosclerotic
- Proteolysis
- Rupture, Spontaneous
- Superoxide Dismutase/deficiency
- Superoxide Dismutase/genetics
- Vascular Remodeling
Collapse
Affiliation(s)
- Aleksandr E Vendrov
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI
| | - Mark D Stevenson
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI
| | - Samthosh Alahari
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI
| | - Hua Pan
- Department of Cardiovascular Sciences, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Samuel A Wickline
- Department of Cardiovascular Sciences, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Nageswara R Madamanchi
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI
| | - Marschall S Runge
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
57
|
Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, van Deursen JM. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 2017; 16:718-735. [PMID: 28729727 PMCID: PMC5942225 DOI: 10.1038/nrd.2017.116] [Citation(s) in RCA: 843] [Impact Index Per Article: 105.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronological age represents the single greatest risk factor for human disease. One plausible explanation for this correlation is that mechanisms that drive ageing might also promote age-related diseases. Cellular senescence, which is a permanent state of cell cycle arrest induced by cellular stress, has recently emerged as a fundamental ageing mechanism that also contributes to diseases of late life, including cancer, atherosclerosis and osteoarthritis. Therapeutic strategies that safely interfere with the detrimental effects of cellular senescence, such as the selective elimination of senescent cells (SNCs) or the disruption of the SNC secretome, are gaining significant attention, with several programmes now nearing human clinical studies.
Collapse
Affiliation(s)
| | | | - Darren J Baker
- Departments of Biochemistry and Molecular Biology, Mayo Clinic
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, USA
| | - Remi-Martin Laberge
- Unity Biotechnology, 3280 Bayshore Boulevard Suite 100, Brisbane, California 94005, USA
| | - Dan Marquess
- Unity Biotechnology, 3280 Bayshore Boulevard Suite 100, Brisbane, California 94005, USA
| | - Jamie Dananberg
- Unity Biotechnology, 3280 Bayshore Boulevard Suite 100, Brisbane, California 94005, USA
| | - Jan M van Deursen
- Departments of Biochemistry and Molecular Biology, Mayo Clinic
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, USA
| |
Collapse
|
58
|
Han Y, Jiang Q, Wang Y, Li W, Geng M, Han Z, Chen X. The anti-proliferative effects of oleanolic acid on A7r5 cells-Role of UCP2 and downstream FGF-2/p53/TSP-1. Cell Biol Int 2017; 41:1296-1306. [PMID: 28792088 DOI: 10.1002/cbin.10838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/07/2017] [Indexed: 01/11/2023]
Abstract
Vascular smooth muscle cell (VSMC) proliferation is a major contributor to atherosclerosis. This study investigated the inhibitory effects of oleanolic acid (OA) against oxidized low-density lipoprotein (ox-LDL)-induced VSMC proliferation in A7r5 cells and explored underlying molecular mechanism. The cell proliferation was quantified with cell counting kit-8 (CCK-8), in which ox-LDL significantly increased A7r5 cells proliferation, while OA pretreatment effectively alleviated such changes without inducing overt cytotoxicity, as indicated by lactate dehydrogenase (LDH) assay. Quantitative real-time RT-PCR (qRT-PCR) and Western blotting revealed increased UCP2 and FGF-2 expression levels as well as decreased p53 and TSP-1 expression levels in A7r5 cells following ox-LDL exposure, while OA pretreatment reversed such changes. Furthermore, inhibiting UCP2 with genipin remarkably reversed the changes in the expression levels of FGF-2, p53, and TSP-1 induced by ox-LDL exposure; silencing FGF-2 with siRNA did not significantly change the expression levels of UCP2 but effectively reversed the changes in the expression levels of p53 and TSP-1, and activation of p53 with PRIMA-1 only significantly affected the changes in the expression levels of TSP-1, but not in UCP2 or FGF-2, suggesting a UCP-2/FGF-2/p53/TSP-1 signaling in A7r5 cells response to ox-LDL exposure. Additionally, co-treatment of OA and genipin exhibited similar effects to the expression levels of UCP2, FGF-2, p53, and TSP-1 as OA or genipin solo treatment in ox-LDL-exposed A7r5 cells, suggesting the involvement of UCP-2/FGF-2/p53/TSP-1 in the mechanism of OA. In conclusion, OA inhibits ox-LDL-induced VSMC proliferation in A7r5 cells, the mechanism involves the changes in UCP-2/FGF-2/p53/TSP-1.
Collapse
Affiliation(s)
- Yantao Han
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Qixiao Jiang
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Yu Wang
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Wenqian Li
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Min Geng
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Zhiwu Han
- The Affiliated Hospital of Qingdao University, 16 Jiansu Road, Qingdao 266021, Shandong, China
| | - Xuehong Chen
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| |
Collapse
|
59
|
Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F, Provinciali M, Maggio MG, Corsonello A, Lattanzio F. Different transcriptional profiling between senescent and non-senescent human coronary artery endothelial cells (HCAECs) by Omeprazole and Lansoprazole treatment. Biogerontology 2016; 18:217-236. [PMID: 28039570 DOI: 10.1007/s10522-016-9675-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/22/2016] [Indexed: 01/04/2023]
Abstract
Recent evidence suggests that high dose and/or long term use of proton pump inhibitors (PPIs) may increase the risk of adverse cardiovascular events in older patients, but mechanisms underlying these detrimental effects are not known. Taking into account that the senescent endothelial cells have been implicated in the genesis or promotion of age-related cardiovascular disease, we hypothesized an active role of PPIs in senescent cells. The aim of this study is to investigate the changes in gene expression occurring in senescent and non-senescent human coronary artery endothelial cells (HCAECs) following Omeprazole (OPZ) or Lansoprazole (LPZ) treatment. Here, we show that atherogenic response is among the most regulated processes in PPI-treated HCAECs. PPIs induced down-regulation of anti-atherogenic chemokines (CXCL11, CXCL12 and CX3CL1) in senescent but not in non-senescent cells, while the same chemokines were up-regulated in untreated senescent cells. These findings support the hypothesis that up-regulated anti-atherogenic chemokines may represent a defensive mechanism against atherosclerosis during cellular senescence, and suggest that PPIs could activate pro-atherogenic pathways by changing the secretory phenotype of senescent HCAECs. Moreover, the genes coding for fatty acid binding protein 4 (FABP4) and piezo-type mechanosensitive ion channel component 2 (PIEZO2) were modulated by PPIs treatment with respect to untreated cells. In conclusions, our results show that long-term and high dose use of PPI could change the secretory phenotype of senescent cells, suggesting one of the potential mechanisms by which use of PPI can increase adverse outcomes in older subjects.
Collapse
Affiliation(s)
- Laura Costarelli
- Translational Research Ctr. of Nutrition and Ageing, Scientific and Technological Pole, IRCCS-Italian National Research Center on Aging (INRCA), Via Birarelli 8, 60121, Ancona, Italy.
| | - Robertina Giacconi
- Translational Research Ctr. of Nutrition and Ageing, Scientific and Technological Pole, IRCCS-Italian National Research Center on Aging (INRCA), Via Birarelli 8, 60121, Ancona, Italy
| | - Marco Malavolta
- Translational Research Ctr. of Nutrition and Ageing, Scientific and Technological Pole, IRCCS-Italian National Research Center on Aging (INRCA), Via Birarelli 8, 60121, Ancona, Italy
| | - Andrea Basso
- Translational Research Ctr. of Nutrition and Ageing, Scientific and Technological Pole, IRCCS-Italian National Research Center on Aging (INRCA), Via Birarelli 8, 60121, Ancona, Italy
| | - Francesco Piacenza
- Translational Research Ctr. of Nutrition and Ageing, Scientific and Technological Pole, IRCCS-Italian National Research Center on Aging (INRCA), Via Birarelli 8, 60121, Ancona, Italy
| | - Mauro Provinciali
- Translational Research Ctr. of Nutrition and Ageing, Scientific and Technological Pole, IRCCS-Italian National Research Center on Aging (INRCA), Via Birarelli 8, 60121, Ancona, Italy
| | - Marcello G Maggio
- Department of Clinical and Experimental Medicine, Geriatric Clinic, University of Parma and University-Hospital of Parma, Parma, Italy
| | - Andrea Corsonello
- Unit of Geriatric Pharmacoepidemiology, Research Hospital of Cosenza, Italian National Research Center on Aging (INRCA), Cosenza, Italy
| | - Fabrizia Lattanzio
- Italian National Research Center on Aging (INRCA), Scientific Direction, Ancona, Italy
| |
Collapse
|
60
|
Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 2016; 354:472-477. [PMID: 27789842 DOI: 10.1126/science.aaf6659] [Citation(s) in RCA: 850] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022]
Abstract
Advanced atherosclerotic lesions contain senescent cells, but the role of these cells in atherogenesis remains unclear. Using transgenic and pharmacological approaches to eliminate senescent cells in atherosclerosis-prone low-density lipoprotein receptor-deficient (Ldlr-/-) mice, we show that these cells are detrimental throughout disease pathogenesis. We find that foamy macrophages with senescence markers accumulate in the subendothelial space at the onset of atherosclerosis, where they drive pathology by increasing expression of key atherogenic and inflammatory cytokines and chemokines. In advanced lesions, senescent cells promote features of plaque instability, including elastic fiber degradation and fibrous cap thinning, by heightening metalloprotease production. Together, these results demonstrate that senescent cells are key drivers of atheroma formation and maturation and suggest that selective clearance of these cells by senolytic agents holds promise for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Bennett G Childs
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Tobias Wijshake
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA. Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| | - Cheryl A Conover
- Division of Endocrinology, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA. Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA. Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
61
|
Caspase-3 Deletion Promotes Necrosis in Atherosclerotic Plaques of ApoE Knockout Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3087469. [PMID: 27847551 PMCID: PMC5101396 DOI: 10.1155/2016/3087469] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/03/2022]
Abstract
Apoptosis of macrophages and vascular smooth muscle cells (VSMCs) in advanced atherosclerotic plaques contributes to plaque progression and instability. Caspase-3, a key executioner protease in the apoptotic pathway, has been identified in human and mouse atherosclerotic plaques but its role in atherogenesis is not fully explored. We therefore investigated the impact of caspase-3 deletion on atherosclerosis by crossbreeding caspase-3 knockout (Casp3−/−) mice with apolipoprotein E knockout (ApoE−/−) mice. Bone marrow-derived macrophages and VSMCs isolated from Casp3−/−ApoE−/− mice were resistant to apoptosis but showed increased susceptibility to necrosis. However, caspase-3 deficiency did not sensitize cells to undergo RIP1-dependent necroptosis. To study the effect on atherosclerotic plaque development, Casp3+/+ApoE−/− and Casp3−/−ApoE−/− mice were fed a western-type diet for 16 weeks. Though total plasma cholesterol, triglycerides, and LDL cholesterol levels were not altered, both the plaque size and percentage necrosis were significantly increased in the aortic root of Casp3−/−ApoE−/− mice as compared to Casp3+/+ApoE−/− mice. Macrophage content was significantly decreased in plaques of Casp3−/−ApoE−/− mice as compared to controls, while collagen content and VSMC content were not changed. To conclude, deletion of caspase-3 promotes plaque growth and plaque necrosis in ApoE−/− mice, indicating that this antiapoptotic strategy is unfavorable to improve atherosclerotic plaque stability.
