51
|
NOX2: is the best defense a good offense? Blood 2022; 139:2851-2853. [PMID: 35552646 DOI: 10.1182/blood.2022016192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
|
52
|
Morris CR, Habibovic A, Dustin CM, Schiffers C, Lin MC, Ather JL, Janssen-Heininger YMW, Poynter ME, Utermohlen O, Krönke M, van der Vliet A. Macrophage-intrinsic DUOX1 contributes to type 2 inflammation and mucus metaplasia during allergic airway disease. Mucosal Immunol 2022; 15:977-989. [PMID: 35654836 PMCID: PMC9391268 DOI: 10.1038/s41385-022-00530-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023]
Abstract
The NADPH oxidase DUOX1 contributes to epithelial production of alarmins, including interleukin (IL)-33, in response to injurious triggers such as airborne protease allergens, and mediates development of mucus metaplasia and airway remodeling in chronic allergic airways diseases. DUOX1 is also expressed in non-epithelial lung cell types, including macrophages that play an important role in airway remodeling during chronic lung disease. We therefore conditionally deleted DUOX1 in either lung epithelial or monocyte/macrophage lineages to address its cell-specific actions in innate airway responses to acute airway challenge with house dust mite (HDM) allergen, and in chronic HDM-driven allergic airway inflammation. As expected, acute responses to airway challenge with HDM, as well as type 2 inflammation and related features of airway remodeling during chronic HDM-induced allergic inflammation, were largely driven by DUOX1 with the respiratory epithelium. However, in the context of chronic HDM-driven inflammation, DUOX1 deletion in macrophages also significantly impaired type 2 cytokine production and indices of mucus metaplasia. Further studies revealed a contribution of macrophage-intrinsic DUOX1 in macrophage recruitment upon chronic HDM challenge, as well as features of macrophage activation that impact on type 2 inflammation and remodeling.
Collapse
Affiliation(s)
- Carolyn R Morris
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, USA
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, USA
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, USA
| | - Caspar Schiffers
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, USA
| | - Miao-Chong Lin
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, USA
| | - Jennifer L Ather
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, USA
| | - Matthew E Poynter
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Olaf Utermohlen
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, USA.
| |
Collapse
|
53
|
Magalhaes MS, Potter HG, Ahlback A, Gentek R. Developmental programming of macrophages by early life adversity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:213-259. [PMID: 35636928 DOI: 10.1016/bs.ircmb.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrophages are central elements of all organs, where they have a multitude of physiological and pathological functions. The first macrophages are produced during fetal development, and most adult organs retain populations of fetal-derived macrophages that self-maintain without major input of hematopoietic stem cell-derived monocytes. Their developmental origins make macrophages highly susceptible to environmental perturbations experienced in early life, in particular the fetal period. It is now well recognized that such adverse developmental conditions contribute to a wide range of diseases later in life. This chapter explores the notion that macrophages are key targets of environmental adversities during development, and mediators of their long-term impact on health and disease. We first briefly summarize our current understanding of macrophage ontogeny and their biology in tissues and consider potential mechanisms by which environmental stressors may mediate fetal programming. We then review evidence for programming of macrophages by adversities ranging from maternal immune activation and diet to environmental pollutants and toxins, which have disease relevance for different organ systems. Throughout this chapter, we contemplate appropriate experimental strategies to study macrophage programming. We conclude by discussing how our current knowledge of macrophage programming could be conceptualized, and finally highlight open questions in the field and approaches to address them.
Collapse
Affiliation(s)
- Marlene S Magalhaes
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Harry G Potter
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Ahlback
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
54
|
Li Y, Zhang Q, Li L, Hao D, Cheng P, Li K, Li X, Wang J, Wang Q, Du Z, Ji H, Chen H. LKB1 deficiency upregulates RELM-α to drive airway goblet cell metaplasia. Cell Mol Life Sci 2021; 79:42. [PMID: 34921639 PMCID: PMC8738459 DOI: 10.1007/s00018-021-04044-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023]
Abstract
Targeting airway goblet cell metaplasia is a novel strategy that can potentially reduce the chronic obstructive pulmonary disease (COPD) symptoms. Tumor suppressor liver kinase B1 (LKB1) is an important regulator of the proliferation and differentiation of stem/progenitor cells. In this study, we report that LKB1 expression was downregulated in the lungs of patients with COPD and in those of cigarette smoke-exposed mice. Nkx2.1Cre; Lkb1f/f mice with conditional loss of Lkb1 in mouse lung epithelium displayed airway mucus hypersecretion and pulmonary macrophage infiltration. Single-cell transcriptomic analysis of the lung tissues from Nkx2.1Cre; Lkb1f/f mice further revealed that airway goblet cell differentiation was altered in the absence of LKB1. An organoid culture study demonstrated that Lkb1 deficiency in mouse airway (club) progenitor cells promoted the expression of FIZZ1/RELM-α, which drove airway goblet cell differentiation and pulmonary macrophage recruitment. Additionally, monocyte-derived macrophages in the lungs of Nkx2.1Cre; Lkb1f/f mice exhibited an alternatively activated M2 phenotype, while expressing RELM-α, which subsequently aggravated airway goblet cell metaplasia. Our findings suggest that the LKB1-mediated crosstalk between airway progenitor cells and macrophages regulates airway goblet cell metaplasia. Moreover, our data suggest that LKB1 agonists might serve as a potential therapeutic option to treat respiratory disorders associated with goblet cell metaplasia.
Collapse
Affiliation(s)
- Yu Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Qiuyang Zhang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Li Li
- Department of Respiratory Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - De Hao
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| | - Peiyong Cheng
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| | - Kuan Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Jianhai Wang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Qi Wang
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Zhongchao Du
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China.
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China.
| |
Collapse
|
55
|
Schetters STT, Schuijs MJ. Pulmonary Eosinophils at the Center of the Allergic Space-Time Continuum. Front Immunol 2021; 12:772004. [PMID: 34868033 PMCID: PMC8634472 DOI: 10.3389/fimmu.2021.772004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Eosinophils are typically a minority population of circulating granulocytes being released from the bone-marrow as terminally differentiated cells. Besides their function in the defense against parasites and in promoting allergic airway inflammation, regulatory functions have now been attributed to eosinophils in various organs. Although eosinophils are involved in the inflammatory response to allergens, it remains unclear whether they are drivers of the asthma pathology or merely recruited effector cells. Recent findings highlight the homeostatic and pro-resolving capacity of eosinophils and raise the question at what point in time their function is regulated. Similarly, eosinophils from different physical locations display phenotypic and functional diversity. However, it remains unclear whether eosinophil plasticity remains as they develop and travel from the bone marrow to the tissue, in homeostasis or during inflammation. In the tissue, eosinophils of different ages and origin along the inflammatory trajectory may exhibit functional diversity as circumstances change. Herein, we outline the inflammatory time line of allergic airway inflammation from acute, late, adaptive to chronic processes. We summarize the function of the eosinophils in regards to their resident localization and time of recruitment to the lung, in all stages of the inflammatory response. In all, we argue that immunological differences in eosinophils are a function of time and space as the allergic inflammatory response is initiated and resolved.
Collapse
Affiliation(s)
- Sjoerd T T Schetters
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
56
|
Jiang W, Wang JM, Luo JH, Chen Y, Pi J, Ma XD, Liu CX, Zhou Y, Qu XP, Liu C, Liu HJ, Qin XQ, Xiang Y. Airway epithelial integrin β4-deficiency exacerbates lipopolysaccharide-induced acute lung injury. J Cell Physiol 2021; 236:7711-7724. [PMID: 34018612 DOI: 10.1002/jcp.30422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Airway epithelial cells, the first barrier of the respiratory tract, play an indispensable role in innate immunity. Integrin β4 (ITGB4) is a structural adhesion molecule that is involved in the pathological progression of acute inflammatory diseases and is downregulated in asthmatic patients. Research has shown that endothelial ITGB4 has proinflammatory properties in acute lung injury (ALI). However, the role of epithelial ITGB4 in a murine ALI model is still unknown. This study investigated the role of ITGB4 in lipopolysaccharide (LPS)-induced ALI. We found that ITGB4 in the airway epithelium had remarkably increased after the introduction of LPS in vivo and in vitro. Then, we constructed airway epithelial cell-specific ITGB4 knockout (ITGB4-/- ) mice to study its role in ALI. At a time point of 12 h after the tracheal injection of LPS, ITGB4-/- mice showed increased macrophages (mainly M1-type macrophages) and neutrophil infiltration into the lungs; inflammation-related proteins including interleukin (IL)-6, tumor necrosis factor, and IL-17A were significantly elevated compared to their levels in ITGB4+/+ mice. Furthermore, we investigated the role of ITGB4 in the anti-inflammatory response. Intriguingly, in the ITGB4-/- + LPS group, we found significantly reduced expression of anti-inflammatory factors, including IL-10 messenger RNA (mRNA) and ARG-1 mRNA. We also observed that monocyte chemotactic protein (MCP-1) increased significantly both in vivo and in vitro. Airway epithelium activates macrophages, most likely driven by MCP-1, which we confirmed in the coculture of epithelia and macrophages. These phenomena indicate that ITGB4 in airway epithelial cells plays an important role in the process of inflammation and activation of macrophages in ALI. Overall, these data demonstrated a novel link between airway epithelial ITGB4 and the inflammatory response in LPS-induced ALI.
Collapse
Affiliation(s)
- Wang Jiang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jin-Mei Wang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jin-Hua Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yu Chen
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiao Pi
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiao-Di Ma
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cai-Xia Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Yang Zhou
- Functional Experimental Center, Hunan University of Medicine, Huaihua, Hunan, China
| | - Xiang-Ping Qu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chi Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui-Jun Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiao-Qun Qin
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yang Xiang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
57
|
Pei W, Li X, Bi R, Zhang X, Zhong M, Yang H, Zhang Y, Lv K. Exosome membrane-modified M2 macrophages targeted nanomedicine: Treatment for allergic asthma. J Control Release 2021; 338:253-267. [PMID: 34418524 DOI: 10.1016/j.jconrel.2021.08.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/05/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS Exosomes are naturally secreted nanovesicles that have emerged as a promising therapeutic nanodelivery platform due to their specific composition, biological properties, and stability. Modifying synthetic nanoparticles with the intrinsic hallmarks of exosome membrane to create exosome mimetics could lead to safe and efficient smart silencer delivery. OBJECTIVES The study focuses on exploring the combination of polylactic-co-glycolic acid (PLGA)-based nanoparticles with naturally occurring exosome membrane from M2 macrophages to deliver a Dnmt3aos smart silencer to treat allergic asthma (AA) in mice. MATERIALS AND METHODS Exosome membrane of M2 macrophages and PLGA nanoparticles (PLGA NPs) wrapped with the smart silencer of Dnmt3aos (Dnmt3aossmart silencer) were first synthesized. The resulting exosome membrane coated PLGA@Dnmt3aossmart silencer (EM-PLGA@Dnmt3aossmart silencer) was administered intravenously into Der f1-induced asthma mice, which was followed by the investigation of therapeutic outcomes and the mechanism in vivo. RESULTS Seven infusions of EM-PLGA@Dnmt3aossmart silencer ameliorated AA with a marked reduction of lung inflammation. After intravenous injection, the EM-PLGA@Dnmt3aossmart silencer was distributed in various organs, including the lungs, with retention over 48 h, and it targeted M2 macrophages. Moreover, the injections of EM-PLGA@Dnmt3aossmart silencer markedly decreased the proportion of M2 macrophages and inflammatory cytokines in the airway. More importantly, the EM-PLGA@Dnmt3aossmart silencer treatment did not obviously suppress the overall immune function of host. CONCLUSION To our knowledge, this study provides the first experimental evidence of the ability of EM-PLGA@Dnmt3aossmart silencer to target M2 macrophages in the treatment of AA by combining exosome membrane and biomaterials, thus presenting a novel immunotherapy for the allergic disease.
