51
|
Omolaoye TS, Jalaleddine N, Cardona Maya WD, du Plessis SS. Mechanisms of SARS-CoV-2 and Male Infertility: Could Connexin and Pannexin Play a Role? Front Physiol 2022; 13:866675. [PMID: 35721552 PMCID: PMC9205395 DOI: 10.3389/fphys.2022.866675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on male infertility has lately received significant attention. SARS-CoV-2, the virus that causes coronavirus disease (COVID-19) in humans, has been shown to impose adverse effects on both the structural components and function of the testis, which potentially impact spermatogenesis. These adverse effects are partially explained by fever, systemic inflammation, oxidative stress, and an increased immune response leading to impaired blood-testis barrier. It has been well established that efficient cellular communication via gap junctions or functional channels is required for tissue homeostasis. Connexins and pannexins are two protein families that mediate autocrine and paracrine signaling between the cells and the extracellular environment. These channel-forming proteins have been shown to play a role in coordinating cellular communication in the testis and epididymis. Despite their role in maintaining a proper male reproductive milieu, their function is disrupted under pathological conditions. The involvement of these channels has been well documented in several physiological and pathological conditions and their designated function in infectious diseases. However, their role in COVID-19 and their meaningful contribution to male infertility remains to be elucidated. Therefore, this review highlights the multivariate pathophysiological mechanisms of SARS-CoV-2 involvement in male reproduction. It also aims to shed light on the role of connexin and pannexin channels in disease progression, emphasizing their unexplored role and regulation of SARS-CoV-2 pathophysiology. Finally, we hypothesize the possible involvement of connexins and pannexins in SARS-CoV-2 inducing male infertility to assist future research ideas targeting therapeutic approaches.
Collapse
Affiliation(s)
- Temidayo S. Omolaoye
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nour Jalaleddine
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Walter D. Cardona Maya
- Reproduction Group, Department of Microbiology and Parasitology, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Stefan S. du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- *Correspondence: Stefan S. du Plessis,
| |
Collapse
|
52
|
Kyawsoewin M, Limraksasin P, Ngaokrajang U, Pavasant P, Osathanon T. Extracellular adenosine triphosphate induces IDO and IFNγ expression of human periodontal ligament cells through P 2 X 7 receptor signaling. J Periodontal Res 2022; 57:742-753. [PMID: 35510301 DOI: 10.1111/jre.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mechanical stimuli induce the release of adenosine triphosphate into the extracellular environment by human periodontal ligament cells (hPDLCs). Extracellular adenosine triphosphate (eATP) plays the role in both inflammation and osteogenic differentiation. eATP involves in immunosuppressive action by increasing immunosuppressive molecules IDO and IFNγ expression on immune cells. However, the role of eATP on the immunomodulation of hPDLCs remains unclear. This study aimed to examine the effects of eATP on the IDO and IFNγ expression of hPDLCs and the participation of purinergic P2 receptors in this phenomenon. METHODS hPDLCs were treated with eATP. The mRNA and protein expression of indoleamine-pyrrole 2,3-dioxygenase (IDO) and interferon-gamma (IFNγ) were determined. The role of the purinergic P2 receptor was determined using calcium chelator (EGTA) and PKC inhibitor (PKCi). Chemical inhibitors (KN62 and BBG), small interfering RNA (siRNA), and P2 X7 receptor agonist (BzATP) were used to confirm the involvement of P2 X7 receptors on IDO and IFNγ induction by hPDLCs. RESULTS eATP significantly enhanced mRNA expression of IDO and IFNγ. Moreover, eATP increased kynurenine which is the active metabolite of tryptophan breakdown catalyzed by the IDO enzyme and significantly induced IFNγ protein expression. EGTA and PKCi reduced eATP-induced IDO and IFNγ expressions by hPDLCs, confirming the role of calcium signaling. Chemical P2 X7 inhibitors (KN62 and BBG) and siRNA targeting the P2 X7 receptor significantly inhibited the eATP-induced IDO and IFNγ production. Correspondingly, BzATP markedly increased IDO and IFNγ expression. CONCLUSION eATP induced immunosuppressive function of hPDLCs by promoting IDO and IFNγ production via P2 X7 receptor signaling. eATP may become a promising target for periodontal regeneration by modulating immune response and further triggering tissue healing.
Collapse
Affiliation(s)
- Maythwe Kyawsoewin
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Oral Biological Science, University of Dental Medicine, Yangon, Myanmar
| | - Phoonsuk Limraksasin
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Utapin Ngaokrajang
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
53
|
Chauvin P, Morzadec C, de Latour B, Llamas-Gutierrez F, Luque-Paz D, Jouneau S, Vernhet L. Soluble CD163 is produced by monocyte-derived and alveolar macrophages, and is not associated with the severity of idiopathic pulmonary fibrosis. Innate Immun 2022; 28:138-151. [PMID: 35522300 PMCID: PMC9136464 DOI: 10.1177/17534259221097835] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
The soluble form of the membrane hemoglobin scavenger receptor CD163 (sCD163), released by shedding, is a strong marker for macrophage activation. Serum sCD163 levels rise in several acute inflammatory states and some fibrosing diseases. Monocyte-derived macrophages (MoDM) differentiated by macrophage colony-stimulating factor (M-MoDM) contribute to the pathophysiology of idiopathic pulmonary fibrosis (IPF), an irreversible and rapidly fatal interstitial lung disease. Since M-MoDM express high membrane CD163 levels, we thus postulated that sCD163 could be a relevant biomarker for macrophage activation in IPF. We found that M-MoDM constitutively released higher amounts of sCD163 (49.5 ± 24.5 ng/ml) than monocytes (0.45 ± 0.32 ng/ml) or MoDM differentiated with granulocyte macrophage-stimulating factor (2.24 ± 0.98 ng/ml). The basal production of sCD163 by M-MoDM was increased following stimulation with lipopolysaccharide (123.4 ± 54.9 ng/ml) or ATP (168.9 ± 41.8 ng/ml). The sCD163 release was controlled by metalloproteases but not through ADAM17 activation. Moreover, CD163-positive macrophages and sCD163 were detected in pulmonary tissues and alveolar fluids of Caucasian patients with IPF, respectively. IPF alveolar macrophages constitutively secreted sCD163 amounts (67.6 ± 44.6 ng/µg RNA) which were significantly higher than those released by alveolar macrophages isolated from controls (19.2 ± 7.6 ng/µg RNA) or patients with other interstitial lung disease (31.5 ± 16.6 ng/µg RNA). However, the concentrations of sCD163 in blood serum collected from 155 patients with IPF did not correlate with the severity of their disease. In conclusion, our results show that M-MoDM constituted a pertinent model to study the regulation of sCD163 production. Yet, serum sCD163 values could not provide a prognostic biomarker for IPF in our cohort.
Collapse
Affiliation(s)
- Pierre Chauvin
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche
en santé, environnement et travail), Rennes, France
| | - Claudie Morzadec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé,
environnement et travail), Rennes, France
| | - Bertrand de Latour
- Service de Chirurgie cardio-thoracique et vasculaire, Centre Hospitalier Universitaire,
Rennes, France
| | | | - David Luque-Paz
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche
en santé, environnement et travail), Rennes, France
| | - Stéphane Jouneau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche
en santé, environnement et travail), Rennes, France
- Service de Pneumologie, Centre de compétences pour les maladies
pulmonaires rares de Bretagne, Centre Hospitalier Universitaire,
Rennes, France
| | - Laurent Vernhet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé,
environnement et travail), Rennes, France
| |
Collapse
|
54
|
The Purinergic Landscape of Type 2 Diabetes Mellitus. Molecules 2022; 27:molecules27061838. [PMID: 35335211 PMCID: PMC8951306 DOI: 10.3390/molecules27061838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Adenosine triphosphate (ATP) is the key energy intermediate of cellular metabolic processes and a ubiquitous extracellular messenger. As an extracellular messenger, ATP acts at plasma membrane P2 receptors (P2Rs). The levels of extracellular ATP (eATP) are set by both passive and active release mechanisms and degradation processes. Under physiological conditions, eATP concentration is in the low nanomolar range but can rise to tens or even hundreds of micromoles/L at inflammatory sites. A dysregulated eATP homeostasis is a pathogenic factor in several chronic inflammatory diseases, including type 2 diabetes mellitus (T2DM). T2DM is characterized by peripheral insulin resistance and impairment of insulin production from pancreatic β-cells in a landscape of systemic inflammation. Although various hypoglycemic drugs are currently available, an effective treatment for T2DM and its complications is not available. However, counteracting systemic inflammation is anticipated to be beneficial. The postulated eATP increase in T2DM is understood to be a driver of inflammation via P2X7 receptor (P2X7R) activation and the release of inflammatory cytokines. Furthermore, P2X7R stimulation is thought to trigger apoptosis of pancreatic β-cells, thus further aggravating hyperglycemia. Targeting eATP and the P2X7R might be an appealing novel approach to T2DM therapy.
Collapse
|
55
|
Hasan M, Paul NC, Paul SK, Saikat ASM, Akter H, Mandal M, Lee SS. Natural Product-Based Potential Therapeutic Interventions of Pulmonary Fibrosis. Molecules 2022; 27:1481. [PMID: 35268581 PMCID: PMC8911636 DOI: 10.3390/molecules27051481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis (PF) is a disease-refractive lung condition with an increased rate of mortality. The potential factors causing PF include viral infections, radiation exposure, and toxic airborne chemicals. Idiopathic PF (IPF) is related to pneumonia affecting the elderly and is characterized by recurring scar formation in the lungs. An impaired wound healing process, defined by the dysregulated aggregation of extracellular matrix components, triggers fibrotic scar formation in the lungs. The potential pathogenesis includes oxidative stress, altered cell signaling, inflammation, etc. Nintedanib and pirfenidone have been approved with a conditional endorsement for the management of IPF. In addition, natural product-based treatment strategies have shown promising results in treating PF. In this study, we reviewed the recently published literature and discussed the potential uses of natural products, classified into three types-isolated active compounds, crude extracts of plants, and traditional medicine, consisting of mixtures of different plant products-in treating PF. These natural products are promising in the treatment of PF via inhibiting inflammation, oxidative stress, and endothelial mesenchymal transition, as well as affecting TGF-β-mediated cell signaling, etc. Based on the current review, we have revealed the signaling mechanisms of PF pathogenesis and the potential opportunities offered by natural product-based medicine in treating PF.
Collapse
Affiliation(s)
- Mahbub Hasan
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
- Department of Oriental Biomedical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
| | - Nidhan Chandra Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Shamrat Kumar Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Hafeza Akter
- Pharmacology and Toxicology Research Division, Health Medical Science Research Foundation, Dhaka 1207, Bangladesh;
| | - Manoj Mandal
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Sang-Suk Lee
- Department of Oriental Biomedical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
| |
Collapse
|
56
|
Rao Y, Gai X, Xiong J, Le Y, Sun Y. Transient Receptor Potential Cation Channel Subfamily V Member 4 Mediates Pyroptosis in Chronic Obstructive Pulmonary Disease. Front Physiol 2022; 12:783891. [PMID: 35002766 PMCID: PMC8740047 DOI: 10.3389/fphys.2021.783891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
TRPV4, a calcium permeable cation selective channel, was found to be involved in chronic obstructive pulmonary disease (COPD) through releasing ATP and IL-1β. Pyroptosis, a newly discovered pro-inflammatory cell death, was induced by cigarette smoke (CS) in airway epithelial cells (AECs). More recent studies indicated that blocking Ca2+ influx effectively inhibited pyroptosis. Therefore, we asked whether TRPV4 mediated CS-induced pyroptosis of AECs and hence participated in the pathogenesis of COPD. We found that pyroptosis and TRPV4 were upregulated in AECs from patients with COPD and long-term CS-exposed mice. Moreover, pharmacological inhibition or knockdown of TRPV4 function alleviated CS extract (CSE)-induced pyroptosis by inhibiting NACHT, LRP, PYD domains-containing protein 3 (NLRP3) inflammasome/activated caspase-1/gasdermin D pathway, decreasing the number of PI positive cells and lactate dehydrogenase (LDH) release, decreasing the expression of pro- inflammatory interleukin gene (IL)-1β, IL-8, and IL-18 expression, as well as increasing anti-inflammatory gene expression [NAD(P)H quinone dehydrogenase 1 (NQO1), superoxide dismutase 2 (mitochondrial) (MNSOD), and catalase, (CAT)]. Moreover, pharmacological inhibition or knockdown of TRPV4 function significantly relieved CSE-induced mitochondrial damage including decreased mitochondrial membrane potential, mitochondrial fusion protein (OPA1, MFN2) expression, and increased mitochondrial fission protein (DRP1, MFF) expression. Taken together, these findings indicate that TRPV4 mediates AEC pyroptosis via NLRP3/caspase-1/GSDMD pathway in COPD.