Collapse
|
62
|
Kędzierska H, Popławski P, Hoser G, Rybicka B, Rodzik K, Sokół E, Bogusławska J, Tański Z, Fogtman A, Koblowska M, Piekiełko-Witkowska A. Decreased Expression of SRSF2 Splicing Factor Inhibits Apoptotic Pathways in Renal Cancer. Int J Mol Sci 2016; 17:ijms17101598. [PMID: 27690003 PMCID: PMC5085631 DOI: 10.3390/ijms17101598] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Serine and arginine rich splicing factor 2(SRSF2) belongs to the serine/arginine (SR)-rich family of proteins that regulate alternative splicing. Previous studies suggested that SRSF2 can contribute to carcinogenic processes. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, highly aggressive and difficult to treat, mainly due to resistance to apoptosis. In this study we hypothesized that SRSF2 contributes to the regulation of apoptosis in ccRCC. Using tissue samples obtained from ccRCC patients, as well as independent validation on The Cancer Genome Atlas (TCGA) data, we demonstrate for the first time that expression of SRSF2 is decreased in ccRCC tumours when compared to non-tumorous control tissues. Furthermore, by employing a panel of ccRCC-derived cell lines with silenced SRSF2 expression and qPCR arrays we show that SRSF2 contributes not only to splicing patterns but also to expression of multiple apoptotic genes, including new SRSF2 targets: DIABLO, BIRC5/survivin, TRAIL, BIM, MCL1, TNFRSF9, TNFRSF1B, CRADD, BCL2L2, BCL2A1, and TP53. We also identified a new splice variant of CFLAR, an inhibitor of caspase activity. These changes culminate in diminished caspase-9 activity and inhibition of apoptosis. In summary, we show for the first time that decreased expression of SRSF2 in ccRCC contributes to protection of cancer cells viability.
Collapse
Affiliation(s)
- Hanna Kędzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Grażyna Hoser
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Katarzyna Rodzik
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Elżbieta Sokół
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Zbigniew Tański
- Department of Urology, Regional Hospital, 07-410 Ostrołęka, Poland.
| | - Anna Fogtman
- Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Marta Koblowska
- Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland.
| | | |
Collapse
|
63
|
Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, Gäbel G, Beutner F, Scholz M, Thiery J, Musunuru K, Krohn K, Mann M, Teupser D. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 2016; 7:12429. [PMID: 27539542 PMCID: PMC4992165 DOI: 10.1038/ncomms12429] [Citation(s) in RCA: 854] [Impact Index Per Article: 94.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 07/01/2016] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are broadly expressed in eukaryotic cells, but their molecular mechanism in human disease remains obscure. Here we show that circular antisense non-coding RNA in the INK4 locus (circANRIL), which is transcribed at a locus of atherosclerotic cardiovascular disease on chromosome 9p21, confers atheroprotection by controlling ribosomal RNA (rRNA) maturation and modulating pathways of atherogenesis. CircANRIL binds to pescadillo homologue 1 (PES1), an essential 60S-preribosomal assembly factor, thereby impairing exonuclease-mediated pre-rRNA processing and ribosome biogenesis in vascular smooth muscle cells and macrophages. As a consequence, circANRIL induces nucleolar stress and p53 activation, resulting in the induction of apoptosis and inhibition of proliferation, which are key cell functions in atherosclerosis. Collectively, these findings identify circANRIL as a prototype of a circRNA regulating ribosome biogenesis and conferring atheroprotection, thereby showing that circularization of long non-coding RNAs may alter RNA function and protect from human disease.
Collapse
Affiliation(s)
- Lesca M. Holdt
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
- LIFE—Leipzig Research Center for Civilization Diseases, Universität Leipzig, 04103 Leipzig, Germany
- or to
| | - Anika Stahringer
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
| | - Kristina Sass
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
| | - Garwin Pichler
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nils A. Kulak
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Wolfgang Wilfert
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
| | - Alexander Kohlmaier
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
| | - Andreas Herbst
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
| | - Bernd H. Northoff
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
| | - Alexandros Nicolaou
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
| | - Gabor Gäbel
- Department of Vascular and Endovascular Surgery, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
| | - Frank Beutner
- LIFE—Leipzig Research Center for Civilization Diseases, Universität Leipzig, 04103 Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Markus Scholz
- LIFE—Leipzig Research Center for Civilization Diseases, Universität Leipzig, 04103 Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, 04107 Leipzig, Germany
| | - Joachim Thiery
- LIFE—Leipzig Research Center for Civilization Diseases, Universität Leipzig, 04103 Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Kiran Musunuru
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Knut Krohn
- LIFE—Leipzig Research Center for Civilization Diseases, Universität Leipzig, 04103 Leipzig, Germany
- Interdisciplinary Center for Clinical Research, University Leipzig, 04103 Leipzig, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 81337 Munich, Germany
- LIFE—Leipzig Research Center for Civilization Diseases, Universität Leipzig, 04103 Leipzig, Germany
- or to
| |
Collapse
|
64
|
Epothilones Suppress Neointimal Thickening in the Rat Carotid Balloon-Injury Model by Inducing Vascular Smooth Muscle Cell Apoptosis through p53-Dependent Signaling Pathway. PLoS One 2016; 11:e0155859. [PMID: 27218463 PMCID: PMC4878802 DOI: 10.1371/journal.pone.0155859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 05/05/2016] [Indexed: 01/29/2023] Open
Abstract
Microtubule stabilizing agents (MTSA) are known to inhibit vascular smooth muscle cell (VSMC) proliferation and migration, and effectively reduce neointimal hyperplasia and restenosis. Epothilones (EPOs), non-taxane MTSA, have been found to be effective in the inhibition of VSMC proliferation and neointimal formation by cell cycle arrest. However, effect of EPOs on apoptosis in hyper-proliferated VSMCs as a possible way to reduce neointimal formation and its action mechanism related to VSMC viability has not been suited yet. Thus, the purposes of the present study was to investigate whether EPOs are able to inhibit neointimal formation by inducing apoptosis within the region of neointimal hyperplasia in balloon-injured rat carotid artery, as well as underlying action mechanism. Treatment of EPO-B and EPO-D significantly induced apoptotic cell death and mitotic catastrophe in hyper-proliferated VSMCs, resulting in cell growth inhibition. Further, EPOs significantly suppressed VSMC proliferation and induced apoptosis by activation of p53-dependent apoptotic signaling pathway, Bax/cytochrome c/caspase-3. We further demonstrated that the local treatment of carotid arteries with EPOs potently inhibited neointimal lesion formation by induction of apoptosis in rat carotid injury model. Our findings demonstrate a potent anti-neointimal hyperplasia property of EPOs by inducing p53-depedent apoptosis in hyper-proliferated VSMCs.