Collapse
Affiliation(s)
- Weiya Pei
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China
| | - Xueqin Li
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China
| | - Runlei Bi
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China
| | - Xin Zhang
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China
| | - Min Zhong
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China
| | - Hui Yang
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China
| | - Yingying Zhang
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, PR China; Department of Laboratory Medicine (Wannan Medical College), Wuhu, PR China
| | - Kun Lv
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China.
| |
Collapse
|
58
|
Wang Q, Hong L, Chen M, Shi J, Lin X, Huang L, Tang T, Guo Y, Yuan X, Jiang S. Targeting M2 Macrophages Alleviates Airway Inflammation and Remodeling in Asthmatic Mice via miR-378a-3p/GRB2 Pathway. Front Mol Biosci 2021; 8:717969. [PMID: 34589519 PMCID: PMC8473897 DOI: 10.3389/fmolb.2021.717969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Asthma is a complex respiratory disease characterized by airway inflammation and remodeling. MicroRNAs (miRNAs) mediate various cellular processes including macrophage polarization and play an important role in the pathogenesis of asthma. In present study, we aimed to screen miRNA profiling involved in macrophage polarization and investigate its possible functions and mechanisms. Methods: An OVA-sensitized mouse model was established and 2-chloroadenosine (2-CA) was used to interfere with macrophages. The airway inflammation and remodeling were assessed. The identification and function of M2 alveolar macrophages were assessed by flow cytometry, RT-qPCR, arginase activity and co-culture experiment. Microarray screening was used to select miRNAs which were related to macrophage polarization and RNA interference (RNAi) technique was performed to confirm the function of the selected miRNA and its target gene. Results: Alveolar macrophages of asthmatic mice showed significant M2 polarization. 2-CA alleviated airway inflammation and remodeling as well as M2 polarization. In vitro, IL-4-induced M2 macrophages promoted the proliferation of α-SMA-positive cells. And miRNA profiling showed a remarkable increased expression of miR-378a-3p in IL-4 induced M2 macrophages. Dual luciferase reporter assay confirmed growth factor receptor binding protein 2 (GRB2) was a target gene of miR-378a-3p. A miR-378a-3p inhibitor and knockdown of GRB2 repolarized alveolar macrophages from M1 to M2 phenotype. Conclusion: Our findings suggest that miR-378a-3p/GRB2 pathway regulates the polarization of alveolar macrophages which acts as a potential therapeutic target for airway inflammation and remodeling in asthma.
Collapse
Affiliation(s)
- Qiujie Wang
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Luna Hong
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Ming Chen
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Jiangting Shi
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Xiaoling Lin
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Linjie Huang
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Tiantian Tang
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Yimin Guo
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shanping Jiang
- Division of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
59
|
Alobaidi A, Alsamarai A, Alsamarai MA. Inflammation in Asthma Pathogenesis: Role of T cells, Macrophages, Epithelial Cells and Type 2 Inflammation. Antiinflamm Antiallergy Agents Med Chem 2021; 20:317-332. [PMID: 34544350 DOI: 10.2174/1871523020666210920100707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Asthma is a chronic disease with abnormal inflammatory and immunological responses. The disease initiated by antigens in subjects with genetic susceptibility. However, environmental factors play a role in the initiation and exacerbation of asthma attack. Asthma is T helper 2 (Th2)-cell-mediated disease. Recent studies indicated that asthma is not a single disease entity, but it is with multiple phenotypes and endotypes. The pathophysiological changes in asthma included a series of subsequent continuous vicious circle of cellular activation contributed to induction of chemokines and cytokines that potentiate inflammation. The heterogeneity of asthma influenced the treatment response. The asthma pathogenesis driven by varied set of cells such as eosinophils, basophils, neutrophils, mast cells, macrophages, epithelial cells and T cells. In this review the role of T cells, macrophage, and epithelial cells are discussed.
Collapse
Affiliation(s)
- Amina Alobaidi
- Kirkuk University College of Veterinary Medicine, Kirkuk. Iraq
| | - Abdulghani Alsamarai
- Aalborg Academy College of Medicine [AACOM], Denmark. Tikrit University College of Medicine, [TUCOM], Tikrit. Iraq
| | | |
Collapse
|
60
|
Derler R, Kitic N, Gerlza T, Kungl AJ. Isolation and Characterization of Heparan Sulfate from Human Lung Tissues. Molecules 2021; 26:5512. [PMID: 34576979 PMCID: PMC8469465 DOI: 10.3390/molecules26185512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
Glycosaminoglycans are a class of linear, highly negatively charged, O-linked polysaccharides that are involved in many (patho)physiological processes. In vitro experimental investigations of such processes typically involve porcine-derived heparan sulfate (HS). Structural information about human, particularly organ-specific heparan sulfate, and how it compares with HS from other organisms, is very limited. In this study, heparan sulfate was isolated from human lung tissues derived from five donors and was characterized for their overall size distribution and disaccharide composition. The expression profiles of proteoglycans and HS-modifying enzymes was quantified in order to identify the major core proteins for HS. In addition, the binding affinities of human HS to two chemokines-CXCL8 and CCL2-were investigated, which represent important inflammatory mediators in lung pathologies. Our data revealed that syndecans are the predominant proteoglycan class in human lungs and that the disaccharide composition varies among individuals according to sex, age, and health stage (one of the donor lungs was accidentally discovered to contain a solid tumor). The compositional difference of the five human lung HS preparations affected chemokine binding affinities to various degrees, indicating selective immune cell responses depending on the relative chemokine-glycan affinities. This represents important new insights that could be translated into novel therapeutic concepts for individually treating lung immunological disorders via HS targets.
Collapse
Affiliation(s)
- Rupert Derler
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1/1, 8010 Graz, Austria; (R.D.); (N.K.); (T.G.)
- Antagonis Biotherapeutics GmbH, Strasserhofweg 77a, 8045 Graz, Austria
| | - Nikola Kitic
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1/1, 8010 Graz, Austria; (R.D.); (N.K.); (T.G.)
| | - Tanja Gerlza
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1/1, 8010 Graz, Austria; (R.D.); (N.K.); (T.G.)
| | - Andreas J. Kungl
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1/1, 8010 Graz, Austria; (R.D.); (N.K.); (T.G.)
- Antagonis Biotherapeutics GmbH, Strasserhofweg 77a, 8045 Graz, Austria
| |
Collapse
|
61
|
Sonnenberg-Riethmacher E, Miehe M, Riethmacher D. Periostin in Allergy and Inflammation. Front Immunol 2021; 12:722170. [PMID: 34512647 PMCID: PMC8429843 DOI: 10.3389/fimmu.2021.722170] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Matricellular proteins are involved in the crosstalk between cells and their environment and thus play an important role in allergic and inflammatory reactions. Periostin, a matricellular protein, has several documented and multi-faceted roles in health and disease. It is differentially expressed, usually upregulated, in allergic conditions, a variety of inflammatory diseases as well as in cancer and contributes to the development and progression of these diseases. Periostin has also been shown to influence tissue remodelling, fibrosis, regeneration and repair. In allergic reactions periostin is involved in type 2 immunity and can be induced by IL-4 and IL-13 in bronchial cells. A variety of different allergic diseases, among them bronchial asthma and atopic dermatitis (AD), have been shown to be connected to periostin expression. Periostin is commonly expressed in fibroblasts and acts on epithelial cells as well as fibroblasts involving integrin and NF-κB signalling. Also direct signalling between periostin and immune cells has been reported. The deposition of periostin in inflamed, often fibrotic, tissues is further fuelling the inflammatory process. There is increasing evidence that periostin is also expressed by epithelial cells in several of the above-mentioned conditions as well as in cancer. Augmented periostin expression has also been associated with chronic inflammation such as in inflammatory bowel disease (IBD). Periostin can be expressed in a variety of different isoforms, whose functions have not been elucidated yet. This review will discuss potential functions of periostin and its different isoforms in allergy and inflammation.
Collapse
Affiliation(s)
- Eva Sonnenberg-Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Human Development and Health, School of Medicine, University of Southampton, Southampton, United Kingdom
| | - Michaela Miehe
- Department of Biological and Chemical Engineering – Immunological Biotechnology, Aarhus University, Aarhus, Denmark
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Human Development and Health, School of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
62
|
Xu J, Meng Y, Jia M, Jiang J, Yang Y, Ou Y, Wu Y, Yan X, Huang M, Adcock IM, Yao X. Epithelial expression and role of secreted STC1 on asthma airway hyperresponsiveness through calcium channel modulation. Allergy 2021; 76:2475-2487. [PMID: 33378582 DOI: 10.1111/all.14727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Asthma is characterized by airway hyperresponsiveness (AHR), inflammation, and airway remodeling. Airway hyperresponsiveness results from enhanced airway smooth muscle (ASM) contraction potentially under the control of an epithelium-derived relaxing factor (EpDRF). However, relatively rare is known about EpDRF. We aimed to elucidate the role of epithelium-derived stanniocalcin-1 (STC1) on AHR and ASM contraction. METHODS Stanniocalcin-1 levels in the serum of asthmatic patients and healthy volunteers and in bronchoalveolar lavage fluid (BALF) from ovalbumin (OVA)-challenged mice were measured by ELISA. The effects of exogenous STC1 on AHR and on inflammation were examined in mice. IL-13 modulation of STC1 mRNA and protein levels was studied in human bronchial epithelial cell lines (16HBE). The function of STC1 on Ca2+ influx and ASM contraction was examined ex vivo. RESULTS Serum STC1 was decreased in asthma (n = 93) compared with healthy volunteers (1071 ± 30.4 vs 1414 ± 75.1 pg/ml, p < 0.0001, n = 23) and correlated with asthma control (p = 0.0270), lung function (FEV1, p = 0.0130), and serum IL-13 levels (p = 0.0009). Treatment of ten asthmatic subjects with inhaled corticosteroids/long-acting beta2-agonists (ICS/LABA) for 1 year enhanced STC1 expression which correlated with improved asthma control (p = 0.022). STC1 was mainly expressed in bronchial epithelium and intranasal administration of recombinant human STC1 (rhSTC1) reduced AHR and inflammation in mice. IL-13 suppressed STC1 release from 16HBE, whereas rhSTC1 blocked store-operated Ca2+ entry (SOCE) by suppressing stromal interaction molecule 1 (STIM1) and further inhibited ASM cell contractility by suppressing Ca2+ -dependent myosin light chain (MLC) phosphorylation. CONCLUSION Our data indicate that STC1 deficiency in asthmatic airways promotes STIM1 hyperactivity, enhanced ASM contraction, and AHR. STC1 may be a candidate EpDRF.
Collapse
Affiliation(s)
- Jiayan Xu
- Department of Respiratory & Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
- Department of Respiratory & Critical Care Medicine Northern Jiangsu People's Hospital Yangzhou China
| | - Yaqi Meng
- Department of Respiratory & Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Man Jia
- Department of Respiratory & Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Jie Jiang
- Department of Respiratory & Critical Care Medicine Huai'an First People's Hospital Huai'an China
| | - Yi Yang
- Department of Respiratory & Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Yingwei Ou
- Department of Respiratory & Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Yunhui Wu
- Department of Respiratory & Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Xiaoyi Yan
- Department of Respiratory & Critical Care Medicine Nanjing Jiangning People's Hospital Nanjing China
| | - Mao Huang
- Department of Respiratory & Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Ian M. Adcock
- Airway Disease Section Faculty of Medicine National Heart and Lung Institute Imperial College London London UK
| | - Xin Yao
- Department of Respiratory & Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
63
|
Deng N, Guo X, Chen Q, Liu L, Chen S, Wang A, Li R, Huang Y, Ding X, Yu H, Hu S, Zhao Y, Chen X, Nie H. Anti-F4/80 treatment attenuates Th2 cell responses: Implications for the role of lung interstitial macrophages in the asthmatic mice. Int Immunopharmacol 2021; 99:108009. [PMID: 34315114 DOI: 10.1016/j.intimp.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022]
Abstract
Lung interstitial macrophages (IMs) can be polarized towards an alternative activation phenotype in ovalbumin (OVA)-induced asthmatic mice. However, the role of alternative activation of lung IMs in Th2 cell responses in the asthmatic murine is still unclear. Here, we leverage an anti-F4/80 treatment which has been shown to selectively deplete IMs in mice and investigate how this treatment modulates Th2 cell responses in lung and whether the modulation is dependent on lung IMs in murine models of asthma. We show that anti-F4/80 treatment alleviates Th2 cell responses in mice immunized and challenged with OVA or house dust mite (HDM). The anti-F4/80 treatment does not target lung alveolar macrophages (AMs) in OVA-induced asthmatic mice or impact the abundance of other immune cell types, including B cells, T cells, and NK cells in wild-type mice. However, this treatment does inhibit the expression of polarized markers of alternatively activated macrophages, including arginase-1, Ym-1, and Fizz-1 in the lung tissues from OVA-induced asthmatic mice. Furthermore, we find that the inhibitory effects of anti-F4/80 treatment on Th2 cell responses can be reversed upon adoptive transfer of lung IMs. Taken together, our data show that anti-F4/80 treatment attenuates Th2 cell responses, which is at least partially related to depletion of lung IMs in murine models of asthma. This suggests that targeted lung IMs may provide a potential therapeutic protocol for the treatment of asthmatics.