Collapse
Affiliation(s)
- Yafei Rao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Xiaoyan Gai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Xiong
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yanqing Le
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
57
|
Gong F, Yang Y, Wen L, Wang C, Li J, Dai J. An Overview of the Role of Mechanical Stretching in the Progression of Lung Cancer. Front Cell Dev Biol 2022; 9:781828. [PMID: 35004682 PMCID: PMC8740071 DOI: 10.3389/fcell.2021.781828] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Cells and tissues in the human body are subjected to mechanical forces of varying degrees, such as tension or pressure. During tumorigenesis, physical factors, especially mechanical factors, are involved in tumor development. As lung tissue is influenced by movements associated with breathing, it is constantly subjected to cyclical stretching and retraction; therefore, lung cancer cells and lung cancer-associated fibroblasts (CAFs) are constantly exposed to mechanical load. Thus, to better explore the mechanisms involved in lung cancer progression, it is necessary to consider factors involved in cell mechanics, which may provide a more comprehensive analysis of tumorigenesis. The purpose of this review is: 1) to provide an overview of the anatomy and tissue characteristics of the lung and the presence of mechanical stimulation; 2) to summarize the role of mechanical stretching in the progression of lung cancer; and 3) to describe the relationship between mechanical stretching and the lung cancer microenvironment, especially CAFs.
Collapse
Affiliation(s)
- Fengying Gong
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liangtao Wen
- Shiyue City Community Health Service Center, Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen, China
| | - Congrong Wang
- Department of Laboratory Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Jingjun Li
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
58
|
Schultz IC, Bertoni APS, Wink MR. Purinergic signaling elements are correlated with coagulation players in peripheral blood and leukocyte samples from COVID-19 patients. J Mol Med (Berl) 2022; 100:569-584. [PMID: 35091759 PMCID: PMC8799442 DOI: 10.1007/s00109-021-02175-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
For over a year, the coronavirus disease 2019 has been affecting the world population by causing severe tissue injuries and death in infected people. Adenosine triphosphate (ATP) and the nicotinamide adenine dinucleotide (NAD +) are two molecules that are released into the extracellular microenvironment after direct virus infection or cell death caused by hyper inflammation and coagulopathy. Also, these molecules are well known to participate in multiple pathways and have a pivotal role in the purinergic signaling pathway. Thus, using public datasets available on the Gene Expression Omnibus (GEO), we analyzed raw proteomics data acquired using mass spectrometry (the gold standard method) and raw genomics data from COVID-19 patient samples obtained by microarray. The data was analyzed using bioinformatics and statistical methods according to our objectives. Here, we compared the purinergic profile of the total leukocyte population and evaluated the levels of these soluble biomolecules in the blood, and their correlation with coagulation components in COVID-19 patients, in comparison to healthy people or non-COVID-19 patients. The blood metabolite analysis showed a stage-dependent inosine increase in COVID-19 patients, while the nucleotides ATP and ADP had positive correlations with fibrinogen and other coagulation proteins. Also, ATP, ADP, inosine, and hypoxanthine had positive and negative correlations with clinical features. Regarding leukocyte gene expression, COVID-19 patients showed an upregulation of the P2RX1, P2RX4, P2RX5, P2RX7, P2RY1, P2RY12, PANX1, ADORA2B, NLPR3, and F3 genes. Yet, the ectoenzymes of the canonical and non-canonical adenosinergic pathway (ENTPD1 and CD38) are upregulated, suggesting that adenosine is produced by both active adenosinergic pathways. Hence, approaches targeting these biomolecules or their specific purinoreceptors and ectoenzymes may attenuate the high inflammatory state and the coagulopathy seen in COVID-19 patients. KEY MESSAGES : Adenosinergic pathways are modulated on leukocytes from COVID-19 patients. Plasmatic inosine levels are increased in COVID-19 patients. ATP, ADP, AMP, hypoxanthine, and inosine are correlated with coagulation players. The nucleotides and nucleosides are correlated with patients' clinical features. The P2 receptors and ectoenzymes are correlated with Tissue factor in COVID-19.
Collapse
Affiliation(s)
- Iago C Schultz
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Sala 304, Porto Alegre, RS, 90050-170, Brazil
| | - Ana Paula S Bertoni
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Sala 304, Porto Alegre, RS, 90050-170, Brazil
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Sala 304, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
59
|
Straus DB, Pryor D, Haque TT, Kee SA, Dailey JM, Jackson KG, Barnstein BO, Ryan JJ. IL-33 priming amplifies ATP-mediated mast cell cytokine production. Cell Immunol 2022; 371:104470. [PMID: 34942481 DOI: 10.1016/j.cellimm.2021.104470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022]
Abstract
Inflammatory responses are required to block pathogen infection but can also lead to hypersensitivity and chronic inflammation. Barrier tissues actively release IL-33, ATP, and other alarmins during cell stress, helping identify pathogenic stimuli. However, it is unclear how these signals are integrated. Mast cells are critical initiators of allergic inflammation and respond to IL-33 and ATP. We found that mouse mast cells had a 3-6-fold increase in ATP-induced cytokine production when pre-treated with IL-33. This effect was observed at ATP concentrations < 100 µM and required < 30-minute IL-33 exposure. ATP-induced degranulation was not enhanced by pretreatment nor was the response to several pathogen molecules. Mechanistic studies implicated the P2X7 receptor and calcineurin/NFAT pathway in the enhanced ATP response. Finally, we found that IL-33 + ATP co-stimulation enhanced peritoneal eosinophil and macrophage recruitment. These results support the hypothesis that alarmins collaborate to surpass a threshold necessary to initiate an inflammatory response.
Collapse
Affiliation(s)
- David B Straus
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Destiny Pryor
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Tamara T Haque
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sydney A Kee
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jordan M Dailey
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kaitlyn G Jackson
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Brian O Barnstein
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
60
|
Salem M, Lecka J, Pelletier J, Gomes Marconato D, Dumas A, Vallières L, Brochu G, Robaye B, Jobin C, Sévigny J. NTPDase8 protects mice from intestinal inflammation by limiting P2Y 6 receptor activation: identification of a new pathway of inflammation for the potential treatment of IBD. Gut 2022; 71:43-54. [PMID: 33452178 DOI: 10.1136/gutjnl-2020-320937] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Nucleotides are danger signals that activate inflammatory responses via binding P2 receptors. The nucleoside triphosphate diphosphohydrolase-8 (NTPDase8) is an ectonucleotidase that hydrolyses P2 receptor ligands. We investigated the role of NTPDase8 in intestinal inflammation. DESIGN We generated NTPDase8-deficient (Entpd8-/-) mice to define the role of NTPDase8 in the dextran sodium sulfate (DSS) colitis model. To assess inflammation, colons were collected and analysed by histopathology, reverse transcriptase-quantitative real-time PCR (RT-qPCR) and immunohistochemistry. P2 receptor expression was analysed by RT-qPCR on primary intestinal epithelium and NTPDase8 activity by histochemistry. The role of intestinal P2Y6 receptors was assessed by bone marrow transplantation experiments and with a P2Y6 receptor antagonist. RESULTS NTPDase8 is the dominant enzyme responsible for the hydrolysis of nucleotides in the lumen of the colon. Compared with wild-type (WT) control mice, the colon of Entpd8-/- mice treated with DSS displayed significantly more histological damage, immune cell infiltration, apoptosis and increased expression of several proinflammatory cytokines. P2Y6 was the dominant P2Y receptor expressed at the mRNA level by the colonic epithelia. Irradiated P2ry6-/- mice transplanted with WT bone marrow were fully protected from DSS-induced intestinal inflammation. In agreement, the daily intrarectal injection of a P2Y6 antagonist protected mice from DSS-induced intestinal inflammation in a dose-dependent manner. Finally, human intestinal epithelial cells express NTPDase8 and P2Y6 similarly as in mice. CONCLUSION NTPDase8 protects the intestine from inflammation most probably by limiting the activation of P2Y6 receptors in colonic epithelial cells. This may provide a novel therapeutic strategy for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Mabrouka Salem
- Dép de microbiologie-infectiologie et d'immunologie, fac de médecine, Université Laval, Quebec City, QC, Canada
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Joanna Lecka
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Julie Pelletier
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Danielle Gomes Marconato
- Dép de microbiologie-infectiologie et d'immunologie, fac de médecine, Université Laval, Quebec City, QC, Canada
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Aline Dumas
- Axe Neurosciences, CHU de Québec - Université Laval, Quebec city, QC, Canada
| | - Luc Vallières
- Axe Neurosciences, CHU de Québec - Université Laval, Quebec city, QC, Canada
- Dép de médecine moléculaire, fac de médecine, Université Laval, Quebec City, QC, Canada
| | - Gaetan Brochu
- CHU de Québec - Université Laval, Quebec City, QC, Canada
- Dept. of Surgery, Université Laval, Quebec City, QC, Canada
| | - Bernard Robaye
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Christian Jobin
- Dept of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida, USA
| | - Jean Sévigny
- Dép de microbiologie-infectiologie et d'immunologie, fac de médecine, Université Laval, Quebec City, QC, Canada
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| |
Collapse
|
61
|
Dietl P, Frick M. Channels and Transporters of the Pulmonary Lamellar Body in Health and Disease. Cells 2021; 11:45. [PMID: 35011607 PMCID: PMC8750383 DOI: 10.3390/cells11010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
The lamellar body (LB) of the alveolar type II (ATII) cell is a lysosome-related organelle (LRO) that contains surfactant, a complex mix of mainly lipids and specific surfactant proteins. The major function of surfactant in the lung is the reduction of surface tension and stabilization of alveoli during respiration. Its lack or deficiency may cause various forms of respiratory distress syndrome (RDS). Surfactant is also part of the innate immune system in the lung, defending the organism against air-borne pathogens. The limiting (organelle) membrane that encloses the LB contains various transporters that are in part responsible for translocating lipids and other organic material into the LB. On the other hand, this membrane contains ion transporters and channels that maintain a specific internal ion composition including the acidic pH of about 5. Furthermore, P2X4 receptors, ligand gated ion channels of the danger signal ATP, are expressed in the limiting LB membrane. They play a role in boosting surfactant secretion and fluid clearance. In this review, we discuss the functions of these transporting pathways of the LB, including possible roles in disease and as therapeutic targets, including viral infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Paul Dietl
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
62
|
Luu R, Valdebenito S, Scemes E, Cibelli A, Spray DC, Rovegno M, Tichauer J, Cottignies-Calamarte A, Rosenberg A, Capron C, Belouzard S, Dubuisson J, Annane D, de la Grandmaison GL, Cramer-Bordé E, Bomsel M, Eugenin E. Pannexin-1 channel opening is critical for COVID-19 pathogenesis. iScience 2021; 24:103478. [PMID: 34841222 PMCID: PMC8603863 DOI: 10.1016/j.isci.2021.103478] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly rampaged worldwide, causing a pandemic of coronavirus disease (COVID -19), but the biology of SARS-CoV-2 remains under investigation. We demonstrate that both SARS-CoV-2 spike protein and human coronavirus 229E (hCoV-229E) or its purified S protein, one of the main viruses responsible for the common cold, induce the transient opening of Pannexin-1 (Panx-1) channels in human lung epithelial cells. However, the Panx-1 channel opening induced by SARS-CoV-2 is greater and more prolonged than hCoV-229E/S protein, resulting in an enhanced ATP, PGE2, and IL-1β release. Analysis of lung lavages and tissues indicate that Panx-1 mRNA expression is associated with increased ATP, PGE2, and IL-1β levels. Panx-1 channel opening induced by SARS-CoV-2 spike protein is angiotensin-converting enzyme 2 (ACE-2), endocytosis, and furin dependent. Overall, we demonstrated that Panx-1 channel is a critical contributor to SARS-CoV-2 infection and should be considered as an alternative therapy.