Collapse
|
65
|
Jones PD, Kaiser MA, Ghaderi Najafabadi M, McVey DG, Beveridge AJ, Schofield CL, Samani NJ, Webb TR. The Coronary Artery Disease-associated Coding Variant in Zinc Finger C3HC-type Containing 1 (ZC3HC1) Affects Cell Cycle Regulation. J Biol Chem 2016; 291:16318-27. [PMID: 27226629 PMCID: PMC4965579 DOI: 10.1074/jbc.m116.734020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 11/29/2022] Open
Abstract
Genome-wide association studies have to date identified multiple coronary artery disease (CAD)-associated loci; however, for most of these loci the mechanism by which they affect CAD risk is unclear. The CAD-associated locus 7q32.2 is unusual in that the lead variant, rs11556924, is not in strong linkage disequilibrium with any other variant and introduces a coding change in ZC3HC1, which encodes NIPA. In this study, we show that rs11556924 polymorphism is associated with lower regulatory phosphorylation of NIPA in the risk variant, resulting in NIPA with higher activity. Using a genome-editing approach we show that this causes an effective decrease in cyclin-B1 stability in the nucleus, thereby slowing its nuclear accumulation. By perturbing the rate of nuclear cyclin-B1 accumulation, rs11556924 alters the regulation of mitotic progression resulting in an extended mitosis. This study shows that the CAD-associated coding polymorphism in ZC3HC1 alters the dynamics of cell-cycle regulation by NIPA.
Collapse
Affiliation(s)
- Peter D Jones
- From the Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, University of Leicester, Leicester, LE3 9QP and
| | - Michael A Kaiser
- From the Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, University of Leicester, Leicester, LE3 9QP and
| | - Maryam Ghaderi Najafabadi
- From the Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, University of Leicester, Leicester, LE3 9QP and
| | - David G McVey
- From the Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, University of Leicester, Leicester, LE3 9QP and
| | - Allan J Beveridge
- From the Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, University of Leicester, Leicester, LE3 9QP and
| | - Christine L Schofield
- Horizon Discovery Limited, 7100 Cambridge Research Park, Waterbeach, Cambridge CB25 9TL, United Kingdom
| | - Nilesh J Samani
- From the Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, University of Leicester, Leicester, LE3 9QP and
| | - Tom R Webb
- From the Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, University of Leicester, Leicester, LE3 9QP and
| |
Collapse
|
66
|
Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 2016; 21:1424-35. [PMID: 26646499 DOI: 10.1038/nm.4000] [Citation(s) in RCA: 1572] [Impact Index Per Article: 174.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/28/2015] [Indexed: 12/14/2022]
Abstract
Cellular senescence, a process that imposes permanent proliferative arrest on cells in response to various stressors, has emerged as a potentially important contributor to aging and age-related disease, and it is an attractive target for therapeutic exploitation. A wealth of information about senescence in cultured cells has been acquired over the past half century; however, senescence in living organisms is poorly understood, largely because of technical limitations relating to the identification and characterization of senescent cells in tissues and organs. Furthermore, newly recognized beneficial signaling functions of senescence suggest that indiscriminately targeting senescent cells or modulating their secretome for anti-aging therapy may have negative consequences. Here we discuss current progress and challenges in understanding the stressors that induce senescence in vivo, the cell types that are prone to senesce, and the autocrine and paracrine properties of senescent cells in the contexts of aging and age-related diseases as well as disease therapy.
Collapse
|
67
|
Jian L, Jian D, Chen Q, Zhang L. Long Noncoding RNAs in Atherosclerosis. J Atheroscler Thromb 2015; 23:376-84. [PMID: 26699715 DOI: 10.5551/jat.33167] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) were a group of non-protein-coding RNAs >200 nucleotides and participated in biological processes and pathophysiological conditions in vivo or in vitro. Recently, more and more lncRNAs interfering with the progress of atherosclerosis were identified and characterized in the atherogenic cells such as vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and monocytes/macrophages showing that lncRNAs play an important role in the occurrence of atherosclerosis. In this review, we summarized and highlighted the lncRNAs that play a role in the process of atherosclerosis. This study may provide helpful insights regarding further study of lncRNAs associated with atherosclerosis.
Collapse
Affiliation(s)
- Liguo Jian
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University
| | | | | | | |
Collapse
|
68
|
Wang J, Uryga AK, Reinhold J, Figg N, Baker L, Finigan A, Gray K, Kumar S, Clarke M, Bennett M. Vascular Smooth Muscle Cell Senescence Promotes Atherosclerosis and Features of Plaque Vulnerability. Circulation 2015; 132:1909-19. [DOI: 10.1161/circulationaha.115.016457] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/17/2015] [Indexed: 12/28/2022]
Abstract
Background—
Although vascular smooth muscle cell (VSMC) proliferation is implicated in atherogenesis, VSMCs in advanced plaques and cultured from plaques show evidence of VSMC senescence and DNA damage. In particular, plaque VSMCs show shortening of telomeres, which can directly induce senescence. Senescence can have multiple effects on plaque development and morphology; however, the consequences of VSMC senescence or the mechanisms underlying VSMC senescence in atherosclerosis are mostly unknown.
Methods and Results—
We examined the expression of proteins that protect telomeres in VSMCs derived from human plaques and normal vessels. Plaque VSMCs showed reduced expression and telomere binding of telomeric repeat-binding factor-2 (TRF2), associated with increased DNA damage. TRF2 expression was regulated by p53-dependent degradation of the TRF2 protein. To examine the functional consequences of loss of TRF2, we expressed TRF2 or a TRF2 functional mutant (T188A) as either gain- or loss-of-function studies in vitro and in apolipoprotein E
–/–
mice. TRF2 overexpression bypassed senescence, reduced DNA damage, and accelerated DNA repair, whereas TRF2
188A
showed opposite effects. Transgenic mice expressing VSMC-specific TRF2
T188A
showed increased atherosclerosis and necrotic core formation in vivo, whereas VSMC-specific TRF2 increased the relative fibrous cap and decreased necrotic core areas. TRF2 protected against atherosclerosis independent of secretion of senescence-associated cytokines.
Conclusions—
We conclude that plaque VSMC senescence in atherosclerosis is associated with loss of TRF2. VSMC senes cence promotes both atherosclerosis and features of plaque vulnerability, identifying prevention of senescence as a potential target for intervention.
Collapse
Affiliation(s)
- Julie Wang
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Anna K. Uryga
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Johannes Reinhold
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Nichola Figg
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Lauren Baker
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Alison Finigan
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Kelly Gray
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Sheetal Kumar
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Murray Clarke
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Martin Bennett
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
69
|
Varela A, Piperi C, Sigala F, Agrogiannis G, Davos CH, Andri MA, Manopoulos C, Tsangaris S, Basdra EK, Papavassiliou AG. Elevated expression of mechanosensory polycystins in human carotid atherosclerotic plaques: association with p53 activation and disease severity. Sci Rep 2015; 5:13461. [PMID: 26286632 PMCID: PMC4541068 DOI: 10.1038/srep13461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/21/2015] [Indexed: 12/22/2022] Open
Abstract
Atherosclerotic plaque formation is associated with irregular distribution of wall shear stress (WSS) that modulates endothelial function and integrity. Polycystins (PC)-1/-2 constitute a flow-sensing protein complex in endothelial cells, able to respond to WSS and induce cell-proliferation changes leading to atherosclerosis. An endothelial cell-culture system of measurable WSS was established to detect alterations in PCs expression under conditions of low- and high-oscillatory shear stress in vitro. PCs expression and p53 activation as a regulator of cell proliferation were further evaluated in vivo and in 69 advanced human carotid atherosclerotic plaques (AAPs). Increased PC-1/PC-2 expression was observed at 30–60 min of low shear stress (LSS) in endothelial cells. Elevated PC-1 expression at LSS was followed by p53 potentiation. PCs immunoreactivity localizes in areas with macrophage infiltration and neovascularization. PC-1 mRNA and protein levels were significantly higher than PC-2 in stable fibroatherotic (V) and unstable/complicated (VI) AAPs. Elevated PC-1 immunostaining was detected in AAPs from patients with diabetes mellitus, dyslipidemia, hypertension and carotid stenosis, at both arteries (50%) or in one artery (90%). PCs seem to participate in plaque formation and progression. Since PC-1 upregulation coincides with p38 and p53 activation, a potential interplay of these molecules in atherosclerosis induction is posed.
Collapse
Affiliation(s)
- Aimilia Varela
- 1] Department of Biological Chemistry, University of Athens Medical School, Athens 11527, Greece [2] Cardiovascular Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Christina Piperi
- Department of Biological Chemistry, University of Athens Medical School, Athens 11527, Greece
| | - Fragiska Sigala
- Vascular Surgery Division, First Department of Propaedeutic Surgery, 'Hippokrateion' General Hospital, University of Athens Medical School, Athens 11527, Greece
| | - George Agrogiannis
- First Department of Pathology, 'Laikon' General Hospital, University of Athens Medical School, Athens 11527, Greece
| | - Constantinos H Davos
- Cardiovascular Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Maria-Anastasia Andri
- Laboratory of Biofluid Mechanics and Biomedical Engineering, School of Mechanical Engineering, National Technical University of Athens, Athens 15780, Greece
| | - Christos Manopoulos
- Laboratory of Biofluid Mechanics and Biomedical Engineering, School of Mechanical Engineering, National Technical University of Athens, Athens 15780, Greece
| | - Sokrates Tsangaris
- Laboratory of Biofluid Mechanics and Biomedical Engineering, School of Mechanical Engineering, National Technical University of Athens, Athens 15780, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, University of Athens Medical School, Athens 11527, Greece
| | | |
Collapse
|
70
|
Tominaga K. The emerging role of senescent cells in tissue homeostasis and pathophysiology. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2015; 5:27743. [PMID: 25994420 PMCID: PMC4439419 DOI: 10.3402/pba.v5.27743] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/03/2015] [Accepted: 05/03/2015] [Indexed: 12/21/2022]
Abstract
Cellular senescence is a state of permanent growth arrest and is thought to play a pivotal role in tumor suppression. Cellular senescence may play an important role in tumor suppression, wound healing, and protection against tissue fibrosis in physiological conditions in vivo. However, accumulating evidence that senescent cells may have harmful effects in vivo and may contribute to tissue remodeling, organismal aging, and many age-related diseases also exists. Cellular senescence can be induced by various intrinsic and extrinsic factors. Both p53/p21 and p16/RB pathways are important for irreversible growth arrest in senescent cells. Senescent cells secret numerous biologically active factors. This specific secretion phenotype by senescent cells may largely contribute to physiological and pathological consequences in organisms. Here I review the molecular basis of cell cycle arrest and the specific secretion phenotype in cellular senescence. I also summarize the current knowledge of the role of cellular senescence in vivo in physiological and pathological settings.