Collapse
Affiliation(s)
- Nishan Deng
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xuxue Guo
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Qianhui Chen
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Linlin Liu
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Shuo Chen
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Ailing Wang
- Nursing Department, Wuhan University School of Health Sciences, Wuhan 430060, Hubei, China
| | - Ruiyun Li
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yi Huang
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xuhong Ding
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Hongying Yu
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Suping Hu
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yang Zhao
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xueqin Chen
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Hanxiang Nie
- Department of Respiratory & Critical Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
64
|
Wang Y, Zhang D, Liu T, Wang JF, Wu JX, Zhao JP, Xu JW, Zhang JT, Dong L. FSTL1 aggravates OVA-induced inflammatory responses by activating the NLRP3/IL-1β signaling pathway in mice and macrophages. Inflamm Res 2021; 70:777-787. [PMID: 34076707 DOI: 10.1007/s00011-021-01475-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Asthma, a well-known disease with high morbidity, is characterized by chronic airway inflammation. However, the allergic inflammation mechanisms of follistatin-like protein 1 (FSTL1) have not been elucidated. This study aims to investigate the effects of FSTL1 in ovalbumin (OVA)-induced mice and macrophages on nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3)/interleukin-1β (IL-1β) signaling pathway. METHODS Mice were randomly divided into control-WT, OVA-WT, control-Fstl1±, OVA-Fstl1±. Histological changes were assessed by HE and PAS staining. The protein levels of Muc-5AC, FSTL1, NLRP3, and IL-1β in lung tissue were detected by immunohistochemistry and ELISA. The bronchoalveolar lavage fluid (BALF) in mice and human serum samples were detected by ELISA. Then, mice were grouped into control, FSTL1, MCC950 + FSTL1 to further investigate the relationship between FSTL1 and NLRP3/IL-1β. Alveolar macrophage cells (MH-S cells) were separated into control, OVA, FSTL1, OVA + FSTL1, OVA + siNC, OVA + siFSTL1, MCC950, and FSTL1 + MCC950 groups to explore the effect of FSTL1 on the NLRP3/IL-1β signaling. The protein expression of NLRP3 and IL-1β in MH-S cells was detected by Western blot analysis. RESULTS The present results uncovered that Fstl1± significantly ameliorated OVA-induced Muc-5AC production and mucus hypersecretion. Fstl1± was also found to decrease the production of inflammatory cytokines and inflammatory cell infiltration in OVA-induced asthmatic mice. Meanwhile, the serum concentrations of FSTL1 and IL-1β were higher in asthma subjects than the health subjects, and Fstl1± ameliorated the production of NLRP3 and IL-1β in OVA-induced asthmatic mice. Furthermore, mice by injected FSTL1 substantially stimulated the expression of NLRP3 and IL-1β, while pretreatment with MCC950 in mice significantly weakened the production of NLRP3 and IL-1β induced by injection FSTL1. Pretreatment with siFSTL1 or MCC950 significantly reduced the production of NLRP3 and IL-1β induced by OVA or FSTL1 in MH-S cells. CONCLUSIONS The study results showed that FSTL1 played an important role in allergic airway inflammation by activating NLRP3/IL-1β. Hence, inhibition FSTL1 could be applied as a therapeutic agent against asthma.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pulmonary Diseases, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Dong Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tian Liu
- Department of Pulmonary Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Jun-Fei Wang
- Department of Pulmonary Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Jin-Xiang Wu
- Department of Pulmonary Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Ji-Ping Zhao
- Department of Pulmonary Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Jia-Wei Xu
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jin-Tao Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Dong
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China.
| |
Collapse
|
65
|
Zheng H, Zhang Y, Pan J, Liu N, Qin Y, Qiu L, Liu M, Wang T. The Role of Type 2 Innate Lymphoid Cells in Allergic Diseases. Front Immunol 2021; 12:586078. [PMID: 34177881 PMCID: PMC8220221 DOI: 10.3389/fimmu.2021.586078] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Allergic diseases are significant diseases that affect many patients worldwide. In the past few decades, the incidence of allergic diseases has increased significantly due to environmental changes and social development, which has posed a substantial public health burden and even led to premature death. The understanding of the mechanism underlying allergic diseases has been substantially advanced, and the occurrence of allergic diseases and changes in the immune system state are known to be correlated. With the identification and in-depth understanding of innate lymphoid cells, researchers have gradually revealed that type 2 innate lymphoid cells (ILC2s) play important roles in many allergic diseases. However, our current studies of ILC2s are limited, and their status in allergic diseases remains unclear. This article provides an overview of the common phenotypes and activation pathways of ILC2s in different allergic diseases as well as potential research directions to improve the understanding of their roles in different allergic diseases and ultimately find new treatments for these diseases.
Collapse
Affiliation(s)
- Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiachuang Pan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Nannan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Qin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Qiu
- Journal Press of Global Traditional Chinese Medicine, Beijing, China
| | - Min Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
66
|
Kim M, Jo H, Kwon Y, Jeong MS, Jung HS, Kim Y, Jeoung D. MiR-154-5p-MCP1 Axis Regulates Allergic Inflammation by Mediating Cellular Interactions. Front Immunol 2021; 12:663726. [PMID: 34135893 PMCID: PMC8201518 DOI: 10.3389/fimmu.2021.663726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022] Open
Abstract
In a previous study, we have demonstrated that p62, a selective receptor of autophagy, can regulate allergic inflammation. In the present study, microRNA array analysis showed that miR-154-5p was increased by antigen (DNP-HSA) in a p62-dependent manner in rat basophilic leukemia cells (RBL2H3). NF-kB directly increased the expression of miR-154-5p. miR-154-5p mediated in vivo allergic reactions, including passive cutaneous anaphylaxis and passive systemic anaphylaxis. Cytokine array analysis showed that antigen stimulation increased the expression of MCP1 in RBL2H3 cells in an miR-154-5p-dependent manner. Reactive oxygen species (ROS)-ERK-NF-kB signaling increased the expression of MCP1 in antigen-stimulated RBL2H3 cells. Recombinant MCP1 protein induced molecular features of allergic reactions both in vitro and in vivo. Anaphylaxis-promoted tumorigenic potential has been known to be accompanied by cellular interactions involving mast cells, and macrophages, and cancer cells. Our experiments employing culture medium, co-cultures, and recombinant MCP1 protein showed that miR-154 and MCP1 mediated these cellular interactions. MiR-154-5p and MCP1 were found to be present in exosomes of RBL2H3 cells. Exosomes from PSA-activated BALB/C mouse induced molecular features of passive cutaneous anaphylaxis in an miR-154-5p-dependent manner. Exosomes from antigen-stimulated RBL2H3 cells enhanced both tumorigenic and metastatic potentials of B16F1 melanoma cells in an miR-154-5p-dependent manner. Exosomes regulated both ROS level and ROS mediated cellular interactions during allergic inflammation. Our results indicate that the miR-154-5p-MCP1 axis might serve as a valuable target for the development of anti-allergy therapeutics.
Collapse
Affiliation(s)
- Misun Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Hyein Jo
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Yoojung Kwon
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea.,Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
67
|
Lin C, Wang Z, Shen L, Yi G, Li M, Li D. Genetic Variants, Circulating Level of MCP1 with Risk of Chronic Obstructive Pulmonary Disease: A Case-Control Study. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:561-567. [PMID: 34007204 PMCID: PMC8124012 DOI: 10.2147/pgpm.s303799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/16/2021] [Indexed: 01/19/2023]
Abstract
Background Chronic obstructive pulmonary disease (COPD) ranks one of the major causes of mortality worldwide. Inflammation is greatly involved in the pathogenesis of COPD. Monocyte chemoattractant protein-1 (MCP1) has been implicated to play an important role in the inflammatory response of various pathological processes. Methods In this study, we conducted a hospital-based case-control study in a Chinese population, aiming to evaluate the potential associations of genetic polymorphisms of the MCP1 gene (rs1024611, rs2857656, and rs4586) and circulating level of MCP1 with COPD risk. Results We found that rs1024611 (OR=1.37; 95% CI=1.11–1.69; P-value=0.004) and rs4586 (OR=1.33; 95% CI=1.09–1.63; P-value=0.006) were significantly associated with increased COPD risk. In the dominant model, both rs1024611 (OR=1.46; 95% CI=1.11–1.92; P-value=0.006) and rs4586 (OR=1.56; 95% CI=1.18–2.07; P-value=0.002) were significantly associated with increased COPD risk. Genotypes of rs1024611 and rs4586 with minor alleles had a significantly higher circulating level of MCP1 (P<0.001). Meanwhile, a circulating level of MCP1 was significantly associated with increased COPD risk (OR for per quartile increment=1.35, 95% CI=1.21–1.52, P<0.001). Conclusion Our study indicated that genetic polymorphisms of the MCP1 gene and circulating level of MCP1 contributed to the COPD risk in the Chinese population. MCP1 contributed importantly to the pathophysiological process and occurrence of COPD.
Collapse
Affiliation(s)
- Chunyi Lin
- Respiratory Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People's Republic of China
| | - Zhimin Wang
- Intensive Care Unit (ICU), The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People's Republic of China
| | - Lu Shen
- Respiratory Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People's Republic of China
| | - Gao Yi
- Respiratory Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People's Republic of China
| | - Meichan Li
- Respiratory Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People's Republic of China
| | - Defu Li
- Respiratory Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People's Republic of China
| |
Collapse
|
68
|
Branchett WJ, Cook J, Oliver RA, Bruno N, Walker SA, Stölting H, Mack M, O'Garra A, Saglani S, Lloyd CM. Airway macrophage-intrinsic TGF-β1 regulates pulmonary immunity during early-life allergen exposure. J Allergy Clin Immunol 2021; 147:1892-1906. [PMID: 33571538 PMCID: PMC8098862 DOI: 10.1016/j.jaci.2021.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Early life represents a major risk window for asthma development. However, the mechanisms controlling the threshold for establishment of allergic airway inflammation in early life are incompletely understood. Airway macrophages (AMs) regulate pulmonary allergic responses and undergo TGF-β-dependent postnatal development, but the role of AM maturation factors such as TGF-β in controlling the threshold for pathogenic immune responses to inhaled allergens remains unclear. OBJECTIVE Our aim was to test the hypothesis that AM-derived TGF-β1 regulates pathogenic immunity to inhaled allergen in early life. METHODS Conditional knockout (Tgfb1ΔCD11c) mice, with TGF-β1 deficiency in AMs and other CD11c+ cells, were analyzed throughout early life and following neonatal house dust mite (HDM) inhalation. The roles of specific chemokine receptors were determined by using in vivo blocking antibodies. RESULTS AM-intrinsic TGF-β1 was redundant for initial population of the neonatal lung with AMs, but AMs from Tgfb1ΔCD11c mice failed to adopt a mature homeostatic AM phenotype in the first weeks of life. Evidence of constitutive TGF-β1 signaling was also observed in pediatric human AMs. TGF-β1-deficient AMs expressed enhanced levels of monocyte-attractant chemokines, and accordingly, Tgfb1ΔCD11c mice exposed to HDM throughout early life accumulated CCR2-dependent inflammatory CD11c+ mononuclear phagocytes into the airway niche that expressed the proallergic chemokine CCL8. Tgfb1ΔCD11c mice displayed augmented TH2, group 2 innate lymphoid cell, and airway remodeling responses to HDM, which were ameliorated by blockade of the CCL8 receptor CCR8. CONCLUSION Our results highlight a causal relationship between AM maturity, chemokines, and pathogenic immunity to environmental stimuli in early life and identify TGF-β1 as a key regulator of this.
