51
|
Portelli M, Sayers I. Genetic basis for personalized medicine in asthma. Expert Rev Respir Med 2012; 6:223-36. [PMID: 22455494 DOI: 10.1586/ers.12.9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There is heterogeneity in patient responses to current asthma medications. Significant progress has been made identifying genetic polymorphisms that influence the efficacy and potential for adverse effects to asthma drugs, including; β(2)-adrenergic receptor agonists, corticosteroids and leukotriene modifiers. Pharmacogenetics holds great promise to maximise clinical outcomes and minimize adverse effects. Asthma is heterogeneous with respect to clinical presentation and inflammatory mechanisms underlying the disease, which is likely to contribute to variable results in clinical trials targeting specific inflammatory mediators. Genome-wide association studies have begun to identify genes underlying asthma (e.g., IL1RL1), which represent future therapeutic targets. In this article, we review and update the pharmacogenetics of current asthma therapies and discuss the genetics underlying selected Phase II and future targets.
Collapse
Affiliation(s)
- Michael Portelli
- Division of Therapeutics and Molecular Medicine, Nottingham Respiratory Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
52
|
Imagama T, Ogino K, Takemoto K, Kato Y, Kataoka H, Suzuki H, Ran Z, Setiawan H, Fujikura Y, Taguchi T. Regulation of nitric oxide generation by up-regulated arginase I in rat spinal cord injury. J Clin Biochem Nutr 2012; 51:68-75. [PMID: 22798716 PMCID: PMC3391866 DOI: 10.3164/jcbn.d-11-00011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/07/2011] [Indexed: 01/12/2023] Open
Abstract
Recently, arginase is suggested to regulate nitric oxide production by competing with nitric oxide synthase for the same substrate, L-arginine, in experimental asthma. We investigated the role of arginase and its relationship to nitric oxide production after spinal cord injury. Rats were subjected to laminectomy and complete transection of their spinal cords (injury group) or laminectomy only (sham group). In the injury group, arginase I was increased in the macrophages at the transection edge, and the peak was observed 48 h after spinal cord injury. However, nitric oxide production decreased significantly in the injury group despite increased nitric oxide synthase2 mRNA expression compared with the sham group. We also demonstrated the reduction in L-arginine concentrations, which was inversely associated with changes in arginase activity. Therefore, arginase appeared to regulate nitric oxide production by consuming L-arginine. The regulation of arginase activity and L-arginine levels may improve nitroxidative stress and reduce tissue damage in spinal cord injury.
Collapse
Affiliation(s)
- Takashi Imagama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Evaluation of the immunity activity of glycyrrhizin in AR mice. Molecules 2012; 17:716-27. [PMID: 22241467 PMCID: PMC6268580 DOI: 10.3390/molecules17010716] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 12/29/2011] [Accepted: 12/29/2011] [Indexed: 02/08/2023] Open
Abstract
In this study, we evaluated effect of glycyrrhizin on immunity function in allergic rhinitis (AR) mice. The AR mice model were induced by dripping ovalbumin in physiological saline (2 mg mL−1, 10 μL) into the bilateral nasal cavities using a micropipette. After the AR model was induced, mice were randomly divided into six groups: the normal control, model, lycopene 20 mg kg−1 (as positive control drug) group, and glycyrrhizin 10, 20, 30 mg kg−1 groups. After the sensitization day 14, lycopene (20 mg/kg BW) and glycyrrhizin (10, 20 and 30 mg/kg BW) were given orally for 20 days once a day. Mice in the normal control and model groups were given saline orally once a day for 20 days. Results showed that glycyrrhizin treatment could dose-dependently significantly reduce blood immunoglobulin E (IgE), interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-6 (IL-6), nitrous oxide (NO), tumor necrosis factor-alpha (TNF-α) levels and nitrous oxide synthase (NOS) activity and enhance blood immunoglobulin A (IgA), immunoglobulin G (IgG), immunoglobulin M (IgM), interleukin-2 (IL-2) and interleukin-12 (IL-12) levels in AR mice. Furthermore, glycyrrhizin treatment could dose-dependently significantly enhance acetylcholinesterase (AchE) activity and reduce substance P (SP) level in peripheral blood and nasal mucosa of AR mice. We conclude that glycyrrhizin can improve immunity function in AR mice, suggesting a potential drug for the prevention and therapy of AR.
Collapse
|
54
|
Ali NKM, Jafri A, Sopi RB, Prakash YS, Martin RJ, Zaidi SIA. Role of arginase in impairing relaxation of lung parenchyma of hyperoxia-exposed neonatal rats. Neonatology 2012; 101:106-15. [PMID: 21952491 PMCID: PMC3223066 DOI: 10.1159/000329540] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/18/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND Prolonged exposure of immature lungs to hyperoxia contributes to neonatal lung injury and airway hyperreactivity. We have previously demonstrated that neonatal exposure of rat pups to ≥95% O2 impairs airway relaxation due to disruption of nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signaling. OBJECTIVE We now hypothesize that these impaired relaxation responses are secondary to hyperoxia-induced upregulation of arginase, which competes with NO synthase for L-arginine. METHODS Rat pups were exposed to moderate neonatal hyperoxia (50% O2) or room air for 7 days from birth. In additional hyperoxic and room air groups, exogenous L-arginine (300 mg/kg/day i.p.) or arginase inhibitor (Nω-hydroxy-nor-arginine, 30 mg/kg/day i.p.) were administered daily. After 7 days, animals were anesthetized and sacrificed either for preparation of lung parenchymal strips or lung perfusion. RESULTS In response to electrical field stimulation (EFS), bethanechol-preconstricted lung parenchymal strips from hyperoxic pups exhibited significantly reduced relaxation compared to room air controls. Supplementation of L-arginine or arginase blockade restored hyperoxia-induced impairment of relaxation. Expression of arginase I in airway epithelium was increased in response to hyperoxia but reduced by arginase blockade. Arginase activity was also significantly increased in hyperoxic lungs as compared to room air controls and reduced following arginase blockade. EFS-induced production of NO was decreased in hyperoxia-exposed airway smooth muscle and restored by arginase blockade. CONCLUSION These data suggest that NO-cGMP signaling is disrupted in neonatal rat pups exposed to even moderate hyperoxia due to increased arginase activity and consequent decreased bioavailability of the substrate L-arginine. We speculate that supplementation of arginine and/or inhibition of arginase may be a useful therapeutic tool to prevent or treat neonatal lung injury.
Collapse
Affiliation(s)
- Nuzhat K M Ali
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, Ohio 44106-6009, USA
| | | | | | | | | | | |
Collapse
|
55
|
Hroch M, Havlínová Z, Nobilis M, Chládek J. HPLC determination of arginases inhibitor N-(ω)-hydroxy-nor-L-arginine using core-shell particle column and LC-MS/MS identification of principal metabolite in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 880:90-9. [PMID: 22142597 DOI: 10.1016/j.jchromb.2011.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 12/20/2022]
Abstract
For the purpose of in vivo pharmacokinetic studies, an HPLC method was developed and validated for the quantification of N-(ω)-hydroxy-nor-L-arginine, L-arginine and N-(ω)-ethyl-L-arginine (internal standard) in rat plasma. Sample processing involved a solid-phase extraction on the Waters MCX cartridges and on-line pre-column derivatization of the analytes with o-phthaldialdehyde and 3-mercaptopropionic acid. Separation of the derivatives was carried out on a core-shell Kinetex C18 column in a gradient elution mode with a mobile phase consisting of methanol and water (pH=3.00 adjusted with formic acid). Fluorimetric detection with the excitation/emission wavelengths of 235/450 nm was used. The method was validated according to the FDA guidelines and applied to pilot pharmacokinetic experiments. An unknown metabolite was extracted from the plasma of Wistar rats after a single bolus of N-(ω)-hydroxy-nor-L-arginine (i.v. 10 mg kg(-1)). The metabolite was identified as nor-L-arginine using mass spectrometry. Validated method was successfully used for pilot pharmacokinetic experiment on rats.