Collapse
Affiliation(s)
- Ross Luu
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX 77555, USA
| | - Silvana Valdebenito
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX 77555, USA
| | - Eliana Scemes
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Antonio Cibelli
- Dominick P. Purpura Department of Neuroscience & Department of Medicine (Cardiology), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - David C Spray
- Dominick P. Purpura Department of Neuroscience & Department of Medicine (Cardiology), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Tichauer
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Cottignies-Calamarte
- Hôpital Cochin, Service de Virologie, Hôpital Cochin (AP-HP), Paris, France.,Service d'Hématologie Hôpital Ambroise Paré (AP-HP), Boulogne-Billancourt, France
| | - Arielle Rosenberg
- Hôpital Cochin, Service de Virologie, Hôpital Cochin (AP-HP), Paris, France.,Service d'Hématologie Hôpital Ambroise Paré (AP-HP), Boulogne-Billancourt, France.,Virologie Moléculaire et Cellulaire des Coronavirus, Centre d'infection et d'immunité de Lille, Institut Pasteur de Lille, Université de Lille, CNRS, Inserm, CHRU, 59000 Lille, France
| | - Calude Capron
- Service des Maladies Infectieuses, Centre Hospitalier Universitaire Raymond Poincaré, AP-HP, Garches, France
| | | | - Jean Dubuisson
- Intensive Care Unit, Raymond Poincaré Hospital (AP-HP), Paris, France
| | - Djillali Annane
- Simone Veil School of Medicine, Université of Versailles, Versailles, France.,University Paris Saclay, Garches, France
| | - Geoffroy Lorin de la Grandmaison
- Department of Forensic Medicine and Pathology, Versailles Saint-Quentin Université, AP-HP, Raymond Poincaré Hospital, Garches, France
| | | | - Morgane Bomsel
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France.,INSERM U1016, Paris, France
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX 77555, USA
| |
Collapse
|
63
|
Thapa K, Verma N, Singh TG, Kaur Grewal A, Kanojia N, Rani L. COVID-19-Associated acute respiratory distress syndrome (CARDS): Mechanistic insights on therapeutic intervention and emerging trends. Int Immunopharmacol 2021; 101:108328. [PMID: 34768236 PMCID: PMC8563344 DOI: 10.1016/j.intimp.2021.108328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
AIMS The novel Coronavirus disease 2019 (COVID-19) has caused great distress worldwide. Acute respiratory distress syndrome (ARDS) is well familiar but when it happens as part of COVID-19 it has discrete features which are unmanageable. Numerous pharmacological treatments have been evaluated in clinical trials to control the clinical effects of CARDS, but there is no assurance of their effectiveness. MATERIALS AND METHODS A systematic review of the literature of the Medline, Scopus, Bentham, PubMed, and EMBASE (Elsevier) databases was examined to understand the novel therapeutic approaches used in COVID-19-Associated Acute Respiratory Distress Syndrome and their outcomes. KEY FINDINGS Current therapeutic options may not be enough to manage COVID-19-associated ARDS complications in group of patients and therefore, the current review has discussed the pathophysiological mechanism of COVID-19-associated ARDS, potential pharmacological treatment and the emerging molecular drug targets. SIGNIFICANCE The rationale of this review is to talk about the pathophysiology of CARDS, potential pharmacological treatment and the emerging molecular drug targets. Currently accessible treatment focuses on modulating immune responses, rendering antiviral effects, anti-thrombosis or anti-coagulant effects. It is expected that considerable number of studies conducting globally may help to discover effective therapies to decrease mortality and morbidity occurring due to CARDS. Attention should be also given on molecular drug targets that possibly will help to develop efficient cure for COVID-19-associated ARDS.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India; Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Nitin Verma
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | | | | | - Neha Kanojia
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
64
|
Höppner J, Bruni C, Distler O, Robson SC, Burmester GR, Siegert E, Distler JHW. Purinergic signaling in systemic sclerosis. Rheumatology (Oxford) 2021; 61:2770-2782. [PMID: 34849624 DOI: 10.1093/rheumatology/keab859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune rheumatic disease that involves numerous organs and presents major management challenges. The histopathologic hallmarks of SSc include vasculopathy, fibrosis and autoimmune phenomena involving both innate and adaptive immune systems. Purinergic signalling is a pathway that may be implicated in the pathophysiology of several of these disease manifestations. Extracellular purines are potent signalling mediators, which have been shown to be dysregulated in SSc. As examples, purines can exacerbate vasculopathy and provoke platelet dysfunction; as well as contributing to immune dysregulation. Elements of purinergic signalling further promote organ and tissue fibrosis in several disease models. Here, we provide an overview of extracellular purine metabolism in purinergic signalling and link disorders of these to the molecular pathology of SSc. We also discuss targeting the purinergic signalling and explore the translational applications for new therapeutic options in SSc.
Collapse
Affiliation(s)
- Jakob Höppner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, Division of Rheumatology, Careggi University Hospital, University of Florence, Florence, Italy.,Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simon C Robson
- Departments of Anesthesia and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elise Siegert
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
65
|
Jiao Y, Zhang T, Zhang C, Ji H, Tong X, Xia R, Wang W, Ma Z, Shi X. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:356. [PMID: 34641966 PMCID: PMC8507252 DOI: 10.1186/s13054-021-03775-3] [Citation(s) in RCA: 317] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Polymorphonuclear neutrophils (PMNs) play an important role in sepsis-related acute lung injury (ALI). Accumulating evidence suggests PMN-derived exosomes as a new subcellular entity acting as a fundamental link between PMN-driven inflammation and tissue damage. However, the role of PMN-derived exosomes in sepsis-related ALI and the underlying mechanisms remains unclear. METHODS Tumor necrosis factor-α (TNF-α), a key regulator of innate immunity in sepsis-related ALI, was used to stimulate PMNs from healthy C57BL/6J mice in vitro. Exosomes isolated from the supernatant were injected to C57BL/6J wild-type mice intraperitoneally (i.p.) and then examined for lung inflammation, macrophage (Mϕ) polarization and pyroptosis. In vitro co-culture system was applied where the mouse Raw264.7 macrophages or bone marrow-derived macrophages (BMDMs) were co-cultured with PMN-derived exosomes to further confirm the results of in vivo animal study and explore the potential mechanisms involved. RESULTS Exosomes released by TNF-α-stimulated PMNs (TNF-Exo) promoted M1 macrophage activation after in vivo i.p. injection or in vitro co-culture. In addition, TNF-Exo primed macrophage for pyroptosis by upregulating NOD-like receptor 3 (NLRP3) inflammasome expression through nuclear factor κB (NF-κB) signaling pathway. Mechanistic studies demonstrated that miR-30d-5p mediated the function of TNF-Exo by targeting suppressor of cytokine signaling (SOCS-1) and sirtuin 1 (SIRT1) in macrophages. Furthermore, intravenous administration of miR-30d-5p inhibitors significantly decreased TNF-Exo or cecal ligation and puncture (CLP)-induced M1 macrophage activation and macrophage death in the lung, as well as the histological lesions. CONCLUSIONS The present study demonstrated that exosomal miR-30d-5p from PMNs contributed to sepsis-related ALI by inducing M1 macrophage polarization and priming macrophage pyroptosis through activating NF-κB signaling. These findings suggest a novel mechanism of PMN-Mϕ interaction in sepsis-related ALI, which may provide new therapeutic strategies in sepsis patients.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.,Department of Anesthesiology and Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Ti Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chengmi Zhang
- Department of Anesthesiology and Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Haiying Ji
- Department of Anesthesiology and Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xingyu Tong
- Department of Anesthesiology and Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Ran Xia
- Department of Anesthesiology and Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Wei Wang
- Department of Anesthesiology and Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Xueyin Shi
- Department of Anesthesiology and Intensive Care Unit, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
66
|
Advances in TRP channel drug discovery: from target validation to clinical studies. Nat Rev Drug Discov 2021; 21:41-59. [PMID: 34526696 PMCID: PMC8442523 DOI: 10.1038/s41573-021-00268-4] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/20/2022]
Abstract
Transient receptor potential (TRP) channels are multifunctional signalling molecules with many roles in sensory perception and cellular physiology. Therefore, it is not surprising that TRP channels have been implicated in numerous diseases, including hereditary disorders caused by defects in genes encoding TRP channels (TRP channelopathies). Most TRP channels are located at the cell surface, which makes them generally accessible drug targets. Early drug discovery efforts to target TRP channels focused on pain, but as our knowledge of TRP channels and their role in health and disease has grown, these efforts have expanded into new clinical indications, ranging from respiratory disorders through neurological and psychiatric diseases to diabetes and cancer. In this Review, we discuss recent findings in TRP channel structural biology that can affect both drug development and clinical indications. We also discuss the clinical promise of novel TRP channel modulators, aimed at both established and emerging targets. Last, we address the challenges that these compounds may face in clinical practice, including the need for carefully targeted approaches to minimize potential side-effects due to the multifunctional roles of TRP channels.
Collapse
|
67
|
Kountz TS, Jairaman A, Kountz CD, Stauderman KA, Schleimer RP, Prakriya M. Differential Regulation of ATP- and UTP-Evoked Prostaglandin E 2 and IL-6 Production from Human Airway Epithelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1275-1287. [PMID: 34389624 PMCID: PMC8816324 DOI: 10.4049/jimmunol.2100127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
The airway epithelial cells (AECs) lining the conducting passageways of the lung secrete a variety of immunomodulatory factors. Among these, PGE2 limits lung inflammation and promotes bronchodilation. By contrast, IL-6 drives intense airway inflammation, remodeling, and fibrosis. The signaling that differentiates the production of these opposing mediators is not understood. In this study, we find that the production of PGE2 and IL-6 following stimulation of human AECs by the damage-associated molecular pattern extracellular ATP shares a common requirement for Ca2+ release-activated Ca2+ (CRAC) channels. ATP-mediated synthesis of PGE2 required activation of metabotropic P2Y2 receptors and CRAC channel-mediated cytosolic phospholipase A2 signaling. By contrast, ATP-evoked synthesis of IL-6 occurred via activation of ionotropic P2X receptors and CRAC channel-mediated calcineurin/NFAT signaling. In contrast to ATP, which elicited the production of both PGE2 and IL-6, the uridine nucleotide, UTP, stimulated PGE2 but not IL-6 production. These results reveal that human AECs employ unique receptor-specific signaling mechanisms with CRAC channels as a signaling nexus to regulate release of opposing immunomodulatory mediators. Collectively, our results identify P2Y2 receptors, CRAC channels, and P2X receptors as potential intervention targets for airway diseases.