Collapse
Affiliation(s)
- Kaoru Tominaga
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Shimotsuke, Japan;
| |
Collapse
|
71
|
Abstract
Apoptosis is a key process occurring in atherosclerosis, both in humans and in animal models. Apoptosis occurs in all cell types studied thus far, and thus lineage marking is often necessary. Apoptosis should be ascertained using a combination of morphological features and activation of specific pathways (e.g., terminal UTP nick end labeling-TUNEL). Both TUNEL and cryptic epitope antibodies (e.g., cleaved caspase 3) can be used, although they will often give different frequencies. Apoptotic frequency but not rate can be estimated from these methods, as we do not know the timing of apoptosis or how much of the process is marked by each method. We describe the morphological and immunohistochemical methods used in our laboratory to detect apoptotic cells in animal and human atherosclerotic plaques.
Collapse
Affiliation(s)
- Nichola L Figg
- Division of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Box 110, Hills Road, Cambridge, CB2 0QQ, UK
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Box 110, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
72
|
Fuster JJ. Quantification of Cellular Proliferation in Mouse Atherosclerotic Lesions. Methods Mol Biol 2015; 1339:201-10. [PMID: 26445791 DOI: 10.1007/978-1-4939-2929-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Excessive cell proliferation within atherosclerotic plaques plays an important role in the progression of atherosclerosis. Macrophage proliferation in particular has become a major focus of attention in the cardiovascular field because it appears to mediate most of macrophage expansion in mouse atherosclerotic arteries. Therefore, quantification of cell proliferation is an essential part of the characterization of atherosclerotic plaques in experimental studies. This chapter describes two variants of a simple immunostaining protocol that allow for the quantification of cellular proliferation in mouse atherosclerotic lesions based on the detection of the proliferation-associated antigen Ki-67.
Collapse
Affiliation(s)
- José J Fuster
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 700 Albany Street, W-611, Boston, MA, USA.
| |
Collapse
|
73
|
Gray K, Kumar S, Figg N, Harrison J, Baker L, Mercer J, Littlewood T, Bennett M. Effects of DNA damage in smooth muscle cells in atherosclerosis. Circ Res 2014; 116:816-26. [PMID: 25524056 DOI: 10.1161/circresaha.116.304921] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RATIONALE DNA damage and the DNA damage response have been identified in human atherosclerosis, including in vascular smooth muscle cells (VSMCs). However, although double-stranded breaks (DSBs) are hypothesized to promote plaque progression and instability, in part, by promoting cell senescence, apoptosis, and inflammation, the direct effects of DSBs in VSMCs seen in atherogenesis are unknown. OBJECTIVE To determine the presence and effect of endogenous levels of DSBs in VSMCs on atherosclerosis. METHODS AND RESULTS Human atherosclerotic plaque VSMCs showed increased expression of multiple DNA damage response proteins in vitro and in vivo, particularly the MRE11/RAD50/NBS1 complex that senses DSB repair. Oxidative stress-induced DSBs were increased in plaque VSMCs, but DSB repair was maintained. To determine the effect of DSBs on atherosclerosis, we generated 2 novel transgenic mice lines expressing NBS1 or C-terminal deleted NBS1 only in VSMCs, and crossed them with apolipoprotein E(-/-) mice. SM22α-NBS1/apolipoprotein E(-/-) VSMCs showed enhanced DSB repair and decreased growth arrest and apoptosis, whereas SM22α-(ΔC)NBS1/apolipoprotein E(-/-) VSMCs showed reduced DSB repair and increased growth arrest and apoptosis. Accelerating or retarding DSB repair did not affect atherosclerosis extent or composition. However, VSMC DNA damage reduced relative fibrous cap areas, whereas accelerating DSB repair increased cap area and VSMC content. CONCLUSIONS Human atherosclerotic plaque VSMCs show increased DNA damage, including DSBs and DNA damage response activation. VSMC DNA damage has minimal effects on atherogenesis, but alters plaque phenotype inhibiting fibrous cap areas in advanced lesions. Inhibiting DNA damage in atherosclerosis may be a novel target to promote plaque stability.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Apolipoproteins E/deficiency
- Brachiocephalic Trunk/pathology
- Carotid Arteries/cytology
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/genetics
- Cells, Cultured
- Comet Assay
- DNA Breaks, Double-Stranded
- DNA Damage
- DNA Repair Enzymes/biosynthesis
- DNA Repair Enzymes/genetics
- DNA-Binding Proteins
- Female
- Gene Expression Profiling
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microfilament Proteins/biosynthesis
- Microfilament Proteins/genetics
- Muscle Proteins/biosynthesis
- Muscle Proteins/genetics
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Oligonucleotide Array Sequence Analysis
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Up-Regulation
Collapse
Affiliation(s)
- Kelly Gray
- From the Division of Cardiovascular Medicine (K.G., S.K., N.F., J.H., L.B., J.M., M.B.) and Department of Biochemistry (T.L.), Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Sheetal Kumar
- From the Division of Cardiovascular Medicine (K.G., S.K., N.F., J.H., L.B., J.M., M.B.) and Department of Biochemistry (T.L.), Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Nichola Figg
- From the Division of Cardiovascular Medicine (K.G., S.K., N.F., J.H., L.B., J.M., M.B.) and Department of Biochemistry (T.L.), Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - James Harrison
- From the Division of Cardiovascular Medicine (K.G., S.K., N.F., J.H., L.B., J.M., M.B.) and Department of Biochemistry (T.L.), Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Lauren Baker
- From the Division of Cardiovascular Medicine (K.G., S.K., N.F., J.H., L.B., J.M., M.B.) and Department of Biochemistry (T.L.), Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - John Mercer
- From the Division of Cardiovascular Medicine (K.G., S.K., N.F., J.H., L.B., J.M., M.B.) and Department of Biochemistry (T.L.), Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Trevor Littlewood
- From the Division of Cardiovascular Medicine (K.G., S.K., N.F., J.H., L.B., J.M., M.B.) and Department of Biochemistry (T.L.), Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Martin Bennett
- From the Division of Cardiovascular Medicine (K.G., S.K., N.F., J.H., L.B., J.M., M.B.) and Department of Biochemistry (T.L.), Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
74
|
Loss of One Copy of Zfp148 Reduces Lesional Macrophage Proliferation and Atherosclerosis in Mice by Activating p53. Circ Res 2014; 115:781-9. [DOI: 10.1161/circresaha.115.304992] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rationale:
Cell proliferation and cell cycle control mechanisms are thought to play central roles in the pathogenesis of atherosclerosis. The transcription factor Zinc finger protein 148 (Zfp148) was shown recently to maintain cell proliferation under oxidative conditions by suppressing p53, a checkpoint protein that arrests proliferation in response to various stressors. It is established that inactivation of p53 accelerates atherosclerosis, but whether increased p53 activation confers protection against the disease remains to be determined.
Objective:
We aimed to test the hypothesis that
Zfp148
deficiency reduces atherosclerosis by unleashing p53 activity.
Methods and Results:
Mice harboring a gene-trap mutation in the
Zfp148
locus (
Zfp148
gt/+
) were bred onto the apolipoprotein E (
Apoe
)
–/–
genetic background and fed a high-fat or chow diet. Loss of 1 copy of
Zfp148
markedly reduced atherosclerosis without affecting lipid metabolism. Bone marrow transplantation experiments revealed that the effector cell is of hematopoietic origin. Peritoneal macrophages and atherosclerotic lesions from
Zfp148
gt/+
Apoe
–/–
mice showed increased levels of phosphorylated p53 compared with controls, and atherosclerotic lesions contained fewer proliferating macrophages.
Zfp148
gt/+
Apoe
–/–
mice were further crossed with p53-null mice (
Trp53
–/–
[the gene encoding p53]). There was no difference in atherosclerosis between
Zfp148
gt/+
Apoe
–/–
mice and controls on a
Trp53
+/–
genetic background, and there was no difference in levels of phosphorylated p53 or cell proliferation.
Conclusions:
Zfp148
deficiency increases p53 activity and protects against atherosclerosis by causing proliferation arrest of lesional macrophages, suggesting that drugs targeting macrophage proliferation may be useful in the treatment of atherosclerosis.