Collapse
Affiliation(s)
- William J Branchett
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - James Cook
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Robert A Oliver
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nicoletta Bruno
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Simone A Walker
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Helen Stölting
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthias Mack
- Department of Internal Medicine II- Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Anne O'Garra
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom; Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, United Kingdom
| | - Sejal Saglani
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Clare M Lloyd
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
69
|
Mei HX, Ye Y, Xu HR, Xiang SY, Yang Q, Ma HY, Jin SW, Wang Q. LXA4 Inhibits Lipopolysaccharide-Induced Inflammatory Cell Accumulation by Resident Macrophages in Mice. J Inflamm Res 2021; 14:1375-1385. [PMID: 33880053 PMCID: PMC8052121 DOI: 10.2147/jir.s301292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction Alveolar macrophages that regulate the inflammatory response in lungs are the main target cell for the treatment of inflammatory pulmonary pathologies, such as acute respiratory distress syndrome (ARDS). Yolk sac derived alveolar resident macrophages play an important role in the pulmonary inflammatory response. With regards to anti-inflammatory actions, lipoxin A4 (LXA4) has been identified as an inflammatory "braking signal". Methods In vivo, LXA4 (0.1 µg/mouse) was injected intraperitoneally after intratracheal (1 mg/kg) lipopolysaccharide (LPS) administration; flow cytometry was used to measure peripheral blood monocyte derived recruited macrophage and neutrophil numbers; resident alveolar macrophage was depleted by liposome clodronate; CXCL2, CCL2, MMP9 level was detected by RT-PCR and ELISA. In vitro, sorted resident macrophages (1×106) were cultured with LPS (1 μg/mL) and LXA4 (100 nmol/mL) with or without BOC-2 (10 μM) for 24 h to gain a better understanding of the mechanisms of LXA4. Results LXA4 inhibited tumor necrosis factor-a (TNF-a) and interleukin-1β (IL-1β) production induced by LPS. LXA4 also mediated LPS-induced macrophage recruitment and showed that this was dependent on CCL2 secretion and release by resident macrophages. LXA4 protects lung tissue by inhibiting neutrophil recruitment, partly through the CXCL2/MMP-9 signaling pathway. CXCL2 and MMP-9 are mainly expressed by resident macrophages and neutrophils, respectively. Finally, LXA4's beneficial effects were abrogated by BOC-2, an LXA4 receptor inhibitor. Conclusion These results suggest that LXA4 may be a promising therapy for preventing and treating ARDS.
Collapse
Affiliation(s)
- Hong-Xia Mei
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Yang Ye
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Hao-Ran Xu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Shu-Yang Xiang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Qian Yang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Hong-Yu Ma
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Qian Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| |
Collapse
|
70
|
Hetzel M, Ackermann M, Lachmann N. Beyond "Big Eaters": The Versatile Role of Alveolar Macrophages in Health and Disease. Int J Mol Sci 2021; 22:3308. [PMID: 33804918 PMCID: PMC8036607 DOI: 10.3390/ijms22073308] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages act as immune scavengers and are important cell types in the homeostasis of various tissues. Given the multiple roles of macrophages, these cells can also be found as tissue resident macrophages tightly integrated into a variety of tissues in which they fulfill crucial and organ-specific functions. The lung harbors at least two macrophage populations: interstitial and alveolar macrophages, which occupy different niches and functions. In this review, we provide the latest insights into the multiple roles of alveolar macrophages while unraveling the distinct factors which can influence the ontogeny and function of these cells. Furthermore, we will highlight pulmonary diseases, which are associated with dysfunctional macrophages, concentrating on congenital diseases as well as pulmonary infections and impairment of immunological pathways. Moreover, we will provide an overview about different treatment approaches targeting macrophage dysfunction. Improved knowledge of the role of macrophages in the onset of pulmonary diseases may provide the basis for new pharmacological and/or cell-based immunotherapies and will extend our understanding to other macrophage-related disorders.
Collapse
Affiliation(s)
- Miriam Hetzel
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.H.); (M.A.)
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.H.); (M.A.)
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
71
|
Li R, Song P, Tang G, Wei J, Rao L, Ma L, Jiang M, Huang J, Xu Q, Wu J, Lv Q, Yao D, Xiao B, Huang H, Lei L, Feng J, Mo B. Osthole Attenuates Macrophage Activation in Experimental Asthma by Inhibitingthe NF-ĸB/MIF Signaling Pathway. Front Pharmacol 2021; 12:572463. [PMID: 33828480 PMCID: PMC8020258 DOI: 10.3389/fphar.2021.572463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Inhibition of activated macrophages is an alternative therapeutic strategy for asthma. We investigated whether a coumarin compound, osthole, isolated from Cnidium monnieri (L.) Cuss, alleviated macrophage activation in vivo and in vitro. Osthole could reduce expression of a marker of activated macrophages, cluster of differentiation (CD)206, in an ovalbumin-challenge model of asthma in mice. Osthole could also inhibit infiltration of inflammatory cells, collagen deposition and production of proinflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor-ɑ, macrophage migration inhibitory factor (MIF)] in asthmatic mice. In vitro, expression of phosphorylated-IĸBɑ, MIF and M2 cytokines (Ym-1, Fizz-1, arginase-1) in IL-4-induced macrophages decreased upon exposure to the NF-ĸB inhibitor MG-132. In our short hairpin (sh)RNA-MIF-knockdown model, reduced expression of M2 cytokines was detected in the IL-4 + shRNA-MIF group. Osthole could attenuate the proliferation and migration of an IL-4-induced rat alveolar macrophages line (NR8383). Osthole could reduce IL-4-induced translocation of nuclear factor-kappa B (NF-ĸB) in NR8383 cells. Collectively, our results suggest that osthole ameliorates macrophage activation in asthma by suppressing the NF-ĸB/MIF signaling pathway, and might be a potential agent for treating asthma.
Collapse
Affiliation(s)
- Ruyi Li
- Key Laboratory of National Clinical Research Center for Respiratory Disease, Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Song
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China.,Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guofang Tang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jianghong Wei
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lizong Rao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ming Jiang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jianwei Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qing Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jingjie Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qian Lv
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Dong Yao
- Laboratory of Pulmonary Diseases, Guilin Medical University, Guilin, China
| | - Bo Xiao
- Laboratory of Pulmonary Diseases, Guilin Medical University, Guilin, China
| | - Haiming Huang
- Laboratory of Pulmonary Diseases, Guilin Medical University, Guilin, China
| | - Liping Lei
- Laboratory of Pulmonary Diseases, Guilin Medical University, Guilin, China
| | - Juntao Feng
- Key Laboratory of National Clinical Research Center for Respiratory Disease, Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
72
|
Hong L, Wang Q, Chen M, Shi J, Guo Y, Liu S, Pan R, Yuan X, Jiang S. Mas receptor activation attenuates allergic airway inflammation via inhibiting JNK/CCL2-induced macrophage recruitment. Biomed Pharmacother 2021; 137:111365. [PMID: 33588264 DOI: 10.1016/j.biopha.2021.111365] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Defective absorption of acute allergic airway inflammation is involved in the initiation and development of chronic asthma. After allergen exposure, there is a rapid recruitment of macrophages around the airways, which promote acute inflammatory responses. The Ang-(1-7)/Mas receptor axis reportedly plays protective roles in various tissue inflammation and remodeling processes in vivo. However, the exact role of Mas receptor and their underlying mechanisms during the pathology of acute allergic airway inflammation remains unclear. OBJECTIVE We investigated the role of Mas receptor in acute allergic asthma and explored its underlying mechanisms in vitro, aiming to find critical molecules and signal pathways. METHODS Mas receptor expression was assessed in ovalbumin (OVA)-induced acute asthmatic murine model. Then we estimated the anti-inflammatory role of Mas receptor in vivo and explored expressions of several known inflammatory cytokines as well as phosphorylation levels of MAPK pathways. Mas receptor functions and underlying mechanisms were studied further in the human bronchial epithelial cell line (16HBE). RESULTS Mas receptor expression decreased in acute allergic airway inflammation. Multiplex immunofluorescence co-localized Mas receptor and EpCAM, indicated that Mas receptor may function in the bronchial epithelium. Activating Mas receptor through AVE0991 significantly alleviated macrophage infiltration in airway inflammation, accompanied with down-regulation of CCL2 and phosphorylation levels of MAPK pathways. Further studies in 16HBE showed that AVE0991 pre-treatment inhibited LPS-induced or anisomycin-induced CCL2 increase and THP-1 macrophages migration via JNK pathways. CONCLUSION Our findings suggested that Mas receptor activation significantly attenuated CCL2 dependent macrophage recruitments in acute allergic airway inflammation through JNK pathways, which indicated that Mas receptor, CCL2 and phospho-JNK could be potential targets against allergic airway inflammation.
Collapse
Affiliation(s)
- Luna Hong
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiujie Wang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Chen
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianting Shi
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yimin Guo
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruijian Pan
- Departments of Electric Power Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Shanping Jiang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
73
|
The Role of T Cells and Macrophages in Asthma Pathogenesis: A New Perspective on Mutual Crosstalk. Mediators Inflamm 2020; 2020:7835284. [PMID: 32922208 PMCID: PMC7453253 DOI: 10.1155/2020/7835284] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Asthma is associated with innate and adaptive immunity mediated by immune cells. T cell or macrophage dysfunction plays a particularly significant role in asthma pathogenesis. Furthermore, crosstalk between them continuously transmits proinflammatory or anti-inflammatory signals, causing the immune cell activation or repression in the immune response. Consequently, the imbalanced immune microenvironment is the major cause of the exacerbation of asthma. Here, we discuss the role of T cells, macrophages, and their interactions in asthma pathogenesis.
Collapse
|
74
|
Qiu C, Li J, Luo D, Chen X, Qu R, Liu T, Li F, Liu Y. Cortistatin protects against inflammatory airway diseases through curbing CCL2 and antagonizing NF-κB signaling pathway. Biochem Biophys Res Commun 2020; 531:595-601. [PMID: 32811643 DOI: 10.1016/j.bbrc.2020.07.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022]
Abstract
Asthma is a chronic inflammatory disease affecting millions of people around the world, yet much remains unknown about its underlying mechanisms. Cortistatin (CST) is a neuropeptide which is reported to be a potential endogenous anti-inflammatory factor in several conditions. To testify the potential involvement of CST in airway inflammatory reaction, an ovalbumin (OVA)-induced mice model was established in wild-type (WT) as well as CST-knockout (Cort-/-) mice. Thereafter, lung tissue or cell samples were gathered in each group, and histological analysis as well as cell counting assay indicated that Cort-/- mice exhibited exaggeration of asthma compared with WT control group. Moreover, mRNA sequencing assay revealed that CCL2 was a potential target of CST in asthma, and administration of CCL2 inhibitor alleviated airway inflammation of asthma in Cort-/- mice. Moreover, NF-κB signaling pathway might be closely associated with the protective function of CST in asthma, as enhanced activation of NF-κB signaling pathway was observed in OVA-induced asthma model of Cort-/- mice, and SN50, an inhibitor of NF-κB signaling pathway, antagonized asthma development in Cort-/- mice. In summary, CST might represent as a promising target for the treatment of asthma through interacting with CCL2 and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Cheng Qiu
- Department of Pathology, The School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Jiayi Li
- Department of Pathology, The School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Dan Luo
- College of Stomatology, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Xiaomin Chen
- Department of Pathology, The School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Ruize Qu
- Department of Pathology, The School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Tianyi Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Feng Li
- Department of Medical Imaging, First People's Hospital of Jinan, Jinan, Shandong, 250011, PR China.
| | - Yansong Liu
- Department of Breast Surgery, Shandong Cancer Hospital, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
75
|
Bartel S, Deshane J, Wilkinson T, Gabrielsson S. Extracellular Vesicles as Mediators of Cellular Cross Talk in the Lung Microenvironment. Front Med (Lausanne) 2020; 7:326. [PMID: 32850874 PMCID: PMC7417309 DOI: 10.3389/fmed.2020.00326] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/03/2020] [Indexed: 12/27/2022] Open
Abstract
The human lung is a complex tissue subdivided into several regions that differ in size, function, and resident cell types. Despite years of intensive research, we still do not fully understand the cross talk between these different regions and diverse cell populations in the lung and how this is altered in the development of chronic respiratory disease. The discovery of extracellular vesicles (EVs), small membrane vesicles released from cells for intercellular communication, has added another layer of complexity to cellular cross talk in the complex lung microenvironment. EVs from patients with chronic obstructive pulmonary disease, asthma, or sarcoidosis have been shown to carry microRNAs, proteins, and lipids that may contribute to inflammation or tissue degeneration. Here, we summarize the contribution of these small vesicles in the interplay of several different cell types in the lung microenvironment, with a focus on the development of chronic respiratory diseases. Although there are already many studies demonstrating the adverse effects of EVs in the diseased lung, we still have substantial knowledge gaps regarding the concrete role of EV involvement in lung disease, which should be addressed in future studies.