Collapse
Affiliation(s)
- Timothy S Kountz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Amit Jairaman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Candace D Kountz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL;
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
68
|
Allard D, Allard B, Stagg J. On the mechanism of anti-CD39 immune checkpoint therapy. J Immunother Cancer 2021; 8:jitc-2019-000186. [PMID: 32098829 PMCID: PMC7057429 DOI: 10.1136/jitc-2019-000186] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2019] [Indexed: 12/26/2022] Open
Abstract
With the coming of age of cancer immunotherapy, the search for new therapeutic targets has led to the identification of immunosuppressive adenosine as an important regulator of antitumor immunity. This resulted in the development of selective inhibitors targeting various components of the adenosinergic pathway, including small molecules antagonists targeting the high affinity A2A adenosine receptor and low affinity A2B receptor, therapeutic monoclonal antibodies (mAbs) and small molecules targeting CD73 and therapeutic mAbs targeting CD39. As each regulator of the adenosinergic pathway present non-overlapping biologic functions, a better understanding of the mechanisms of action of each targeted approach should accelerate clinical translation and improve rational design of combination treatments. In this review, we discuss the potential mechanisms-of-action of anti-CD39 cancer therapy and potential toxicities that may emerge from sustained CD39 inhibition. Caution should be taken, however, in extrapolating data from gene-targeted mice to patients treated with blocking anti-CD39 agents. As phase I clinical trials are now underway, further insights into the mechanism of action and potential adverse events associated with anti-CD39 therapy are anticipated in coming years.
Collapse
Affiliation(s)
- David Allard
- Faculty of Pharmacy, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| | - Bertrand Allard
- Institut du Cancer de Montreal, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| | - John Stagg
- Faculty of Pharmacy, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada .,Institut du Cancer de Montreal, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| |
Collapse
|
69
|
Li H, Yu X, Shi B, Zhang K, Yuan L, Liu X, Wang P, Lv J, Meng G, Xuan Q, Wu W, Li B, Peng X, Qin X, Liu W, Zhong L, Peng Z. Reduced pannexin 1-IL-33 axis function in donor livers increases risk of MRSA infection in liver transplant recipients. Sci Transl Med 2021; 13:13/606/eaaz6169. [PMID: 34380770 DOI: 10.1126/scitranslmed.aaz6169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/28/2020] [Accepted: 07/12/2021] [Indexed: 12/28/2022]
Abstract
Liver transplantation patients are at increased risk for methicillin-resistant Staphylococcus aureus (MRSA) infection, but the molecular mechanism remains unclear. We found that genetic predisposition to low pannexin 1 (PANX1) expression in donor livers was associated with MRSA infection in human liver transplantation recipients. Using Panx1 and Il-33-knockout mice for liver transplantation models with MRSA tail vein injection, we demonstrated that Panx1 deficiency increased MRSA-induced liver injury and animal death. We found that decreased PANX1 expression in the liver led to reduced release of adenosine triphosphate (ATP) from hepatocytes, which further reduced the activation of P2X2, an ATP-activating P2X receptor. Reduced P2X2 function further decreased the NLRP3-mediated release of interleukin-33 (IL-33), reducing hepatic recruitment of macrophages and neutrophils. Administration of mouse IL-33 to Panx1-/- mice significantly (P = 0.011) ameliorated MRSA infection and animal death. Reduced human hepatic IL-33 protein abundance also associated with increased predisposition to MRSA infection. Our findings reveal that genetic predisposition to reduced PANX1 function increases risk for MRSA infection after liver transplantation by decreasing hepatic host innate immune defense, which can be attenuated by IL-33 treatment.
Collapse
Affiliation(s)
- Hao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiaoyu Yu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200085, China
| | - Baojie Shi
- Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China.,Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Kun Zhang
- Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China.,Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Liyun Yuan
- Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Pusen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Junwei Lv
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Guangxun Meng
- Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiankun Xuan
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200085, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200085, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao Peng
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 10140, USA
| | - Xuebin Qin
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 10140, USA.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA.,Department of Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacy, Wayne State University, Detroit, MI 48201, USA.
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China. .,Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China.,Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361000, China
| |
Collapse
|
70
|
Xanthine Oxidase-Induced Inflammatory Responses in Respiratory Epithelial Cells: A Review in Immunopathology of COVID-19. Int J Inflam 2021; 2021:1653392. [PMID: 34367545 PMCID: PMC8346299 DOI: 10.1155/2021/1653392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 01/16/2023] Open
Abstract
Xanthine oxidase (XO) is an enzyme that catalyzes the production of uric acid and superoxide radicals from purine bases: hypoxanthine and xanthine and is also expressed in respiratory epithelial cells. Uric acid, which is also considered a danger associated molecule pattern (DAMP), could trigger a series of inflammatory responses by activating the inflammasome complex path and NF-κB within the endothelial cells and by inducing proinflammatory cytokine release. Concurrently, XO also converts the superoxide radicals into hydroxyl radicals that further induce inflammatory responses. These conditions will ultimately sum up a hyperinflammation condition commonly dubbed as cytokine storm syndrome (CSS). The expression of proinflammatory cytokines and neutrophil chemokines may be reduced by XO inhibitor, as observed in human respiratory syncytial virus (HRSV)-infected A549 cells. Our review emphasizes that XO may have an essential role as an anti-inflammation therapy for respiratory viral infection, including coronavirus disease 2019 (COVID-19).
Collapse
|
71
|
Huang S, Wang W, Li L, Wang T, Zhao Y, Lin Y, Huang W, Wang Y, Huang Z. P2X7 Receptor Deficiency Ameliorates STZ-induced Cardiac Damage and Remodeling Through PKCβ and ERK. Front Cell Dev Biol 2021; 9:692028. [PMID: 34395424 PMCID: PMC8358615 DOI: 10.3389/fcell.2021.692028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus which result in cardiac remodeling and subsequent heart failure. However, the role of P2X7 receptor (P2X7R) in DCM has yet to be elucidated. The principal objective of this study was to investigate whether P2X7R participates in the pathogenesis of DCM. In this study, the C57BL/6 diabetic mouse model was treated with a P2X7R inhibitor (A438079). Cardiac dysfunction and remodeling were attenuated by the intraperitoneal injection of A438079 or P2X7R deficiency. In vitro, A438079 reduced high glucose (HG) induced cell damage in H9c2 cells and primary rat cardiomyocytes. Furthermore, HG/streptozotocin (STZ)-induced P2X7R activation mediated downstream protein kinase C-β (PKCβ) and extracellular regulated protein kinases (ERK) activation. This study provided evidence that P2X7R plays an important role in the pathogenesis of STZ-induced diabetic cardiac damage and remodeling through the PKCβ/ERK axis and suggested that P2X7R might be a potential target in the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shanjun Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Weiqi Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Li
- Department of Anesthesiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Ting Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yihan Zhao
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya Lin
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weijian Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yonghua Wang
- Department of Physical Education, Wenzhou Medical University, Wenzhou, China
| | - Zhouqing Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
72
|
Martinez FJ, Afzal AS, Smith JA, Ford AP, Li JJ, Li Y, Kitt MM. Treatment of Persistent Cough in Subjects with Idiopathic Pulmonary Fibrosis (IPF) with Gefapixant, a P2X3 Antagonist, in a Randomized, Placebo-Controlled Clinical Trial. Pulm Ther 2021; 7:471-486. [PMID: 34152585 PMCID: PMC8589896 DOI: 10.1007/s41030-021-00162-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/17/2021] [Indexed: 10/31/2022] Open
Abstract
INTRODUCTION Chronic cough is a highly problematic symptom for patients with idiopathic pulmonary fibrosis (IPF); limited therapeutic options are available. We evaluated gefapixant, a P2X3 receptor antagonist, for the treatment of chronic cough in IPF. METHODS This randomized, double-blind, placebo-controlled, crossover study included subjects with IPF. Sequence A included gefapixant 50 mg BID (period 1; 14 days) followed by placebo (period 2; 14 days); sequence B had the opposite sequence of treatments. This regimen was specified in a protocol amendment that modified the original active treatment regimen of gefapixant 50 mg BID for 10 days and 150 mg BID for 4 days. Patients randomized to the original treatment regimen were excluded from efficacy analyses but included in safety assessments. The primary efficacy endpoint was change from baseline in awake cough frequency (coughs/hour) from periods 1 and 2 combined. Adverse events (AEs) were monitored throughout the study. RESULTS A total of 51 subjects were randomized, 44 of whom were randomized to treatment sequences evaluated in the primary efficacy analysis (i.e., 22 subjects in sequence A and 22 subjects in sequence B); seven subjects received the treatment assigned before the protocol amendment and were excluded from efficacy analyses. The change from baseline in awake cough frequency from periods 1 and 2 combined (mixed model for repeated measures analysis) did not demonstrate a significant reduction versus placebo in cough at day 14 (p = 0.90); in a post hoc analysis of log-transformed data p value for reduction versus placebo at day 14 was 0.07. The most common AEs were related to taste (dysgeusia and ageusia). CONCLUSIONS Gefapixant was generally well tolerated but was not associated with a significant improvement in chronic cough in subjects with IPF as defined by the primary endpoint in this study. TRIAL REGISTRATION NCT02502097.
Collapse
Affiliation(s)
- Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York City, NY, USA.
| | | | - Jaclyn A Smith
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | | | | | - Yuping Li
- GetStat Solutions, LLC, Palo Alto, CA, USA
| | | | | |
Collapse
|
73
|
Huang YA, Chen JC, Wu CC, Hsu CW, Ko AMS, Chen LC, Kuo ML. Reducing Lung ATP Levels and Alleviating Asthmatic Airway Inflammation through Adeno-Associated Viral Vector-Mediated CD39 Expression. Biomedicines 2021; 9:biomedicines9060656. [PMID: 34201190 PMCID: PMC8228057 DOI: 10.3390/biomedicines9060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/04/2022] Open
Abstract
Asthma is a chronic respiratory inflammatory disease. Patients usually suffer long-term symptoms and high medical expenses. Extracellular ATP (eATP) has been identified as a danger signal in innate immunity and serves as a potent inflammatory mediator for asthma. Hydrolyzing eATP in lungs might be a potential approach to alleviate asthmatic inflammation. Recombinant adeno-associated virus (rAAV) vectors that contain tissue-specific cap protein have been demonstrated to efficiently transfer exogenous genes into the lung tissues. To test anti-inflammation efficacy of rAAV-mediated CD39 gene transfer, rAAV-CD39 was generated and applied to OVA-mediated asthmatic mice. BALB/c mice were sensitized intraperitoneally and challenged intratracheally with OVA and treated with rAAV-CD39. At the end of procedure, some inflammatory features were examined. rAAV-CD39 treatment downregulated the levels of pulmonary eATP by the rescued expression of CD39. Several asthmatic features, such as airway hyperresponsiveness, eosinophilia, mucin deposition, and IL-5/IL-13 production in the lungs were decreased in the rAAV-CD39-treated mice. Reduced IL-5/IL-13 production and increased frequency of CD4+FoxP3+ regulatory T cells were detected in draining lymph nodes of rAAV-CD39 treated mice. This evidence suggested that rAAV-mediated CD39 gene transfer attenuated the asthmatic airway inflammation locally. The results suggest that rAAV-CD39 might have therapeutic potential for asthma.
Collapse
Affiliation(s)
- Yung-An Huang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Jeng-Chang Chen
- Department of Surgery, Chang Gung Memorial Hospital-Linkou, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Wei Hsu
- Department of Otolaryngology—Head and Neck Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan;
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11574, Taiwan
| | - Albert Min-Shan Ko
- Department of Cardiovascular Diseases, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan;
| | - Li-Chen Chen
- Department of Pediatrics, Division of Allergy, Asthma, and Rheumatology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan;
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City 23664, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Cardiovascular Diseases, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan;
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City 23664, Taiwan
- Correspondence: ; Tel.: +886-3-2118800 (ext. 3319)
| |
Collapse
|
74
|
Planté-Bordeneuve T, Pilette C, Froidure A. The Epithelial-Immune Crosstalk in Pulmonary Fibrosis. Front Immunol 2021; 12:631235. [PMID: 34093523 PMCID: PMC8170303 DOI: 10.3389/fimmu.2021.631235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions between the lung epithelium and the immune system involve a tight regulation to prevent inappropriate reactions and have been connected to several pulmonary diseases. Although the distal lung epithelium and local immunity have been implicated in the pathogenesis and disease course of idiopathic pulmonary fibrosis (IPF), consequences of their abnormal interplay remain less well known. Recent data suggests a two-way process, as illustrated by the influence of epithelial-derived periplakin on the immune landscape or the effect of macrophage-derived IL-17B on epithelial cells. Additionally, damage associated molecular patterns (DAMPs), released by damaged or dying (epithelial) cells, are augmented in IPF. Next to “sterile inflammation”, pathogen-associated molecular patterns (PAMPs) are increased in IPF and have been linked with lung fibrosis, while outer membrane vesicles from bacteria are able to influence epithelial-macrophage crosstalk. Finally, the advent of high-throughput technologies such as microbiome-sequencing has allowed for the identification of a disease-specific microbial environment. In this review, we propose to discuss how the interplays between the altered distal airway and alveolar epithelium, the lung microbiome and immune cells may shape a pro-fibrotic environment. More specifically, it will highlight DAMPs-PAMPs pathways and the specificities of the IPF lung microbiome while discussing recent elements suggesting abnormal mucosal immunity in pulmonary fibrosis.