Collapse
|
75
|
Wan Y, Gao P, Zhou S, Zhang Z, Hao D, Lian L, Li Y, Chen H, Liu D. SIRT1-mediated epigenetic downregulation of plasminogen activator inhibitor-1 prevents vascular endothelial replicative senescence. Aging Cell 2014; 13:890-9. [PMID: 25040736 PMCID: PMC4331759 DOI: 10.1111/acel.12247] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2014] [Indexed: 12/20/2022] Open
Abstract
The inactivation of plasminogen activator inhibitor-1 (PAI-1) has been shown to exert beneficial effects in age-related vascular diseases. Limited information is available on the molecular mechanisms regarding the negatively regulated expression of PAI-1 in the vascular system. In this study, we observed an inverse correlation between SIRT1, a class III histone deacetylase, and PAI-1 expression in human atherosclerotic plaques and the aortas of old mice, suggesting that internal negative regulation exists between SIRT1 and PAI-1. SIRT1 overexpression reversed the increased PAI-1 expression in senescent human umbilical vein endothelial cells (HUVECs) and aortas of old mice, accompanied by decreased SA-β-gal activity in vitro and improved endothelial function and reduced arterial stiffness in vivo. Moreover, the SIRT1-mediated inhibition of PAI-1 expression exerted an antisenescence effect in HUVECs. Furthermore, we demonstrated that SIRT1 is able to bind to the PAI-1 promoter, resulting in a decrease in the acetylation of histone H4 lysine 16 (H4K16) on the PAI-1 promoter region. Thus, our findings suggest that the SIRT1-mediated epigenetic inhibition of PAI-1 expression exerts a protective effect in vascular endothelial senescence.
Collapse
Affiliation(s)
- Yan‐Zhen Wan
- State Key Laboratory of Medical Molecular Biology Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Peng Gao
- State Key Laboratory of Medical Molecular Biology Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Shuang Zhou
- State Key Laboratory of Medical Molecular Biology Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Zhu‐Qin Zhang
- State Key Laboratory of Medical Molecular Biology Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - De‐Long Hao
- State Key Laboratory of Medical Molecular Biology Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Li‐Shan Lian
- Department of Vascular Surgery Peking Union Medical College Hospital Peking Union Medical College Chinese Academy of Medical Science Beijing 100730 China
| | - Yong‐Jun Li
- Department of Vascular Surgery Peking Union Medical College Hospital Peking Union Medical College Chinese Academy of Medical Science Beijing 100730 China
| | - Hou‐Zao Chen
- State Key Laboratory of Medical Molecular Biology Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - De‐Pei Liu
- State Key Laboratory of Medical Molecular Biology Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| |
Collapse
|
76
|
Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, Cai Y, Huang H, Yang Y, Liu Y, Xu Z, He D, Zhang X, Hu X, Pinello L, Zhong D, He F, Yuan GC, Wang DZ, Zeng C. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 2014; 130:1452-1465. [PMID: 25156994 DOI: 10.1161/circulationaha.114.011675] [Citation(s) in RCA: 398] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have recently been implicated in many biological processes and diseases. Atherosclerosis is a major risk factor for cardiovascular disease. However, the functional role of lncRNAs in atherosclerosis is largely unknown. METHODS AND RESULTS We identified lincRNA-p21 as a key regulator of cell proliferation and apoptosis during atherosclerosis. The expression of lincRNA-p21 was dramatically downregulated in atherosclerotic plaques of ApoE(-/-) mice, an animal model for atherosclerosis. Through loss- and gain-of-function approaches, we showed that lincRNA-p21 represses cell proliferation and induces apoptosis in vascular smooth muscle cells and mouse mononuclear macrophage cells in vitro. Moreover, we found that inhibition of lincRNA-p21 results in neointimal hyperplasia in vivo in a carotid artery injury model. Genome-wide analysis revealed that lincRNA-p21 inhibition dysregulated many p53 targets. Furthermore, lincRNA-p21, a transcriptional target of p53, feeds back to enhance p53 transcriptional activity, at least in part, via binding to mouse double minute 2 (MDM2), an E3 ubiquitin-protein ligase. The association of lincRNA-p21 and MDM2 releases MDM2 repression of p53, enabling p53 to interact with p300 and to bind to the promoters/enhancers of its target genes. Finally, we show that lincRNA-p21 expression is decreased in patients with coronary artery disease. CONCLUSIONS Our studies identify lincRNA-p21 as a novel regulator of cell proliferation and apoptosis and suggest that this lncRNA could serve as a therapeutic target to treat atherosclerosis and related cardiovascular disorders.
Collapse
Affiliation(s)
- Gengze Wu
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Jin Cai
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu Han
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jinghai Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Zhan-Peng Huang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Caiyu Chen
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yue Cai
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hefei Huang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yujia Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yukai Liu
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zaicheng Xu
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Duofen He
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoqun Zhang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyun Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Heath, Boston, MA
| | - Dan Zhong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Heath, Boston, MA
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
77
|
Abstract
Recent discoveries are redefining our view of cellular senescence as a trigger of tissue remodelling that acts during normal embryonic development and upon tissue damage. To achieve this, senescent cells arrest their own proliferation, recruit phagocytic immune cells and promote tissue renewal. This sequence of events - senescence, followed by clearance and then regeneration - may not be efficiently completed in aged tissues or in pathological contexts, thereby resulting in the accumulation of senescent cells. Increasing evidence indicates that both pro-senescent therapies and antisenescent therapies can be beneficial. In cancer and during active tissue repair, pro-senescent therapies contribute to minimize the damage by limiting proliferation and fibrosis, respectively. Conversely, antisenescent therapies may help to eliminate accumulated senescent cells and to recover tissue function.
Collapse
|
78
|
Fadini GP, Ciciliot S. Vascular smooth muscle cells and monocyte–macrophages accomplice in the accelerated atherosclerosis of insulin resistance states. Cardiovasc Res 2014; 103:194-5. [DOI: 10.1093/cvr/cvu144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
79
|
Leblond F, Poirier S, Yu C, Duquette N, Mayer G, Thorin E. The anti-hypercholesterolemic effect of low p53 expression protects vascular endothelial function in mice. PLoS One 2014; 9:e92394. [PMID: 24647794 PMCID: PMC3960235 DOI: 10.1371/journal.pone.0092394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/21/2014] [Indexed: 01/12/2023] Open
Abstract
Aims To demonstrate that p53 modulates endothelial function and the stress response to a high-fat western diet (WD). Methods and Results Three-month old p53+/+ wild type (WT) and p53+/− male mice were fed a regular or WD for 3 months. Plasma levels of total cholesterol (TC) and LDL-cholesterol were significantly elevated (p<0.05) in WD-fed WT (from 2.1±0.2 mmol/L to 3.1±0.2, and from 0.64±0.09 mmol/L to 1.25±0.11, respectively) but not in p53+/− mice. The lack of cholesterol accumulation in WD-fed p53+/− mice was ass–ociated with high bile acid plasma concentrations (p53+/− = 4.7±0.9 vs. WT = 3.3±0.2 μmol/L, p<0.05) concomitant with an increased hepatic 7-alpha-hydroxylase mRNA expression. While the WD did not affect aortic endothelial relaxant function in p53+/− mice (WD = 83±5 and RD = 82±4% relaxation), it increased the maximal response to acetylcholine in WT mice (WD = 87±2 vs. RD = 62±5% relaxation, p<0.05) to levels of p53+/−. In WT mice, the rise in TC associated with higher (p<0.05) plasma levels of pro-inflammatory keratinocyte-derived chemokine, and an over-activation (p<0.05) of the relaxant non-nitric oxide/non-prostacyclin endothelial pathway. It is likely that in WT mice, activations of these pathways are adaptive and contributed to maintain endothelial function, while the WD neither promoted inflammation nor affected endothelial function in p53+/− mice. Conclusions Our data demonstrate that low endogenous p53 expression prevents the rise in circulating levels of cholesterol when fed a WD. Consequently, the endothelial stress of hypercholesterolemia is absent in young p53+/− mice as evidenced by the absence of endothelial adaptive pathway over-activation to minimize stress-related damage.
Collapse
Affiliation(s)
- Francois Leblond
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Steve Poirier
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Carol Yu
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Natacha Duquette
- Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Gaetan Mayer
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Eric Thorin
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
- Department of Surgery, Université de Montréal, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
80
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
81
|
DNA modifications in atherosclerosis: From the past to the future. Atherosclerosis 2013; 230:202-9. [DOI: 10.1016/j.atherosclerosis.2013.07.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/08/2013] [Accepted: 07/15/2013] [Indexed: 11/19/2022]
|
82
|
Gomez D, Kessler K, Michel JB, Vranckx R. Modifications of Chromatin Dynamics Control Smad2 Pathway Activation in Aneurysmal Smooth Muscle Cells. Circ Res 2013; 113:881-90. [DOI: 10.1161/circresaha.113.301989] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rationale
:
The activation of the Smad2 signaling pathway is thought to play an important role in human aneurysmal diseases as described by an important body of research. We previously showed that constitutive Smad2 activation is associated with Smad2 mRNA overexpression in aneurysmal vascular smooth muscle cells (VSMCs), which is dependent on epigenetic regulation of the
SMAD2
promoter involving histone modifications. However, the underlying molecular mechanisms controlling Smad2 overexpression are currently unknown.
Objective
:
The aim of the present study is to understand the mechanisms regulating the constitutive Smad2 overexpression in VSMCs by identification of the histone-modifying enzymes, transcription factors, and cofactors responsible for Smad2 promoter activation in aneurysmal disease.