Collapse
Affiliation(s)
- Miloš Hroch
- Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic.
| | | | | | | |
Collapse
|
56
|
Deshane J, Zmijewski JW, Luther R, Gaggar A, Deshane R, Lai JF, Xu X, Spell M, Estell K, Weaver CT, Abraham E, Schwiebert LM, Chaplin DD. Free radical-producing myeloid-derived regulatory cells: potent activators and suppressors of lung inflammation and airway hyperresponsiveness. Mucosal Immunol 2011; 4:503-18. [PMID: 21471960 PMCID: PMC3694614 DOI: 10.1038/mi.2011.16] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Levels of reactive free radicals are elevated in the airway during asthmatic exacerbations, but their roles in the pathophysiology of asthma remain unclear. We have identified subsets of myeloid-derived suppressor-like cells as key sources of nitric oxide and superoxide in the lungs of mice with evolving experimental allergic airway inflammation and established these cells as master regulators of the airway inflammatory response. The profiles of free radicals they produced depended on expression of inducible nitric oxide synthase (iNOS), arginase, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. These radicals controlled the pro- and anti-inflammatory potential of these cells, and also regulated the reciprocal pattern of their infiltration into the lung. The nitric oxide-producing cells were Ly-6C(+)Ly-6G(-) and they downmodulated T-cell activation, recruited T(reg) cells, and dramatically downregulated antigen-induced airway hyperresponsiveness. The superoxide-producing cells were Ly-6C(-)Ly-6G(+) and they expressed proinflammatory activities, exacerbating airway hyperresponsiveness in a superoxide-dependent fashion. A smaller population of Ly-6C(+)Ly-6G(+) cells also suppressed T-cell responses, but in an iNOS- and arginase-independent fashion. These regulatory myeloid cells represent important targets for asthma therapy.
Collapse
Affiliation(s)
- Jessy Deshane
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
,Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jaroslaw W. Zmijewski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Rita Luther
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
,Veteran Affairs Medical Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Rohit Deshane
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jen-Feng Lai
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Xin Xu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Marion Spell
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
,Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kim Estell
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Edward Abraham
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Lisa M. Schwiebert
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294
,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - David D. Chaplin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
,Arthritis and Musculoskeletal Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
57
|
Ilies M, Di Costanzo L, Dowling DP, Thorn KJ, Christianson DW. Binding of α,α-disubstituted amino acids to arginase suggests new avenues for inhibitor design. J Med Chem 2011; 54:5432-43. [PMID: 21728378 PMCID: PMC3150614 DOI: 10.1021/jm200443b] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Arginase is a binuclear manganese metalloenzyme that hydrolyzes L-arginine to form L-ornithine and urea, and aberrant arginase activity is implicated in various diseases such as erectile dysfunction, asthma, atherosclerosis, and cerebral malaria. Accordingly, arginase inhibitors may be therapeutically useful. Continuing our efforts to expand the chemical space of arginase inhibitor design and inspired by the binding of 2-(difluoromethyl)-L-ornithine to human arginase I, we now report the first study of the binding of α,α-disubstituted amino acids to arginase. Specifically, we report the design, synthesis, and assay of racemic 2-amino-6-borono-2-methylhexanoic acid and racemic 2-amino-6-borono-2-(difluoromethyl)hexanoic acid. X-ray crystal structures of human arginase I and Plasmodium falciparum arginase complexed with these inhibitors reveal the exclusive binding of the L-stereoisomer; the additional α-substituent of each inhibitor is readily accommodated and makes new intermolecular interactions in the outer active site of each enzyme. Therefore, this work highlights a new region of the protein surface that can be targeted for additional affinity interactions, as well as the first comparative structural insights on inhibitor discrimination between a human and a parasitic arginase.
Collapse
Affiliation(s)
- Monica Ilies
- Department of Chemistry, Drexel University, Philadelphia, PA 19104-2875, United States
| | - Luigi Di Costanzo
- RCSB Protein Data Bank, Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey, Piscataway, NJ 08854-8087, United States
| | - Daniel P. Dowling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | | | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323 United States
| |
Collapse
|
58
|
Ilies M, Dowling DP, Lombardi PM, Christianson DW. Synthesis of a new trifluoromethylketone analogue of l-arginine and contrasting inhibitory activity against human arginase I and histone deacetylase 8. Bioorg Med Chem Lett 2011; 21:5854-8. [PMID: 21875805 DOI: 10.1016/j.bmcl.2011.07.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 01/12/2023]
Abstract
As part of our continuing search for new amino acid inhibitors of metalloenzymes, we now report the synthesis and biological evaluation of the trifluoromethylketone analogue of L-arginine, (S)-2-amino-8,8,8-trifluoro-7-oxo-octanoic acid (10). While this novel amino acid was initially designed as a potential inhibitor of human arginase I, it exhibits no measurable inhibitory activity against this enzyme. Surprisingly, however, 10 is a potent inhibitor of human histone deacetylase 8, with IC(50)=1.5 ± 0.2 μM. Additionally, 10 weakly inhibits the related bacterial enzyme, acetylpolyamine amidohydrolase, with IC(50)=110 ± 30 μM. The lack of inhibitory activity against human arginase I may result from unfavorable interactions of the bulky trifluoromethyl group of 10 in the constricted active site. Since the active site of histone deacetylase 8 is less constricted, we hypothesize that it accommodates 10 as the gem-diol, which mimics the tetrahedral intermediate and its flanking transition states in catalysis. Therefore, we suggest that 10 represents a new lead in the design of an amino acid or peptide-based inhibitor of histone deacetylases with simpler structure than previously studied trifluoromethylketones.
Collapse
Affiliation(s)
- Monica Ilies
- Department of Chemistry, Drexel University, Philadelphia, PA 19104-2875, USA
| | | | | | | |
Collapse
|
59
|
Benson RC, Hardy KA, Morris CR. Arginase and arginine dysregulation in asthma. J Allergy (Cairo) 2011; 2011:736319. [PMID: 21747870 PMCID: PMC3124954 DOI: 10.1155/2011/736319] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/07/2011] [Accepted: 02/10/2011] [Indexed: 01/01/2023] Open
Abstract
In recent years, evidence has accumulated indicating that the enzyme arginase, which converts L-arginine into L-ornithine and urea, plays a key role in the pathogenesis of pulmonary disorders such as asthma through dysregulation of L-arginine metabolism and modulation of nitric oxide (NO) homeostasis. Allergic asthma is characterized by airway hyperresponsiveness, inflammation, and remodeling. Through substrate competition, arginase decreases bioavailability of L-arginine for nitric oxide synthase (NOS), thereby limiting NO production with subsequent effects on airway tone and inflammation. By decreasing L-arginine bioavailability, arginase may also contribute to the uncoupling of NOS and the formation of the proinflammatory oxidant peroxynitrite in the airways. Finally, arginase may play a role in the development of chronic airway remodeling through formation of L-ornithine with downstream production of polyamines and L-proline, which are involved in processes of cellular proliferation and collagen deposition. Further research on modulation of arginase activity and L-arginine bioavailability may reveal promising novel therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Renée C. Benson
- Bay Area Pediatric Pulmonary Medical Corporation, Children's Hospital & Research Center Oakland, Oakland, CA 94609, USA
| | - Karen A. Hardy
- Bay Area Pediatric Pulmonary Medical Corporation, Children's Hospital & Research Center Oakland, Oakland, CA 94609, USA
| | - Claudia R. Morris
- Department of Emergency Medicine, Children's Hospital & Research Center Oakland, Oakland, CA 94609, USA
| |
Collapse
|
60
|
Prado CM, Martins MA, Tibério IFLC. Nitric oxide in asthma physiopathology. ISRN ALLERGY 2011; 2011:832560. [PMID: 23724233 PMCID: PMC3658695 DOI: 10.5402/2011/832560] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/10/2011] [Indexed: 01/01/2023]
Abstract
Asthma is a chronic inflammatory airway disease characterized by allergen-induced airway hyperresponsiveness, airway inflammation, and remodeling. Nitric oxide (NO) derived from constitutive and inducible enzymes affects many aspects of asthma physiopathology. Animal in vivo studies have indicated that inhibition of iNOS may play a central role in the modulation of these features, particularly extracellular matrix remodeling. Additionally, increases in iNOS-derived NO, observed in asthmatic patients, may lead to an increase in peroxynitrite and an imbalance of oxidant and antioxidant pathways. In addition, endogenous nitric oxide produced by constitutive enzymes may protect against the remodeling of the lung. Therefore, nitric oxide donors and/or iNOS inhibitors may have therapeutic potential in asthma treatment and can also be used with corticosteroids to counteract airway remodeling. This paper focuses on the pathophysiological role of nitric oxide, mainly derived from inducible isoforms, in the various pathologic mechanisms of allergic asthma and the importance of nitric oxide and/or arginase inhibitors in asthma treatment.