Collapse
Affiliation(s)
- Thomas Planté-Bordeneuve
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
| | - Charles Pilette
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| | - Antoine Froidure
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| |
Collapse
|
75
|
Zefferino R, Piccoli C, Di Gioia S, Capitanio N, Conese M. How Cells Communicate with Each Other in the Tumor Microenvironment: Suggestions to Design Novel Therapeutic Strategies in Cancer Disease. Int J Mol Sci 2021; 22:ijms22052550. [PMID: 33806300 PMCID: PMC7961918 DOI: 10.3390/ijms22052550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
Connexin- and pannexin (Panx)-formed hemichannels (HCs) and gap junctions (GJs) operate an interaction with the extracellular matrix and GJ intercellular communication (GJIC), and on account of this they are involved in cancer onset and progression towards invasiveness and metastatization. When we deal with cancer, it is not correct to omit the immune system, as well as neglecting its role in resisting or succumbing to formation and progression of incipient neoplasia until the formation of micrometastasis, nevertheless what really occurs in the tumor microenvironment (TME), which are the main players and which are the tumor or body allies, is still unclear. The goal of this article is to discuss how the pivotal players act, which can enhance or contrast cancer progression during two important process: "Activating Invasion and Metastasis" and the "Avoiding Immune Destruction", with a particular emphasis on the interplay among GJIC, Panx-HCs, and the purinergic system in the TME without disregarding the inflammasome and cytokines thereof derived. In particular, the complex and contrasting roles of Panx1/P2X7R signalosome in tumor facilitation and/or inhibition is discussed in regard to the early/late phases of the carcinogenesis. Finally, considering this complex interplay in the TME between cancer cells, stromal cells, immune cells, and focusing on their means of communication, we should be capable of revealing harmful messages that help the cancer growth and transform them in body allies, thus designing novel therapeutic strategies to fight cancer in a personalized manner.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
- Correspondence: ; Tel.: +39-0881-884673
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (N.C.)
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (N.C.)
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| |
Collapse
|
76
|
Wauters E, Van Mol P, Garg AD, Jansen S, Van Herck Y, Vanderbeke L, Bassez A, Boeckx B, Malengier-Devlies B, Timmerman A, Van Brussel T, Van Buyten T, Schepers R, Heylen E, Dauwe D, Dooms C, Gunst J, Hermans G, Meersseman P, Testelmans D, Yserbyt J, Tejpar S, De Wever W, Matthys P, CONTAGIOUS collaborators BosisioMaria15CasaerMichael10De SmetFrederik16De MunterPaul17Humblet-BaronStephanie18ListonAdrian19LorentNatalie2MartinodKim20ProostPaul21RaesJeroen22ThevissenKarin23VosRobin1WeynandBirgit15WoutersCarine24, Neyts J, Wauters J, Qian J, Lambrechts D. Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. Cell Res 2021; 31:272-290. [PMID: 33473155 PMCID: PMC8027624 DOI: 10.1038/s41422-020-00455-9] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
How the innate and adaptive host immune system miscommunicate to worsen COVID-19 immunopathology has not been fully elucidated. Here, we perform single-cell deep-immune profiling of bronchoalveolar lavage (BAL) samples from 5 patients with mild and 26 with critical COVID-19 in comparison to BALs from non-COVID-19 pneumonia and normal lung. We use pseudotime inference to build T-cell and monocyte-to-macrophage trajectories and model gene expression changes along them. In mild COVID-19, CD8+ resident-memory (TRM) and CD4+ T-helper-17 (TH17) cells undergo active (presumably antigen-driven) expansion towards the end of the trajectory, and are characterized by good effector functions, while in critical COVID-19 they remain more naïve. Vice versa, CD4+ T-cells with T-helper-1 characteristics (TH1-like) and CD8+ T-cells expressing exhaustion markers (TEX-like) are enriched halfway their trajectories in mild COVID-19, where they also exhibit good effector functions, while in critical COVID-19 they show evidence of inflammation-associated stress at the end of their trajectories. Monocyte-to-macrophage trajectories show that chronic hyperinflammatory monocytes are enriched in critical COVID-19, while alveolar macrophages, otherwise characterized by anti-inflammatory and antigen-presenting characteristics, are depleted. In critical COVID-19, monocytes contribute to an ATP-purinergic signaling-inflammasome footprint that could enable COVID-19 associated fibrosis and worsen disease-severity. Finally, viral RNA-tracking reveals infected lung epithelial cells, and a significant proportion of neutrophils and macrophages that are involved in viral clearance.
Collapse
Affiliation(s)
- Els Wauters
- grid.5596.f0000 0001 0668 7884Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Van Mol
- grid.410569.f0000 0004 0626 3338Department of Pneumology, University Hospitals Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Abhishek Dinkarnath Garg
- grid.5596.f0000 0001 0668 7884Laboratory for Cell Stress & Immunity (CSI), Department of Cellular and Molecular Medicine (CMM), KU Leuven, Leuven, Belgium
| | - Sander Jansen
- grid.5596.f0000 0001 0668 7884Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Yannick Van Herck
- grid.5596.f0000 0001 0668 7884Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- grid.5596.f0000 0001 0668 7884Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ayse Bassez
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Bram Boeckx
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Bert Malengier-Devlies
- grid.5596.f0000 0001 0668 7884Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Anna Timmerman
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Thomas Van Brussel
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Tina Van Buyten
- grid.5596.f0000 0001 0668 7884Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Rogier Schepers
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Elisabeth Heylen
- grid.5596.f0000 0001 0668 7884Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Dieter Dauwe
- grid.5596.f0000 0001 0668 7884Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Christophe Dooms
- grid.5596.f0000 0001 0668 7884Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Jan Gunst
- grid.5596.f0000 0001 0668 7884Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Greet Hermans
- grid.5596.f0000 0001 0668 7884Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Philippe Meersseman
- grid.5596.f0000 0001 0668 7884Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Dries Testelmans
- grid.5596.f0000 0001 0668 7884Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Jonas Yserbyt
- grid.5596.f0000 0001 0668 7884Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Sabine Tejpar
- grid.5596.f0000 0001 0668 7884Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Walter De Wever
- grid.5596.f0000 0001 0668 7884Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- grid.5596.f0000 0001 0668 7884Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Johan Neyts
- grid.5596.f0000 0001 0668 7884Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Joost Wauters
- grid.5596.f0000 0001 0668 7884Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Junbin Qian
- grid.13402.340000 0004 1759 700XDepartment of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006 China
| | - Diether Lambrechts
- grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
77
|
Pacheco PAF, Faria RX. The potential involvement of P2X7 receptor in COVID-19 pathogenesis: A new therapeutic target? Scand J Immunol 2021; 93:e12960. [PMID: 32797724 PMCID: PMC7461012 DOI: 10.1111/sji.12960] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) pathogenesis remains under investigation. Growing evidence indicates the establishment of a hyperinflammatory response, characterized by sustained production of cytokines, such as IL-1β. The release and maturation of this cytokine are dependent on the activation of a catalytic multiprotein complex, known as "inflammasome". The most investigated is the NLRP3 inflammasome, which can be activated by various stimuli, such as the recognition of extracellular ATP by the P2X7 receptor. Based on the recent literature, we present evidence that supports the idea that the P2X7R/NLRP3 axis may be involved in the immune dysregulation caused by the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Paulo A. F. Pacheco
- Laboratório de Toxoplasmose e outras ProtozoosesInstituto Oswaldo CruzFundação Oswaldo CruzRio de JaneiroBrazil
| | - Robson X. Faria
- Laboratório de Toxoplasmose e outras ProtozoosesInstituto Oswaldo CruzFundação Oswaldo CruzRio de JaneiroBrazil
| |
Collapse
|
78
|
Ihssen J, Jovanovic N, Sirec T, Spitz U. Real-time monitoring of extracellular ATP in bacterial cultures using thermostable luciferase. PLoS One 2021; 16:e0244200. [PMID: 33481792 PMCID: PMC7822345 DOI: 10.1371/journal.pone.0244200] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/05/2020] [Indexed: 02/08/2023] Open
Abstract
Adenosine triphosphate (ATP) is one of the most important indicators of cell viability. Extracellular ATP (eATP) is commonly detected in cultures of both eukaryotic and prokaryotic cells but is not the focus of current scientific research. Although ATP release has traditionally been considered to mainly occur as a consequence of cell destruction, current evidence indicates that ATP leakage also occurs during the growth phase of diverse bacterial species and may play an important role in bacterial physiology. ATP can be conveniently measured with high sensitivity in luciferase-based bioluminescence assays. However, wild-type luciferases suffer from low stability, which limit their use. Here we demonstrate that an engineered, thermostable luciferase is suitable for real-time monitoring of ATP release by bacteria, both in broth culture and on agar surfaces. Different bacterial species show distinct patterns of eATP accumulation and decline. Real-time monitoring of eATP allows for the estimation of viable cell number by relating luminescence onset time to initial cell concentration. Furthermore, the method is able to rapidly detect the effect of antibiotics on bacterial cultures as Ampicillin sensitive strains challenged with beta lactam antibiotics showed strongly increased accumulation of eATP even in the absence of growth, as determined by optical density. Patterns of eATP determined by real-time luminescence measurement could be used to infer the minimal inhibitory concentration of Ampicillin. Compared to conventional antibiotic susceptibility testing, the method presented here is faster and more sensitive, which is essential for better treatment outcomes and reducing the risk of inducing antibiotic resistance. Real-time eATP bioluminescence assays are suitable for different cell types, either prokaryotic or eukaryotic, thus, permitting their application in diverse fields of research. It can be used for example in the study of the role of eATP in physiology and pathophysiology, for monitoring microbial contamination or for antimicrobial susceptibility testing in clinical diagnostics.
Collapse
Affiliation(s)
| | - Nina Jovanovic
- Faculty of Biology, Department of Biochemistry and Molecular Biology, Institute of Physiology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Teja Sirec
- Carbosynth Limited, Axis House, Compton, Berkshire, United Kingdom
- * E-mail:
| | | |
Collapse
|
79
|
Jarzebska N, Karetnikova ES, Markov AG, Kasper M, Rodionov RN, Spieth PM. Scarred Lung. An Update on Radiation-Induced Pulmonary Fibrosis. Front Med (Lausanne) 2021; 7:585756. [PMID: 33521012 PMCID: PMC7843914 DOI: 10.3389/fmed.2020.585756] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Radiation-induced pulmonary fibrosis is a common severe long-time complication of radiation therapy for tumors of the thorax. Current therapeutic options used in the clinic include only supportive managements strategies, such as anti-inflammatory treatment using steroids, their efficacy, however, is far from being satisfactory. Recent studies have demonstrated that the development of lung fibrosis is a dynamic and complex process, involving the release of reactive oxygen species, activation of Toll-like receptors, recruitment of inflammatory cells, excessive production of nitric oxide and production of collagen by activated myofibroblasts. In this review we summarized the current state of knowledge on the pathophysiological processes leading to the development of lung fibrosis and we also discussed the possible treatment options.