Methods and Results
:
This study was performed on medial tissue extracts and primary cultures of VSMCs of human thoracic aneurysms (n=17) and normal thoracic aortas (n=10). Here, we demonstrate that the activation of
SMAD2
promoter is driven by the recruitment of a multipartner complex, including the transcription factor p53 and histone acetyltransferases. Remarkably, the transcriptional regulatory network of the
SMAD2
promoter is dramatically altered in human aneurysmal VSMCs in vitro and in situ with a switch from Myc-dependent repression of
SMAD2
in normal vessel to a p53-dependent activation of
SMAD2
in aneurysms. Furthermore, histone acetyltransferases p300 and P300/CBP-associated protein play a major role in
SMAD2
promoter activation by acting on histone acetylation, p53 recruitment, and acetylation.
Conclusions
:
These results provide evidence for a major role of p53 and the complex composed of p300 and p300/CBP-associated protein in Smad2 activation in human aneurysmal VSMCs.
Collapse
Affiliation(s)
- Delphine Gomez
- From the INSERM, U698, Paris, France (D.G., K.K., J.-B.M., R.V.); and Université Paris Diderot, Sorbonne Paris Cité, Paris, France (D.G., K.K., J.-B.M., R.V.)
| | - Ketty Kessler
- From the INSERM, U698, Paris, France (D.G., K.K., J.-B.M., R.V.); and Université Paris Diderot, Sorbonne Paris Cité, Paris, France (D.G., K.K., J.-B.M., R.V.)
| | - Jean-Baptiste Michel
- From the INSERM, U698, Paris, France (D.G., K.K., J.-B.M., R.V.); and Université Paris Diderot, Sorbonne Paris Cité, Paris, France (D.G., K.K., J.-B.M., R.V.)
| | - Roger Vranckx
- From the INSERM, U698, Paris, France (D.G., K.K., J.-B.M., R.V.); and Université Paris Diderot, Sorbonne Paris Cité, Paris, France (D.G., K.K., J.-B.M., R.V.)
| |
Collapse
|
83
|
Franck D, Tracy L, Armata HL, Delaney CL, Jung DY, Ko HJ, Ong H, Kim JK, Scrable H, Sluss HK. Glucose Tolerance in Mice is Linked to the Dose of the p53 Transactivation Domain. Endocr Res 2013; 38:139-150. [PMID: 23102272 PMCID: PMC5074905 DOI: 10.3109/07435800.2012.735735] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM To test the transactivation domain-mediated control of glucose homeostasis by the tumor suppressor p53. BACKGROUND The tumor suppressor p53 has a critical role in maintenance of glucose homeostasis. Phosphorylation of Ser18 in the transaction domain of p53 controls the expression of Zpf385a, a zinc finger protein that regulates adipogenesis and adipose function. This results suggest that the transactivation domain of p53 is essential to the control of glucose homeostasis. MATERIALS AND METHODS Mice with mutations in the p53 transactivation domain were examined for glucose homeostasis as well as various metabolic parameters. Glucose tolerance and insulin tolerance tests were performed on age matched wild type and mutant animals. In addition, mice expressing increased dosage of p53 were also examined. RESULTS Mice with a mutation in p53Ser18 exhibit reduced Zpf385a expression in adipose tissue, adipose tissue-specific insulin resistance, and glucose intolerance. Mice with relative deficits in the transactivation domain of p53 exhibit similar defects in glucose homeostasis, while "Super p53" mice with an increased dosage of p53 exhibit improved glucose tolerance. CONCLUSION These data support the role of an ATM-p53 cellular stress axis that helps combat glucose intolerance and insulin resistance and regulates glucose homeostasis.
Collapse
Affiliation(s)
- Debra Franck
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Department of Biology, Worcester Polytechnic Institute, Worcester, MA 01609 USA
| | - Laura Tracy
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Department of Biology, Worcester Polytechnic Institute, Worcester, MA 01609 USA
| | - Heather L. Armata
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Christine L. Delaney
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Dae Young Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Hwi Jin Ko
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Helena Ong
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Jason K. Kim
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | | | - Hayla K. Sluss
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Corresponding author: Hayla K. Sluss, Department of Medicine, LRB 370W, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01655 USA, Phone: (508) 856-3372,
| |
Collapse
|
84
|
Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease. Free Radic Biol Med 2013; 61:473-501. [PMID: 23583330 PMCID: PMC3883979 DOI: 10.1016/j.freeradbiomed.2013.04.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/05/2013] [Accepted: 04/02/2013] [Indexed: 02/07/2023]
Abstract
Spatiotemporal regulation of the activity of a vast array of intracellular proteins and signaling pathways by reactive oxygen species (ROS) governs normal cardiovascular function. However, data from experimental and animal studies strongly support that dysregulated redox signaling, resulting from hyperactivation of various cellular oxidases or mitochondrial dysfunction, is integral to the pathogenesis and progression of cardiovascular disease (CVD). In this review, we address how redox signaling modulates the protein function, the various sources of increased oxidative stress in CVD, and the labyrinth of redox-sensitive molecular mechanisms involved in the development of atherosclerosis, hypertension, cardiac hypertrophy and heart failure, and ischemia-reperfusion injury. Advances in redox biology and pharmacology for inhibiting ROS production in specific cell types and subcellular organelles combined with the development of nanotechnology-based new in vivo imaging systems and targeted drug delivery mechanisms may enable fine-tuning of redox signaling for the treatment and prevention of CVD.
Collapse
Affiliation(s)
- Nageswara R Madamanchi
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Marschall S Runge
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
85
|
Yu E, Calvert PA, Mercer JR, Harrison J, Baker L, Figg NL, Kumar S, Wang JC, Hurst LA, Obaid DR, Logan A, West NEJ, Clarke MCH, Vidal-Puig A, Murphy MP, Bennett MR. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation 2013; 128:702-12. [PMID: 23841983 DOI: 10.1161/circulationaha.113.002271] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) damage occurs in both circulating cells and the vessel wall in human atherosclerosis. However, it is unclear whether mtDNA damage directly promotes atherogenesis or is a consequence of tissue damage, which cell types are involved, and whether its effects are mediated only through reactive oxygen species. METHODS AND RESULTS mtDNA damage occurred early in the vessel wall in apolipoprotein E-null (ApoE(-/-)) mice, before significant atherosclerosis developed. mtDNA defects were also identified in circulating monocytes and liver and were associated with mitochondrial dysfunction. To determine whether mtDNA damage directly promotes atherosclerosis, we studied ApoE(-/-) mice deficient for mitochondrial polymerase-γ proofreading activity (polG(-/-)/ApoE(-/-)). polG(-/-)/ApoE(-/-) mice showed extensive mtDNA damage and defects in oxidative phosphorylation but no increase in reactive oxygen species. polG(-/-)/ApoE(-/-) mice showed increased atherosclerosis, associated with impaired proliferation and apoptosis of vascular smooth muscle cells, and hyperlipidemia. Transplantation with polG(-/-)/ApoE(-/-) bone marrow increased the features of plaque vulnerability, and polG(-/-)/ApoE(-/-) monocytes showed increased apoptosis and inflammatory cytokine release. To examine mtDNA damage in human atherosclerosis, we assessed mtDNA adducts in plaques and in leukocytes from patients who had undergone virtual histology intravascular ultrasound characterization of coronary plaques. Human atherosclerotic plaques showed increased mtDNA damage compared with normal vessels; in contrast, leukocyte mtDNA damage was associated with higher-risk plaques but not plaque burden. CONCLUSIONS We show that mtDNA damage in vessel wall and circulating cells is widespread and causative and indicates higher risk in atherosclerosis. Protection against mtDNA damage and improvement of mitochondrial function are potential areas for new therapeutics.
Collapse
Affiliation(s)
- Emma Yu
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Centre for Clinical Investigation, P.O. Box 110, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Current developments of macrophage migration inhibitory factor (MIF) inhibitors. Drug Discov Today 2013; 18:592-600. [DOI: 10.1016/j.drudis.2012.12.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/14/2012] [Accepted: 12/20/2012] [Indexed: 12/21/2022]
|
87
|
Madenspacher JH, Azzam KM, Gowdy KM, Malcolm KC, Nick JA, Dixon D, Aloor JJ, Draper DW, Guardiola JJ, Shatz M, Menendez D, Lowe J, Lu J, Bushel P, Li L, Merrick BA, Resnick MA, Fessler MB. p53 Integrates host defense and cell fate during bacterial pneumonia. ACTA ACUST UNITED AC 2013; 210:891-904. [PMID: 23630228 PMCID: PMC3646498 DOI: 10.1084/jem.20121674] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
p53 deletion augments neutrophil-mediated bacterial clearance in the lung at the expense of tissue homeostasis, leading to increased mortality. Cancer and infection are predominant causes of human mortality and derive, respectively, from inadequate genomic and host defenses against environmental agents. The transcription factor p53 plays a central role in human tumor suppression. Despite its expression in immune cells and broad responsiveness to stressors, it is virtually unknown whether p53 regulates host defense against infection. We report that the lungs of naive p53−/− mice display genome-wide induction of NF-κB response element–enriched proinflammatory genes, suggestive of type 1 immune priming. p53-null and p53 inhibitor–treated mice clear Gram-negative and -positive bacteria more effectively than controls after intrapulmonary infection. This is caused, at least in part, by cytokines produced by an expanded population of apoptosis-resistant, TLR-hyperresponsive alveolar macrophages that enhance airway neutrophilia. p53−/− neutrophils, in turn, display heightened phagocytosis, Nox-dependent oxidant generation, degranulation, and bacterial killing. p53 inhibition boosts bacterial killing by mouse neutrophils and oxidant generation by human neutrophils. Despite enhanced bacterial clearance, infected p53−/− mice suffer increased mortality associated with aggravated lung injury. p53 thus modulates host defense through regulating microbicidal function and fate of phagocytes, revealing a fundamental link between defense of genome and host during environmental insult.