Collapse
Affiliation(s)
- Sabine Bartel
- Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jessy Deshane
- Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tom Wilkinson
- Clinical and Experimental Science, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Susanne Gabrielsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
76
|
Herath KHINM, Mihindukulasooriya SP, Kim HJ, Kim A, Kim HJ, Jeon YJ, Jee Y. Oral administration of polyphenol-rich Sargassum horneri suppresses particulate matter exacerbated airway inflammation in murine allergic asthma: Relevance to the TLR mediated NF-κB pathway inhibition. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
77
|
Huang LN, Sun L, Liu LM, Zhang HH, Liang ZB, Rui Y, Hu JF, Zhang Y, Christman JW, Qian F. p38α MAP kinase promotes asthmatic inflammation through modulation of alternatively activated macrophages. J Mol Cell Biol 2020; 11:1095-1097. [PMID: 31253986 PMCID: PMC6934154 DOI: 10.1093/jmcb/mjz054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/10/2019] [Accepted: 05/23/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Li-Nian Huang
- Department of Respiration and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233004, China
| | - Lei Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Ming Liu
- Department of Respiration and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233004, China
| | - Hui-Hui Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhong-Bo Liang
- Department of Respiration and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233004, China
| | - Yan Rui
- Department of Respiration and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233004, China
| | - Jun-Feng Hu
- Department of Respiration and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233004, China
| | - Yong Zhang
- Department of Respiration and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233004, China
| | - John W Christman
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210-1252, USA
| | - Feng Qian
- Department of Respiration and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233004, China.,Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210-1252, USA
| |
Collapse
|
78
|
Khan M, Huang YA, Kuo CY, Lin T, Lu CH, Chen LC, Kuo ML. Blocking pannexin1 reduces airway inflammation in a murine model of asthma. Am J Transl Res 2020; 12:4074-4083. [PMID: 32774761 PMCID: PMC7407700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Stressed or injured cells release ATP into the extracellular milieu via the pannexin1 (Panx1) channels, which is the basis of inflammation in a variety of conditions, including allergic lung inflammation. Although the role of Panx1 in mediating inflammation has been well established, the role of its mimetic peptide, 10Panx1, which inhibits ATP release from Panx1 channels, in allergic asthma remains understudied. The aim of this study was to evaluate the effects of using 10Panx1 to inhibit Panx1 channel in a murine model of ovalbumin (OVA)-induced asthma. We demonstrate that blockade of Panx1 significantly attenuated goblet cell hyperplasia and inflammatory cell infiltration into the lungs of OVA-sensitized mice. Inhibition of Panx1 also reduced the total and eosinophil cell numbers in the bronchoalveolar lavage fluid (BALF) and reduced expression of CCL11 and CCL2 in lung tissues from mice. Moreover, we detected lower levels of IL-5 and IL-13 in the culture supernatant of OVA-restimulated splenocytes from 10Panx1-treated mice. Collectively, our findings suggest that Panx1 inhibition of allergen-mediated lung inflammation has the potential to suppress allergic responses in asthma.
Collapse
Affiliation(s)
- Matarr Khan
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
- Current address: Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaVienna, Austria
| | - Yung-An Huang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Chieh-Ying Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Tong Lin
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Chun-Hao Lu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
- Department of Fundamental Oncology, University of LausanneLausanne, Switzerland
- Ludwig Institute for Cancer Research, University of LausanneÉpalinges, Switzerland
| | - Li-Chen Chen
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial HospitalTaoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and TechnologyTaoyuan, Taiwan
| |
Collapse
|
79
|
Reader BF, Sethuraman S, Hay BR, Thomas Becket RV, Karpurapu M, Chung S, Lee YG, Christman JW, Ballinger MN. IRAK-M Regulates Monocyte Trafficking to the Lungs in Response to Bleomycin Challenge. THE JOURNAL OF IMMUNOLOGY 2020; 204:2661-2670. [PMID: 32253243 DOI: 10.4049/jimmunol.1900466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 03/16/2020] [Indexed: 12/31/2022]
Abstract
Idiopathic pulmonary fibrosis is a deadly disease characterized by excessive extracellular matrix deposition in the lungs, resulting in decreased pulmonary function. Although epithelial cells and fibroblasts have long been the focus of idiopathic pulmonary fibrosis research, the role of various subpopulations of macrophages in promoting a fibrotic response is an emerging target. Healthy lungs are composed of two macrophage populations, tissue-resident alveolar macrophages and interstitial macrophages, which help to maintain homeostasis. After injury, tissue-resident alveolar macrophages are depleted, and monocytes from the bone marrow (BM) traffic to the lungs along a CCL2/CCR2 axis and differentiate into monocyte-derived alveolar macrophages (Mo-AMs), which is a cell population implicated in murine models of pulmonary fibrosis. In this study, we sought to determine how IL-1R-associated kinase-M (IRAK-M), a negative regulator of TLR signaling, modulates monocyte trafficking into the lungs in response to bleomycin. Our data indicate that after bleomycin challenge, mice lacking IRAK-M have decreased monocyte trafficking and reduced Mo-AMs in their lungs. Although IRAK-M expression did not regulate differences in chemokines, cytokines, or adhesion molecules associated with monocyte recruitment, IRAK-M was necessary for CCR2 upregulation following bleomycin challenge. This finding prompted us to develop a competitive BM chimera model, which demonstrated that expression of BM-derived IRAK-M was necessary for monocyte trafficking into the lung and for subsequent enhanced collagen deposition. These data indicate that IRAK-M regulates monocyte trafficking by increasing the expression of CCR2, resulting in enhanced monocyte translocation into the lung, Mo-AM differentiation, and development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Brenda F Reader
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - Shruthi Sethuraman
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - Bryan R Hay
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - Rose Viguna Thomas Becket
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - Manjula Karpurapu
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - Sangwoon Chung
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - Yong Gyu Lee
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - John W Christman
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - Megan N Ballinger
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| |
Collapse
|
80
|
Draijer C, Speth JM, Penke LRK, Zaslona Z, Bazzill JD, Lugogo N, Huang YJ, Moon JJ, Peters-Golden M. Resident alveolar macrophage-derived vesicular SOCS3 dampens allergic airway inflammation. FASEB J 2020; 34:4718-4731. [PMID: 32030817 DOI: 10.1096/fj.201903089r] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 01/28/2023]
Abstract
Resident alveolar macrophages (AMs) suppress allergic inflammation in murine asthma models. Previously we reported that resident AMs can blunt inflammatory signaling in alveolar epithelial cells (ECs) by transcellular delivery of suppressor of cytokine signaling 3 (SOCS3) within extracellular vesicles (EVs). Here we examined the role of vesicular SOCS3 secretion as a mechanism by which AMs restrain allergic inflammatory responses in airway ECs. Bronchoalveolar lavage fluid (BALF) levels of SOCS3 were reduced in asthmatics and in allergen-challenged mice. Ex vivo SOCS3 secretion was reduced in AMs from challenged mice and this defect was mimicked by exposing normal AMs to cytokines associated with allergic inflammation. Both AM-derived EVs and synthetic SOCS3 liposomes inhibited the activation of STAT3 and STAT6 as well as cytokine gene expression in ECs challenged with IL-4/IL-13 and house dust mite (HDM) extract. This suppressive effect of EVs was lost when they were obtained from AMs exposed to allergic inflammation-associated cytokines. Finally, inflammatory cell recruitment and cytokine generation in the lungs of OVA-challenged mice were attenuated by intrapulmonary pretreatment with SOCS3 liposomes. Overall, AM secretion of SOCS3 within EVs serves as a brake on airway EC responses during allergic inflammation, but is impaired in asthma. Synthetic liposomes encapsulating SOCS3 can rescue this defect and may serve as a framework for novel therapeutic approaches targeting airway inflammation.
Collapse
Affiliation(s)
- Christina Draijer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer M Speth
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Loka R K Penke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zbigniew Zaslona
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joseph D Bazzill
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Njira Lugogo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.,Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
81
|
Abdelaziz MH, Abdelwahab SF, Wan J, Cai W, Huixuan W, Jianjun C, Kumar KD, Vasudevan A, Sadek A, Su Z, Wang S, Xu H. Alternatively activated macrophages; a double-edged sword in allergic asthma. J Transl Med 2020; 18:58. [PMID: 32024540 PMCID: PMC7003359 DOI: 10.1186/s12967-020-02251-w] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages are heterogenous phagocytic cells with an important role in the innate immunity. They are, also, significant contributors in the adaptive immune system. Macrophages are the most abundant immune cells in the lung during allergic asthma, which is the most common chronic respiratory disease of both adults and children. Macrophages activated by Th1 cells are known as M1 macrophages while those activated by IL-4 and IL-13 are called alternatively activated macrophages (AAM) or M2 cells. AAM are subdivided into four distinct subtypes (M2a, M2b, M2c and M2d), depending on the nature of inducing agent and the expressed markers. BODY: IL-4 is the major effector cytokine in both alternative activation of macrophages and pathogenesis of asthma. Thus, the role of M2a macrophages in asthma is a major concern. However, this is controversial. Therefore, further studies are required to improve our knowledge about the role of IL-4-induced macrophages in allergic asthma, through precisive elucidation of the roles of specific M2a proteins in the pathogenesis of asthma. In the current review, we try to illustrate the different functions of M2a macrophages (protective and pathogenic roles) in the pathogenesis of asthma, including explanation of how different M2a proteins and markers act during the pathogenesis of allergic asthma. These include surface markers, enzymes, secreted proteins, chemokines, cytokines, signal transduction proteins and transcription factors. CONCLUSIONS AAM is considered a double-edged sword in allergic asthma. Finally, we recommend further studies that focus on increased selective expression or suppression of protective and pathogenic M2a markers.
Collapse
Affiliation(s)
- Mohamed Hamed Abdelaziz
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Sayed F Abdelwahab
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Pharmaceutical Technology, Taif University, College of Pharmacy, Taif, 21974, Kingdom of Saudi Arabia.