Collapse
Affiliation(s)
- Natalia Jarzebska
- Department of Anesthesiology and Critical Care Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Alexander G. Markov
- Department of General Physiology, Saint-Petersburg State University, Saint Petersburg, Russia
| | - Michael Kasper
- Institute of Anatomy, Technische Universität Dresden, Dresden, Germany
| | - Roman N. Rodionov
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Peter M. Spieth
- Department of Anesthesiology and Critical Care Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
80
|
Savigny F, Schricke C, Lacerda-Queiroz N, Meda M, Nascimento M, Huot-Marchand S, Da Gama Monteiro F, Ryffel B, Gombault A, Le Bert M, Couillin I, Riteau N. Protective Role of the Nucleic Acid Sensor STING in Pulmonary Fibrosis. Front Immunol 2021; 11:588799. [PMID: 33488589 PMCID: PMC7820752 DOI: 10.3389/fimmu.2020.588799] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and severe type of interstitial lung disease for which current treatments display limited efficacy. IPF is largely driven by host-derived danger signals released upon recurrent local tissue damage. Here we explored the roles of self-DNA and stimulator of interferon genes (STING), a protein belonging to an intracellular DNA sensing pathway that leads to type I and/or type III interferon (IFN) production upon activation. Using a mouse model of IPF, we report that STING deficiency leads to exacerbated pulmonary fibrosis with increased collagen deposition in the lungs and excessive remodeling factors expression. We further show that STING-mediated protection does not rely on type I IFN signaling nor on IL-17A or TGF-β modulation but is associated with dysregulated neutrophils. Together, our data support an unprecedented immunoregulatory function of STING in lung fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Isabelle Couillin
- Experimental and Molecular Immunology and Neurogenetics Laboratory (INEM), CNRS Orleans (UMR7355) and University of Orleans, Orleans, France
| | - Nicolas Riteau
- Experimental and Molecular Immunology and Neurogenetics Laboratory (INEM), CNRS Orleans (UMR7355) and University of Orleans, Orleans, France
| |
Collapse
|
81
|
Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry 2021; 26:1044-1059. [PMID: 33328588 PMCID: PMC7738776 DOI: 10.1038/s41380-020-00965-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Scientists and health professionals are exhaustively trying to contain the coronavirus disease 2019 (COVID-19) pandemic by elucidating viral invasion mechanisms, possible drugs to prevent viral infection/replication, and health cares to minimize individual exposure. Although neurological symptoms are being reported worldwide, neural acute and long-term consequences of SARS-CoV-2 are still unknown. COVID-19 complications are associated with exacerbated immunoinflammatory responses to SARS-CoV-2 invasion. In this scenario, pro-inflammatory factors are intensely released into the bloodstream, causing the so-called "cytokine storm". Both pro-inflammatory factors and viruses may cross the blood-brain barrier and enter the central nervous system, activating neuroinflammatory responses accompanied by hemorrhagic lesions and neuronal impairment, which are largely described processes in psychiatric disorders and neurodegenerative diseases. Therefore, SARS-CoV-2 infection could trigger and/or worse brain diseases. Moreover, patients with central nervous system disorders associated to neuroimmune activation (e.g. depression, Parkinson's and Alzheimer's disease) may present increased susceptibility to SARS-CoV-2 infection and/or achieve severe conditions. Elevated levels of extracellular ATP induced by SARS-CoV-2 infection may trigger hyperactivation of P2X7 receptors leading to NLRP3 inflammasome stimulation as a key mediator of neuroinvasion and consequent neuroinflammatory processes, as observed in psychiatric disorders and neurodegenerative diseases. In this context, P2X7 receptor antagonism could be a promising strategy to prevent or treat neurological complications in COVID-19 patients.
Collapse
|
82
|
López X, Escamilla R, Fernández P, Duarte Y, González-Nilo F, Palacios-Prado N, Martinez AD, Sáez JC. Stretch-Induced Activation of Pannexin 1 Channels Can Be Prevented by PKA-Dependent Phosphorylation. Int J Mol Sci 2020; 21:ijms21239180. [PMID: 33276429 PMCID: PMC7731223 DOI: 10.3390/ijms21239180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Pannexin 1 channels located in the cell membrane are permeable to ions, metabolites, and signaling molecules. While the activity of these channels is known to be modulated by phosphorylation on T198, T308, and S206, the possible involvement of other putative phosphorylation sites remains unknown. Here, we describe that the activity of Panx1 channels induced by mechanical stretch is reduced by adenosine via a PKA-dependent pathway. The mechanical stretch-induced activity-measured by changes in DAPI uptake-of Panx1 channels expressed in HeLa cell transfectants was inhibited by adenosine or cAMP analogs that permeate the cell membrane. Moreover, inhibition of PKA but not PKC, p38 MAPK, Akt, or PKG prevented the effects of cAMP analogs, suggesting the involvement of Panx1 phosphorylation by PKA. Accordingly, alanine substitution of T302 or S328, two putative PKA phosphorylation sites, prevented the inhibitory effect of cAMP analogs. Moreover, phosphomimetic mutation of either T302 or S328 to aspartate prevented the mechanical stretch-induced activation of Panx1 channels. A molecular dynamics simulation revealed that T302 and S328 are located in the water-lipid interphase near the lateral tunnel of the intracellular region, suggesting that their phosphorylation could promote conformational changes in lateral tunnels. Thus, Panx1 phosphorylation via PKA could be modulated by G protein-coupled receptors associated with the Gs subunit.
Collapse
Affiliation(s)
- Ximena López
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Correspondence: (X.L.); (J.C.S.); Tel.: +56-2-26862862 (X.L.); +56-32-2508040 (J.C.S.)
| | - Rosalba Escamilla
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Paola Fernández
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Yorley Duarte
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile
| | - Fernando González-Nilo
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile
| | - Nicolás Palacios-Prado
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Agustín D. Martinez
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Juan C. Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Correspondence: (X.L.); (J.C.S.); Tel.: +56-2-26862862 (X.L.); +56-32-2508040 (J.C.S.)
| |
Collapse
|
83
|
Meyer AV, Klein D, de Leve S, Szymonowicz K, Stuschke M, Robson SC, Jendrossek V, Wirsdörfer F. Host CD39 Deficiency Affects Radiation-Induced Tumor Growth Delay and Aggravates Radiation-Induced Normal Tissue Toxicity. Front Oncol 2020; 10:554883. [PMID: 33194619 PMCID: PMC7649817 DOI: 10.3389/fonc.2020.554883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
The ectonucleoside triphosphate diphosphohydrolase (CD39)/5′ ectonuclotidase (CD73)-dependent purinergic pathway emerges as promising cancer target. Yet, except for own previous work revealing a pathogenic role of CD73 and adenosine in radiation-induced lung fibrosis, the role of purinergic signaling for radiotherapy outcome remained elusive. Here we used C57BL/6 wild-type (WT), CD39 knockout (CD39−/−), and CD73 knockout (CD73−/−) mice and hind-leg tumors of syngeneic murine Lewis lung carcinoma cells (LLC1) to elucidate how host purinergic signaling shapes the growth of LLC1 tumors to a single high-dose irradiation with 10 Gy in vivo. In complementary in vitro experiments, we examined the radiation response of LLC1 cells in combination with exogenously added ATP or adenosine, the proinflammatory and anti-inflammatory arms of purinergic signaling. Finally, we analyzed the impact of genetic loss of CD39 on pathophysiologic lung changes associated with lung fibrosis induced by a single-dose whole-thorax irradiation (WTI) with 15 Gy. Loss of CD73 in the tumor host did neither significantly affect tumor growth nor the radiation response of the CD39/CD73-negative LLC1 tumors. In contrast, LLC1 tumors exhibited a tendency to grow faster in CD39−/− mice compared to WT mice. Even more important, tumors grown in the CD39-deficient background displayed a significantly reduced tumor growth delay upon irradiation when compared to irradiated tumors grown on WT mice. CD39 deficiency caused only subtle differences in the immune compartment of irradiated LLC1 tumors compared to WT mice. Instead, we could associate the tumor growth and radioresistance-promoting effects of host CD39 deficiency to alterations in the tumor endothelial compartment. Importantly, genetic deficiency of CD39 also augmented the expression level of fibrosis-associated osteopontin in irradiated normal lungs and exacerbated radiation-induced lung fibrosis at 25 weeks after irradiation. We conclude that genetic loss of host CD39 alters the tumor microenvironment, particularly the tumor microvasculature, and thereby promotes growth and radioresistance of murine LLC1 tumors. In the normal tissue loss of host, CD39 exacerbates radiation-induced adverse late effects. The suggested beneficial roles of host CD39 on the therapeutic ratio of radiotherapy suggest that therapeutic strategies targeting CD39 in combination with radiotherapy have to be considered with caution.
Collapse
Affiliation(s)
- Alina V Meyer
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Simone de Leve
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Klaudia Szymonowicz
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Simon C Robson
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Verena Jendrossek
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Florian Wirsdörfer
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
84
|
Pelleg A. Extracellular adenosine 5'-triphosphate in pulmonary disorders. Biochem Pharmacol 2020; 187:114319. [PMID: 33161021 DOI: 10.1016/j.bcp.2020.114319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Adenosine 5'-triphosphate (ATP) is found in every cell of the human body where it plays a critical role in cellular energetics and metabolism. ATP is released from cells under physiologic and pathophysiologic condition; extracellular ATP is rapidly degraded to adenosine 5'-diphosphate (ADP) and adenosine by ecto-enzymes (mainly, CD39 and CD73). Before its degradation, ATP acts as an autocrine and paracrine agent exerting its effects on targeted cells by activating cell surface receptors named P2 Purinergic receptors. The latter are expressed by different cell types in the lungs, the activation of which is involved in multiple pulmonary disorders. This succinct review summarizes the role of ATP in inflammation processes associated with these disorders including bronchoconstriction, cough, mechanical ventilation-induced lung injury and idiopathic pulmonary fibrosis. All of these disorders still constitute unmet clinical needs. Therefore, the various ATP-signaling pathways in pulmonary inflammation constitute attractive targets for novel drug-candidates that would improve the management of patients with multiple pulmonary diseases.
Collapse
Affiliation(s)
- Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA, USA. http://www.danmirtherapeutics.com
| |
Collapse
|
85
|
Yang J, Pan X, Wang L, Yu G. Alveolar cells under mechanical stressed niche: critical contributors to pulmonary fibrosis. Mol Med 2020; 26:95. [PMID: 33054759 PMCID: PMC7556585 DOI: 10.1186/s10020-020-00223-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Pulmonary fibrosis arises from the repeated epithelial mild injuries and insufficient repair lead to over activation of fibroblasts and excessive deposition of extracellular matrix, which result in a mechanical stretched niche. However, increasing mechanical stress likely exists before the establishment of fibrosis since early micro injuries increase local vascular permeability and prompt cytoskeletal remodeling which alter cellular mechanical forces. It is noteworthy that COVID-19 patients with severe hypoxemia will receive mechanical ventilation as supportive treatment and subsequent pathology studies indicate lung fibrosis pattern. At advanced stages, mechanical stress originates mainly from the stiff matrix since boundaries between stiff and compliant parts of the tissue could generate mechanical stress. Therefore, mechanical stress has a significant role in the whole development process of pulmonary fibrosis. The alveoli are covered by abundant capillaries and function as the main gas exchange unit. Constantly subject to variety of damages, the alveolar epithelium injuries were recently recognized to play a vital role in the onset and development of idiopathic pulmonary fibrosis. In this review, we summarize the literature regarding the effects of mechanical stress on the fundamental cells constituting the alveoli in the process of pulmonary fibrosis, particularly on epithelial cells, capillary endothelial cells, fibroblasts, mast cells, macrophages and stem cells. Finally, we briefly review this issue from a more comprehensive perspective: the metabolic and epigenetic regulation.