Collapse
Affiliation(s)
- Carla M Prado
- Department of Medicine, School of Medicine, University of São Paulo, 04023-900 São Paulo, SP, Brazil ; Departmento de Ciências Biológicas, Universidade Federal de São Paulo, 04301-012, Diadema, SP, Brazil
| | | | | |
Collapse
|
61
|
Tewari AK, Popova-Butler A, El-Mahdy MA, Zweier JL. Identification of differentially expressed proteins in blood plasma of control and cigarette smoke-exposed mice by 2-D DIGE/MS. Proteomics 2011; 11:2051-62. [PMID: 21500341 DOI: 10.1002/pmic.201000159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 02/04/2011] [Accepted: 02/11/2011] [Indexed: 01/23/2023]
Abstract
Cigarette smoke exposure is known to induce obstructive lung disease and several cardiovascular disease states in humans and also in animal models. Smoking leads to oxidative stress and inflammation that are important in triggering pulmonary and cardiovascular disease. The objective of the current study was to quantify differences in expression levels of plasma proteins of cigarette smoke -exposed and control mice, at the time of disease onset, and identify these proteins for use as potential biomarkers of the onset of smoking-induced disease. We utilized 2-D DIGE/MS to characterize these proteomic changes. 2-D DIGE of plasma samples identified 11 differentially expressed proteins in cigarette smoke -exposed mice. From these 11 proteins, 9 were downregulated and 2 were upregulated. The proteins identified are involved in vascular function, coagulation, metabolism and immune function. Among these, the alterations in fibrinogen (2.2-fold decrease), α-1-antitrypsin (1.8-fold increase) and arginase (4.5-fold decrease) are of particular interest since these have been directly linked to cardiovascular and lung pathology. Differences in expression levels of these proteins were also confirmed by immunoblotting. Thus, we observe that chronic cigarette smoke exposure in mice leads to prominent changes in the protein expression profile of blood plasma and these changes in turn can potentially serve as markers predictive of the onset and progression of cardiovascular and pulmonary disease.
Collapse
Affiliation(s)
- Arun K Tewari
- Center for Environmental and Smoking Induced Disease, Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH 43210-1252, USA
| | | | | | | |
Collapse
|
62
|
Abstract
Chronic lung disease is a significant source of morbidity and mortality in patients with sickle cell disease. Asthma and sickle cell lung disease share many of the same clinical features and pathophysiological mechanisms. Though there is growing evidence of an association between sickle cell disease and airway hyper-reactivity, there is still no consensus on the definition of asthma in sickle cell lung disease. This review will explore what we know about asthma and airway hyper-reactivity in sickle cell disease and whether currently available asthma therapies may be beneficial in delaying or averting the progression of sickle cell lung disease.
Collapse
|
63
|
Duan QL, Gaume BR, Hawkins GA, Himes BE, Bleecker ER, Klanderman B, Irvin CG, Peters SP, Meyers DA, Hanrahan JP, Lima JJ, Litonjua AA, Tantisira KG, Liggett SB. Regulatory haplotypes in ARG1 are associated with altered bronchodilator response. Am J Respir Crit Care Med 2011; 183:449-54. [PMID: 20851928 PMCID: PMC3056223 DOI: 10.1164/rccm.201005-0758oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/17/2010] [Indexed: 11/16/2022] Open
Abstract
RATIONALE β₂-agonists, the most common treatment for asthma, have a wide interindividual variability in response, which is partially attributed to genetic factors. We previously identified single nucleotide polymorphisms in the arginase 1 (ARG1) gene, which are associated with β₂-agonist bronchodilator response (BDR). OBJECTIVES To identify cis-acting haplotypes in the ARG1 locus that are associated with BDR in patients with asthma and regulate gene expression in vitro. METHODS We resequenced ARG1 in 96 individuals and identified three common, 5' haplotypes (denoted 1, 2, and 3). A haplotype-based association analysis of BDR was performed in three independent, adult asthma drug trial populations. Next, each haplotype was cloned into vectors containing a luciferase reporter gene and transfected into human airway epithelial cells (BEAS-2B) to ascertain its effect on gene expression. MEASUREMENTS AND MAIN RESULTS BDR varied by haplotype in each of the three populations with asthma. Individuals with haplotype 1 were more likely to have higher BDR, compared to those with haplotypes 2 and 3, which is supported by odds ratios of 1.25 (95% confidence interval, 1.03-1.71) and 2.18 (95% confidence interval, 1.34-2.52), respectively. Luciferase expression was 50% greater in cells transfected with haplotype 1 compared to haplotypes 2 and 3. CONCLUSIONS The identified ARG1 haplotypes seem to alter BDR and differentially regulate gene expression with a concordance of decreased BDR and reporter activity from haplotypes 2 and 3. These findings may facilitate pharmacogenetic tests to predict individuals who may benefit from other therapeutic agents in addition to β(2)-agonists for optimal asthma management. Clinical trial registered with www.clinicaltrials.gov (NCT00156819, NCT00046644, and NCT00073840).
Collapse
Affiliation(s)
- Qing Ling Duan
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
North ML, Amatullah H, Khanna N, Urch B, Grasemann H, Silverman F, Scott JA. Augmentation of arginase 1 expression by exposure to air pollution exacerbates the airways hyperresponsiveness in murine models of asthma. Respir Res 2011; 12:19. [PMID: 21291525 PMCID: PMC3037317 DOI: 10.1186/1465-9921-12-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 02/03/2011] [Indexed: 12/19/2022] Open
Abstract
Background Arginase overexpression contributes to airways hyperresponsiveness (AHR) in asthma. Arginase expression is further augmented in cigarette smoking asthmatics, suggesting that it may be upregulated by environmental pollution. Thus, we hypothesize that arginase contributes to the exacerbation of respiratory symptoms following exposure to air pollution, and that pharmacologic inhibition of arginase would abrogate the pollution-induced AHR. Methods To investigate the role of arginase in the air pollution-induced exacerbation of airways responsiveness, we employed two murine models of allergic airways inflammation. Mice were sensitized to ovalbumin (OVA) and challenged with nebulized PBS (OVA/PBS) or OVA (OVA/OVA) for three consecutive days (sub-acute model) or 12 weeks (chronic model), which exhibit inflammatory cell influx and remodeling/AHR, respectively. Twenty-four hours after the final challenge, mice were exposed to concentrated ambient fine particles plus ozone (CAP+O3), or HEPA-filtered air (FA), for 4 hours. After the CAP+O3 exposures, mice underwent tracheal cannulation and were treated with an aerosolized arginase inhibitor (S-boronoethyl-L-cysteine; BEC) or vehicle, immediately before determination of respiratory function and methacholine-responsiveness using the flexiVent®. Lungs were then collected for comparison of arginase activity, protein expression, and immunohistochemical localization. Results Compared to FA, arginase activity was significantly augmented in the lungs of CAP+O3-exposed OVA/OVA mice in both the sub-acute and chronic models. Western blotting and immunohistochemical staining revealed that the increased activity was due to arginase 1 expression in the area surrounding the airways in both models. Arginase inhibition significantly reduced the CAP+O3-induced increase in AHR in both models. Conclusions This study demonstrates that arginase is upregulated following environmental exposures in murine models of asthma, and contributes to the pollution-induced exacerbation of airways responsiveness. Thus arginase may be a therapeutic target to protect susceptible populations against the adverse health effects of air pollution, such as fine particles and ozone, which are two of the major contributors to smog.