| | - Jie Wan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wei Cai
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wang Huixuan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Jianjun
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kesavan Dinesh Kumar
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Aparna Vasudevan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ahmed Sadek
- Department of Microbiology & Immunology, School of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Zhaoliang Su
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
82
|
Moon HG, Kim SJ, Lee MK, Kang H, Choi HS, Harijith A, Ren J, Natarajan V, Christman JW, Ackerman SJ, Park GY. Colony-stimulating factor 1 and its receptor are new potential therapeutic targets for allergic asthma. Allergy 2020; 75:357-369. [PMID: 31385613 PMCID: PMC7002247 DOI: 10.1111/all.14011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND A new approach targeting aeroallergen sensing in the early events of mucosal immunity could have greater benefit. The CSF1-CSF1R pathway has a critical role in trafficking allergens to regional lymph nodes through activating dendritic cells. Intervention in this pathway could prevent allergen sensitization and subsequent Th2 allergic inflammation. OBJECTIVE To examine the therapeutic effectiveness of CSF1 and CSF1R inhibition for blocking the dendritic cell function of sensing aeroallergens. METHODS We adopted a model of chronic asthma induced by a panel of three naturally occurring allergens and novel delivery system of CSF1R inhibitor encapsulated nanoprobe. RESULTS Selective depletion of CSF1 in airway epithelial cells abolished the production of allergen-reactive IgE, resulting in prevention of new asthma development as well as reversal of established allergic lung inflammation. CDPL-GW nanoprobe containing GW2580, a selective CSF1R inhibitor, showed favorable pharmacokinetics for inhalational treatment and intranasal insufflation delivery of CDPL-GW nanoprobe ameliorated asthma pathologies including allergen-specific serum IgE production, allergic lung and airway inflammation and airway hyper-responsiveness (AHR) with minimal pulmonary adverse reaction. CONCLUSION The inhibition of the CSF1-CSF1R signaling pathway effectively suppresses sensitization to aeroallergens and consequent allergic lung inflammation in a murine model of chronic asthma. CSF1R inhibition is a promising new target for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Hyung-Geun Moon
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Seung-jae Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Myoung Kyu Lee
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois at Chicago, IL, USA
| | - Jinhong Ren
- Center for Biomolecular Science, College of Pharmacy, University of Illinois at Chicago, IL, USA
| | - Viswanathan Natarajan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmacology, University of Illinois at Chicago, IL, USA
| | - John W. Christman
- Section of Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Center, Columbus, Ohio, USA
| | - Steven J. Ackerman
- Department of Biochemistry and Molecular Genetics, and Medicine, University of Illinois at Chicago, IL, USA
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
83
|
Kılıç A, Ameli A, Park JA, Kho AT, Tantisira K, Santolini M, Cheng F, Mitchel JA, McGill M, O'Sullivan MJ, De Marzio M, Sharma A, Randell SH, Drazen JM, Fredberg JJ, Weiss ST. Mechanical forces induce an asthma gene signature in healthy airway epithelial cells. Sci Rep 2020; 10:966. [PMID: 31969610 PMCID: PMC6976696 DOI: 10.1038/s41598-020-57755-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022] Open
Abstract
Bronchospasm compresses the bronchial epithelium, and this compressive stress has been implicated in asthma pathogenesis. However, the molecular mechanisms by which this compressive stress alters pathways relevant to disease are not well understood. Using air-liquid interface cultures of primary human bronchial epithelial cells derived from non-asthmatic donors and asthmatic donors, we applied a compressive stress and then used a network approach to map resulting changes in the molecular interactome. In cells from non-asthmatic donors, compression by itself was sufficient to induce inflammatory, late repair, and fibrotic pathways. Remarkably, this molecular profile of non-asthmatic cells after compression recapitulated the profile of asthmatic cells before compression. Together, these results show that even in the absence of any inflammatory stimulus, mechanical compression alone is sufficient to induce an asthma-like molecular signature.
Collapse
Affiliation(s)
- Ayşe Kılıç
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Asher Ameli
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jin-Ah Park
- Program in Molecular Integrative Phyisological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Alvin T Kho
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Kelan Tantisira
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Marc Santolini
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Centre for Research and Interdisciplinarity (CRI), Paris, F-75014, France
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106, USA
| | - Jennifer A Mitchel
- Program in Molecular Integrative Phyisological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Maureen McGill
- Program in Molecular Integrative Phyisological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Michael J O'Sullivan
- Program in Molecular Integrative Phyisological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Margherita De Marzio
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Program in Molecular Integrative Phyisological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Amitabh Sharma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey M Drazen
- Program in Molecular Integrative Phyisological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Jeffrey J Fredberg
- Program in Molecular Integrative Phyisological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Program in Molecular Integrative Phyisological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
84
|
Lapointe F, Turcotte S, Roy J, Bissonnette E, Rola-Pleszczynski M, Stankova J. RPTPε promotes M2-polarized macrophage migration through ROCK2 signaling and podosome formation. J Cell Sci 2020; 133:jcs.234641. [PMID: 31722979 DOI: 10.1242/jcs.234641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/05/2019] [Indexed: 01/30/2023] Open
Abstract
Cysteinyl-leukotrienes (cys-LTs) have well-characterized physiopathological roles in the development of inflammatory diseases. We have previously found that protein tyrosine phosphatase ε (PTPε) is a signaling partner of CysLT1R, a high affinity receptor for leukotriene D4 (LTD4). There are two major isoforms of PTPε, receptor-like (RPTPε) and cytoplasmic (cyt-)PTPε, both of which are encoded by the PTPRE gene but from different promoters. In most cells, their expression is mutually exclusive, except in human primary monocytes, which express both isoforms. Here, we show differential PTPε isoform expression patterns between monocytes, M1 and M2 human monocyte-derived macrophages (hMDMs), with the expression of glycosylated forms of RPTPε predominantly in M2-polarized hMDMs. Using PTPε-specific siRNAs and expression of RPTPε and cyt-PTPε, we found that RPTPε is involved in monocyte adhesion and migration of M2-polarized hMDMs in response to LTD4 Altered organization of podosomes and higher phosphorylation of the inhibitory Y-722 residue of ROCK2 was also found in PTPε-siRNA-transfected cells. In conclusion, we show that differentiation and polarization of monocytes into M2-polarized hMDMs modulates the expression of PTPε isoforms and RPTPε is involved in podosome distribution, ROCK2 activation and migration in response to LTD4.
Collapse
Affiliation(s)
- Fanny Lapointe
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sylvie Turcotte
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Joanny Roy
- Department of Medicine, Université Laval, Québec G1V 4G5, Canada
| | | | - Marek Rola-Pleszczynski
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jana Stankova
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
85
|
Tam JS. Macrophages: Time to Take Notice. Ann Allergy Asthma Immunol 2020; 123:229. [PMID: 31477214 DOI: 10.1016/j.anai.2019.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Jonathan S Tam
- Division of Clinical Immunology and Allergy, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California.
| |
Collapse
|
86
|
Shang Y, Sun Y, Xu J, Ge X, Hu Z, Xiao J, Ning Y, Dong Y, Bai C. Exosomes from mmu_circ_0001359-Modified ADSCs Attenuate Airway Remodeling by Enhancing FoxO1 Signaling-Mediated M2-like Macrophage Activation. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 19:951-960. [PMID: 32018116 PMCID: PMC6997502 DOI: 10.1016/j.omtn.2019.10.049] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/03/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
Abstract
Asthma is the most common chronic disease and is characterized by airway remodeling and chronic inflammation. Increasingly, studies have found that the activation and M1 phenotypic transformation of macrophages play important roles in asthma progress, including airway remodeling. However, the reversal of M1 macrophages to the M2 phenotype has been shown to attenuate airway remodeling. Exosomes are nano-sized extracellular vesicles derived from endosomes; they play direct roles in governing physiological and pathological conditions by the intracellular transfer of bioactive cargo, such as proteins, enzymes, nucleic acids (microRNA [miRNA], mRNA, DNA), and metabolites. However, transfer mechanisms are unclear. To uncover potential therapeutic mechanisms, we constructed an ovalbumin-induced asthma mouse model and lipopolysaccharide-induced RAW264.7 macrophages cells. High-throughput sequencing showed that mmu_circ_0001359 was downregulated in asthmatic mice when compared with normal mice. Adipose-derived stem cell (ADSC)-exosome treatment suppressed inflammatory cytokine expression by the conversion of M1 macrophages to the M2 phenotype, under lipopolysaccharide-induced conditions. Exosomes from mmu_circ_0001359 overexpression in ADSCs increased therapeutic effects, in terms of cytokine expression, when compared with wild-type exosomes. Luciferase reporter assays confirmed that exosomes from mmu_circ_0001359-modified ADSCs attenuated airway remodeling by enhancing FoxO1 signaling-mediated M2-like macrophage activation, via sponging miR-183-5p. In conclusion, mmu_circ_0001359-enriched exosomes attenuated airway remodeling by promoting M2-like macrophages.
Collapse
Affiliation(s)
- Yan Shang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Yahong Sun
- Department of Respiratory Medicine, Haining People's Hospital of Zhejiang Province, Zhejiang 314400, China
| | - Jing Xu
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Xiahui Ge
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Zhenli Hu
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jiang Xiao
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Yunye Ning
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| |
Collapse
|
87
|
Yin B, Chan CKW, Liu S, Hong H, Wong SHD, Lee LKC, Ho LWC, Zhang L, Leung KCF, Choi PCL, Bian L, Tian XY, Chan MN, Choi CHJ. Intrapulmonary Cellular-Level Distribution of Inhaled Nanoparticles with Defined Functional Groups and Its Correlations with Protein Corona and Inflammatory Response. ACS NANO 2019; 13:14048-14069. [PMID: 31725257 DOI: 10.1021/acsnano.9b06424] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Concerns over the health risks associated with airborne exposure to ultrafine particles [PM0.1, or nanoparticles (NPs)] call for a comprehensive understanding in the interactions of inhaled NPs along their respiratory journey. We prepare a collection of polyethylene glycol-coated gold nanoparticles that bear defined functional groups commonly identified in atmospheric particulates (Au@PEG-X NPs, where X = OCH3, COOH, NH2, OH, or C12H25). Regardless of the functional group, these ∼50 nm NPs remain colloidally stable following aerosolization and incubation in bronchoalveolar lavage fluid (BALF), without pronouncedly crossing the air-blood barrier. The type of BALF proteins adhered onto the NPs is similar, but the composition of protein corona depends on functional group. By subjecting Balb/c mice to inhalation of Au@PEG-X NPs for 6 h, we demonstrate that the intrapulmonary distribution of NPs among the various types of cells (both found in BALF and isolated from the lavaged lung) and the acute inflammatory responses induced by inhalation are sensitive to the functional group of NPs and postinhalation period (0, 24, or 48 h). By evaluating the pairwise correlations between the three variables of "lung-nano" interactions (protein corona, intrapulmonary cellular-level distribution, and inflammatory response), we reveal strong statistical correlations between the (1) fractions of albumin or carbonyl reductase bound to NPs, (2) associations of inhaled NPs to neutrophils in BALF or macrophages in the lavaged lung, and (3) level of total protein in BALF. Our results provide insights into the effect of functional group on lung-nano interactions and health risks associated with inhalation of PM0.1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ken Cham-Fai Leung
- Department of Chemistry , Hong Kong Baptist University , Kowloon , Hong Kong
| | | | | | | | | | | |
Collapse
|
88
|
Differential expression of CCR2 and CX 3CR1 on CD16 + monocyte subsets is associated with asthma severity. Allergy Asthma Clin Immunol 2019; 15:64. [PMID: 31700522 PMCID: PMC6829828 DOI: 10.1186/s13223-019-0379-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022] Open
Abstract
Background Monocytes play an important role in immune and inflammatory diseases and monocyte subsets are predictors of disease in certain conditions. Expression of the chemokine receptors, CCR2 and CX3CR1 on monocyte subsets relates to their function and can be used in their characterization. Our objective was to determine whether CD14, CD16, CCR2 and CX3CR1 on monocyte subsets are potential indicators of asthma severity. Methods Blood samples were collected from Saudi Arabian patients with asthma and normal healthy individuals. Six-color flow-cytometry phenotypic analysis was used to identify human blood monocyte subsets, based on their expression of CD14 and CD16 following CD45 gating. Expression of CCR2 and CX3CR1 was analysed on classical (CD14++CD16−), intermediate (CD14++CD16+) and non-classical (CD14+CD16++) subsets and correlated with disease severity. Results We demonstrated a significant increase in percentage of total CD45-positive monocytes in the blood of patients with severe asthma, but the proportion of the individual monocyte subsets was not significantly changed when patients with mild, moderate and severe asthma were compared with healthy individuals. CD16 expression (mean fluorescence intensity, MFI) was decreased on intermediate and non-classical subsets in patients with severe asthma compared to healthy controls. CX3CR1 expression was also lower, with a lower percentage of cells expressing CX3CR1 in the non-classical CD14+CD16++ subset in all patients with asthma and this was inversely related to the percentage of cells expressing CCR2. Conclusions CCR2 expression on monocytes indicated a tendency toward more phagocytic monocytes in patients with asthma. The differential expression of CD16, CX3CR1 and CCR2 on monocyte subsets in peripheral blood indicates modulation of the inflammatory response and suggests a role for monocytes in asthma pathogenesis.