Collapse
Affiliation(s)
- Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Xin Pan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
86
|
Targeting Methionine Synthase in a Fungal Pathogen Causes a Metabolic Imbalance That Impacts Cell Energetics, Growth, and Virulence. mBio 2020; 11:mBio.01985-20. [PMID: 33051366 PMCID: PMC7554668 DOI: 10.1128/mbio.01985-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fungal pathogens are responsible for millions of life-threatening infections on an annual basis worldwide. The current repertoire of antifungal drugs is very limited and, worryingly, resistance has emerged and already become a serious threat to our capacity to treat fungal diseases. The first step to develop new drugs is often to identify molecular targets in the pathogen whose inhibition during infection can prevent its growth. However, the current models are not suitable to validate targets in established infections. Here, we have characterized the promising antifungal target methionine synthase in great detail, using the prominent fungal pathogen Aspergillus fumigatus as a model. We have uncovered the underlying reason for its essentiality and confirmed its druggability. Furthermore, we have optimized the use of a genetic system to show a beneficial effect of targeting methionine synthase in established infections. Therefore, we believe that antifungal drugs to target methionine synthase should be pursued and additionally, we provide a model that permits gaining information about the validity of antifungal targets in established infections. There is an urgent need to develop novel antifungals to tackle the threat fungal pathogens pose to human health. Here, we have performed a comprehensive characterization and validation of the promising target methionine synthase (MetH). We show that in Aspergillus fumigatus the absence of this enzymatic activity triggers a metabolic imbalance that causes a reduction in intracellular ATP, which prevents fungal growth even in the presence of methionine. Interestingly, growth can be recovered in the presence of certain metabolites, which shows that metH is a conditionally essential gene and consequently should be targeted in established infections for a more comprehensive validation. Accordingly, we have validated the use of the tetOFF genetic model in fungal research and improved its performance in vivo to achieve initial validation of targets in models of established infection. We show that repression of metH in growing hyphae halts growth in vitro, which translates into a beneficial effect when targeting established infections using this model in vivo. Finally, a structure-based virtual screening of methionine synthases reveals key differences between the human and fungal structures and unravels features in the fungal enzyme that can guide the design of novel specific inhibitors. Therefore, methionine synthase is a valuable target for the development of new antifungals.
Collapse
|
87
|
The P2X7 purinergic receptor: a potential therapeutic target for lung cancer. J Cancer Res Clin Oncol 2020; 146:2731-2741. [PMID: 32892231 DOI: 10.1007/s00432-020-03379-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Purinergic P2X7 receptor (P2X7R) is a gated ion channel for which adenosine triphosphate (ATP) is a ligand. Activated P2X7R is widely expressed in a variety of immune cells and tissues and is involved in a variety of physiological and pathological processes. Studies have confirmed that P2X7R is involved in the regulation of tumor cell growth, stimulating cell proliferation or inducing apoptosis. Recent studies have found that P2X7R is abnormally expressed in lung cancer and is closely related to the carcinogenesis and development of lung cancer. In this paper, we comprehensively describe the structure, function, and genetic polymorphisms of P2X7R. In particular, the role and therapeutic potential of P2X7R in lung cancer are discussed to provide new targets and new strategies for the treatment and prognosis of clinical lung cancer. METHODS The relevant literature on P2X7R and lung cancer from PubMed databases is reviewed in this article. RESULTS P2X7R regulates the function of lung cancer cells by activating multiple intracellular signaling pathways (such as the JNK, Rho, HMGB1 and EMT pathways), thereby affecting cell survival, growth, invasion, and metastasis and patient prognosis. Targeting P2X7R with inhibitors effectively suppresses the growth and metastasis of lung cancer cells. CONCLUSION In summary, P2X7R is expected to become a potential target for the treatment of lung cancer, and more clinical research is needed in the future to explore the effectiveness of P2X7R antagonists as treatments.
Collapse
|
88
|
Frye CC, Bery AI, Kreisel D, Kulkarni HS. Sterile inflammation in thoracic transplantation. Cell Mol Life Sci 2020; 78:581-601. [PMID: 32803398 DOI: 10.1007/s00018-020-03615-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
The life-saving benefits of organ transplantation can be thwarted by allograft dysfunction due to both infectious and sterile inflammation post-surgery. Sterile inflammation can occur after necrotic cell death due to the release of endogenous ligands [such as damage-associated molecular patterns (DAMPs) and alarmins], which perpetuate inflammation and ongoing cellular injury via various signaling cascades. Ischemia-reperfusion injury (IRI) is a significant contributor to sterile inflammation after organ transplantation and is associated with detrimental short- and long-term outcomes. While the vicious cycle of sterile inflammation and cellular injury is remarkably consistent amongst different organs and even species, we have begun understanding its mechanistic basis only over the last few decades. This understanding has resulted in the developments of novel, yet non-specific therapies for mitigating IRI-induced graft damage, albeit with moderate results. Thus, further understanding of the mechanisms underlying sterile inflammation after transplantation is critical for identifying personalized therapies to prevent or interrupt this vicious cycle and mitigating allograft dysfunction. In this review, we identify common and distinct pathways of post-transplant sterile inflammation across both heart and lung transplantation that can potentially be targeted.
Collapse
Affiliation(s)
- C Corbin Frye
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Amit I Bery
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA.
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA
| |
Collapse
|
89
|
Vargas-Martínez EM, Gómez-Coronado KS, Espinosa-Luna R, Valdez-Morales EE, Barrios-García T, Barajas-Espinosa A, Ochoa-Cortes F, Montaño LM, Barajas-López C, Guerrero-Alba R. Functional expression of P2X1, P2X4 and P2X7 purinergic receptors in human monocyte-derived macrophages. Eur J Pharmacol 2020; 888:173460. [PMID: 32805257 DOI: 10.1016/j.ejphar.2020.173460] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022]
Abstract
This study sought to examine the co-expression of the following purinergic receptor subunits: P2X1, P2X1del, P2X4, and P2X7 and characterize the P2X response in human monocyte-derived macrophages (MDMs). Single-cell RT-PCR shows the presence of P2X1, P2X1del, P2X4, and P2X7 mRNA in 40%, 5%, 20%, and 90% of human MDMs, respectively. Of the studied human MDMs, 25% co-expressed P2X1 and P2X7 mRNA; 5% co-expressed P2X4 and P2X7; and 15% co-expressed P2X1, P2X4, and P2X7 mRNA. In whole-cell patch clamp recordings of human MDMs, rapid application of ATP (0.01 mM) evoked fast current activation and two different desensitization kinetics: 1. a rapid desensitizing current antagonized by PPADS (1 μM), reminiscent of the P2X1 receptor's current; 2. a slow desensitizing current, insensitive to PPADS but potentiated by ivermectin (3 μM), similar to the P2X4 receptor's current. Application of 5 mM ATP induced three current modalities: 1. slow current activation with no desensitization, similar to the P2X7 receptor current, present in 69% of human macrophages and antagonized by A-804598 (0.1 μM); 2. fast current activation and fast desensitization, present in 15% of human MDMs; 3. fast activation current followed by biphasic desensitization, observed in 15% of human MDMs. Both rapid and biphasic desensitization kinetics resemble those observed for the recombinant human P2X1 receptor expressed in oocytes. These data demonstrate, for the first time, the co-expression of P2X1, P2X4, and P2X7 transcripts and confirm the presence of functional P2X1, P2X4, and P2X7 receptors in human macrophages.
Collapse
Affiliation(s)
- Eydie M Vargas-Martínez
- División de Biología Molecular, Instituto Potosino Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | - Karen S Gómez-Coronado
- División de Biología Molecular, Instituto Potosino Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | - Rosa Espinosa-Luna
- División de Biología Molecular, Instituto Potosino Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | - Eduardo E Valdez-Morales
- Catedras CONACYT, Departamento de Medicina, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Tonatiuh Barrios-García
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Alma Barajas-Espinosa
- Licenciatura en Enfermería, Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes, Hidalgo, México
| | - Fernando Ochoa-Cortes
- Licenciatura en Enfermería, Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes, Hidalgo, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Carlos Barajas-López
- División de Biología Molecular, Instituto Potosino Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
| |
Collapse
|
90
|
da Silva Ferreira NC, Alves LA, Soares-Bezerra RJ. Potential Therapeutic Applications of P2 Receptor Antagonists: From Bench to Clinical Trials. Curr Drug Targets 2020; 20:919-937. [PMID: 30760187 DOI: 10.2174/1389450120666190213095923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Extracellular purines and pyrimidines have important physiological functions in mammals. Purines and pyrimidines act on P1 and P2 purinergic receptors, which are widely expressed in the plasma membrane in various cell types. P2 receptors act as important therapeutic targets and are associated with several disorders, such as pain, neurodegeneration, cancer, inflammation, and thrombosis. However, the use of antagonists for P2 receptors in clinical therapy, with the exception of P2Y12, is a great challenge. Currently, many research groups and pharmaceutical companies are working on the development of specific antagonist molecules for each receptor subtype that could be used as new medicines to treat their respective disorders. OBJECTIVE The present review compiles some interesting findings on the application of P2 receptor antagonists in different in vitro and in vivo experimental models as well as the progress of advanced clinical trials with these compounds. CONCLUSION Despite all of the exciting results obtained on the bench, few antagonists of P2 receptors advanced to the clinical trials, and once they reach this stage, the effectiveness of the therapy is not guaranteed, as in the example of P2X7 antagonists. Despite this, P2Y12 receptor antagonists have a history of success and have been used in therapy for at least two decades to prevent thrombosis in patients at risk for myocardial infarctions. This breakthrough is the motivation for scientists to develop new drugs with antagonistic activity for the other P2 receptors; thus, in a matter of years, we will have an evolution in the field of purinergic therapy.
Collapse
Affiliation(s)
- Natiele C da Silva Ferreira
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040- 360, Brazil
| | - Luiz A Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040- 360, Brazil
| | - Rômulo J Soares-Bezerra
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| |
Collapse
|
91
|
|
92
|
Di Virgilio F, Tang Y, Sarti AC, Rossato M. A rationale for targeting the P2X7 receptor in Coronavirus disease 19. Br J Pharmacol 2020; 177:4990-4994. [PMID: 32441783 PMCID: PMC7280564 DOI: 10.1111/bph.15138] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 01/18/2023] Open
Abstract
Severe pneumonia which shares several of the features of acute respiratory distress syndrome (ARDS) is the main cause of morbidity and mortality in Coronavirus disease 19 (Covid‐19) for which there is no effective treatment, so far. ARDS is caused and sustained by an uncontrolled inflammatory activation characterized by a massive release of cytokines (cytokine storm), diffuse lung oedema, inflammatory cell infiltration, and disseminated coagulation. Macrophage and T lymphocyte dysfunction plays a central role in this syndrome. In several experimental in vitro and in vivo models, many of these pathophysiological changes are triggered by stimulation of the P2X7 receptor. We hypothesize that this receptor might be an ideal candidate to target in Covid‐19‐associated severe pneumonia. Linked Articles This article is part of a themed issue on The Pharmacology of COVID‐19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc
Collapse
Affiliation(s)
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Alba Clara Sarti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marco Rossato
- Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
93
|
Wirsching E, Fauler M, Fois G, Frick M. P2 Purinergic Signaling in the Distal Lung in Health and Disease. Int J Mol Sci 2020; 21:E4973. [PMID: 32674494 PMCID: PMC7404078 DOI: 10.3390/ijms21144973] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
The distal lung provides an intricate structure for gas exchange in mammalian lungs. Efficient gas exchange depends on the functional integrity of lung alveoli. The cells in the alveolar tissue serve various functions to maintain alveolar structure, integrity and homeostasis. Alveolar epithelial cells secrete pulmonary surfactant, regulate the alveolar surface liquid (ASL) volume and, together with resident and infiltrating immune cells, provide a powerful host-defense system against a multitude of particles, microbes and toxicants. It is well established that all of these cells express purinergic P2 receptors and that purinergic signaling plays important roles in maintaining alveolar homeostasis. Therefore, it is not surprising that purinergic signaling also contributes to development and progression of severe pathological conditions like pulmonary inflammation, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and pulmonary fibrosis. Within this review we focus on the role of P2 purinergic signaling in the distal lung in health and disease. We recapitulate the expression of P2 receptors within the cells in the alveoli, the possible sources of ATP (adenosine triphosphate) within alveoli and the contribution of purinergic signaling to regulation of surfactant secretion, ASL volume and composition, as well as immune homeostasis. Finally, we summarize current knowledge of the role for P2 signaling in infectious pneumonia, ALI/ARDS and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
| | | | | | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (E.W.); (M.F.); (G.F.)
| |
Collapse
|
94
|
Abstract
Mechanical ventilation can cause ventilator-induced brain injury via afferent vagal signaling and hippocampal neurotransmitter imbalances. The triggering mechanisms for vagal signaling during mechanical ventilation are unknown. The objective of this study was to assess whether pulmonary transient receptor potential vanilloid type-4 (TRPV4) mechanoreceptors and vagal afferent purinergic receptors (P2X) act as triggers of ventilator-induced brain injury.