Collapse
Affiliation(s)
- Michelle L North
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
65
|
Touchet S, Carreaux F, Carboni B, Bouillon A, Boucher JL. Aminoboronic acids and esters: from synthetic challenges to the discovery of unique classes of enzyme inhibitors. Chem Soc Rev 2011; 40:3895-914. [DOI: 10.1039/c0cs00154f] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
66
|
Zeki AA, Bratt JM, Rabowsky M, Last JA, Kenyon NJ. Simvastatin inhibits goblet cell hyperplasia and lung arginase in a mouse model of allergic asthma: a novel treatment for airway remodeling? Transl Res 2010; 156:335-49. [PMID: 21078495 PMCID: PMC2990975 DOI: 10.1016/j.trsl.2010.09.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 07/16/2010] [Accepted: 09/07/2010] [Indexed: 01/19/2023]
Abstract
Airway remodeling in asthma contributes to airway hyperreactivity, loss of lung function, and persistent symptoms. Current therapies do not adequately treat the structural airway changes associated with asthma. The statins are cholesterol-lowering drugs that inhibit the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase, which is the rate-limiting step of cholesterol biosynthesis in the mevalonate (MA) pathway. These drugs have been associated with improved respiratory health, and ongoing clinical trials are testing their therapeutic potential in asthma. We hypothesized that simvastatin treatment of ovalbumin (OVA)-exposed mice would attenuate early features of airway remodeling by a mevalonate-dependent mechanism. BALB/c mice initially were sensitized to OVA and then exposed to 1% OVA aerosol for 2 weeks after sensitization for 6 exposures. Simvastatin (40 mg/kg) or simvastatin plus MA (20 mg/kg) were injected intraperitoneally before each OVA exposure. Treatment with simvastatin attenuated goblet cell hyperplasia, arginase-1 protein expression, and total arginase enzyme activity, but it did not alter airway hydroxyproline content or transforming growth factor-β1. Inhibition of goblet cell hyperplasia by simvastatin was mevalonate-dependent. No appreciable changes to airway smooth muscle cells were observed in any control or treatment groups. In conclusion, in an acute mouse model of allergic asthma, simvastatin inhibited early hallmarks of airway remodeling, which are indicators that can lead to airway thickening and fibrosis. Statins are potentially novel treatments for airway remodeling in asthma. Additional studies using subchronic or chronic allergen exposure models are needed to extend these initial findings.
Collapse
Affiliation(s)
- Amir A Zeki
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, Center for Comparative Respiratory Biology & Medicine, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
67
|
Ogino K, Obase Y, Takahashi N, Shimizu H, Takigawa T, Wang DH, Ouchi K, Oka M. High serum arginase I levels in asthma: its correlation with high-sensitivity C-reactive protein. J Asthma 2010; 48:1-7. [PMID: 21039185 DOI: 10.3109/02770903.2010.528496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Much attention has been directed to the induction of arginase I in the lung of asthmatic mice. However, there is no agreement on the changes of serum arginase activity in asthmatic patients among previous studies. OBJECTIVES The aim of this study was to evaluate the clinical relevance of serum arginase I in asthmatic patients. METHODS Serum arginase I was examined cross-sectionally in non-smoking asthmatic patients (n = 23) and healthy individuals (n = 30) using enzyme-linked immunosorbent assay (ELISA) and its correlations with several clinical parameters were investigated. RESULTS Serum levels of arginase I were significantly increased in asthmatic patients (mean ± SD 67.4 ± 41.0 ng/mL) compared with healthy controls (27.2 ± 12.9 ng/mL). In healthy controls, a difference in arginase I levels was not observed between sex groups but was observed between age groups. In asthmatic patients, serum arginase I levels were not different between groups of age, sex, and inhalation steroid therapy but were different between groups of atopic status. Non-atopic asthmatic patients revealed significantly high serum arginase I levels compared with atopic asthmatic patients and healthy controls although no difference was observed between atopic asthmatic patients and healthy controls. Spearman's correlation analysis showed that serum arginase I level had a significant negative correlation with age and a positive correlation with red blood cell numbers in healthy controls, whereas in asthmatic patients, it had significant positive correlations with alanine aminotransferase (ALT), high-sensitivity C-reactive protein (hs-CRP) and a negative correlation with immunoglobulin-E (IgE). CONCLUSIONS High serum arginase I levels in asthmatic patients may be associated with airway inflammation in non-atopic asthma.
Collapse
Affiliation(s)
- Keiki Ogino
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
L-arginine reduces mitochondrial dysfunction and airway injury in murine allergic airway inflammation. Int Immunopharmacol 2010; 10:1514-9. [PMID: 20840838 DOI: 10.1016/j.intimp.2010.08.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/24/2010] [Accepted: 08/31/2010] [Indexed: 01/29/2023]
Abstract
Bronchial epithelial injury is the hall mark of asthma which is a chronic airway inflammatory disease. We have shown the mitochondrial ultrastructural changes and dysfunction in bronchial epithelia of OVA induced mice. Reduced L-arginine bioavailability in asthma leads to increased formation of peroxynitrite which could induce mitochondrial dysfunction. We have also shown that L-arginine administration attenuates experimental asthma and reduces peroxynitrite. In this study, we wanted to determine the effect of L-arginine on mitochondrial dysfunction and airway injury in allergic airway inflammation. To determine this, L-arginine was administered to ovalbumin sensitized and challenged mice during allergen challenges. Mitochondrial and cytosolic fractions were purified from the lung to determine key mitochondrial functions, and mitochondrial ultrastructural changes in bronchial epithelia of first generation bronchi were determined. It was found that L-arginine administration increased mitochondrial cytochrome c oxidase activity, reduced cytosolic cytochrome c, increased lung ATP levels, reduced DNA fragmentation in bronchial epithelia and restored the ultrastructural changes of mitochondria of bronchial epithelia. In addition, L-arginine administration reduced the widening of intercellular spaces between adjacent bronchial epithelia. These findings indicated that L-arginine administration reduced airway injury and restored mitochondrial dysfunction in murine allergic airway inflammation.