Collapse
|
89
|
Altman MC, Lai Y, Nolin JD, Long S, Chen CC, Piliponsky AM, Altemeier WA, Larmore M, Frevert CW, Mulligan MS, Ziegler SF, Debley JS, Peters MC, Hallstrand TS. Airway epithelium-shifted mast cell infiltration regulates asthmatic inflammation via IL-33 signaling. J Clin Invest 2019; 129:4979-4991. [PMID: 31437129 PMCID: PMC6819127 DOI: 10.1172/jci126402] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Asthma is a heterogeneous syndrome that has been subdivided into physiologic phenotypes and molecular endotypes. The most specific phenotypic manifestation of asthma is indirect airway hyperresponsiveness (AHR), and a prominent molecular endotype is the presence of type 2 inflammation. The underlying basis for type 2 inflammation and its relationship to AHR are incompletely understood. We assessed the expression of type 2 cytokines in the airways of subjects with and without asthma who were extensively characterized for AHR. Using quantitative morphometry of the airway wall, we identified a shift in mast cells from the submucosa to the airway epithelium specifically associated with both type 2 inflammation and indirect AHR. Using ex vivo modeling of primary airway epithelial cells in organotypic coculture with mast cells, we show that epithelial-derived IL-33 uniquely induced type 2 cytokines in mast cells, which regulated the expression of epithelial IL33 in a feed-forward loop. This feed-forward loop was accentuated in epithelial cells derived from subjects with asthma. These results demonstrate that type 2 inflammation and indirect AHR in asthma are related to a shift in mast cell infiltration to the airway epithelium, and that mast cells cooperate with epithelial cells through IL-33 signaling to regulate type 2 inflammation.
Collapse
Affiliation(s)
| | - Ying Lai
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - James D. Nolin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sydney Long
- Division of Allergy and Infectious Diseases and
| | - Chien-Chang Chen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Adrian M. Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - William A. Altemeier
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Megan Larmore
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Charles W. Frevert
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Michael S. Mulligan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Steven F. Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Jason S. Debley
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Michael C. Peters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, UCSF, San Francisco, California, USA
| | - Teal S. Hallstrand
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
90
|
Aun MV, Almeida FMD, Saraiva-Romanholo BM, Martins MDA, Kalil J, Arantes-Costa FM, Giavina-Bianchi P. Diphteria-tetanus-pertussis vaccine reduces specific IgE, inflammation and remodelling in an animal model of mite-induced respiratory allergy. Vaccine 2019; 38:70-78. [PMID: 31630941 DOI: 10.1016/j.vaccine.2019.09.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 08/20/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Adjuvants, such as bacterial lipopolysaccharides, have been studied to improve the efficacy of allergen-specific immunotherapy. The Bordetella pertussis (Pw) vaccine has been shown to have a protective role in ovalbumin-induced asthma models. However, its role in allergy to mites is unknown. We evaluated the effects of the diphtheria-tetanus-pertussis (DTPw) vaccine on a murine model of respiratory allergy induced by Dermatophagoides pteronyssinus (Derp). METHODS In a 30-day protocol, BALB/c mice were immunized subcutaneously with saline or Derp, alone or in combination with diphtheria-tetanus (DT) or DTPw vaccines (days 0, 7 and 14). Subsequently, they underwent a daily intranasal challenge with saline or Derp (days 22-28) and were then sacrificed (day 29). We evaluated serum-specific immunoglobulins, bronchoalveolar lavage (BAL) cellularity, remodelling of the lower airways, density of polymorphonuclear leukocytes (PMNs) and acidic nasal mucus content. RESULTS The animals sensitized with Derp produced high levels of specific immunoglobulins, increased density of PMNs and nasal mucus content, and elevated BAL cellularity and remodelling. Vaccines led to a reduction in IgE levels, with the Derp-DTPw group being similar to the saline groups. The vaccinated groups had reductions of BAL cellularity and remodelling, with more expressive results in the Derp-DTPw group compared to the Derp-DT group. The DT and DTPw vaccines inhibited the nasal PMN infiltrate, and DTPw modulated the production of acidic nasal mucus. CONCLUSIONS The DTPw vaccine reduced serum specific IgE, nasal and pulmonary inflammation and remodelling of the lower airways.
Collapse
Affiliation(s)
- Marcelo Vivolo Aun
- Clinical Immunology and Allergy Division, University of Sao Paulo, Sao Paulo, Brazil; Laboratory of Experimental Therapeutics (LIM20), Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil.
| | - Francine Maria de Almeida
- Laboratory of Experimental Therapeutics (LIM20), Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Mílton de Arruda Martins
- Laboratory of Experimental Therapeutics (LIM20), Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Jorge Kalil
- Clinical Immunology and Allergy Division, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Pedro Giavina-Bianchi
- Clinical Immunology and Allergy Division, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
91
|
Do DC, Mu J, Ke X, Sachdeva K, Qin Z, Wan M, Ishmael FT, Gao P. miR-511-3p protects against cockroach allergen-induced lung inflammation by antagonizing CCL2. JCI Insight 2019; 4:126832. [PMID: 31536479 DOI: 10.1172/jci.insight.126832] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
miR-511-3p, encoded by CD206/Mrc1, was demonstrated to reduce allergic inflammation and promote alternative (M2) macrophage polarization. Here, we sought to elucidate the fundamental mechanism by which miR-511-3p attenuates allergic inflammation and promotes macrophage polarization. Compared with WT mice, the allergen-challenged Mrc1-/- mice showed increased airway hyperresponsiveness (AHR) and inflammation. However, this increased AHR and inflammation were significantly attenuated when these mice were pretransduced with adeno-associated virus-miR-511-3p (AAV-miR-511-3p). Gene expression profiling of macrophages identified Ccl2 as one of the major genes that was highly expressed in M2 macrophages but antagonized by miR-511-3p. The interaction between miR-511-3p and Ccl2 was confirmed by in silico analysis and mRNA-miR pulldown assay. Further evidence for the inhibition of Ccl2 by miR-511-3p was given by reduced levels of Ccl2 in supernatants of miR-511-3p-transduced macrophages and in bronchoalveolar lavage fluids of AAV-miR-511-3p-infected Mrc1-/- mice. Mechanistically, we demonstrated that Ccl2 promotes M1 macrophage polarization by activating RhoA signaling through Ccr2. The interaction between Ccr2 and RhoA was also supported by coimmunoprecipitation assay. Importantly, inhibition of RhoA signaling suppressed cockroach allergen-induced AHR and lung inflammation. These findings suggest a potentially novel mechanism by which miR-511-3p regulates allergic inflammation and macrophage polarization by targeting Ccl2 and its downstream Ccr2/RhoA axis.
Collapse
Affiliation(s)
- Danh C Do
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jie Mu
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Anesthesiology, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xia Ke
- Department of Otorhinolaryngology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Karan Sachdeva
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zili Qin
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mei Wan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Faoud T Ishmael
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Peisong Gao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
92
|
Hossain FMA, Choi JY, Uyangaa E, Park SO, Eo SK. The Interplay between Host Immunity and Respiratory Viral Infection in Asthma Exacerbation. Immune Netw 2019; 19:e31. [PMID: 31720042 PMCID: PMC6829071 DOI: 10.4110/in.2019.19.e31] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 12/16/2022] Open
Abstract
Asthma is one of the most common and chronic diseases characterized by multidimensional immune responses along with poor prognosis and severity. The heterogeneous nature of asthma may be attributed to a complex interplay between risk factors (either intrinsic or extrinsic) and specific pathogens such as respiratory viruses, and even bacteria. The intrinsic risk factors are highly correlated with asthma exacerbation in host, which may be mediated via genetic polymorphisms, enhanced airway epithelial lysis, apoptosis, and exaggerated viral replication in infected cells, resulting in reduced innate immune response and concomitant reduction of interferon (types I, II, and III) synthesis. The canonical features of allergic asthma include strong Th2-related inflammation, sensitivity to non-steroidal anti-inflammatory drugs (NSAIDs), eosinophilia, enhanced levels of Th2 cytokines, goblet cell hyperplasia, airway hyper-responsiveness, and airway remodeling. However, the NSAID-resistant non-Th2 asthma shows a characteristic neutrophilic influx, Th1/Th17 or even mixed (Th17-Th2) immune response and concurrent cytokine streams. Moreover, inhaled corticosteroid-resistant asthma may be associated with multifactorial innate and adaptive responses. In this review, we will discuss the findings of various in vivo and ex vivo models to establish the critical heterogenic asthmatic etiologies, host-pathogen relationships, humoral and cell-mediated immune responses, and subsequent mechanisms underlying asthma exacerbation triggered by respiratory viral infections.
Collapse
Affiliation(s)
- Ferdaus Mohd Altaf Hossain
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| |
Collapse
|
93
|
Kim MG, Kim SM, Min JH, Kwon OK, Park MH, Park JW, Ahn HI, Hwang JY, Oh SR, Lee JW, Ahn KS. Anti-inflammatory effects of linalool on ovalbumin-induced pulmonary inflammation. Int Immunopharmacol 2019; 74:105706. [PMID: 31254955 DOI: 10.1016/j.intimp.2019.105706] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022]
Abstract
Linalool is a natural product present in fruits and aromatic plants with biological activities. Researchers have reported that the inhalation of linalool exerts anti-inflammatory activities. In this study, we examined the therapeutic effects of linalool on airway inflammation and mucus overproduction in mice with allergic asthma. Oral administration of linalool significantly inhibited the levels of eosinophil numbers, Th2 cytokines and immunoglobulin E (IgE) caused by ovalbumin (OVA) exposure. Linalool exerted preventive effects against the influx of inflammatory cells and mucus hypersecretion in the lung tissues. Linalool also dose-dependently decreased the levels of inducible nitric oxide synthase (iNOS) expression and protein kinase B (AKT) activation in the lung tissues. Linalool effectively downregulated the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) caused by OVA exposure. Furthermore, linalool exerted inhibitory effect on OVA-induced airway hyperresponsiveness (AHR). In the in vitro study, the increased secretion of MCP-1 was attenuated with linalool treatment in lipopolysaccharide (LPS)-stimulated H292 airway epithelial cells. In conclusion, linalool effectively exerts a protective role in OVA-induced airway inflammation and mucus hypersecretion, and its protective effects are closely related to the downregulation of inflammatory mediators and MAPKs/NF-κB signaling.
Collapse
Affiliation(s)
- Min-Gu Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea; College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Mi-Hyeong Park
- Laboratory Animal Resources Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Chungcheongbuk 28159, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Hye In Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Jeong-Yeon Hwang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Sei-Raying Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea.
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea.
| |
Collapse
|
94
|
Fish-derived low molecular weight components modify bronchial epithelial barrier properties and release of pro-inflammatory cytokines. Mol Immunol 2019; 112:140-150. [PMID: 31102986 PMCID: PMC6997027 DOI: 10.1016/j.molimm.2019.04.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 01/07/2023]
Abstract
The prevalence of fish allergy among fish-processing workers is higher than in the general population, possibly due to sensitization via inhalation and higher exposure. However, the response of the bronchial epithelium to fish allergens has never been explored. Parvalbumins (PVs) from bony fish are major sensitizers in fish allergy, while cartilaginous fish and their PVs are considered less allergenic. Increasing evidence demonstrates that components other than proteins from the allergen source, such as low molecular weight components smaller than 3 kDa (LMC) from pollen, may act as adjuvants during allergic sensitization. We investigated the response of bronchial epithelial cells to PVs and to LMC from Atlantic cod, a bony fish, and gummy shark, a cartilaginous fish. Polarized monolayers of the bronchial epithelial cell line 16HBE14o- were stimulated apically with fish PVs and/-or the corresponding fish LMC. Barrier integrity, transport of PVs across the monolayers and release of mediators were monitored. Intact PVs from both the bony and the cartilaginous fish were rapidly internalized by the cells and transported to the basolateral side of the monolayers. The PVs did not disrupt the epithelial barrier integrity nor did they modify the release of proinflammatory cytokines. In contrast, LMC from both fish species modified the physical and immunological properties of the epithelial barrier and the responses differed between bony and cartilaginous fish. While the barrier integrity was lowered by cod LMC 24 h after cell stimulation, it was increased by up to 2.3-fold by shark LMC. Furthermore, LMC from both fish species increased basolateral and apical release of IL-6 and IL-8, while CCL2 release was increased by cod but not by shark LMC. In summary, our study demonstrated the rapid transport of PVs across the epithelium which may result in their availability to antigen presenting cells required for allergic sensitization. Moreover, different cell responses to LMC derived from bony versus cartilaginous fish were observed, which may play a role in different allergenic potentials of these two fish classes.
