51
|
Affiliation(s)
- Jianhua Xiong
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
52
|
Huertas A, Phan C, Bordenave J, Tu L, Thuillet R, Le Hiress M, Avouac J, Tamura Y, Allanore Y, Jovan R, Sitbon O, Guignabert C, Humbert M. Regulatory T Cell Dysfunction in Idiopathic, Heritable and Connective Tissue-Associated Pulmonary Arterial Hypertension. Chest 2016; 149:1482-93. [DOI: 10.1016/j.chest.2016.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/27/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022] Open
|
53
|
Nie X, Qin G, Mao W, Wang W, Chang Y, Wei D, Zhou M, Wu B, Chen J. Axis inhibition protein 2 deficiency leads to hypoxic pulmonary hypertension through β-catenin signaling pathway. J Hypertens 2016; 34:877-892. [PMID: 26882042 DOI: 10.1097/hjh.0000000000000872] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Pulmonary arterial hypertension (PAH) is characterized by increased vascular tone, altered vasoreactivity and vascular remodeling induced by smooth muscle cell proliferation. Similarities exist between cancer and PAH. Aberrant expression of the tumor suppressor protein is closely associated with PAH. Here, we tested the hypothesis that a tumor suppressor-axis inhibition protein 2 (Axin2) deficiency leads to PAH. METHODS AND RESULTS We measured right ventricular systolic pressure in Axin2 knockout mice and assessed the expression of Axin2 in patients. We found that Axin2 expression level was decreased in both mice exposed to chronic hypoxia and patients with PAH in remodeled pulmonary arterioles. Axin2 knockout mice showed elevated mean right ventricular systolic pressure and enhanced contraction in response to phenylephrine. An increase in the cross-sectional area of the vessels was occupied by the vessel wall, indicating pulmonary vascular remodeling. Furthermore, knocking down Axin2 with small interfering RNA inhibited apoptosis of pulmonary arterial smooth muscle cells (PASMCs). This inhibition was significantly abolished by β-catenin inhibitors, indicating that Axin2 through β-catenin increased vascular wall by inhibiting the apoptosis of PASMCs. Importantly, overexpression of Axin2 attenuates the development of hypoxia-induced PAH in mice. CONCLUSION Taken together, our study, for the first time, established that Axin2 plays a key role in the progression of PAH. We identified Axin2 as a novel mediator of pulmonary vasoconstriction and PASMC growth in hypoxia-mediated PAH. Our results suggest that downregulation of Axin2 in the pulmonary vasculature may be an underlying mechanism in the development of hypoxia-induced PAH.
Collapse
Affiliation(s)
- Xiaowei Nie
- aJiangsu Key Laboratory of Organ Transplantation bDepartment of Cardiothoracic Surgery cLung Transplant Group dDepartment of Anesthesiology eDepartment of Pathology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Hopper RK, Moonen JRAJ, Diebold I, Cao A, Rhodes CJ, Tojais NF, Hennigs JK, Gu M, Wang L, Rabinovitch M. In Pulmonary Arterial Hypertension, Reduced BMPR2 Promotes Endothelial-to-Mesenchymal Transition via HMGA1 and Its Target Slug. Circulation 2016; 133:1783-94. [PMID: 27045138 DOI: 10.1161/circulationaha.115.020617] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/11/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND We previously reported high-throughput RNA sequencing analyses that identified heightened expression of the chromatin architectural factor High Mobility Group AT-hook 1 (HMGA1) in pulmonary arterial endothelial cells (PAECs) from patients who had idiopathic pulmonary arterial hypertension (PAH) in comparison with controls. Because HMGA1 promotes epithelial-to-mesenchymal transition in cancer, we hypothesized that increased HMGA1 could induce transition of PAECs to a smooth muscle (SM)-like mesenchymal phenotype (endothelial-to-mesenchymal transition), explaining both dysregulation of PAEC function and possible cellular contribution to the occlusive remodeling that characterizes advanced idiopathic PAH. METHODS AND RESULTS We documented increased HMGA1 in PAECs cultured from idiopathic PAH versus donor control lungs. Confocal microscopy of lung explants localized the increase in HMGA1 consistently to pulmonary arterial endothelium, and identified many cells double-positive for HMGA1 and SM22α in occlusive and plexogenic lesions. Because decreased expression and function of bone morphogenetic protein receptor 2 (BMPR2) is observed in PAH, we reduced BMPR2 by small interfering RNA in control PAECs and documented an increase in HMGA1 protein. Consistent with transition of PAECs by HMGA1, we detected reduced platelet endothelial cell adhesion molecule 1 (CD31) and increased endothelial-to-mesenchymal transition markers, αSM actin, SM22α, calponin, phospho-vimentin, and Slug. The transition was associated with spindle SM-like morphology, and the increase in αSM actin was largely reversed by joint knockdown of BMPR2 and HMGA1 or Slug. Pulmonary endothelial cells from mice with endothelial cell-specific loss of Bmpr2 showed similar gene and protein changes. CONCLUSIONS Increased HMGA1 in PAECs resulting from dysfunctional BMPR2 signaling can transition endothelium to SM-like cells associated with PAH.
Collapse
Affiliation(s)
- Rachel K Hopper
- From Department of Pediatrics, the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA (R.K.H., J.-R.A.J.M., A.C., C.J.R., N.F.T., J.K.H., M.G., L.W., M.R.); Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and Children's Hospital of Philadelphia (R.K.H.); Center for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, The Netherlands (J.-R.A.J.M.)
| | - Jan-Renier A J Moonen
- From Department of Pediatrics, the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA (R.K.H., J.-R.A.J.M., A.C., C.J.R., N.F.T., J.K.H., M.G., L.W., M.R.); Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and Children's Hospital of Philadelphia (R.K.H.); Center for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, The Netherlands (J.-R.A.J.M.)
| | - Isabel Diebold
- From Department of Pediatrics, the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA (R.K.H., J.-R.A.J.M., A.C., C.J.R., N.F.T., J.K.H., M.G., L.W., M.R.); Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and Children's Hospital of Philadelphia (R.K.H.); Center for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, The Netherlands (J.-R.A.J.M.)
| | - Aiqin Cao
- From Department of Pediatrics, the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA (R.K.H., J.-R.A.J.M., A.C., C.J.R., N.F.T., J.K.H., M.G., L.W., M.R.); Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and Children's Hospital of Philadelphia (R.K.H.); Center for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, The Netherlands (J.-R.A.J.M.)
| | - Christopher J Rhodes
- From Department of Pediatrics, the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA (R.K.H., J.-R.A.J.M., A.C., C.J.R., N.F.T., J.K.H., M.G., L.W., M.R.); Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and Children's Hospital of Philadelphia (R.K.H.); Center for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, The Netherlands (J.-R.A.J.M.)
| | - Nancy F Tojais
- From Department of Pediatrics, the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA (R.K.H., J.-R.A.J.M., A.C., C.J.R., N.F.T., J.K.H., M.G., L.W., M.R.); Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and Children's Hospital of Philadelphia (R.K.H.); Center for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, The Netherlands (J.-R.A.J.M.)
| | - Jan K Hennigs
- From Department of Pediatrics, the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA (R.K.H., J.-R.A.J.M., A.C., C.J.R., N.F.T., J.K.H., M.G., L.W., M.R.); Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and Children's Hospital of Philadelphia (R.K.H.); Center for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, The Netherlands (J.-R.A.J.M.)
| | - Mingxia Gu
- From Department of Pediatrics, the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA (R.K.H., J.-R.A.J.M., A.C., C.J.R., N.F.T., J.K.H., M.G., L.W., M.R.); Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and Children's Hospital of Philadelphia (R.K.H.); Center for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, The Netherlands (J.-R.A.J.M.)
| | - Lingli Wang
- From Department of Pediatrics, the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA (R.K.H., J.-R.A.J.M., A.C., C.J.R., N.F.T., J.K.H., M.G., L.W., M.R.); Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and Children's Hospital of Philadelphia (R.K.H.); Center for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, The Netherlands (J.-R.A.J.M.)
| | - Marlene Rabinovitch
- From Department of Pediatrics, the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA (R.K.H., J.-R.A.J.M., A.C., C.J.R., N.F.T., J.K.H., M.G., L.W., M.R.); Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and Children's Hospital of Philadelphia (R.K.H.); Center for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, The Netherlands (J.-R.A.J.M.).
| |
Collapse
|
55
|
Abstract
The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
56
|
Morrell NW, Bloch DB, ten Dijke P, Goumans MJTH, Hata A, Smith J, Yu PB, Bloch KD. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol 2016; 13:106-20. [PMID: 26461965 PMCID: PMC4886232 DOI: 10.1038/nrcardio.2015.156] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies.
Collapse
Affiliation(s)
- Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Donald B Bloch
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Peter ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Marie-Jose T H Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jim Smith
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Paul B Yu
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kenneth D Bloch
- Anaesthesia Centre for Critical Care Research, Department of Anaesthesia, Critical Care and Pain Medicine, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
57
|
Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med 2015. [PMID: 26076038 PMCID: PMC4496295 DOI: 10.1038/nm.3877,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Genetic evidence implicates the loss of bone morphogenetic protein type II receptor (BMPR-II) signaling in the endothelium as an initiating factor in pulmonary arterial hypertension (PAH). However, selective targeting of this signaling pathway using BMP ligands has not yet been explored as a therapeutic strategy. Here, we identify BMP9 as the preferred ligand for preventing apoptosis and enhancing monolayer integrity in both pulmonary arterial endothelial cells and blood outgrowth endothelial cells from subjects with PAH who bear mutations in the gene encoding BMPR-II, BMPR2. Mice bearing a heterozygous knock-in allele of a human BMPR2 mutation, R899X, which we generated as an animal model of PAH caused by BMPR-II deficiency, spontaneously developed PAH. Administration of BMP9 reversed established PAH in these mice, as well as in two other experimental PAH models, in which PAH develops in response to either monocrotaline or VEGF receptor inhibition combined with chronic hypoxia. These results demonstrate the promise of direct enhancement of endothelial BMP signaling as a new therapeutic strategy for PAH.