Collapse
|
69
|
Naura AS, Zerfaoui M, Kim H, Abd Elmageed ZY, Rodriguez PC, Hans CP, Ju J, Errami Y, Park J, Ochoa AC, Boulares AH. Requirement for inducible nitric oxide synthase in chronic allergen exposure-induced pulmonary fibrosis but not inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:3076-85. [PMID: 20668217 PMCID: PMC3077076 DOI: 10.4049/jimmunol.0904214] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of inducible NO synthase (iNOS) in allergic airway inflammation remains elusive. We tested the hypothesis that iNOS plays different roles during acute versus chronic airway inflammation. Acute and chronic mouse models of OVA-induced airway inflammation were used to conduct the study. We showed that iNOS deletion was associated with a reduction in eosinophilia, mucus hypersecretion, and IL-5 and IL-13 production upon the acute protocol. Such protection was completely abolished upon the chronic protocol. Interestingly, pulmonary fibrosis observed in wild-type mice under the chronic protocol was completely absent in iNOS(-/-) mice despite persistent IL-5 and IL-13 production, suggesting that these cytokines were insufficient for pulmonary fibrosis. Such protection was associated with reduced collagen synthesis and indirect but severe TGF-beta modulation as confirmed using primary lung smooth muscle cells. Although activation of matrix metalloproteinase-2/-9 exhibited little change, the large tissue inhibitor of metalloproteinase-2 (TIMP-2) increase detected in wild-type mice was absent in the iNOS(-/-) counterparts. The regulatory effect of iNOS on TIMP-2 may be mediated by peroxynitrite, as the latter reversed TIMP-2 expression in iNOS(-/-) lung smooth muscle cells and fibroblasts, suggesting that the iNOS-TIMP-2 link may explain the protective effect of iNOS-knockout against pulmonary fibrosis. Analysis of lung sections from chronically OVA-exposed iNOS(-/-) mice revealed evidence of residual but significant protein nitration, prevalent oxidative DNA damage, and poly(ADP-ribose) polymerase-1 activation. Such tissue damage, inflammatory cell recruitment, and mucus hypersecretion may be associated with substantial arginase expression and activity. The results in this study exemplify the complexity of the role of iNOS in asthma and the preservation of its potential as a therapeutic a target.
Collapse
Affiliation(s)
- Amarjit S. Naura
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Mourad Zerfaoui
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Hogyoung Kim
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Zakaria Y. Abd Elmageed
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Paulo C. Rodriguez
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Chetan P. Hans
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Jihang Ju
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Youssef Errami
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Jiwon Park
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Augusto C. Ochoa
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - A. Hamid Boulares
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| |
Collapse
|
70
|
Ilies M, Di Costanzo L, North ML, Scott JA, Christianson DW. 2-aminoimidazole amino acids as inhibitors of the binuclear manganese metalloenzyme human arginase I. J Med Chem 2010; 53:4266-76. [PMID: 20441173 PMCID: PMC2874077 DOI: 10.1021/jm100306a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Arginase, a key metalloenzyme of the urea cycle that converts L-arginine into L-ornithine and urea, is presently considered a pharmaceutical target for the management of diseases associated with aberrant l-arginine homeostasis, such as asthma, cardiovascular diseases, and erectile dysfunction. We now report the design, synthesis, and evaluation of a series of 2-aminoimidazole amino acid inhibitors in which the 2-aminoimidazole moiety serves as a guanidine mimetic. These compounds represent a new class of arginase inhibitors. The most potent inhibitor identified in this study, 2-(S)-amino-5-(2-aminoimidazol-1-yl)pentanoic acid (A1P, 10), binds to human arginase I with K(d) = 2 microM and significantly attenuates airways hyperresponsiveness in a murine model of allergic airways inflammation. These findings suggest that 2-aminoimidazole amino acids represent new leads for the development of arginase inhibitors with promising pharmacological profiles.
Collapse
Affiliation(s)
- Monica Ilies
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Luigi Di Costanzo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Michelle L. North
- Divisions of Occupational and Respiratory Medicine, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Jeremy A. Scott
- Divisions of Occupational and Respiratory Medicine, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| |
Collapse
|
71
|
Arginase 1 and arginase 2 variations associate with asthma, asthma severity and beta2 agonist and steroid response. Pharmacogenet Genomics 2010; 20:179-86. [PMID: 20124949 DOI: 10.1097/fpc.0b013e328336c7fd] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RATIONALE Arginase probably plays an important role in asthma development, severity and progression. Polymorphisms in arginase 1 and arginase 2 genes have been associated with childhood asthma and FEV1 reversibility to beta2 agonists. OBJECTIVES We investigated the association between arginase 1 and arginase 2 polymorphisms and adult asthma, asthma severity and treatment response in a longitudinal cohort of 200 asthma patients. METHODS Patients were studied during 1962-1975 and reexamined during 1990-1999, together with their families. Longitudinal data on lung function and treatment were extracted from medical records. Associations between haplotype-tagging polymorphisms in arginase 1 (n=3) and arginase 2 (n=8) and asthma, asthma severity, acute response to bronchodilators and chronic response to inhaled corticosteroids were analyzed. MEASUREMENTS AND MAIN RESULTS Two polymorphisms in arginase 2 (rs17249437 and rs3742879) were associated with asthma and with more severe airway obstruction. Increased airway hyperresponsiveness and lower beta2 agonist reversibility, but not anticholinergic reversibility, were associated with both arginase 1 and arginase 2. Inhaled corticosteroids slowed down the annual FEV1 decline, which was significantly less effective in homozygote carriers of the C-allele of the arginase 1 polymorphism, rs2781667. CONCLUSION We show that previously reported associations between arginase polymorphisms and childhood asthma are also present in adult asthma and the previously found associations with lower reversibility are specific for beta2 agonists. Furthermore, we identified associations of arginase 1 and arginase 2 genes with asthma severity, as reflected by a lower lung function, more severe airway hyperresponsiveness, and less long-term response to inhaled corticosteroids. Studies on the functionality of the polymorphisms are warranted to further unravel the complex mechanisms underlying these observations.
Collapse
|
72
|
Di Costanzo L, Ilies M, Thorn KJ, Christianson DW. Inhibition of human arginase I by substrate and product analogues. Arch Biochem Biophys 2010; 496:101-8. [PMID: 20153713 PMCID: PMC2850953 DOI: 10.1016/j.abb.2010.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 11/29/2022]
Abstract
Human arginase I is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of L-arginine to generate L-ornithine and urea. We demonstrate that N-hydroxy-L-arginine (NOHA) binds to this enzyme with K(d)=3.6 microM, and nor-N-hydroxy-L-arginine (nor-NOHA) binds with K(d)=517 nM (surface plasmon resonance) or K(d) approximately 50 nM (isothermal titration calorimetry). Crystals of human arginase I complexed with NOHA and nor-NOHA afford 2.04 and 1.55 A resolution structures, respectively, which are significantly improved in comparison with previously-determined structures of the corresponding complexes with rat arginase I. Higher resolution structures clarify the binding interactions of the inhibitors. Finally, the crystal structure of the complex with L-lysine (K(d)=13 microM) is reported at 1.90 A resolution. This structure confirms the importance of hydrogen bond interactions with inhibitor alpha-carboxylate and alpha-amino groups as key specificity determinants of amino acid recognition in the arginase active site.
Collapse
Affiliation(s)
- Luigi Di Costanzo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Monica Ilies
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Katherine J. Thorn
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| |
Collapse
|
73
|
Takahashi N, Ogino K, Takemoto K, Hamanishi S, Wang DH, Takigawa T, Shibamori M, Ishiyama H, Fujikura Y. Direct inhibition of arginase attenuated airway allergic reactions and inflammation in a Dermatophagoides farinae-induced NC/Nga mouse model. Am J Physiol Lung Cell Mol Physiol 2010; 299:L17-24. [PMID: 20382750 DOI: 10.1152/ajplung.00216.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The expression of arginase I has been a focus of research into the pathogenesis of experimental asthma, because arginase deprives nitric oxide synthase (NOS) of arginine and therefore participates in the attenuation of bronchodilators such as nitric oxide (NO). The present study used an intranasal mite-induced NC/Nga mouse model of asthma to investigate the contribution of arginase to the asthma pathogenesis, using an arginase inhibitor, N(omega)-hydroxy-nor-l-arginine (nor-NOHA). The treatment with nor-NOHA inhibited the increase in airway hyperresponsiveness (AHR) and the number of eosinophils in bronchoalveolar lavage fluid. NOx levels in the lung were elevated despite suppressed NOS2 mRNA expression. Accompanied by the attenuated activity of arginase, the expression of arginase I at both the mRNA and protein level was downregulated. The levels of mRNA for T helper 2 cytokines such as IL-4, IL-5, and IL-13, and for chemotactants such as eotaxin-1 and eotaxin-2, were reduced. Moreover, the accumulation of inflammatory cells and the ratio of goblet cells in the bronchiole were decreased. The study concluded that the depletion of NO caused by arginase contributes to AHR and inflammation, and direct administration of an arginase inhibitor to the airway may be beneficial and could be of use in treating asthma due to its anti-inflammatory and airway-relaxing effects, although it is not clear whether the anti-inflammatory effect is direct or indirect.