Collapse
Affiliation(s)
- Jennifer H Madenspacher
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Wang ZH, Liu XL, Zhong M, Zhang LP, Shang YY, Hu XY, Li L, Zhang Y, Deng JT, Zhang W. Pleiotropic Effects of Atorvastatin on Monocytes in Atherosclerotic Patients. J Clin Pharmacol 2013; 50:311-9. [DOI: 10.1177/0091270009340889] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
89
|
Lin CY, Hsu SC, Lee HS, Lin SH, Tsai CS, Huang SM, Shih CC, Hsu YJ. Enhanced expression of glucose transporter-1 in vascular smooth muscle cells via the Akt/tuberous sclerosis complex subunit 2 (TSC2)/mammalian target of rapamycin (mTOR)/ribosomal S6 protein kinase (S6K) pathway in experimental renal failure. J Vasc Surg 2013; 57:475-85. [DOI: 10.1016/j.jvs.2012.07.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/28/2012] [Accepted: 07/08/2012] [Indexed: 10/27/2022]
|
90
|
Mitchel REJ, Hasu M, Bugden M, Wyatt H, Hildebrandt G, Chen YX, Priest ND, Whitman SC. Low-dose radiation exposure and protection against atherosclerosis in ApoE(-/-) mice: the influence of P53 heterozygosity. Radiat Res 2013; 179:190-9. [PMID: 23289388 DOI: 10.1667/rr3140.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We recently described the effects of low-dose γ-radiation exposures on atherosclerosis in genetically susceptible (ApoE(-/-)) mice with normal p53 function. Doses as low as 25 mGy, given at either early or late stage disease, generally protected against atherosclerosis in a manner distinctly nonlinear with dose. We now report the influence of low doses (25-500 mGy) on atherosclerosis in ApoE(-/-) mice with reduced p53 function (Trp53(+/-)). Single exposures were given at either low or high dose rate (1 or 150 mGy/min) to female C57BL/6J ApoE(-/-) Trp53(+/-) mice. Mice were exposed at either early stage disease (2 months of age) and examined 3 or 6 months later, or at late stage disease (7 months of age) and examined 2 or 4 months later. In unirradiated mice, reduced p53 functionality elevated serum cholesterol and accelerated both aortic root lesion growth and severity in young mice. Radiation exposure to doses as low as 25 mGy at early stage disease, at either the high or the low dose rate, inhibited lesion growth, decreased lesion frequency and slowed the progression of lesion severity in the aortic root. In contrast, exposure at late stage disease produced generally detrimental effects. Both low-and high-dose-rate exposures accelerated lesion growth and high dose rate exposures also increased serum cholesterol levels. These results show that at early stage disease, reduced p53 function does not influence the protective effects against atherosclerosis of low doses given at low dose rate. In contrast, when exposed to the same doses at late stage disease, reduced p53 function produced detrimental effects, rather than the protective effects seen in Trp53 normal mice. As in the Trp53 normal mice, all effects were highly nonlinear with dose. These results indicate that variations in p53 functionality can dramatically alter the outcome of a low-dose exposure, and that the assumption of a linear response with dose for human populations is probably unwarranted.
Collapse
Affiliation(s)
- R E J Mitchel
- Radiological Protection Research and Instrumentation Branch, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Blagosklonny MV. Tumor suppression by p53 without apoptosis and senescence: conundrum or rapalog-like gerosuppression? Aging (Albany NY) 2012; 4:450-5. [PMID: 22869016 PMCID: PMC3433931 DOI: 10.18632/aging.100475] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
I discuss a very obscure activity of p53, namely suppression of senescence (gerosuppression), which is also manifested as anti-hypertrophic, anti-hypermetabolic, anti-inflammatory and anti-secretory effects of p53. But can gerossuppression suppress tumors?
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
92
|
Ling MY, Ma ZY, Wang YY, Qi J, Liu L, Li L, Zhang Y. Up-regulated ATP-sensitive potassium channels play a role in increased inflammation and plaque vulnerability in macrophages. Atherosclerosis 2012; 226:348-55. [PMID: 23218803 DOI: 10.1016/j.atherosclerosis.2012.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/24/2012] [Accepted: 11/15/2012] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Ion channels expressed in monocytes/macrophages have been tightly attached to atherosclerosis by coupling cellular function with electrical activity. However, the function of ATP-sensitive potassium channels (K(ATP)) in atherosclerosis has not been investigated directly. This study was performed to explore its role in atherosclerosis. METHODS AND RESULTS ApoE(-/-) mice with collar placement and Ad5-CMV.p53 or lac Z gene transfer with or without intragastric administration glibenclamide were applied to establish the progressive atherosclerosis at different time points and detect the function of K(ATP) channel in atherosclerosis. The expression and distribution of K(ATP) subunits in plaques were examined and a correlation between K(ATP) subunits expressed in macrophages, mainly Kir6.2 and SUR2A, and the vulnerability index of plaques was observed. In vitro, glibenclamide and pinacidil were used to detect the function and mechanism of K(ATP) channels in RAW264.7 cells stimulated by LPS. And the data showed that glibenclamide could ameliorate the progress of atherosclerosis and reduce the production of inflammatory cytokines as well as the phosphorylation of p65 and ERK1/2, while inhibitors of p65 leaded to robust expression of K(ATP) subunits in macrophages. CONCLUSIONS We concluded that K(ATP) channels in monocytes/macrophages were up-regulated and correlated with increased inflammation in vulnerable plaques, while glibenclamide could rescue the progression. K(ATP) channels may stimulate inflammatory reaction by MAPKs/NF-κB pathways in macrophages.
Collapse
Affiliation(s)
- Ming-Ying Ling
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, QiLu Hospital, Shandong University, West Wenhua Road 107, Jinan 250012, PR China
| | | | | | | | | | | | | |
Collapse
|
93
|
Goldstein I, Rotter V. Regulation of lipid metabolism by p53 - fighting two villains with one sword. Trends Endocrinol Metab 2012; 23:567-75. [PMID: 22819212 DOI: 10.1016/j.tem.2012.06.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 01/01/2023]
Abstract
Both cellular and systemic metabolism of lipids are paramount for homeostasis, and their malfunction leads to devastating pathologies. Recently, exciting findings have linked the p53 tumor suppressor to the regulation of lipid metabolism. Here, we summarize these findings showing a clear role for p53 in enhancing lipid catabolism while inhibiting its anabolism. We also describe the multitude of genes regulated by p53 that participate in or regulate systemic lipid transport. From the compilation of available data a scenario is emerging in which p53 regulates genes involved in lipid metabolism - both in a cancer-preventive effort and, intriguingly, as a means to prevent atherosclerosis. Thus, by regulating lipid metabolism, p53 fights the two major causes of death worldwide - atherosclerosis and cancer.
Collapse
Affiliation(s)
- Ido Goldstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | |
Collapse
|
94
|
Abstract
PURPOSE OF REVIEW Atherosclerosis is driven by cardiovascular risk factors that cause the recruitment of circulating immune cells beneath the vascular endothelium. Infiltrated monocytes differentiate into different macrophage subtypes with protective or pathogenic activities in vascular lesions. We discuss current knowledge about the molecular mechanisms that regulate lesional macrophage proliferation and apoptosis, two processes that occur during atherosclerosis development and regulate the number and function of macrophages within the atherosclerotic plaque. RECENT FINDINGS Lesional macrophages in early phases of atherosclerosis limit disease progression by phagocytizing modified lipoproteins, cellular debris and dead cells that accumulate in the plaque. However, macrophages in advanced lesions contribute to a maladaptive, nonresolving inflammatory response that can lead to life-threatening acute thrombotic diseases (myocardial infarction or stroke). Macrophage-specific manipulation of genes involved in cell proliferation and apoptosis modulates lesional macrophage accumulation and atherosclerosis burden in mouse models, and studies are beginning to elucidate the underlying mechanisms. SUMMARY Despite recent advances in our understanding of macrophage proliferation and apoptosis in atherosclerotic plaques, it remains unclear whether manipulating these processes will be beneficial or harmful. Advances in these areas may translate into more efficient therapies for the prevention and treatment of atherothrombosis.