Collapse
|
58
|
Long L, Ormiston ML, Yang X, Southwood M, Gräf S, Machado RD, Mueller M, Kinzel B, Yung LM, Wilkinson JM, Moore SD, Drake KM, Aldred MA, Yu P, Upton PD, Morrell NW. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med 2015; 21:777-85. [PMID: 26076038 PMCID: PMC4496295 DOI: 10.1038/nm.3877] [Citation(s) in RCA: 370] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/12/2015] [Indexed: 12/13/2022]
Abstract
Genetic evidence implicates the loss of bone morphogenetic protein type II receptor (BMPR-II) signaling in the endothelium as an initiating factor in pulmonary arterial hypertension (PAH). However, selective targeting of this signaling pathway using BMP ligands has not yet been explored as a therapeutic strategy. Here, we identify BMP9 as the preferred ligand for preventing apoptosis and enhancing monolayer integrity in both pulmonary arterial endothelial cells and blood outgrowth endothelial cells from subjects with PAH who bear mutations in the gene encoding BMPR-II, BMPR2. Mice bearing a heterozygous knock-in allele of a human BMPR2 mutation, R899X, which we generated as an animal model of PAH caused by BMPR-II deficiency, spontaneously developed PAH. Administration of BMP9 reversed established PAH in these mice, as well as in two other experimental PAH models, in which PAH develops in response to either monocrotaline or VEGF receptor inhibition combined with chronic hypoxia. These results demonstrate the promise of direct enhancement of endothelial BMP signaling as a new therapeutic strategy for PAH.
Collapse
Affiliation(s)
- Lu Long
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, UK
| | - Mark L. Ormiston
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, UK
| | - Xudong Yang
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, UK
| | - Mark Southwood
- Department of Pathology, Papworth Hospital, Papworth Everard, UK
| | - Stefan Gräf
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, UK
| | | | | | - Bernd Kinzel
- Novartis Institute for Biomedical Research, Basel, CH
| | - Lai Ming Yung
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Janine M. Wilkinson
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, UK
| | - Stephen D. Moore
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, UK
| | - Kylie M. Drake
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Cleveland, OH
| | - Micheala A. Aldred
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Cleveland, OH
| | - Paul Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Paul D. Upton
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, UK
| | - Nicholas W. Morrell
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
59
|
Yu X, Wei L, Lu P, Shen T, Liu X, Li T, Zhang B, Yu H, Zhu D. 15-Lipoxygenase Promotes Chronic Hypoxia-Induced Phenotype Changes of PASMCs Via Positive Feedback-Loop of BMP4. J Cell Physiol 2015; 230:1489-502. [DOI: 10.1002/jcp.24893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 12/09/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Xiufeng Yu
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| | - Liuping Wei
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| | - Ping Lu
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| | - Tingting Shen
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| | - Xia Liu
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| | - Tingting Li
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| | - Bo Zhang
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| | - Hao Yu
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| | - Daling Zhu
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| |
Collapse
|
60
|
Endothelin-Bone morphogenetic protein type 2 receptor interaction induces pulmonary artery smooth muscle cell hyperplasia in pulmonary arterial hypertension. J Heart Lung Transplant 2015; 34:468-78. [DOI: 10.1016/j.healun.2014.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/08/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022] Open
|
61
|
Abstract
Leukotrienes (LTs) are lipid mediators derived from the 5-lipoxygenase (5-LO) pathway of arachidonic acid metabolism and are markers and mediators of pulmonary inflammation. Research over the past two decades has established that LTs modulate inflammation in pulmonary arterial hypertension (PAH). The purpose of this review was to summarize the current knowledge of LTs in the pathophysiology of PAH and to highlight a recent study that advances our understanding of how leukotriene B4 (LTB4) specifically contributes to pulmonary vascular remodeling. The results of these studies suggest that pharmacological inhibition of LT pathways, especially LTB4, has high potential for the treatment of PAH.
Collapse
|
62
|
Wang H, Ji R, Meng J, Cui Q, Zou W, Li L, Wang G, Sun L, Li Z, Huo L, Fan Y, Penny DJ. Functional changes in pulmonary arterial endothelial cells associated with BMPR2 mutations. PLoS One 2014; 9:e106703. [PMID: 25187962 PMCID: PMC4154762 DOI: 10.1371/journal.pone.0106703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/01/2014] [Indexed: 12/24/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease characterized by abnormal remodeling of small, peripheral pulmonary arteries. Germline mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene are a major risk factor for developing PAH. At present, the correlation between the BMPR2 mutation and the patient's prognosis remains controversial despite several investigations. In this study, we explored the functional effects of four BMPR2 mutations to dissect the functional significance of the BMPR2 gene defect. Cellular immunofluorescence assay of four mutants (Tyr67Cys, Thr268fs, Ser863Asn, and Gln433X) revealed that the BMPR2 protein containing Thr268fs, Ser863Asn, or Gln433X exhibited abnormal subcellular localization. The BrdU incorporation and TUNEL assay suggested that any of the BMPR2 mutations Thr268fs, Ser863Asn, or Gln433X could improve endothelial cell apoptosis and decrease cell proliferation. All of the four mutants could inhibit nitric oxide (NO) synthesis in HLMVE cells, and ET-1 levels increased in the cells transfected with mutant Ser863Asn. Our results will improve the understanding of the genotype-phenotype correlations and mechanisms associated with BMPR2 mutations.
Collapse
Affiliation(s)
- Hu Wang
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ruirui Ji
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Meng
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Qiqiong Cui
- Cardiovascular Clinical Research Core, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wenxin Zou
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lei Li
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Guoliang Wang
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Li Sun
- Department of Pathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhaohui Li
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lei Huo
- Department of Pathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Yuxin Fan
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniel J. Penny
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
63
|
Sutendra G, Michelakis ED. Pulmonary arterial hypertension: challenges in translational research and a vision for change. Sci Transl Med 2014; 5:208sr5. [PMID: 24154604 DOI: 10.1126/scitranslmed.3005428] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a vascular remodeling disease with a relentless course toward heart failure and early death. Existing PAH therapies, all of which were developed originally to treat systemic vascular diseases, cannot reverse the disease or markedly improve survival and are expensive. Although there has been a recent increase in the number of potential new therapies emerging from animal studies, less than 3% of the active PAH clinical trials are examining such therapies. There are many potential explanations for the translational gap in this complex multifactorial disease. We discuss these challenges and propose solutions that range from including clinical endpoints in animal studies and improving the rigor of human trials to conducting mechanistic early-phase trials and randomized trials with innovative designs based on personalized medicine principles. Global, independent patient and tissue registries and enhanced communication among academics, industry, and regulatory authorities are needed. The diversity of the mechanisms and pathology of PAH calls for broad comprehensive theories that encompass emerging evidence for contributions of metabolism and inflammation to PAH to support more effective therapeutic target identification.
Collapse
Affiliation(s)
- Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | | |
Collapse
|
64
|
Tian W, Jiang X, Tamosiuniene R, Sung YK, Qian J, Dhillon G, Gera L, Farkas L, Rabinovitch M, Zamanian RT, Inayathullah M, Fridlib M, Rajadas J, Peters-Golden M, Voelkel NF, Nicolls MR. Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Sci Transl Med 2014; 5:200ra117. [PMID: 23986401 DOI: 10.1126/scitranslmed.3006674] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulmonary hypertension (PH) is a serious condition that affects mainly young and middle-aged women, and its etiology is poorly understood. A prominent pathological feature of PH is accumulation of macrophages near the arterioles of the lung. In both clinical tissue and the SU5416 (SU)/athymic rat model of severe PH, we found that the accumulated macrophages expressed high levels of leukotriene A4 hydrolase (LTA4H), the biosynthetic enzyme for leukotriene B4 (LTB4). Moreover, macrophage-derived LTB4 directly induced apoptosis in pulmonary artery endothelial cells (PAECs). Further, LTB4 induced proliferation and hypertrophy of human pulmonary artery smooth muscle cells. We found that LTB4 acted through its receptor, BLT1, to induce PAEC apoptosis by inhibiting the protective endothelial sphingosine kinase 1 (Sphk1)-endothelial nitric oxide synthase (eNOS) pathway. Blocking LTA4H decreased in vivo LTB4 levels, prevented PAEC apoptosis, restored Sphk1-eNOS signaling, and reversed fulminant PH in the SU/athymic rat model of PH. Antagonizing BLT1 similarly reversed established PH. Inhibition of LTB4 biosynthesis or signal transduction in SU-treated athymic rats with established disease also improved cardiac function and reopened obstructed arterioles; this approach was also effective in the monocrotaline model of severe PH. Human plexiform lesions, one hallmark of PH, showed increased numbers of macrophages, which expressed LTA4H, and patients with connective tissue disease-associated pulmonary arterial hypertension exhibited significantly higher LTB4 concentrations in the systemic circulation than did healthy subjects. These results uncover a possible role for macrophage-derived LTB4 in PH pathogenesis and identify a pathway that may be amenable to therapeutic targeting.
Collapse
Affiliation(s)
- Wen Tian
- Veterans Affairs Palo Alto Health Care System/Stanford University, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Seidelmann SB, Lighthouse JK, Greif DM. Development and pathologies of the arterial wall. Cell Mol Life Sci 2014; 71:1977-99. [PMID: 24071897 PMCID: PMC11113178 DOI: 10.1007/s00018-013-1478-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 01/13/2023]
Abstract
Arteries consist of an inner single layer of endothelial cells surrounded by layers of smooth muscle and an outer adventitia. The majority of vascular developmental studies focus on the construction of endothelial networks through the process of angiogenesis. Although many devastating vascular diseases involve abnormalities in components of the smooth muscle and adventitia (i.e., the vascular wall), the morphogenesis of these layers has received relatively less attention. Here, we briefly review key elements underlying endothelial layer formation and then focus on vascular wall development, specifically on smooth muscle cell origins and differentiation, patterning of the vascular wall, and the role of extracellular matrix and adventitial progenitor cells. Finally, we discuss select human diseases characterized by marked vascular wall abnormalities. We propose that continuing to apply approaches from developmental biology to the study of vascular disease will stimulate important advancements in elucidating disease mechanism and devising novel therapeutic strategies.