Collapse
Affiliation(s)
- Noriko Takahashi
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Mabalirajan U, Ahmad T, Leishangthem GD, Joseph DA, Dinda AK, Agrawal A, Ghosh B. Beneficial effects of high dose of L-arginine on airway hyperresponsiveness and airway inflammation in a murine model of asthma. J Allergy Clin Immunol 2010; 125:626-35. [PMID: 20153031 DOI: 10.1016/j.jaci.2009.10.065] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 01/26/2023]
Abstract
BACKGROUND Disturbance in the delicate balance between L-arginine-metabolizing enzymes such as nitric oxide synthase (NOS) and arginase may lead to decreased L-arginine availability to constitutive forms of NOS (endothelial NOS), thereby increasing the nitro-oxidative stress and airway hyperresponsiveness (AHR). OBJECTIVE In this study, we investigated the effects of high doses of L-arginine on L-arginine-metabolizing enzymes and subsequent biological effects such as cyclic guanosine monophosphate production, lipid peroxidation, peroxynitrite, AHR, and airway inflammation in a murine model of asthma. METHODS Different doses of L-arginine were administered to ovalbumin-sensitized and challenged mice. Exhaled nitric oxide, AHR, airway inflammation, T(H)2 cytokines, goblet cell metaplasia, nitro-oxidative stress, and expressions of arginase 1, endothelial NOS, and inducible NOS in lung were determined. RESULTS L-arginine significantly reduced AHR and airway inflammation including bronchoalveolar lavage fluid eosinophilia, T(H)2 cytokines, TGF-beta1, goblet cell metaplasia, and subepithelial fibrosis. Further, L-arginine increased ENO levels and cyclic guanosine monophosphate in lung and reduced the markers of nitro-oxidative stress such as nitrotyrosine, 8-isoprostane, and 8-hydroxy-2'-deoxyguanosine. This was associated with reduced activity and expression of arginase 1, increased expression of endothelial NOS, and reduction of inducible NOS in bronchial epithelia. CONCLUSION We conclude that L-arginine administration may improve disordered nitric oxide metabolism associated with allergic airway inflammation, and alleviates some features of asthma.
Collapse
Affiliation(s)
- Ulaganathan Mabalirajan
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma and Lung Disease, Institute of Genomics and Integrative Biology, Delhi, India
| | | | | | | | | | | | | |
Collapse
|
75
|
Turner SW. Genetic predictors of response to therapy in childhood asthma. Mol Diagn Ther 2009; 13:127-35. [PMID: 19537847 DOI: 10.1007/bf03256321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asthma is a common chronic condition in children, where the response to treatment can be heterogeneous within a population. Genetic variations may partly explain the inconsistent response to asthma treatment between individuals. There is a relatively small but consistent body of literature linking genetic variations to improved response to different classes of asthma treatment, including short- and long-acting beta-agonists, corticosteroids, and leukotriene modifiers. In most cases, the advantage conferred by a single genetic mutation for treatment response is relatively small; the Arg16Gly single nucleotide polymorphism of the beta2-adrenoceptor is the exception to this rule and is associated with a marked difference in response to short-acting beta-agonists. Pharmacogenetic studies have only recently been undertaken in asthmatic individuals, and much more work is required before clinical applications arise. Future genome-wide association (GWA) studies and randomized controlled trials in genetically susceptible populations will determine whether asthma treatment can be tailored to an individual based on their DNA. The aim of the present paper is to review pharmacogenetic studies concerning asthma medications, with a primary focus on studies involving children.
Collapse
Affiliation(s)
- Stephen W Turner
- University of Aberdeen Department of Child Health, Royal Aberdeen Children's Hospital, Foresterhill, Aberdeen, UK.
| |
Collapse
|
76
|
Bratt JM, Franzi LM, Linderholm AL, O'Roark EM, Kenyon NJ, Last JA. Arginase inhibition in airways from normal and nitric oxide synthase 2-knockout mice exposed to ovalbumin. Toxicol Appl Pharmacol 2009; 242:1-8. [PMID: 19800904 DOI: 10.1016/j.taap.2009.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
Arginase1 and nitric oxide synthase2 (NOS2) utilize l-arginine as a substrate, with both enzymes expressed at high levels in the asthmatic lung. Inhibition of arginase in ovalbumin-exposed C57BL/6 mice with the transition state inhibitor N(omega)-hydroxy-nor-l-arginine (nor-NOHA) significantly increased total l-arginine content in the airway compartment. We hypothesized that such an increase in l-arginine content would increase the amount of nitric oxide (NO) being produced in the airways and thereby decrease airway hyperreactivity and eosinophilic influx. We further hypothesized that despite arginase inhibition, NOS2 knockout (NOS2-/-) mice would be unable to up-regulate NO production in response to allergen exposure and would demonstrate higher amounts of airway hyperreactivity and eosinophilia under conditions of arginase inhibition than C57BL/6 animals. We found that administration of nor-NOHA significantly decreased airway hyperreactivity and eosinophilic airway inflammation in ovalbumin-exposed C57BL/6 mice, but these parameters were unchanged in ovalbumin-exposed NOS2-/- mice. Arginase1 protein content was increased in mice exposed to ovalbumin, an effect that was reversed upon nor-NOHA treatment in C57BL/6 mice. Arginase1 protein content in the airway compartment directly correlated with the degree of airway hyperreactivity in all treatment groups. NOS2-/- mice had significantly greater arginase1 and arginase2 concentrations compared to their respective C57BL/6 groups, indicating that inhibition of arginase may be dependent upon NOS2 expression. Arginase1 and 2 content were not affected by nor-NOHA administration in the NOS2-/- mice. We conclude that l-arginine metabolism plays an important role in the development of airway hyperreactivity and eosinophilic airway inflammation. Inhibition of arginase early in the allergic inflammatory response decreases the severity of the chronic inflammatory phenotype. These effects appear to be attributable to NOS2, which is a major source of NO production in the inflamed airway, although arginase inhibition may also be affecting the turnover of arginine by the other NOS isoforms, NOS1 and NOS3. The increased l-arginine content in the airway compartment of mice treated with nor-NOHA may directly or indirectly, through NOS2, control arginase expression both in response to OVA exposure and at a basal level.