Collapse
|
95
|
Squecco R, Chellini F, Idrizaj E, Tani A, Garella R, Pancani S, Pavan P, Bambi F, Zecchi-Orlandini S, Sassoli C. Platelet-Rich Plasma Modulates Gap Junction Functionality and Connexin 43 and 26 Expression During TGF-β1-Induced Fibroblast to Myofibroblast Transition: Clues for Counteracting Fibrosis. Cells 2020; 9:cells9051199. [PMID: 32408529 PMCID: PMC7290305 DOI: 10.3390/cells9051199] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle repair/regeneration may benefit by Platelet-Rich Plasma (PRP) treatment owing to PRP pro-myogenic and anti-fibrotic effects. However, PRP anti-fibrotic action remains controversial. Here, we extended our previous researches on the inhibitory effects of PRP on in vitro transforming growth factor (TGF)-β1-induced differentiation of fibroblasts into myofibroblasts, the effector cells of fibrosis, focusing on gap junction (GJ) intercellular communication. The myofibroblastic phenotype was evaluated by cell shape analysis, confocal fluorescence microscopy and Western blotting analyses of α-smooth muscle actin and type-1 collagen expression, and electrophysiological recordings of resting membrane potential, resistance, and capacitance. PRP negatively regulated myofibroblast differentiation by modifying all the assessed parameters. Notably, myofibroblast pairs showed an increase of voltage-dependent GJ functionality paralleled by connexin (Cx) 43 expression increase. TGF-β1-treated cells, when exposed to a GJ blocker, or silenced for Cx43 expression, failed to differentiate towards myofibroblasts. Although a minority, myofibroblast pairs also showed not-voltage-dependent GJ currents and coherently Cx26 expression. PRP abolished the TGF-β1-induced voltage-dependent GJ current appearance while preventing Cx43 increase and promoting Cx26 expression. This study adds insights into molecular and functional mechanisms regulating fibroblast-myofibroblast transition and supports the anti-fibrotic potential of PRP, demonstrating the ability of this product to hamper myofibroblast generation targeting GJs.
Collapse
Affiliation(s)
- Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (R.S.); (E.I.); (R.G.)
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (S.P.); (S.Z.-O.)
| | - Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (R.S.); (E.I.); (R.G.)
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (S.P.); (S.Z.-O.)
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (R.S.); (E.I.); (R.G.)
| | - Sofia Pancani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (S.P.); (S.Z.-O.)
| | - Paola Pavan
- Transfusion Medicine and Cell Therapy Unit, "A. Meyer" University Children’s Hospital, 50134 Florence, Italy; (P.P.); (F.B.)
| | - Franco Bambi
- Transfusion Medicine and Cell Therapy Unit, "A. Meyer" University Children’s Hospital, 50134 Florence, Italy; (P.P.); (F.B.)
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (S.P.); (S.Z.-O.)
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (S.P.); (S.Z.-O.)
- Correspondence: ; Tel.: +39-0552-7580-63
| |
Collapse
|
96
|
Sehlmeyer K, Ruwisch J, Roldan N, Lopez-Rodriguez E. Alveolar Dynamics and Beyond - The Importance of Surfactant Protein C and Cholesterol in Lung Homeostasis and Fibrosis. Front Physiol 2020; 11:386. [PMID: 32431623 PMCID: PMC7213507 DOI: 10.3389/fphys.2020.00386] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Surfactant protein C (SP-C) is an important player in enhancing the interfacial adsorption of lung surfactant lipid films to the alveolar air-liquid interface. Doing so, surface tension drops down enough to stabilize alveoli and the lung, reducing the work of breathing. In addition, it has been shown that SP-C counteracts the deleterious effect of high amounts of cholesterol in the surfactant lipid films. On its side, cholesterol is a well-known modulator of the biophysical properties of biological membranes and it has been proven that it activates the inflammasome pathways in the lung. Even though the molecular mechanism is not known, there are evidences suggesting that these two molecules may interplay with each other in order to keep the proper function of the lung. This review focuses in the role of SP-C and cholesterol in the development of lung fibrosis and the potential pathways in which impairment of both molecules leads to aberrant lung repair, and therefore impaired alveolar dynamics. From molecular to cellular mechanisms to evidences in animal models and human diseases. The evidences revised here highlight a potential SP-C/cholesterol axis as target for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Kirsten Sehlmeyer
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Centre for Lung Research, Hanover, Germany
| | - Jannik Ruwisch
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Centre for Lung Research, Hanover, Germany
| | - Nuria Roldan
- Alveolix AG and ARTORG Center, University of Bern, Bern, Switzerland
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Centre for Lung Research, Hanover, Germany
- Institute of Functional Anatomy, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
97
|
|
98
|
P2X1 Selective Antagonists Block HIV-1 Infection through Inhibition of Envelope Conformation-Dependent Fusion. J Virol 2020; 94:JVI.01622-19. [PMID: 31852781 DOI: 10.1128/jvi.01622-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/08/2019] [Indexed: 01/12/2023] Open
Abstract
Purinergic receptors are well-established modulators of inflammatory processes, primarily through detection of extracellular nucleotides that are released by dying or infected cells. Emerging literature has demonstrated that inhibition of these inflammatory receptors can block HIV-1 productive infection and HIV-1-associated inflammation. The specificity of receptor type and mechanism of interaction has not yet been determined. Here, we characterize the inhibitory activity of P2X1 receptor antagonists, NF279 and NF449, in cell lines, primary cells, and a variety of HIV-1 envelope (Env) clades. NF279 and NF449 blocked productive infection at the level of viral membrane fusion, with a range of inhibitory activities against different HIV-1 Env isolates. A mutant virus carrying a truncation deletion of the C-terminal tail of HIV-1 Env glycoprotein 41 (gp41) showed reduced sensitivity to P2X1 antagonists, indicating that the sensitivity of inhibition by these molecules may be modulated by Env conformation. In contrast, a P2X7 antagonist, A438079, had a limited effect on productive infection and fusion. NF279 and NF449 interfered with the ability of the gp120 variable regions 1 and 2 (V1V2)-targeted broadly neutralizing antibody PG9 to block productive infection, suggesting that these drugs may antagonize HIV-1 Env at gp120 V1V2 to block viral membrane fusion. Our observations indicate that P2X1 antagonism can inhibit HIV-1 replication at the level of viral membrane fusion through interaction with Env. Future studies will probe the nature of these compounds in inhibiting HIV-1 fusion and the development of small molecules to block HIV-1 entry via this mechanism.IMPORTANCE While effective treatment can lower the severe morbidity and mortality associated with HIV-1 infection, patients infected with HIV-1 suffer from significantly higher rates of noncommunicable comorbidities associated with chronic inflammation. Emerging literature suggests a key role for P2X1 receptors in mediating this chronic inflammation, but the mechanism is still unknown. Here, we demonstrate that HIV-1 infection is reduced by P2X1 receptor antagonism. This inhibition is mediated by interference with HIV-1 Env and can impact a variety of viral clades. These observations highlight the importance of P2X1 antagonists as potential novel therapeutics that could serve to block a variety of different viral clades with additional benefits for their anti-inflammatory properties.
Collapse
|
99
|
Larson-Casey JL, He C, Carter AB. Mitochondrial quality control in pulmonary fibrosis. Redox Biol 2020; 33:101426. [PMID: 31928788 PMCID: PMC7251238 DOI: 10.1016/j.redox.2020.101426] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanisms underlying the pathogenesis of pulmonary fibrosis remain incompletely understood. Emerging evidence suggests changes in mitochondrial quality control are a critical determinant in many lung diseases, including chronic obstructive pulmonary disease, asthma, pulmonary hypertension, acute lung injury, lung cancer, and in the susceptibility to pulmonary fibrosis. Once thought of as the kidney-bean shaped powerhouses of the cell, mitochondria are now known to form interconnected networks that rapidly and continuously change their size to meet cellular metabolic demands. Mitochondrial quality control modulates cell fate and homeostasis, and diminished mitochondrial quality control results in mitochondrial dysfunction, increased reactive oxygen species (ROS) production, reduced ATP production, and often induces intrinsic apoptosis. Here, we review the role of the mitochondria in alveolar epithelial cells, lung macrophages, and fibroblasts within the context of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States; Birmingham VAMC, Birmingham, AL, 35294, United States.
| |
Collapse
|
100
|
Shubin NJ, Clauson M, Niino K, Kasprzak V, Tsuha A, Guga E, Bhise G, Acharya M, Snyder JM, Debley JS, Ziegler SF, Piliponsky AM. Thymic stromal lymphopoietin protects in a model of airway damage and inflammation via regulation of caspase-1 activity and apoptosis inhibition. Mucosal Immunol 2020; 13:584-594. [PMID: 32103153 PMCID: PMC7312418 DOI: 10.1038/s41385-020-0271-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/27/2020] [Accepted: 02/12/2020] [Indexed: 02/04/2023]
Abstract
Thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine, exhibits both pro-inflammatory and pro-homeostatic properties depending on the context and tissues in which it is expressed. It remains unknown whether TSLP has a similar dual role in the airways, where TSLP is known to promote allergic inflammation. Here we show that TSLP receptor (TSLPR)-deficient mice (Tslpr-/-) and mice treated with anti-TSLP antibodies exhibited increased airway inflammation and morbidity rates after bleomycin-induced tissue damage. We found that signaling through TSLPR on non-hematopoietic cells was sufficient for TSLP's protective function. Consistent with this finding, we showed that TSLP reduces caspase-1 and caspase-3 activity levels in primary human bronchial epithelial cells treated with bleomycin via Bcl-xL up-regulation. These observations were recapitulated in vivo by observing that Tslpr-/- mice showed reduced Bcl-xL expression that paralleled increased lung caspase-1 and caspase-3 activity levels and IL-1β concentrations in the bronchial-alveolar lavage fluid. Our studies reveal a novel contribution for TSLP in preventing damage-induced airway inflammation.
Collapse
Affiliation(s)
- Nicholas J. Shubin
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Morgan Clauson
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Kerri Niino
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Victoria Kasprzak
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Avery Tsuha
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Eric Guga
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Gauri Bhise
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Manasa Acharya
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Jessica M. Snyder
- 0000000122986657grid.34477.33Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195 USA
| | - Jason S. Debley
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA ,0000 0000 9026 4165grid.240741.4Division of Pulmonary and Sleep Medicine, Seattle Children’s Hospital, Seattle, WA 98105 USA
| | - Steven F. Ziegler
- 0000 0001 2219 0587grid.416879.5Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101 USA ,0000000122986657grid.34477.33Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Adrian M. Piliponsky
- 0000 0000 9026 4165grid.240741.4Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101 USA ,0000000122986657grid.34477.33Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 USA ,0000000122986657grid.34477.33Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195 USA
| |
Collapse
|