Collapse
MESH Headings
- Angiogenic Proteins/genetics
- Angiogenic Proteins/metabolism
- Animals
- Arteries/growth & development
- Arteries/metabolism
- Arteries/pathology
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Cell Differentiation
- Cell Lineage/genetics
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/growth & development
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Gene Expression Regulation, Developmental
- Humans
- Morphogenesis/genetics
- Muscle, Smooth, Vascular/growth & development
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Pathologic
- Neovascularization, Physiologic
Collapse
Affiliation(s)
- Sara B. Seidelmann
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, 300 George St., Rm 773J, New Haven, CT 06511 USA
| | - Janet K. Lighthouse
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, 300 George St., Rm 773J, New Haven, CT 06511 USA
| | - Daniel M. Greif
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, 300 George St., Rm 773J, New Haven, CT 06511 USA
| |
Collapse
|
66
|
Talati M, West J, Zaynagetdinov R, Hong CC, Han W, Blackwell T, Robinson L, Blackwell TS, Lane K. BMP pathway regulation of and by macrophages. PLoS One 2014; 9:e94119. [PMID: 24713633 PMCID: PMC3979749 DOI: 10.1371/journal.pone.0094119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/14/2014] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease of progressively increasing pulmonary vascular resistance, associated with mutations of the type 2 receptor for the BMP pathway, BMPR2. The canonical signaling pathway for BMPR2 is through the SMAD family of transcription factors. BMPR2 is expressed in every cell type, but the impact of BMPR2 mutations affecting SMAD signaling, such as Bmpr2delx4+, had only previously been investigated in smooth muscle and endothelium. In the present study, we created a mouse with universal doxycycline-inducible expression of Bmpr2delx4+ in order to determine if broader expression had an impact relevant to the development of PAH. We found that the most obvious phenotype was a dramatic, but patchy, increase in pulmonary inflammation. We crossed these double transgenic mice onto an NF-κB reporter strain, and by luciferase assays on live mice, individual organs and isolated macrophages, we narrowed down the origin of the inflammatory phenotype to constitutive activation of tissue macrophages. Study of bone marrow-derived macrophages from mutant and wild-type mice suggested a baseline difference in differentiation state in Bmpr2 mutants. When activated with LPS, both mutant and wild-type macrophages secrete BMP pathway inhibitors sufficient to suppress BMP pathway activity in smooth muscle cells (SMC) treated with conditioned media. Functionally, co-culture with macrophages results in a BMP signaling-dependent increase in scratch closure in cultured SMC. We conclude that SMAD signaling through BMP is responsible, in part, for preventing macrophage activation in both live animals and in cells in culture, and that activated macrophages secrete BMP inhibitors in sufficient quantity to cause paracrine effect on vascular smooth muscle.
Collapse
Affiliation(s)
- Megha Talati
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - James West
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| | - Rinat Zaynagetdinov
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Charles C. Hong
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Wei Han
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Tom Blackwell
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Linda Robinson
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Timothy S. Blackwell
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kirk Lane
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
67
|
Gao X, Cao Y, Staloch DA, Gonzales MA, Aronson JF, Chao C, Hellmich MR, Ko TC. Bone morphogenetic protein signaling protects against cerulein-induced pancreatic fibrosis. PLoS One 2014; 9:e89114. [PMID: 24586530 PMCID: PMC3931685 DOI: 10.1371/journal.pone.0089114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/15/2014] [Indexed: 01/27/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) have an anti-fibrogenic function in the kidney, lung, and liver. However, their role in chronic pancreatitis (CP) is unknown. The aim of this study was to define the anti-fibrogenic role of BMP signaling in the pancreas in vivo under CP induction. Mice with a deletion of BMP type II receptor (BMPR2+/−) were used in this study in comparison with wild-type mice. CP was induced by repetitive cerulein injection intraperitoneally for 4 weeks, and the severity of CP was evaluated. Pancreatic stellate cells (PSCs) were isolated from the mice and treated with BMP2 and TGF-β in vitro, and extracellular matrix protein (ECM) production was measured. Smad and mitogen-activated protein kinase (MAPK) signaling was also evaluated. BMPR2+/− mice revealed a greater pancreatic fibrosis, PSC activation and leukocyte infiltration after CP induction compared to wild-type mice (P<0.05). Under CP induction, phospho (p)Smad1/5/8 was elevated in wild-type mice and this effect was abolished in BMPR2+/− mice; pSmad2 and pp38MAPK were further enhanced in BMPR2+/− mice compared to wild-type mice (P<0.05). In vitro, BMP2 inhibited TGF-β-induced ECM protein fibronectin production in wild-type PSCs; this effect was abolished in BMPR2+/− PSCs (P<0.05). In BMPR2+/− PSCs, pSmad1/5/8 level was barely detectable upon BMP2 stimulation, while pSmad2 level was further enhanced by TGF-β stimulation, compared to wild-type PSCs (P<0.05). BMPR2/Smad1/5/8 signaling plays a protective role against cerulein-induced pancreatic fibrosis by inhibiting Smad2 and p38MAPK signaling pathways.
Collapse
Affiliation(s)
- Xuxia Gao
- Department of Surgery, The University of Texas Health Science Center-Houston, Houston, Texas, United States of America
| | - Yanna Cao
- Department of Surgery, The University of Texas Health Science Center-Houston, Houston, Texas, United States of America
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Dustin A. Staloch
- Department of Surgery, The University of Texas Health Science Center-Houston, Houston, Texas, United States of America
| | - Michael A. Gonzales
- Department of Surgery, The University of Texas Health Science Center-Houston, Houston, Texas, United States of America
| | - Judith F. Aronson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Celia Chao
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mark R. Hellmich
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tien C. Ko
- Department of Surgery, The University of Texas Health Science Center-Houston, Houston, Texas, United States of America
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
68
|
Sawada H, Saito T, Nickel NP, Alastalo TP, Glotzbach JP, Chan R, Haghighat L, Fuchs G, Januszyk M, Cao A, Lai YJ, Perez VDJ, Kim YM, Wang L, Chen PI, Spiekerkoetter E, Mitani Y, Gurtner GC, Sarnow P, Rabinovitch M. Reduced BMPR2 expression induces GM-CSF translation and macrophage recruitment in humans and mice to exacerbate pulmonary hypertension. ACTA ACUST UNITED AC 2014; 211:263-80. [PMID: 24446489 PMCID: PMC3920564 DOI: 10.1084/jem.20111741] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Idiopathic pulmonary arterial hypertension (PAH [IPAH]) is an insidious and potentially fatal disease linked to a mutation or reduced expression of bone morphogenetic protein receptor 2 (BMPR2). Because intravascular inflammatory cells are recruited in IPAH pathogenesis, we hypothesized that reduced BMPR2 enhances production of the potent chemokine granulocyte macrophage colony-stimulating factor (GM-CSF) in response to an inflammatory perturbation. When human pulmonary artery (PA) endothelial cells deficient in BMPR2 were stimulated with tumor necrosis factor (TNF), a twofold increase in GM-CSF was observed and related to enhanced messenger RNA (mRNA) translation. The mechanism was associated with disruption of stress granule formation. Specifically, loss of BMPR2 induced prolonged phospho-p38 mitogen-activated protein kinase (MAPK) in response to TNF, and this increased GADD34-PP1 phosphatase activity, dephosphorylating eukaryotic translation initiation factor (eIF2α), and derepressing GM-CSF mRNA translation. Lungs from IPAH patients versus unused donor controls revealed heightened PA expression of GM-CSF co-distributing with increased TNF and expanded populations of hematopoietic and endothelial GM-CSF receptor α (GM-CSFRα)-positive cells. Moreover, a 3-wk infusion of GM-CSF in mice increased hypoxia-induced PAH, in association with increased perivascular macrophages and muscularized distal arteries, whereas blockade of GM-CSF repressed these features. Thus, reduced BMPR2 can subvert a stress granule response, heighten GM-CSF mRNA translation, increase inflammatory cell recruitment, and exacerbate PAH.
Collapse
Affiliation(s)
- Hirofumi Sawada
- The Vera Moulton Wall Center for Pulmonary Vascular Disease, 2 Department of Pediatrics, 3 Department of Surgery, 4 Department of Microbiology and Immunology, 5 Department of Medicine, and 6 Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
McLoughlin P, Keane MP. Physiological and pathological angiogenesis in the adult pulmonary circulation. Compr Physiol 2013; 1:1473-508. [PMID: 23733650 DOI: 10.1002/cphy.c100034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Angiogenesis occurs during growth and physiological adaptation in many systemic organs, for example, exercise-induced skeletal and cardiac muscle hypertrophy, ovulation, and tissue repair. Disordered angiogenesis contributes to chronic inflammatory disease processes and to tumor growth and metastasis. Although it was previously thought that the adult pulmonary circulation was incapable of supporting new vessel growth, over that past 10 years new data have shown that angiogenesis within this circulation occurs both during physiological adaptive processes and as part of the pathogenic mechanisms of lung diseases. Here we review the expression of vascular growth factors in the adult lung, their essential role in pulmonary vascular homeostasis and the changes in their expression that occur in response to physiological challenges and in disease. We consider the evidence for adaptive neovascularization in the pulmonary circulation in response to alveolar hypoxia and during lung growth following pneumonectomy in the adult lung. In addition, we review the role of disordered angiogenesis in specific lung diseases including idiopathic pulmonary fibrosis, acute adult distress syndrome and both primary and metastatic tumors of the lung. Finally, we examine recent experimental data showing that therapeutic enhancement of pulmonary angiogenesis has the potential to treat lung diseases characterized by vessel loss.