Collapse
Affiliation(s)
- Jennifer M Bratt
- Department of Pulmonary and Critical Care Medicine, CCRBM, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
77
|
Foster MW, Hess DT, Stamler JS. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 2009; 15:391-404. [PMID: 19726230 DOI: 10.1016/j.molmed.2009.06.007] [Citation(s) in RCA: 577] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 12/24/2022]
Abstract
Protein S-nitrosylation constitutes a large part of the ubiquitous influence of nitric oxide on cellular signal transduction and accumulating evidence indicates important roles for S-nitrosylation both in normal physiology and in a broad spectrum of human diseases. Here we review recent findings that implicate S-nitrosylation in cardiovascular, pulmonary, musculoskeletal and neurological (dys)function, as well as in cancer. The emerging picture shows that, in many cases, pathophysiology correlates with hypo- or hyper-S-nitrosylation of specific protein targets rather than a general cellular insult due to loss of or enhanced nitric oxide synthase activity. In addition, it is increasingly evident that dysregulated S-nitrosylation can not only result from alterations in the expression, compartmentalization and/or activity of nitric oxide synthases, but can also reflect a contribution from denitrosylases, including prominently the S-nitrosoglutathione (GSNO)-metabolizing enzyme GSNO reductase. Finally, because exogenous mediators of protein S-nitrosylation or denitrosylation can substantially affect the development or progression of disease, potential therapeutic agents that modulate S-nitrosylation could well have broad clinical utility.
Collapse
Affiliation(s)
- Matthew W Foster
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
78
|
Maarsingh H, Zaagsma J, Meurs H. Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives. Br J Pharmacol 2009; 158:652-64. [PMID: 19703164 DOI: 10.1111/j.1476-5381.2009.00374.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is a chronic inflammatory airways' disease, characterized by allergen-induced early and late bronchial obstructive reactions, airway hyperresponsiveness (AHR), airway inflammation and airway remodelling. Recent ex vivo and in vivo studies in animal models and asthmatic patients have indicated that arginase may play a central role in all these features. Thus, increased arginase activity in the airways induces reduced bioavailability of L-arginine to constitutive (cNOS) and inducible (iNOS) nitric oxide synthases, causing a deficiency of bronchodilating and anti-inflammatory NO, as well as increased formation of peroxynitrite, which may be involved in allergen-induced airways obstruction, AHR and inflammation. In addition, both via reduced NO production and enhanced synthesis of L-ornithine, increased arginase activity may be involved in airway remodelling by promoting cell proliferation and collagen deposition in the airway wall. Therefore, arginase inhibitors may have therapeutic potential in the treatment of acute and chronic asthma. This review focuses on the pathophysiological role of arginase in allergic asthma and the emerging effectiveness of arginase inhibitors in the treatment of this disease.
Collapse
Affiliation(s)
- Harm Maarsingh
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
79
|
Zhang W, Baban B, Rojas M, Tofigh S, Virmani SK, Patel C, Behzadian MA, Romero MJ, Caldwell RW, Caldwell RB. Arginase activity mediates retinal inflammation in endotoxin-induced uveitis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:891-902. [PMID: 19590038 DOI: 10.2353/ajpath.2009.081115] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Arginase has been reported to reduce nitric oxide bioavailability in cardiovascular disease. However, its specific role in retinopathy has not been studied. In this study, we assessed the role of arginase in a mouse model of endotoxin-induced uveitis induced by lipopolysaccharide (LPS) treatment. Measurement of arginase expression and activity in the retina revealed a significant increase in arginase activity that was associated with increases in both mRNA and protein levels of arginase (Arg)1 but not Arg2. Immunofluorescence and flow cytometry confirmed this increase in Arg1, which was localized to glia and microglia. Arg1 expression and activity were also increased in cultured Muller cells and microglia treated with LPS. To test whether arginase has a role in the development of retinal inflammation, experiments were performed in mice deficient in one copy of the Arg1 gene and both copies of the Arg2 gene or in mice treated with a selective arginase inhibitor. These studies showed that LPS-induced increases in inflammatory protein production, leukostasis, retinal damage, signs of anterior uveitis, and uncoupling of nitric oxide synthase were blocked by either knockdown or inhibition of arginase. Furthermore, the LPS-induced increase in Arg1 expression was abrogated by blocking NADPH oxidase. In conclusion, these studies suggest that LPS-induced retinal inflammation in endotoxin-induced uveitis is mediated by NADPH oxidase-dependent increases in arginase activity.
Collapse
Affiliation(s)
- Wenbo Zhang
- Vascular Biology Center, Medical College of Georgia, Augusta, GA, 30912-2500, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Affiliation(s)
- Wendy C Moore
- Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases and the Center for Human Genomics, Wake Forest University, Winston-Salem, NC 27106, USA.
| |
Collapse
|
81
|
Fan XY, van den Berg A, Snoek M, van der Flier LG, Smids B, Jansen HM, Liu RY, Lutter R. Arginine deficiency augments inflammatory mediator production by airway epithelial cells in vitro. Respir Res 2009; 10:62. [PMID: 19575800 PMCID: PMC2714041 DOI: 10.1186/1465-9921-10-62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 07/03/2009] [Indexed: 11/25/2022] Open
Abstract
Background Previously we showed that reduced availability of the essential amino acid tryptophan per se attenuates post-transcriptional control of interleukin (IL)-6 and IL-8 leading to hyperresponsive production of these inflammatory mediators by airway epithelial cells. Availability of the non-essential amino acid arginine in the inflamed airway mucosa of patients with asthma is reduced markedly, but it is not known whether this can also lead to an exaggerated production of IL-6 and IL-8. Methods IL-6 and IL-8 were determined by ELISA in culture supernatants of NCI-H292 airway epithelial-like cells and normal bronchial epithelial (NHBE) cells that were exposed to TNF-α, LPS or no stimulus, in medium with or without arginine. Arginine deficiency may also result from exposure to poly-L-arginine or major basic protein (MBP), which can block arginine uptake. Epithelial cells were exposed to these polycationic proteins and L-14C-arginine uptake was assessed as well as IL-6 and IL-8 production. To determine the mode of action, IL-6 and IL-8 mRNA profiles over time were assessed as were gene transcription and post-transcriptional mRNA degradation. Results For both NCI-H292 and NHBE cells, low arginine concentrations enhanced basal epithelial IL-6 and IL-8 production and synergized with TNF-α-induced IL-6 and IL-8 production. Poly-L-arginine enhanced the stimulus-induced IL-6 and IL-8 production, however, blocking arginine uptake and the enhanced IL-6 and IL-8 production appeared unrelated. The exaggerated IL-6 and IL-8 production due to arginine deficiency and to poly-L-arginine depend on a post-transcriptional and a transcriptional process, respectively. Conclusion We conclude that both reduced arginine availability per se and the presence of polycationic proteins may promote airway inflammation by enhanced pro-inflammatory mediator production in airway epithelial cells, but due to distinct mechanisms.
Collapse
Affiliation(s)
- Xiao-Yun Fan
- Department of Pulmonology, The Geriatric Institute of Anhui, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Morris SM. Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol 2009; 157:922-30. [PMID: 19508396 PMCID: PMC2737650 DOI: 10.1111/j.1476-5381.2009.00278.x] [Citation(s) in RCA: 351] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 02/02/2009] [Accepted: 03/04/2009] [Indexed: 12/12/2022] Open
Abstract
As arginine can serve as precursor to a wide range of compounds, including nitric oxide, creatine, urea, polyamines, proline, glutamate and agmatine, there is considerable interest in elucidating mechanisms underlying regulation of its metabolism. It is now becoming apparent that the two isoforms of arginase in mammals play key roles in regulation of most aspects of arginine metabolism in health and disease. In particular, work over the past several years has focused on the roles and regulation of the arginases in vascular disease, pulmonary disease, infectious disease, immune cell function and cancer. As most of these topics have been considered in recent review articles, this review will focus more closely on results of recent studies on expression of the arginases in endothelial and vascular smooth muscle cells, post-translational modulation of arginase activity and applications of arginase inhibitors in vivo.