Collapse
Affiliation(s)
- Vicente Andrés
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | |
Collapse
|
95
|
Reactive Oxygen Species, SUMOylation, and Endothelial Inflammation. Int J Inflam 2012; 2012:678190. [PMID: 22991685 PMCID: PMC3443607 DOI: 10.1155/2012/678190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/26/2012] [Indexed: 12/14/2022] Open
Abstract
Although the exact mechanism through which NADPH oxidases (Nox's) generate reactive oxygen species (ROS) is still not completely understood, it is widely considered that ROS accumulation is the cause of oxidative stress in endothelial cells. Increasing pieces of evidence strongly indicate the role for ROS in endothelial inflammation and dysfunction and subsequent development of atherosclerotic plaques, which are causes of various pathological cardiac events. An overview for a causative relationship between ROS and endothelial inflammation will be provided in this review. Particularly, a crucial role for specific protein SUMOylation in endothelial inflammation will be presented. Given that SUMOylation of specific proteins leads to increased endothelial inflammation, targeting specific SUMOylated proteins may be an elegant, effective strategy to control inflammation. In addition, the involvement of ROS production in increasing the risk of recurrent coronary events in a sub-group of non-diabetic, post-infarction patients with elevated levels of HDL-cholesterol will be presented with the emphasis that elevated HDL-cholesterol under certain inflammatory conditions can lead to increased incidence of cardiovascular events.
Collapse
|
96
|
Kim JB, Deluna A, Mungrue IN, Vu C, Pouldar D, Civelek M, Orozco L, Wu J, Wang X, Charugundla S, Castellani LW, Rusek M, Jakubowski H, Jakobowski H, Lusis AJ. Effect of 9p21.3 coronary artery disease locus neighboring genes on atherosclerosis in mice. Circulation 2012; 126:1896-906. [PMID: 22952318 DOI: 10.1161/circulationaha.111.064881] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND The human 9p21.3 chromosome locus has been shown to be an independent risk factor for atherosclerosis in multiple large-scale genome-wide association studies, but the underlying mechanism remains unknown. We set out to investigate the potential role of the 9p21.3 locus neighboring genes, including Mtap, the 2 isoforms of Cdkn2a, p16Ink4a and p19Arf, and Cdkn2b, in atherosclerosis using knockout mice models. METHODS AND RESULTS Gene-targeted mice for neighboring genes, including Mtap, Cdkn2a, p19Arf, and Cdkn2b, were each bred to mice carrying the human APO*E3 Leiden transgene that sensitizes the mice for atherosclerotic lesions through elevated plasma cholesterol. We found that the mice heterozygous for Mtap developed larger lesions compared with wild-type mice (49623±21650 versus 18899±9604 μm(2) per section [mean±SD]; P=0.01), with morphology similar to that of wild-type mice. The Mtap heterozygous mice demonstrated changes in metabolic and methylation profiles and CD4(+) cell counts. The Cdkn2a knockout mice had smaller lesions compared with wild-type and heterozygous mice, and there were no significant differences in lesion size in p19Arf and Cdkn2b mutants compared with wild type. We observed extensive, tissue-specific compensatory regulation of the Cdkn2a and Cdkn2b genes among the various knockout mice, making the effects on atherosclerosis difficult to interpret. CONCLUSIONS Mtap plays a protective role against atherosclerosis, whereas Cdkn2a appears to be modestly proatherogenic. However, no relation was found between the 9p21 genotype and the transcription of 9p21 neighboring genes in primary human aortic vascular cells in vitro. There is extensive compensatory regulation in the highly conserved 9p21 orthologous region in mice.
Collapse
Affiliation(s)
- Juyong Brian Kim
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1679, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Mercer JR, Gray K, Figg N, Kumar S, Bennett MR. The methyl xanthine caffeine inhibits DNA damage signaling and reactive species and reduces atherosclerosis in ApoE(-/-) mice. Arterioscler Thromb Vasc Biol 2012; 32:2461-7. [PMID: 22859494 DOI: 10.1161/atvbaha.112.251322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Caffeine remains one of the most widely consumed drugs in the world. Caffeine has multiple actions, including inhibition of the DNA damage response, and its metabolites, 1-methylxanthine and 1-methyluric acid, are potent antioxidants. Combined, these properties can exert direct effects on cell proliferation, cell death, inflammation, and DNA repair, all important processes that occur in atherosclerosis. METHODS AND RESULTS We first examined the effects of caffeine on mouse vascular smooth muscle cells. Caffeine inhibited activation of the DNA damage response regulator ataxia telangiectasia mutated protein and its downstream targets. Caffeine delayed DNA repair, had a concentration-dependent effect on cell proliferation, and protected against apoptosis. In vitro caffeine reduced oxygen consumption and decreased generation of reactive oxygen species. In vivo caffeine reduced DDR activation in vascular and nonvascular tissues, reduced reactive nitrogen species and serum levels of the DNA adduct 8-oxo-guanine, and inhibited atherogenesis in fat-fed ApoE(-/-) mice. Reduction in atherosclerosis was independent of the effects on blood pressure and serum lipids but associated with reduced cell proliferation and ataxia telangiectasia mutated protein activation. CONCLUSIONS The Methyl Xanthine caffeine inhibits the DNA damage response in vitro and in vivo, regulates both cell proliferation and apoptosis after DNA damage, inhibits reactive species, and reduces atherogenesis in ApoE(-/-) mice.
Collapse
Affiliation(s)
- John R Mercer
- Division of Cardiovascular Medicine, University of Cambridge, ACCI, Level 6, Box 110, Addenbrooke's Hospital, Cambridge, CB2 2QQ, United Kingdom.
| | | | | | | | | |
Collapse
|
98
|
Stratton SA, Barton MC. p53-Mediated regulation of hepatic lipid metabolism: forging links between metabolism, atherogenesis, and cancer. J Hepatol 2012; 56:518-9. [PMID: 22051552 DOI: 10.1016/j.jhep.2011.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 10/22/2011] [Indexed: 12/04/2022]
|
99
|
Zheng Y, Gardner SE, Clarke MCH. Cell death, damage-associated molecular patterns, and sterile inflammation in cardiovascular disease. Arterioscler Thromb Vasc Biol 2012; 31:2781-6. [PMID: 22096097 DOI: 10.1161/atvbaha.111.224907] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cell death and inflammation are ancient processes of fundamental biological importance in both normal physiology and pathology. This is evidenced by the profound conservation of mediators, with ancestral homologues identified from plants to humans, and the number of diseases driven by aberrant control of either process. Apoptosis is the most well-studied cell death, but many forms exist, including autophagy, necrosis, pyroptosis, paraptosis, and the obscure dark cell death. Cell death occurs throughout the cardiovascular system, from initial shaping of the heart and vasculature during development to involvement in pathologies, including atherosclerosis, aneurysm, cardiomyopathy, restenosis, and vascular graft rejection. However, determining whether cell death primarily drives pathology or is a secondary bystander effect is difficult. Inflammation, the primary response of innate immunity, is considered essential in initiating and driving vascular diseases. Cell death and inflammation are inextricably linked with their effectors modulating the other process. Indeed, an evolutionary link between cell death and inflammation occurs at caspase-1 (which activates interleukin-1β), which can induce death by pyroptosis, and is a member of the caspase family vital for apoptosis. This review examines cell death in vascular disease, how it can induce inflammation, and finally the emergence of inflammasomes in vascular pathology.
Collapse
Affiliation(s)
- Yue Zheng
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom
| | | | | |
Collapse
|
100
|
Wu JH, Zhang L, Fanaroff AC, Cai X, Sharma KC, Brian L, Exum ST, Shenoy SK, Peppel K, Freedman NJ. G protein-coupled receptor kinase-5 attenuates atherosclerosis by regulating receptor tyrosine kinases and 7-transmembrane receptors. Arterioscler Thromb Vasc Biol 2011; 32:308-16. [PMID: 22095977 DOI: 10.1161/atvbaha.111.239608] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE G protein-coupled receptor kinase-5 (GRK5) is a widely expressed Ser/Thr kinase that regulates several atherogenic receptors and may activate or inhibit nuclear factor-κB (NF-κB). This study sought to determine whether and by what mechanisms GRK5 affects atherosclerosis. METHODS AND RESULTS Grk5(-/-)/Apoe(-/-) mice developed 50% greater aortic atherosclerosis than Apoe(-/-) mice and demonstrated greater proliferation of macrophages and smooth muscle cells (SMCs) in atherosclerotic lesions. In Apoe(-/-) mice, carotid interposition grafts from Grk5(-/-) mice demonstrated greater upregulation of cell adhesion molecules than grafts from wild-type mice and, subsequently, more atherosclerosis. By comparing Grk5(-/-) with wild-type cells, we found that GRK5 desensitized 2 key atherogenic receptor tyrosine kinases: the platelet-derived growth factor receptor-β in SMCs, by augmenting ubiquitination/degradation; and the colony-stimulating factor-1 receptor (CSF-1R) in macrophages, by reducing CSF-1-induced tyrosyl phosphorylation. GRK5 activity in monocytes also reduced migration promoted by the 7-transmembrane receptor for monocyte chemoattractant protein-1 CC chemokine receptor-2. Whereas GRK5 diminished NF-κB-dependent gene expression in SMCs and endothelial cells, it had no effect on NF-κB activity in macrophages. CONCLUSIONS GRK5 attenuates atherosclerosis through multiple cell type-specific mechanisms, including reduction of SMC and endothelial cell NF-κB activity and desensitization of receptor-specific signaling through the monocyte CC chemokine receptor-2, macrophage CSF-1R, and the SMC platelet-derived growth factor receptor-β.
Collapse
Affiliation(s)
- Jiao-Hui Wu
- Box 3187, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|