Collapse
Affiliation(s)
- Paul McLoughlin
- University College Dublin, School of Medicine and Medical Sciences, Conway Institute, and St. Vincent's University Hospital, Dublin, Ireland.
| | | |
Collapse
|
70
|
Khalil RA. Protein Kinase C Inhibitors as Modulators of Vascular Function and their Application in Vascular Disease. Pharmaceuticals (Basel) 2013; 6:407-39. [PMID: 23580870 PMCID: PMC3619439 DOI: 10.3390/ph6030407] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Blood pressure (BP) is regulated by multiple neuronal, hormonal, renal and vascular control mechanisms. Changes in signaling mechanisms in the endothelium, vascular smooth muscle (VSM) and extracellular matrix cause alterations in vascular tone and blood vessel remodeling and may lead to persistent increases in vascular resistance and hypertension (HTN). In VSM, activation of surface receptors by vasoconstrictor stimuli causes an increase in intracellular free Ca(2+) concentration ([Ca(2+)]i), which forms a complex with calmodulin, activates myosin light chain (MLC) kinase and leads to MLC phosphorylation, actin-myosin interaction and VSM contraction. Vasoconstrictor agonists could also increase the production of diacylglycerol which activates protein kinase C (PKC). PKC is a family of Ca(2+)-dependent and Ca(2+)-independent isozymes that have different distributions in various blood vessels, and undergo translocation from the cytosol to the plasma membrane, cytoskeleton or the nucleus during cell activation. In VSM, PKC translocation to the cell surface may trigger a cascade of biochemical events leading to activation of mitogen-activated protein kinase (MAPK) and MAPK kinase (MEK), a pathway that ultimately increases the myofilament force sensitivity to [Ca(2+)]i, and enhances actin-myosin interaction and VSM contraction. PKC translocation to the nucleus may induce transactivation of various genes and promote VSM growth and proliferation. PKC could also affect endothelium-derived relaxing and contracting factors as well as matrix metalloproteinase (MMPs) in the extracellular matrix further affecting vascular reactivity and remodeling. In addition to vasoactive factors, reactive oxygen species, inflammatory cytokines and other metabolic factors could affect PKC activity. Increased PKC expression and activity have been observed in vascular disease and in certain forms of experimental and human HTN. Targeting of vascular PKC using PKC inhibitors may function in concert with antioxidants, MMP inhibitors and cytokine antagonists to reduce VSM hyperactivity in certain forms of HTN that do not respond to Ca(2+) channel blockers.
Collapse
Affiliation(s)
- Raouf A Khalil
- Vascular Surgery Research Laboratory, Division of Vascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, 75 Francis Street; 02115, Massachusetts, USA
| |
Collapse
|
71
|
Abstract
Pulmonary hypertension in human patients can result from increased pulmonary vascular tone, pressure transferred from the systemic circulation, dropout of small pulmonary vessels, occlusion of vessels with thrombi or intimal lesions, or some combination of all of these. Different animal models have been designed to reflect these different mechanistic origins of disease. Pulmonary hypertension models may be roughly grouped into tone-related models, inflammation-related models, and genetic models with unusual or mixed mechanism. Models of tone generally use hypoxia as a base, and then modify this with either genetic modifications (SOD, NOS, and caveolin) or with drugs (Sugen), although some genetic modifications of tone-related pathways can result in spontaneous pulmonary hypertension (Hph-1). Inflammation-related models can use either toxic chemicals (monocrotaline, bleomycin), live pathogens (stachybotrys, schistosomiasis), or genetic modifications (IL-6, VIP). Additional genetic models rely on alterations in metabolism (adiponectin), cell migration (S100A4), the serotonin pathway, or the BMP pathway. While each of these shares molecular and pathologic symptoms with different classes of human pulmonary hypertension, in most cases the molecular etiology of human pulmonary hypertension is unknown, and so the relationship between any model and human disease is unclear. There is thus no best animal model of pulmonary hypertension; instead, investigators must select the model most related to the specific pathology they are studying.
Collapse
Affiliation(s)
- James West
- Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | | |
Collapse
|
72
|
Leyton PA, Beppu H, Pappas A, Martyn TM, Derwall M, Baron DM, Galdos R, Bloch DB, Bloch KD. Deletion of the sequence encoding the tail domain of the bone morphogenetic protein type 2 receptor reveals a bone morphogenetic protein 7-specific gain of function. PLoS One 2013; 8:e76947. [PMID: 24116187 PMCID: PMC3792867 DOI: 10.1371/journal.pone.0076947] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
The bone morphogenetic protein (BMP) type II receptor (BMPR2) has a long cytoplasmic tail domain whose function is incompletely elucidated. Mutations in the tail domain of BMPR2 are found in familial cases of pulmonary arterial hypertension. To investigate the role of the tail domain of BMPR2 in BMP signaling, we generated a mouse carrying a Bmpr2 allele encoding a non-sense mediated decay-resistant mutant receptor lacking the tail domain of Bmpr2. We found that homozygous mutant mice died during gastrulation, whereas heterozygous mice grew normally without developing pulmonary arterial hypertension. Using pulmonary artery smooth muscle cells (PaSMC) from heterozygous mice, we determined that the mutant receptor was expressed and retained its ability to transduce BMP signaling. Heterozygous PaSMCs exhibited a BMP7‑specific gain of function, which was transduced via the mutant receptor. Using siRNA knockdown and cells from conditional knockout mice to selectively deplete BMP receptors, we observed that the tail domain of Bmpr2 inhibits Alk2‑mediated BMP7 signaling. These findings suggest that the tail domain of Bmpr2 is essential for normal embryogenesis and inhibits Alk2‑mediated BMP7 signaling in PaSMCs.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Animals
- Binding Sites/genetics
- Bone Morphogenetic Protein 4/pharmacology
- Bone Morphogenetic Protein 7/pharmacology
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Cells, Cultured
- Familial Primary Pulmonary Hypertension
- Gene Expression/drug effects
- Genotype
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Immunoblotting
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Artery/cytology
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Deletion
- Smad6 Protein/genetics
- Smad6 Protein/metabolism
Collapse
Affiliation(s)
- Patricio A. Leyton
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Hideyuki Beppu
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Toyama Prefecture, Japan
| | - Alexandra Pappas
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Trejeeve M. Martyn
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthias Derwall
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Anesthesiology, Uniklinik Aachen, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany
| | - David M. Baron
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Anesthesia, General Intensive Care, and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Rita Galdos
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Donald B. Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kenneth D. Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Cardiovascular Research Center, Cardiology Division of the Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
73
|
Hadri L, Kratlian RG, Benard L, Maron BA, Dorfmüller P, Ladage D, Guignabert C, Ishikawa K, Aguero J, Ibanez B, Turnbull IC, Kohlbrenner E, Liang L, Zsebo K, Humbert M, Hulot JS, Kawase Y, Hajjar RJ, Leopold JA. Therapeutic efficacy of AAV1.SERCA2a in monocrotaline-induced pulmonary arterial hypertension. Circulation 2013; 128:512-23. [PMID: 23804254 DOI: 10.1161/circulationaha.113.001585] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by dysregulated proliferation of pulmonary artery smooth muscle cells leading to (mal)adaptive vascular remodeling. In the systemic circulation, vascular injury is associated with downregulation of sarcoplasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) and alterations in Ca(2+) homeostasis in vascular smooth muscle cells that stimulate proliferation. We, therefore, hypothesized that downregulation of SERCA2a is permissive for pulmonary vascular remodeling and the development of PAH. METHODS AND RESULTS SERCA2a expression was decreased significantly in remodeled pulmonary arteries from patients with PAH and the rat monocrotaline model of PAH in comparison with controls. In human pulmonary artery smooth muscle cells in vitro, SERCA2a overexpression by gene transfer decreased proliferation and migration significantly by inhibiting NFAT/STAT3. Overexpresion of SERCA2a in human pulmonary artery endothelial cells in vitro increased endothelial nitric oxide synthase expression and activation. In monocrotaline rats with established PAH, gene transfer of SERCA2a via intratracheal delivery of aerosolized adeno-associated virus serotype 1 (AAV1) carrying the human SERCA2a gene (AAV1.SERCA2a) decreased pulmonary artery pressure, vascular remodeling, right ventricular hypertrophy, and fibrosis in comparison with monocrotaline-PAH rats treated with a control AAV1 carrying β-galactosidase or saline. In a prevention protocol, aerosolized AAV1.SERCA2a delivered at the time of monocrotaline administration limited adverse hemodynamic profiles and indices of pulmonary and cardiac remodeling in comparison with rats administered AAV1 carrying β-galactosidase or saline. CONCLUSIONS Downregulation of SERCA2a plays a critical role in modulating the vascular and right ventricular pathophenotype associated with PAH. Selective pulmonary SERCA2a gene transfer may offer benefit as a therapeutic intervention in PAH.
Collapse
Affiliation(s)
- Lahouaria Hadri
- Cardiovascular Research Center, Box 1030, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Yang J, Li X, Li Y, Southwood M, Ye L, Long L, Al-Lamki RS, Morrell NW. Id proteins are critical downstream effectors of BMP signaling in human pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2013; 305:L312-21. [PMID: 23771884 DOI: 10.1152/ajplung.00054.2013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic protein type II receptor (BMPR-II) mutations are responsible for over 70% of cases of heritable pulmonary arterial hypertension (PAH). Loss of BMP signaling promotes pulmonary vascular remodeling via modulation of pulmonary artery smooth muscle cell (PASMC) proliferation. Id proteins (Id1-4) are major downstream transcriptional targets of BMP signaling. However, the impact of BMPR-II mutation on the expression of the range of Id proteins and the contribution of individual Id proteins to abnormal PASMC function remain unclear. Human PASMCs were used to determine the expression of Id proteins (Id1-4) by real-time PCR and immunoblotting. The BMP responses in control cells were compared with PASMCs harboring BMPR-II mutations and cells in which BMPR-II was knocked down by siRNA transfection. Id3 expression in pulmonary vessels was also investigated in BMPR-II mutant mice and in patients with heritable PAH. BMP4 and BMP6, but not BMP9, induced mRNA expression of Id1, Id2, and Id3. The BMP-stimulated induction of Id1 and Id3 was markedly reduced in BMPR-II mutant PASMCs and in control PASMCs following siRNA silencing of BMPR-II. Pulmonary arteries in BMPR-II mutant mice and patients with heritable PAH demonstrated reduced levels of Id3 compared with control subjects. Lentiviral overexpression of Id3 reduced cell cycle progression and inhibited proliferation of PASMCs. Lipopolysaccharide further reduced Id3 expression in mutant PASMCs. In conclusion, Id proteins, and particularly Id1 and Id3, are critical downstream effectors of BMP signaling in PASMCs. Loss of BMPR-II function reduces the induction of Id genes in PASMCs, Id1, and Id3 regulate the proliferation of PASMCs via cell cycle inhibition, an effect that may be exacerbated by inflammatory stimuli.