Collapse
Affiliation(s)
- Sidney M Morris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
83
|
Niese KA, Collier AR, Hajek AR, Cederbaum SD, O'Brien WE, Wills-Karp M, Rothenberg ME, Zimmermann N. Bone marrow cell derived arginase I is the major source of allergen-induced lung arginase but is not required for airway hyperresponsiveness, remodeling and lung inflammatory responses in mice. BMC Immunol 2009; 10:33. [PMID: 19486531 PMCID: PMC2697973 DOI: 10.1186/1471-2172-10-33] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 06/01/2009] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Arginase is significantly upregulated in the lungs in murine models of asthma, as well as in human asthma, but its role in allergic airway inflammation has not been fully elucidated in mice. RESULTS In order to test the hypothesis that arginase has a role in allergic airway inflammation we generated arginase I-deficient bone marrow (BM) chimeric mice. Following transfer of arginase I-deficient BM into irradiated recipient mice, arginase I expression was not required for hematopoietic reconstitution and baseline immunity. Arginase I deficiency in bone marrow-derived cells decreased allergen-induced lung arginase by 85.8 +/- 5.6%. In contrast, arginase II-deficient mice had increased lung arginase activity following allergen challenge to a similar level to wild type mice. BM-derived arginase I was not required for allergen-elicited sensitization, recruitment of inflammatory cells in the lung, and proliferation of cells. Furthermore, allergen-induced airway hyperresponsiveness and collagen deposition were similar in arginase-deficient and wild type mice. Additionally, arginase II-deficient mice respond similarly to their control wild type mice with allergen-induced inflammation, airway hyperresponsiveness, proliferation and collagen deposition. CONCLUSION Bone marrow cell derived arginase I is the predominant source of allergen-induced lung arginase but is not required for allergen-induced inflammation, airway hyperresponsiveness or collagen deposition.
Collapse
Affiliation(s)
- Kathryn A Niese
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ann R Collier
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Amanda R Hajek
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Stephen D Cederbaum
- Division of Genetics, Department of Pediatrics, University of California Los Angeles Medical Center, Los Angeles, California, USA
| | - William E O'Brien
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Marsha Wills-Karp
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nives Zimmermann
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
84
|
Abstract
Asthma is a common comorbidity in sickle cell disease (SCD) with a reported prevalence of 30-70%. The high frequency of asthma in this population cannot be attributed to genetic predisposition alone, and likely reflects in part, the contribution of overlapping mechanisms shared between these otherwise distinct disorders. There is accumulating evidence that dysregulated arginine metabolism and in particular, elevated arginase activity contributes to pulmonary complications in SCD. Derangements of arginine metabolism are also emerging as newly appreciated mechanism in both asthma and pulmonary hypertension independent of SCD. Patients with SCD may potentially be at risk for an asthma-like condition triggered or worsened by hemolysis-driven release of erythrocyte arginase and low nitric oxide bioavailability, in addition to classic familial asthma. Mechanisms that contributed to asthma are complex and multifactorial, influenced by genetic polymorphisms as well as environmental and infectious triggers. Given the association of asthma with inflammation, oxidative stress and hypoxemia, factors known to contribute to a vasculopathy in SCD, and the consequences of these factors on sickle erythrocytes, comorbid asthma would likely contribute to a vicious cycle of sickling and subsequent complications of SCD. Indeed a growing body of evidence documents what should come as no surprise: Asthma in SCD is associated with acute chest syndrome, stroke, pulmonary hypertension, and early mortality, and should therefore be aggressively managed based on established National Institutes of Health Guidelines for asthma management. Barriers to appropriate asthma management in SCD are discussed as well as strategies to overcome these obstacles in order to provide optimal care.
Collapse
Affiliation(s)
- Claudia R Morris
- Department of Emergency Medicine, Children's Hospital and Research Center Oakland, Oakland, California 94609, USA.
| |
Collapse
|
85
|
North ML, Khanna N, Marsden PA, Grasemann H, Scott JA. Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma. Am J Physiol Lung Cell Mol Physiol 2009; 296:L911-20. [PMID: 19286931 DOI: 10.1152/ajplung.00025.2009] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
l-Arginine metabolism by the arginase and nitric oxide (NO) synthase (NOS) families of enzymes is important in NO production, and imbalances between these pathways contribute to airway hyperresponsiveness (AHR) in asthma. To investigate the role of arginase isozymes (ARG1 and ARG2) in AHR, we determined the protein expression of ARG1, ARG2, the NOS isozymes, and other proteins involved in l-arginine metabolism in lung tissues from asthma patients and in acute (3-wk) and chronic (12-wk) murine models of ovalbumin-induced airway inflammation. Expression of ARG1 was increased in human asthma, whereas ARG2, NOS isoforms, and the other l-arginine-related proteins (i.e., cationic amino acid transporters 1 and 2, agmatinase, and ornithine decarboxylase) were unchanged. In the acute murine model of allergic airway inflammation, augmentation of ARG1 expression was similarly the most dramatic change in protein expression. However, ARG2, NOS1, NOS2, and agmatinase were also increased, whereas NOS3 expression was decreased. Arginase inhibition in vivo with nebulized S-(2-boronoethyl)-l-cysteine attenuated the methacholine responsiveness of the central airways in mice from the acute model. Further investigations in the chronic murine model revealed an expression profile that more closely paralleled the human asthma samples: only ARG1 expression was significantly increased. Interestingly, in the chronic mouse model, which generates a remodeling phenotype, arginase inhibition attenuated methacholine responsiveness of the central and peripheral airways. The similarity in arginase expression between human asthma and the chronic model and the attenuation of AHR after in vivo treatment with an arginase inhibitor suggest the potential for therapeutic modification of arginase activity in asthma.
Collapse
Affiliation(s)
- Michelle L North
- Institutes of Medical Sciences, Dalla Lana School of Public Health, Faculty of Medicine, Ontario, Canada
| | | | | | | | | |
Collapse
|
86
|
Salam MT, Islam T, Gauderman WJ, Gilliland FD. Roles of arginase variants, atopy, and ozone in childhood asthma. J Allergy Clin Immunol 2009; 123:596-602, 602.e1-8. [PMID: 19281908 PMCID: PMC2913574 DOI: 10.1016/j.jaci.2008.12.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 12/12/2008] [Accepted: 12/16/2008] [Indexed: 11/28/2022]
Abstract
BACKGROUND Arginases (encoded by ARG1 and ARG2 genes) might play an important role in asthma pathogenesis through effects on nitrosative stress. Arginase expression is upregulated in asthma and varies with T(H)2 cytokine levels and oxidative stress. OBJECTIVE We aimed to examine whether variants in these genes are associated with asthma and whether atopy and exposures to smoking and air pollution influence the associations. METHODS Among non-Hispanic and Hispanic white participants of the Children's Health Study (n = 2946), we characterized variation in each locus (including promoter region) with 6 tag single nucleotide polymorphisms for ARG1 and 10 for ARG2. Asthma was defined by parental report of physician-diagnosed asthma at study entry. RESULTS Both ARG1 and ARG2 genetic loci were significantly associated with asthma (global locus level P = .02 and .04, respectively). Compared with the most common haplotype within each locus, 1 ARG1 haplotype was associated with reduced risk (odds ratio [OR] per haplotype copy, 0.55; 95% CI, 0.36-0.84), and 1 ARG2 haplotype was associated with increased risk (OR per haplotype copy, 1.35; 95% CI, 1.04-1.76) of asthma. The effect of the ARG1 haplotype that was significantly associated with asthma varied by the child's history of atopy and ambient ozone (P(interaction) = .04 and .02, respectively). Among atopic children living in high-ozone communities, those carrying the ARG1 haplotype had reduced asthma risk (OR per haplotype copy, 0.12; 95% CI, 0.04-0.43; P(heterogeneity) across atopy/ozone categories = .008). CONCLUSIONS ARG1 and ARG2 loci are associated with childhood asthma. The association between ARG1 variation and asthma might depend on atopy and ambient ozone levels.
Collapse
Affiliation(s)
- Muhammad T Salam
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, Calif 90033, USA
| | | | | | | |
Collapse
|