Collapse
Affiliation(s)
- Jun Yang
- Dept. of Medicine, Level 5, Box 157 Addenbrooke's Hospitals, Hills Rd., Cambridge, CB2 0QQ, UK..
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Heme oxygenase-1 induces 15-lipoxygenase expression during hypoxia-induced pulmonary hypertension. Int J Biochem Cell Biol 2013; 45:964-72. [DOI: 10.1016/j.biocel.2013.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/25/2012] [Accepted: 01/25/2013] [Indexed: 11/22/2022]
|
76
|
Schwappacher R, Kilic A, Kojonazarov B, Lang M, Diep T, Zhuang S, Gawlowski T, Schermuly RT, Pfeifer A, Boss GR, Pilz RB. A molecular mechanism for therapeutic effects of cGMP-elevating agents in pulmonary arterial hypertension. J Biol Chem 2013; 288:16557-16566. [PMID: 23612967 DOI: 10.1074/jbc.m113.458729] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, usually fatal disease with abnormal vascular remodeling. Pulmonary artery smooth muscle cells (PASMCs) from PAH patients are hyperproliferative and apoptosis-resistant and demonstrate decreased signaling in response to bone morphogenetic proteins (BMPs). Cyclic GMP-elevating agents are beneficial in PAH, but their mechanism(s) of action are incompletely understood. Here we show that BMP signaling via Smad1/5/8 requires cGMP-dependent protein kinase isotype I (PKGI) to maintain PASMCs in a differentiated, low proliferative state. BMP cooperation with cGMP/PKGI was crucial for transcription of contractile genes and suppression of pro-proliferative and anti-apoptotic genes. Lungs from mice with low or absent PKGI (Prkg1(+/-) and Prkg1(-/-) mice) exhibited impaired BMP signaling, decreased contractile gene expression, and abnormal vascular remodeling. Conversely, cGMP stimulation of PKGI restored defective BMP signaling in rats with hypoxia-induced PAH, consistent with cGMP-elevating agents reversing vascular remodeling in this PAH model. Our results provide a mechanism for the therapeutic effects of cGMP-elevating agents in PAH and suggest that combining them with BMP mimetics may provide a novel, disease-modifying approach to PAH therapy.
Collapse
Affiliation(s)
- Raphaela Schwappacher
- Department of Medicine, University of California San Diego, La Jolla, California 92093.
| | - Ana Kilic
- Institute for Pharmacology and Toxicology, University of Bonn, 53113 Bonn, Germany
| | | | - Michaela Lang
- University of Giessen and Marburg Lung Center, 35392 Giessen, Germany
| | - Thuan Diep
- Department of Medicine, University of California San Diego, La Jolla, California 92093
| | - Shunhui Zhuang
- Department of Medicine, University of California San Diego, La Jolla, California 92093
| | - Thomas Gawlowski
- Department of Medicine, University of California San Diego, La Jolla, California 92093
| | - Ralph T Schermuly
- University of Giessen and Marburg Lung Center, 35392 Giessen, Germany
| | - Alexander Pfeifer
- Institute for Pharmacology and Toxicology, University of Bonn, 53113 Bonn, Germany
| | - Gerry R Boss
- Department of Medicine, University of California San Diego, La Jolla, California 92093
| | - Renate B Pilz
- Department of Medicine, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
77
|
Han C, Hong KH, Kim YH, Kim MJ, Song C, Kim MJ, Kim SJ, Raizada MK, Oh SP. SMAD1 deficiency in either endothelial or smooth muscle cells can predispose mice to pulmonary hypertension. Hypertension 2013; 61:1044-52. [PMID: 23478097 DOI: 10.1161/hypertensionaha.111.199158] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A deficiency in bone morphogenetic protein receptor type 2 (BMPR2) signaling is a central contributor in the pathogenesis of pulmonary arterial hypertension (PAH). We have recently shown that endothelial-specific Bmpr2 deletion by a novel L1Cre line resulted in pulmonary hypertension. SMAD1 is one of the canonical signal transducers of the BMPR2 pathway, and its reduced activity has been shown to be associated with PAH. To determine whether SMAD1 is an important downstream mediator of BMPR2 signaling in the pathogenesis of PAH, we analyzed pulmonary hypertension phenotypes in Smad1-conditional knockout mice by deleting the Smad1 gene either in endothelial cells or in smooth muscle cells using L1Cre or Tagln-Cre mouse lines, respectively. A significant number of the L1Cre(+);Smad1 (14/35) and Tagln-Cre(+);Smad1 (4/33) mutant mice showed elevated pulmonary pressure, right ventricular hypertrophy, and a thickening of pulmonary arterioles. A pulmonary endothelial cell line in which the Bmpr2 gene deletion can be induced by 4-hydroxy tamoxifen was established. SMAD1 phosphorylation in Bmpr2-deficient cells was markedly reduced by BMP4 but unaffected by BMP7. The sensitivity of SMAD2 phosphorylation by transforming growth factor-β1 was enhanced in the Bmpr2-deficient cells, and the inhibitory effect of transforming growth factor-β1-mediated SMAD2 phosphorylation by BMP4 was impaired in the Bmpr2-deficient cells. Furthermore, transcript levels of several known transforming growth factor-β downstream genes implicated in pulmonary hypertension were elevated in the Bmpr2-deficient cells. Taken together, these data suggest that SMAD1 is a critical mediator of BMPR2 signaling pertinent to PAH, and that an impaired balance between BMP4 and transforming growth factor-β1 may account for the pathogenesis of PAH.
Collapse
Affiliation(s)
- Chul Han
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
Genetically modified mouse models have unparalleled power to determine the mechanisms behind different processes involved in the molecular and physiologic etiology of various classes of human pulmonary hypertension (PH). Processes known to be involved in PH for which there are extensive mouse models available include the following: (1) Regulation of vascular tone through secreted vasoactive factors; (2) regulation of vascular tone through potassium and calcium channels; (3) regulation of vascular remodeling through alteration in metabolic processes, either through alteration in substrate usage or through circulating factors; (4) spontaneous vascular remodeling either before or after development of elevated pulmonary pressures; and (5) models in which changes in tone and remodeling are primarily driven by inflammation. PH development in mice is of necessity faster and with different physiologic ramifications than found in human disease, and so mice make poor models of natural history of PH. However, transgenic mouse models are a perfect tool for studying the processes involved in pulmonary vascular function and disease, and can effectively be used to test interventions designed against particular molecular pathways and processes involved in disease.
Collapse
Affiliation(s)
- Mita Das
- Department of Internal Medicine, University of Arkansas Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | |
Collapse
|
79
|
Vascular remodeling in pulmonary hypertension. J Mol Med (Berl) 2013; 91:297-309. [PMID: 23334338 DOI: 10.1007/s00109-013-0998-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 02/07/2023]
Abstract
Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions, and the appearance of cells expressing smooth muscle-specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular transdifferentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase, and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting.
Collapse
|
80
|
Abstract
Recent clinical and experimental studies are redefining the cellular and molecular bases of pulmonary arterial hypertension (PAH). The genetic abnormalities first identified in association with the idiopathic form of PAH--together with a vast increase in our understanding of cell signaling, cell transformation, and cell-cell interactions; gene expression; microRNA processing; and mitochondrial and ion channel function--have helped explain the abnormal response of vascular cells to injury. Experimental and clinical studies now converge on the intersection and interactions between a genetic predisposition involving the BMPR2 signaling pathway and an impaired metabolic and chronic inflammatory state in the vessel wall. These deranged processes culminate in an exuberant proliferative response that occludes the pulmonary arterial (PA) lumen and obliterates the most distal intraacinar vessels. Here, we describe emerging therapies based on preclinical studies that address these converging pathways.
Collapse
Affiliation(s)
- Marlene Rabinovitch
- Stanford University School of Medicine, Stanford, California 94305-5162, USA.
| |
Collapse
|
81
|
Poirier O, Ciumas M, Eyries M, Montagne K, Nadaud S, Soubrier F. Inhibition of apelin expression by BMP signaling in endothelial cells. Am J Physiol Cell Physiol 2012; 303:C1139-45. [DOI: 10.1152/ajpcell.00168.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transforming growth factor-β/bone morphogenic protein (BMP) system is a major pathway for angiogenesis and is involved in hereditary vascular diseases. Here we report that the gene encoding the vasoactive and vascular cell growth-regulating peptide apelin is a target of the BMP pathway. We demonstrate that apelin expression is strongly downregulated by BMP in an endothelial cell line as well as in lung endothelial microvascular cells. We show that BMP signals through the BMPR2-SMAD pathway to downregulate apelin expression and that a transcriptional direct and indirect mechanism is required. The BMP-induced downregulation of apelin expression was found to be critical for hypoxia-induced growth of endothelial cells, because the growth inhibitory effect of BMP in this condition is suppressed by enforced expression of apelin. Thus, we describe an important link between a signaling pathway involved in angiogenesis and vascular diseases and a peptide regulating vascular homeostasis.
Collapse
Affiliation(s)
- Odette Poirier
- UMR_S 956 INSERM, Université Pierre et Marie Curie, Paris, France
| | - Mariana Ciumas
- UMR_S 956 INSERM, Université Pierre et Marie Curie, Paris, France
| | - Mélanie Eyries
- UMR_S 956 INSERM, Université Pierre et Marie Curie, Paris, France
| | - Kevin Montagne
- UMR_S 956 INSERM, Université Pierre et Marie Curie, Paris, France
| | - Sophie Nadaud
- UMR_S 956 INSERM, Université Pierre et Marie Curie, Paris, France
| | - Florent Soubrier
- UMR_S 956 INSERM, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
82
|
Cates CU, Gallagher AG. The future of simulation technologies for complex cardiovascular procedures. Eur Heart J 2012; 33:2127-34. [PMID: 22733836 DOI: 10.1093/eurheartj/ehs155] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Changing work practices and the evolution of more complex interventions in cardiovascular medicine are forcing a paradigm shift in the way doctors are trained. Implantable cardioverter defibrillator (ICD), transcatheter aortic valve implantation (TAVI), carotid artery stenting (CAS), and acute stroke intervention procedures are forcing these changes at a faster pace than in other disciplines. As a consequence, cardiovascular medicine has had to develop a sophisticated understanding of precisely what is meant by 'training' and 'skill'. An evolving conclusion is that procedure training on a virtual reality (VR) simulator presents a viable current solution. These simulations should characterize the important performance characteristics of procedural skill that have metrics derived and defined from, and then benchmarked to experienced operators (i.e. level of proficiency). Simulation training is optimal with metric-based feedback, particularly formative trainee error assessments, proximate to their performance. In prospective, randomized studies, learners who trained to a benchmarked proficiency level on the simulator performed significantly better than learners who were traditionally trained. In addition, cardiovascular medicine now has available the most sophisticated virtual reality simulators in medicine and these have been used for the roll-out of interventions such as CAS in the USA and globally with cardiovascular society and industry partnered training programmes. The Food and Drug Administration has advocated the use of VR simulation as part of the approval of new devices and the American Board of Internal Medicine has adopted simulation as part of its maintenance of certification. Simulation is rapidly becoming a mainstay of cardiovascular education, training, certification, and the safe adoption of new technology. If cardiovascular medicine is to continue to lead in the adoption and integration of simulation, then, it must take a proactive position in the development of metric-based simulation curriculum, adoption of proficiency benchmarking definitions, and then resolve to commit resources so as to continue to lead this revolution in physician training.
Collapse
Affiliation(s)
- Christopher U Cates
- School of Medicine, Division of Cardiology, Emory University Hospital, 1364 Clifton Rd. NE, Atlanta, GA 30322, USA.
| | | |
Collapse
|
83
|
BMP signaling in vascular diseases. FEBS Lett 2012; 586:1993-2002. [DOI: 10.1016/j.febslet.2012.04.030] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/05/2012] [Accepted: 04/17/2012] [Indexed: 12/24/2022]
|
84
|
Zhu D, Ran Y. Role of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid in hypoxia-induced pulmonary hypertension. J Physiol Sci 2012; 62:163-72. [PMID: 22331435 PMCID: PMC10717549 DOI: 10.1007/s12576-012-0196-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/25/2012] [Indexed: 12/01/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease with a complex aetiology characterized by elevated pulmonary artery resistance, which leads to right heart ventricular afterload and ultimately progressing to right ventricular failure and often death. In addition to other factors, metabolites of arachidonic acid cascade play an important role in the pulmonary vasculature, and disruption of signaling pathways of arachidonic acid plays a central role in the pathogenesis of PAH. 15-Lipoxygenase (15-LO) is upregulated in pulmonary artery endothelial cells and smooth muscle cells of PAH patients, and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) in particular seems to play a central role in the contractile machinery, and in the initiation and propagation of cell proliferation via its effects on signal pathways, mitogens, and cell cycle components. Here, we focus on our important research into the role played by 15-LO/15-HETE, which promotes a proliferative, antiapoptotic, and vasoconstrictive physiological milieu leading to hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Daling Zhu
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, Heilongjiang, People's Republic of China.
| | | |
Collapse
|
85
|
Liu H, Zhang R, Chen D, Oyajobi BO, Zhao M. Functional redundancy of type II BMP receptor and type IIB activin receptor in BMP2-induced osteoblast differentiation. J Cell Physiol 2012; 227:952-63. [PMID: 21503889 DOI: 10.1002/jcp.22802] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Signaling pathways for bone morphogenetic proteins (BMPs) are important in osteoblast differentiation. Although the precise function of type I BMP receptors in mediating BMP signaling for osteoblast differentiation and bone formation has been characterized previously, the role of type II BMP receptors in osteoblasts is to be well clarified. In this study, we investigated the role of type II BMP receptor (BMPR-II) and type IIB activin receptor (ActR-IIB) in BMP2-induced osteoblast differentiation. While osteoblastic 2T3 cells expressed BMPR-II and ActR-IIB, loss-of-function studies, using dominant negative receptors and siRNAs, showed that BMPR-II and ActR-IIB compensated each other functionally in mediating BMP2 signaling and BMP2-induced osteoblast differentiation. This was evidenced by two findings. First, unless there was loss of function of both type II receptors, isolated disruption of either BMPR-II or ActR-IIB did not remove BMP2 activity. Second, in cells with loss of function of both receptors, restoration of function of either BMPR-II or ActR-IIB by transfection of the wild-type forms, restored BMP2 activity. These findings suggest a functional redundancy between BMPR-II and ActR-IIB in osteoblast differentiation. Results from experiments to test the effects of transforming growth factor β (TGF-β), activin, and fibroblast growth factor (FGF) on osteoblast proliferation and differentiation suggest that inhibition of receptor signaling by double-blockage of BMPR-II and ActR-IIB is BMP-signaling specific. The observed functional redundancy of type II BMP receptors in osteoblasts is novel information about the BMP signaling pathway essential for initiating osteoblast differentiation.
Collapse
Affiliation(s)
- Hongbin Liu
- Department of Biostatistics & Bioinformatics, Tulane University, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
86
|
Abstract
Bone morphogenetic protein (BMP) signaling in diseases is the subject of an overwhelming array of studies. BMPs are excellent targets for treatment of various clinical disorders. Several BMPs have already been shown to be clinically beneficial in the treatment of a variety of conditions, including BMP-2 and BMP-7 that have been approved for clinical application in nonunion bone fractures and spinal fusions. With the use of BMPs increasingly accepted in spinal fusion surgeries, other therapeutic approaches targeting BMP signaling are emerging beyond applications to skeletal disorders. These approaches can further utilize next-generation therapeutic tools such as engineered BMPs and ex vivo- conditioned cell therapies. In this review, we focused to provide insights into such clinical potentials of BMPs in metabolic and vascular diseases, and in cancer. [BMB reports 2011; 44(10): 619-634].
Collapse
Affiliation(s)
- Meejung Kim
- Joint Center for Biosciences at Lee Gil Ya Cancer and Diabetes Research Institute, Gachon University of Medicine and Science, IncheonKorea
| | | |
Collapse
|
87
|
Mushaben EM, Hershey GK, Pauciulo MW, Nichols WC, Le Cras TD. Chronic allergic inflammation causes vascular remodeling and pulmonary hypertension in BMPR2 hypomorph and wild-type mice. PLoS One 2012; 7:e32468. [PMID: 22427841 PMCID: PMC3302893 DOI: 10.1371/journal.pone.0032468] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/31/2012] [Indexed: 11/26/2022] Open
Abstract
Loss-of-function mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene have been identified in patients with heritable pulmonary arterial hypertension (PAH); however, disease penetrance is low, suggesting additional factors play a role. Inflammation is associated with PAH and vascular remodeling, but whether allergic inflammation triggers vascular remodeling in individuals with BMPR2 mutations is unknown. Our goal was to determine if chronic allergic inflammation would induce more severe vascular remodeling and PAH in mice with reduced BMPR-II signaling. Groups of Bmpr2 hypomorph and wild-type (WT) Balb/c/Byj mice were exposed to house dust mite (HDM) allergen, intranasally for 7 or 20 weeks to generate a model of chronic inflammation. HDM exposure induced similar inflammatory cell counts in all groups compared to controls. Muscularization of pulmonary arterioles and arterial wall thickness were increased after 7 weeks HDM, more severe at 20 weeks, but similar in both groups. Right ventricular systolic pressure (RVSP) was measured by direct cardiac catheterization to assess PAH. RVSP was similarly increased in both HDM exposed groups after 20 weeks compared to controls, but not after 7 weeks. Airway hyperreactivity (AHR) to methacholine was also assessed and interestingly, at 20 weeks, was more severe in HDM exposed Bmpr2 hypomorph mice versus WT. We conclude that chronic allergic inflammation caused PAH and while the severity was mild and similar between WT and Bmpr2 hypomorph mice, AHR was enhanced with reduced BMPR-II signaling. These data suggest that vascular remodeling and PAH resulting from chronic allergic inflammation occurs independently of BMPR-II pathway alterations.
Collapse
Affiliation(s)
- Elizabeth M. Mushaben
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Gurjit Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Michael W. Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - William C. Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Timothy D. Le Cras
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
88
|
Parikh VN, Jin RC, Rabello S, Gulbahce N, White K, Hale A, Cottrill KA, Shaik RS, Waxman AB, Zhang YY, Maron BA, Hartner JC, Fujiwara Y, Orkin SH, Haley KJ, Barabási AL, Loscalzo J, Chan SY. MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. Circulation 2012; 125:1520-32. [PMID: 22371328 DOI: 10.1161/circulationaha.111.060269] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is driven by diverse pathogenic etiologies. Owing to their pleiotropic actions, microRNA molecules are potential candidates for coordinated regulation of these disease stimuli. METHODS AND RESULTS Using a network biology approach, we identify microRNA associated with multiple pathogenic pathways central to PH. Specifically, microRNA-21 (miR-21) is predicted as a PH-modifying microRNA, regulating targets integral to bone morphogenetic protein (BMP) and Rho/Rho-kinase signaling as well as functional pathways associated with hypoxia, inflammation, and genetic haploinsufficiency of BMP receptor type 2. To validate these predictions, we have found that hypoxia and BMP receptor type 2 signaling independently upregulate miR-21 in cultured pulmonary arterial endothelial cells. In a reciprocal feedback loop, miR-21 downregulates BMP receptor type 2 expression. Furthermore, miR-21 directly represses RhoB expression and Rho-kinase activity, inducing molecular changes consistent with decreased angiogenesis and vasodilation. In vivo, miR-21 is upregulated in pulmonary tissue from several rodent models of PH and in humans with PH. On induction of disease in miR-21-null mice, RhoB expression and Rho-kinase activity are increased, accompanied by exaggerated manifestations of PH. CONCLUSIONS A network-based bioinformatic approach coupled with confirmatory in vivo data delineates a central regulatory role for miR-21 in PH. Furthermore, this study highlights the unique utility of network biology for identifying disease-modifying microRNA in PH.
Collapse
Affiliation(s)
- Victoria N Parikh
- Brigham and Women's Hospital, New Research Building, 77 Ave. Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
|
90
|
Gomez-Arroyo J, Saleem SJ, Mizuno S, Syed AA, Bogaard HJ, Abbate A, Taraseviciene-Stewart L, Sung Y, Kraskauskas D, Farkas D, Conrad DH, Nicolls MR, Voelkel NF. A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects. Am J Physiol Lung Cell Mol Physiol 2012; 302:L977-91. [PMID: 22307907 DOI: 10.1152/ajplung.00362.2011] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many chronic pulmonary diseases are associated with pulmonary hypertension (PH) and pulmonary vascular remodeling, which is a term that continues to be used to describe a wide spectrum of vascular abnormalities. Pulmonary vascular structural changes frequently increase pulmonary vascular resistance, causing PH and right heart failure. Although rat models had been standard models of PH research, in more recent years the availability of genetically engineered mice has made this species attractive for many investigators. Here we review a large amount of data derived from experimental PH reports published since 1996. These studies using wild-type and genetically designed mice illustrate the challenges and opportunities provided by these models. Hemodynamic measurements are difficult to obtain in mice, and right heart failure has not been investigated in mice. Anatomical, cellular, and genetic differences distinguish mice and rats, and pharmacogenomics may explain the degree of PH and the particular mode of pulmonary vascular adaptation and also the response of the right ventricle.
Collapse
Affiliation(s)
- Jose Gomez-Arroyo
- Victoria Johnson Center for Obstructive Lung Disease Research, Virginia Commonwealth University, 1220 E. Broad St., Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Ryan J, Bloch K, Archer SL. Rodent models of pulmonary hypertension: harmonisation with the world health organisation's categorisation of human PH. Int J Clin Pract 2012:15-34. [PMID: 21736677 DOI: 10.1111/j.1742-1241.2011.02710.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The WHO classification of pulmonary hypertension (PH) recognises five distinct groups, all sharing a mean, resting, pulmonary artery pressure (PAP) > 25 mmHg. The aetiology of PH varies by group (1-pulmonary vascular disease, 2-high left heart filling pressures, 3-hypoxia, 4-unresolved pulmonary embolism and 5-miscellaneous). Inclusion in a group reflects shared histological, haemodynamic and pathophysiological features and has therapeutic implications. Advantages of using rodent models to understand the pathophysiology of human PH and to test experimental therapies include the economy, safety and mechanistic certainty they provide. As rodent models are meant to reflect human PH, they should be categorised by a parallel PH classification and limitations in achieving this ideal recognised. Challenges with rodent models include: accurate phenotypic characterisation (haemodynamics, histology and imaging), species and strain variations in the natural history of PH, and poor fidelity to the relevant human PH group. Rat models of group 1 PH include: monocrotaline (± pneumonectomy), chronic hypoxia + SU-5416 (a VEGF receptor inhibitor) and the fawn-hooded rat (FHR). Mouse models of group 1 PH include: transgenic mice overexpressing the serotonin transporter or dominant-negative mutants of bone morphogenetic protein receptor-2. Group 1 PH is also created by infecting S100A4/Mts1 mice with γ-herpesvirus. The histological features of group 1 PH, but not PH itself, are induced by exposure to Schistosoma mansoni or Stachybotrys chartarum. Group 3 PH is modelled by exposure of rats or mice to chronic hypoxia. Rodent models of groups 2, 4 and 5 PH are needed. Comprehensive haemodynamic, histological and molecular phenotyping, coupled with categorisation into WHO PH groups, enhances the utility of rodent models.
Collapse
Affiliation(s)
- J Ryan
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
92
|
Cahill E, Costello CM, Rowan SC, Harkin S, Howell K, Leonard MO, Southwood M, Cummins EP, Fitzpatrick SF, Taylor CT, Morrell NW, Martin F, McLoughlin P. Gremlin plays a key role in the pathogenesis of pulmonary hypertension. Circulation 2012; 125:920-30. [PMID: 22247494 DOI: 10.1161/circulationaha.111.038125] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary hypertension occurs in chronic hypoxic lung diseases, significantly worsening morbidity and mortality. The important role of altered bone morphogenetic protein (BMP) signaling in pulmonary hypertension was first suspected after the identification of heterozygous BMP receptor mutations as the underlying defect in the rare heritable form of pulmonary arterial hypertension. Subsequently, it was demonstrated that BMP signaling was also reduced in common forms of pulmonary hypertension, including hypoxic pulmonary hypertension; however, the mechanism of this reduction has not previously been elucidated. METHODS AND RESULTS Expression of 2 BMP antagonists, gremlin 1 and gremlin 2, was higher in the lung than in other organs, and gremlin 1 was further increased in the walls of small intrapulmonary vessels of mice during the development of hypoxic pulmonary hypertension. Hypoxia stimulated gremlin secretion from human pulmonary microvascular endothelial cells in vitro, which inhibited endothelial BMP signaling and BMP-stimulated endothelial repair. Haplodeficiency of gremlin 1 augmented BMP signaling in the hypoxic mouse lung and reduced pulmonary vascular resistance by attenuating vascular remodeling. Furthermore, gremlin was increased in the walls of small intrapulmonary vessels in idiopathic pulmonary arterial hypertension and the rare heritable form of pulmonary arterial hypertension in a distribution suggesting endothelial localization. CONCLUSIONS These findings demonstrate a central role for increased gremlin in hypoxia-induced pulmonary vascular remodeling and the increased pulmonary vascular resistance in hypoxic pulmonary hypertension. High levels of basal gremlin expression in the lung may account for the unique vulnerability of the pulmonary circulation to heterozygous mutations of BMP type 2 receptor in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Edwina Cahill
- University College Dublin, School of Medicine and Medical Sciences, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Moral-Sanz J, Lopez-Lopez JG, Menendez C, Moreno E, Barreira B, Morales-Cano D, Escolano L, Fernandez-Segoviano P, Villamor E, Cogolludo A, Perez-Vizcaino F, Moreno L. Different patterns of pulmonary vascular disease induced by type 1 diabetes and moderate hypoxia in rats. Exp Physiol 2012; 97:676-86. [PMID: 22247283 DOI: 10.1113/expphysiol.2011.062257] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although type 1 and type 2 diabetes are strongly associated with systemic cardiovascular morbidity, the relationship with pulmonary vascular disease had been almost disregarded until recent epidemiological data revealed that diabetes might be a risk factor for pulmonary hypertension. Recent experimental studies suggest that diabetes induces changes in lung function insufficient to elevate pulmonary pressure. The aim of this study was to assess the effects of diabetes on the sensitivity to other risk factors for pulmonary hypertension. We therefore analysed the effects of the combination of diabetes with exposure to moderate hypoxia on classical markers of pulmonary hypertension. Control (saline-treated) and diabetic (70 mg kg(-1) streptozotocin-treated) male Wistar-Kyoto rats were followed for 4 weeks and exposed to normoxia or moderate normobaric hypoxia (14%) for another 2 weeks. Hypoxia, but not diabetes, strongly reduced voltage-gated potassium currents, whereas diabetes, but not hypoxia, induced pulmonary artery endothelial dysfunction. Both factors independently induced pulmonary vascular remodelling and downregulated the lung bone morphogenetic protein receptor type 2. However, diabetes, but not hypoxia, induced pulmonary infiltration of macrophages, which was markedly increased when both factors were combined. Diabetes plus hypoxia induced a modest increase in diastolic and mean pulmonary artery pressure and right ventricular weight, while each of the two factors alone had no significant effect. The pattern of changes in markers of pulmonary hypertension was different for moderate hypoxia and diabetes, with no synergic effect except for macrophage recruitment, and the combination of both factors was required to induce a moderate elevation in pulmonary arterial pressure.
Collapse
Affiliation(s)
- Javier Moral-Sanz
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico, San Carlos (IdISSC), Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Ohta-Ogo K, Hao H, Ishibashi-Ueda H, Hirota S, Nakamura K, Ohe T, Ito H. CD44 expression in plexiform lesions of idiopathic pulmonary arterial hypertension. Pathol Int 2012; 62:219-25. [PMID: 22449225 DOI: 10.1111/j.1440-1827.2011.02779.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Plexiform lesions in pulmonary arteries are a characteristic histological feature for idiopathic pulmonary arterial hypertension (IPAH). The pathogenesis of the plexiform lesion is not fully understood, although it may be related to endothelial cell dysfunction and local inflammation. CD44 is a cell adhesion molecule and it is also involved in angiogenesis, endothelial cell proliferation and migration. The expression of CD44 was examined in lung plexiform lesions obtained from patients with IPAH (IPAH group, n= 7) and pulmonary arterial hypertension associated with atrial septal defect (ASD-PAH group, n= 4). Expression of CD44 was detected in 49 out of 52 plexiform lesions (93%) from all patients in the IPAH group, whereas 31 plexiform lesions obtained from the ASD-PAH group lacked CD44 positivity by immunohistochemistry. In the IPAH group, CD44 was localized in the endothelial cells of microvessels within plexiform lesions and activated T cells in and around the lesions. Furthermore, T cell infiltration and endothelial cell proliferation activity were prominent in the plexiform lesions of the IPAH group, compared to those of the ASD-PAH group. These findings suggest that CD44 and activated T cell infiltration play an important role in the development of plexiform lesions particularly in IPAH.
Collapse
Affiliation(s)
- Keiko Ohta-Ogo
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
95
|
Tcherakian C, Rivaud E, Catherinot E, Zucman D, Metivier AC, Couderc LJ. [Pulmonary arterial hypertension related to HIV: is inflammation related to IL-6 the cornerstone?]. REVUE DE PNEUMOLOGIE CLINIQUE 2011; 67:250-257. [PMID: 21920286 DOI: 10.1016/j.pneumo.2011.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Indexed: 05/31/2023]
Abstract
Vascular diseases have become the leading cause of mortality in the population treated for HIV infection. Pulmonary arterial hypertension (PAH) related to HIV (PAH-HIV), the fourth cause of PAH in France, has the same histological pattern as other PAH from the group 1 of Dana Point classification. But, conversely to idiopathic PAH in the general population, PAH-HIV is particular by its high frequency in HIV-infected population. This raises the question for the role of inflammation in the PAH-HIV pathophysiology. Its constant occurrence over the decades, despite introduction of combination antiretroviral therapy (CAT), does not preclude the hypothesis of an involvement of inflammation in the genesis of PAH-HIV. Indeed, it is well known that normalization of CD4+ by the CAT does not mean no inflammation. Especially, it persists an increased and continuous production of IL-6, a main cytokine in the genesis of PAH lesions. This inflammation mainly involves the endothelin-1 pathway, which has an action on endothelium and macrophages, leading to high production of IL-6. Moreover, plasmatic level of IL-6 has a prognostic value in PAH-HIV, independently from conventional (functional or hemodynamic) parameters. The use of endothelin receptor antagonist permits major effect on IL-6 production and dramatic effect on PAH in so-called "bosentan responders".
Collapse
Affiliation(s)
- C Tcherakian
- Service de Pneumologie, Hôpital Foch, 40, rue Worth, 92150 Suresnes, France.
| | | | | | | | | | | |
Collapse
|
96
|
Jerkic M, Kabir MG, Davies A, Yu LX, McIntyre BAS, Husain NW, Enomoto M, Sotov V, Husain M, Henkelman M, Belik J, Letarte M. Pulmonary hypertension in adult Alk1 heterozygous mice due to oxidative stress. Cardiovasc Res 2011; 92:375-84. [PMID: 21859819 DOI: 10.1093/cvr/cvr232] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS Mutations in the ALK1 gene, coding for an endothelial-specific receptor of the transforming growth factor-β superfamily, are the underlying cause of hereditary haemorrhagic telangiectasia type 2, but are also associated with familial pulmonary hypertension (PH). We assessed the lung vasculature of mice with a heterozygous deletion of Alk1 (Alk1(+/-)) for disease manifestations and levels of reactive O(2) species (ROS) implicated in both disorders. METHODS AND RESULTS Several signs of PH, including elevated right ventricular (RV) systolic pressure leading to RV hypertrophy, reduced vascular density, and increased thickness and outward remodelling of pulmonary arterioles, were observed in 8- to 18-week-old Alk1(+/-) mice relative to wild-type littermate controls. Higher ROS lung levels were also documented. At 3 weeks, Alk1(+/-) mice were indistinguishable from controls and were prevented from subsequently developing PH when treated with the anti-oxidant Tempol for 6 weeks, confirming a role for ROS in pathogenesis. Levels of NADPH oxidases and superoxide dismutases were higher in adults than newborns, but unchanged in Alk1(+/-) mice vs. controls. Prostaglandin metabolites were also normal in adult Alk1(+/-) lungs. In contrast, NO production was reduced, while endothelial NO synthase (eNOS)-dependent ROS production was increased in adult Alk1(+/-) mice. Pulmonary near resistance arteries from adult Alk1(+/-) mice showed less agonist-induced force and greater acetylcholine-induced relaxation; the later was normalized by catalase or Tempol treatment. CONCLUSION The increased pulmonary vascular remodelling in Alk1(+/-) mice leads to signs of PH and is associated with eNOS-dependent ROS production, which is preventable by anti-oxidant treatment.
Collapse
Affiliation(s)
- Mirjana Jerkic
- Molecular Structure and Function Program, Hospital for Sick Children, 555 University Ave., Toronto, ON, Canada M5G 1X8
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Rothman A, Wiencek RG, Davidson S, Evans WN, Restrepo H, Sarukhanov V, Rivera-Begeman A, Mann D. Hemodynamic and histologic characterization of a swine (Sus scrofa domestica) model of chronic pulmonary arterial hypertension. Comp Med 2011; 61:258-262. [PMID: 21819696 PMCID: PMC3123759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/08/2010] [Accepted: 12/18/2010] [Indexed: 05/31/2023]
Abstract
The purpose of this work was to develop and characterize an aortopulmonary shunt model of chronic pulmonary hypertension in swine and provide sequential hemodynamic, angiographic, and histologic data by using an experimental endoarterial biopsy catheter. Nine Yucatan female microswine (Sus scrofa domestica) underwent surgical anastomosis of the left pulmonary artery to the descending aorta. Sequential hemodynamic, angiographic, and pulmonary vascular samples were obtained. Six pigs (mean weight, 22.4±5.3 kg; mean age, 7.3±2.7 mo at surgery) survived long-term (6 mo) and consistently developed marked pulmonary arterial hypertension. Angiography showed characteristic central pulmonary arterial enlargement and peripheral tortuosity and pruning. The biopsy catheter was safe and effective in obtaining pulmonary endoarterial samples for histologic studies, which showed neointimal and medial changes. Autopsy confirmed severe pulmonary vascular changes, including concentric obstructive neointimal and plexiform-like lesions. This swine model showed hemodynamic, angiographic, and histologic characteristics of chronic pulmonary arterial hypertension that mimicked the arterial pulmonary hypertension of systemic-to-pulmonary arterial shunts in humans. Experimental data obtained using this and other models and application of an in vivo endoarterial biopsy technique may aid in understanding mechanisms and developing therapies for experimental and human pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Abraham Rothman
- Children's Heart Center-Nevada, University of Nevada School of Medicine, Las Vegas, Nevada, USA.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Neonatal hyperoxia causes pulmonary vascular disease and shortens life span in aging mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2601-10. [PMID: 21550015 DOI: 10.1016/j.ajpath.2011.02.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 01/04/2011] [Accepted: 02/24/2011] [Indexed: 11/22/2022]
Abstract
Bronchopulmonary dysplasia is a chronic lung disease observed in premature infants requiring oxygen supplementation and ventilation. Although the use of exogenous surfactant and protective ventilation strategies has improved survival, the long-term pulmonary consequences of neonatal hyperoxia are unknown. Here, we investigate whether neonatal hyperoxia alters pulmonary function in aging mice. By 67 weeks of age, mice exposed to 100% oxygen between postnatal days 1 to 4 showed significantly a shortened life span (56.6% survival, n = 53) compared to siblings exposed to room air as neonates (100% survival, n = 47). Survivors had increased lung compliance and decreased elastance. There was also right ventricular hypertrophy and pathological evidence for pulmonary hypertension, defined by reduction of the distal microvasculature and the presence of numerous dilated arterioles expressing von Willebrand factor and α-smooth muscle actin. Consistent with recent literature implicating bone morphogenetic protein (BMP) signaling in pulmonary vascular disease, BMP receptors and downstream phospho-Smad1/5/8 were reduced in lungs of aging mice exposed to neonatal oxygen. BMP signaling alterations were not observed in 8-week-old mice. These data suggest that loss of BMP signaling in aged mice exposed to neonatal oxygen is associated with a shortened life span, pulmonary vascular disease, and associated cardiac failure. People exposed to hyperoxia as neonates may be at increased risk for pulmonary hypertension.
Collapse
|
99
|
Baliga RS, MacAllister RJ, Hobbs AJ. New perspectives for the treatment of pulmonary hypertension. Br J Pharmacol 2011; 163:125-40. [PMID: 21175577 PMCID: PMC3085874 DOI: 10.1111/j.1476-5381.2010.01164.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/12/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022] Open
Abstract
Pulmonary hypertension (PH) is a debilitating disease with a poor prognosis. Therapeutic options remain limited despite the introduction of prostacyclin analogues, endothelin receptor antagonists and phosphodiesterase 5 inhibitors within the last 15 years; these interventions address predominantly the endothelial and vascular dysfunctionS associated with the condition, but simply delay progression of the disease rather than offer a cure. In an attempt to improve efficacy, emerging approaches have focused on targeting the pro-proliferative phenotype that underpins the pulmonary vascular remodelling in the lung and contributes to the impaired circulation and right heart failure. Many novel targets have been investigated and validated in animal models of PH, including modulation of guanylate cyclases, phosphodiesterases, tyrosine kinases, Rho kinase, bone morphogenetic proteins signalling, 5-HT, peroxisome proliferator activator receptors and ion channels. In addition, there is hope that combinations of such treatments, harnessing and optimizing vasodilator and anti-proliferative properties, will provide a further, possibly synergistic, increase in efficacy; therapies directed at the right heart may also offer an additional benefit. This overview highlights current therapeutic options, promising new therapies, and provides the rationale for a combination approach to treat the disease.
Collapse
|
100
|
Abstract
INTRODUCTION Recent evidence shows that pulmonary arterial hypertension (PAH) remains a fatal disease despite the introduction of new pharmacological treatments. New options are therefore needed and gene therapy approaches are a rational consideration based on emerging understanding of the genetic basis of PAH. AREAS COVERED This review briefly discusses the recent developments in clinical management of PAH and the investigation of gene delivery techniques for pulmonary vascular disease from 1997 to 2010, relating this to improved understanding of disease pathogenesis during this period. There is a focus on bone morphogenetic protein receptor type 2, as mutations in this gene are clearly linked to disease pathogenesis and outcomes. The reader will gain insight into the gene vector strategies being used, the target cells and the specific genes being delivered as candidate therapeutic approaches for PAH. EXPERT OPINION Various genes and strategies for delivery have achieved improvements in PAH in animal models, which is encouraging for the development of this technology for human application. The main limiting factor for clinical progress relates to gene delivery vector technology.
Collapse
Affiliation(s)
- Paul N Reynolds
- Royal Adelaide Hospital, Hanson Institute, Department of Thoracic Medicine, Lung Research Laboratory, University of Adelaide, Adelaide SA, Australia.
| |
Collapse
|