Collapse
|
95
|
Saini Y, Lewis BW, Yu D, Dang H, Livraghi-Butrico A, Del Piero F, O'Neal WK, Boucher RC. Effect of LysM+ macrophage depletion on lung pathology in mice with chronic bronchitis. Physiol Rep 2019; 6:e13677. [PMID: 29667749 PMCID: PMC5904692 DOI: 10.14814/phy2.13677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/04/2018] [Accepted: 03/10/2018] [Indexed: 11/24/2022] Open
Abstract
Macrophages (MΦ) are key sentinels of respiratory exposure to inhaled environmental stimuli. In normal “healthy” tissues, MΦ are believed to be a dormant cell type that, upon exposure to stress‐causing stimuli, may get activated to exhibit pro‐ or anti‐inflammatory roles. To test whether stress present in chronic bronchitic (CB) airways triggers MΦ to manifest protective or detrimental responses, the DTA+ (LysM‐regulated Diphtheria Toxin A expressing) strain with partial MΦ‐deficiency was crossed with the Scnn1b‐Tg mouse model of CB and the progenies were studied at 4–5 weeks of age. Compared with DTA− littermates, the DTA+ mice had ~50% reduction in bronchoalveolar lavage (BAL) MΦ, and the recovered MΦ were immature, phenotypically distinct, and functionally defective. DTA+/Scnn1b‐Tg mice exhibited a similar depletion of LysM+ MΦ offset by a significant increase in LysM‐ MΦ in the BAL. In DTA+/Scnn1b‐Tg mice, lung disease was more severe than in DTA−/Scnn1b‐Tg littermates, as indicated by an increased incidence of mucus plugging, mucous cells, airway inflammation, higher levels of cytokines/chemokines (KC, TNF‐α, MIP‐2, M‐CSF, IL‐5, and IL‐17), and worsened alveolar airspace enlargement. DTA+/Scnn1b‐Tg mice exhibited increased occurrence of lymphoid nodules, which was concomitant with elevated levels of immunoglobulins in BAL. Collectively, these data indicate that numerical deficiency of MΦ in stressed airspaces is responded via compensatory increase in the recruitment of immature MΦ and altered non‐MΦ effector cell‐centered responses, for example, mucus production and adaptive immune defense. Overall, these data identify dynamic roles of MΦ in moderating, rather than exacerbating, the severity of lung disease in a model of CB.
Collapse
Affiliation(s)
- Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Brandon W Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Dongfang Yu
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Fabio Del Piero
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Wanda K O'Neal
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
96
|
Wang XZ, Zhang HH, Qian YL, Tang LF. Sonic hedgehog (Shh) and CC chemokine ligand 2 signaling pathways in asthma. J Chin Med Assoc 2019; 82:343-350. [PMID: 31058710 DOI: 10.1097/jcma.0000000000000094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the airways in which many cells are involved, including mast cells, eosinophils, T lymphocytes, and so on. During the process, many chemokines and mediators are released to engage in recruiting and activating eosinophils and other inflammatory cells. Also, some signaling pathways are involved in the pathobiology of asthma. Sonic hedgehog (Shh) is one of the members of hedgehog gene families. Shh signaling plays a critical role in the embryonic development, including the lung. Previous findings from our team reveal that Shh is involved in the asthma pathogenesis. Recombinant Shh could induce the CC chemokine ligand 2 (CCL2) overexpressing and Smo inhibitor GDC-O449 could inhibit CCL2 expression in airway epithelial cells, monocytes, or macrophages. Hence, we reviewed the effects of Shh and CCL2 signaling pathways, and the interaction between signaling pathways in asthma.
Collapse
Affiliation(s)
- Xiang-Zhi Wang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hang-Hu Zhang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Pediatrics, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Yu-Ling Qian
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lan-Fang Tang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
97
|
Chan BCL, Lam CWK, Tam LS, Wong CK. IL33: Roles in Allergic Inflammation and Therapeutic Perspectives. Front Immunol 2019; 10:364. [PMID: 30886621 PMCID: PMC6409346 DOI: 10.3389/fimmu.2019.00364] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 02/12/2019] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-33 belongs to IL-1 cytokine family which is constitutively produced from the structural and lining cells including fibroblasts, endothelial cells, and epithelial cells of skin, gastrointestinal tract, and lungs that are exposed to the environment. Different from most cytokines that are actively secreted from cells, nuclear cytokine IL-33 is passively released during cell necrosis or when tissues are damaged, suggesting that it may function as an alarmin that alerts the immune system after endothelial or epithelial cell damage during infection, physical stress, or trauma. IL-33 plays important roles in type-2 innate immunity via activation of allergic inflammation-related eosinophils, basophils, mast cells, macrophages, and group 2 innate lymphoid cells (ILC2s) through its receptor ST2. In this review, we focus on the recent advances of the underlying intercellular and intracellular mechanisms by which IL-33 can regulate the allergic inflammation in various allergic diseases including allergic asthma and atopic dermatitis. The future pharmacological strategy and application of traditional Chinese medicines targeting the IL-33/ST2 axis for anti-inflammatory therapy of allergic diseases were also discussed.
Collapse
Affiliation(s)
- Ben C L Chan
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Christopher W K Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Lai-Shan Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chun K Wong
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
98
|
Zhan X, Zhang W, Sun T, Feng Y, Xi Y, Jiang Y, Tang X. Bulleyaconitine A Effectively Relieves Allergic Lung Inflammation in a Murine Asthmatic Model. Med Sci Monit 2019; 25:1656-1662. [PMID: 30828084 PMCID: PMC6413559 DOI: 10.12659/msm.915427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Bulleyaconitine A (BLA) has been widely used as analgesic against chronic inflammatory pain in China. However, its potential therapeutic role in asthma remains unclear. The purpose of this study was to investigate the effect of BLA on airway inflammation in mice with allergic asthma. Material/Methods Specific-pathogen-free (SPF) female Balb/c mice were randomly divided into the following 6 groups: (1) Control group (NC), (2) Asthma group (AS), (3) BLA-L group, (4) BLA-M group, (5) BLA-H group, and (6) Dexamethasone group. An asthma mouse model was established by administration of ovalbumin (OVA) and mice were sacrificed within 24 h after the last challenge. Enzyme-linked immunosorbent assay (ELISA) method was used to determine the relative expression levels of IgE and IgG in mouse serum. In addition, bronchoalveolar lavage fluid (BALF) was collected and IL-4, TNF-α, and MCP-1 levels were determined by ELISA. Furthermore, eosinophils, lymphocytes, and macrophages in BALF were classified and analyzed, and inflammatory cell infiltration in the airways of mice was determined by hematoxylin-eosin (HE) staining. The expression of NF-κB1 and PKC-δ in mouse lung tissue was determined by Western blot analysis. Results The levels of serum IgE and IgG in BLA- or Dex- treated mice were significantly reduced compared to those in the asthma (AS) group (P<0.01), whereas the levels of cytokines IL-4, TNF-α, and MCP-1 were significantly decreased (P<0.01). HE-staining showed that BLA significantly reduced inflammatory cell infiltration and mucus secretion in lung tissue. Moreover, BLA inhibited the expression of NF-κB1 and PKC-δ via the NF-κB signaling pathway in the lung. Conclusions Our data show that BLA activates PKC-δ/NF-κB to reduce airway inflammation in allergic asthma mice.
Collapse
Affiliation(s)
- Xiaodong Zhan
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Wenqi Zhang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Tian Sun
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Yuling Feng
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Yilong Xi
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China (mainland)
| | - Yuxin Jiang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Xiaoniu Tang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland)
| |
Collapse
|
99
|
Chung S, Kim JY, Song MA, Park GY, Lee YG, Karpurapu M, Englert JA, Ballinger MN, Pabla N, Chung HY, Christman JW. FoxO1 is a critical regulator of M2-like macrophage activation in allergic asthma. Allergy 2019; 74:535-548. [PMID: 30288751 PMCID: PMC6393185 DOI: 10.1111/all.13626] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/13/2018] [Accepted: 08/25/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The pathogenesis of asthma and airway obstruction is the result of an abnormal response to different environmental exposures. The scientific premise of our study was based on the finding that FoxO1 expression is increased in lung macrophages of mice after allergen exposure and human asthmatic patients. Macrophages are capable of switching from one functional phenotype to another, and it is important to understand the mechanisms involved in the transformation of macrophages and how their cellular function affects the peribronchial stromal microenvironment. METHODS We employed a murine asthma model, in which mice were treated by intranasal insufflation with allergens for 2-8 weeks. We used both a pharmacologic approach using a highly specific FoxO1 inhibitor and genetic approaches using FoxO1 knockout mice (FoxO1fl/fl LysMcre). Cytokine level in biological fluids was measured by ELISA and the expression of encoding molecules by NanoString assay and qRT-PCR. RESULTS We show that the levels of FoxO1 gene are significantly elevated in the airway macrophages of patients with mild asthma in response to subsegmental bronchial allergen challenge. Transcription factor FoxO1 regulates a pro-asthmatic phenotype of lung macrophages that is involved in the development and progression of chronic allergic airway disease. We have shown that inhibition of FoxO1 induced phenotypic conversion of lung macrophages and downregulates pro-asthmatic and pro-fibrotic gene expression by macrophages, which contribute to airway inflammation and airway remodeling in allergic asthma. CONCLUSION Targeting FoxO1 with its downstream regulator IRF4 is a novel therapeutic target for controlling allergic inflammation and potentially reversing fibrotic airway remodeling.
Collapse
Affiliation(s)
- Sangwoon Chung
- Pulmonary, Sleep and Critical Care Medicine, The Ohio State University, Wexner Medical Center, Davis Heart
and Lung Research Institute, Columbus, Ohio
| | - Ji Young Kim
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University
| | - Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University
| | - Gye Young Park
- Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Yong Gyu Lee
- Pulmonary, Sleep and Critical Care Medicine, The Ohio State University, Wexner Medical Center, Davis Heart
and Lung Research Institute, Columbus, Ohio
| | - Manjula Karpurapu
- Pulmonary, Sleep and Critical Care Medicine, The Ohio State University, Wexner Medical Center, Davis Heart
and Lung Research Institute, Columbus, Ohio
| | - Joshua A. Englert
- Pulmonary, Sleep and Critical Care Medicine, The Ohio State University, Wexner Medical Center, Davis Heart
and Lung Research Institute, Columbus, Ohio
| | - Megan N. Ballinger
- Pulmonary, Sleep and Critical Care Medicine, The Ohio State University, Wexner Medical Center, Davis Heart
and Lung Research Institute, Columbus, Ohio
| | - Navjot Pabla
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Korea
| | - John W. Christman
- Pulmonary, Sleep and Critical Care Medicine, The Ohio State University, Wexner Medical Center, Davis Heart
and Lung Research Institute, Columbus, Ohio
| |
Collapse
|
100
|
Lee YG, Reader BF, Herman D, Streicher A, Englert JA, Ziegler M, Chung S, Karpurapu M, Park GY, Christman JW, Ballinger MN. Sirtuin 2 enhances allergic asthmatic inflammation. JCI Insight 2019; 4:124710. [PMID: 30668546 PMCID: PMC6478424 DOI: 10.1172/jci.insight.124710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
Allergic eosinophilic asthma is a chronic condition causing airway remodeling resulting in lung dysfunction. We observed that expression of sirtuin 2 (Sirt2), a histone deacetylase, regulates the recruitment of eosinophils after sensitization and challenge with a triple antigen: dust mite, ragweed, and Aspergillus fumigatus (DRA). Our data demonstrate that IL-4 regulates the expression of Sirt2 isoform 3/5. Pharmacological inhibition of Sirt2 by AGK2 resulted in diminished cellular recruitment, decreased CCL17/TARC, and reduced goblet cell hyperplasia. YM1 and Fizz1 expression was reduced in AGK2-treated, IL-4-stimulated lung macrophages in vitro as well as in lung macrophages from AGK2-DRA-challenged mice. Conversely, overexpression of Sirt2 resulted in increased cellular recruitment, CCL17 production, and goblet cell hyperplasia following DRA challenge. Sirt2 isoform 3/5 was upregulated in primary human alveolar macrophages following IL-4 and AGK2 treatment, which resulted in reduced CCL17 and markers of alternative activation. These gain-of-function and loss-of-function studies indicate that Sirt2 could be developed as a treatment for eosinophilic asthma.
Collapse
Affiliation(s)
- Yong Gyu Lee
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Brenda F. Reader
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Derrick Herman
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Adam Streicher
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Joshua A. Englert
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Mathias Ziegler
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Sangwoon Chung
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Manjula Karpurapu
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Gye Young Park
- Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - John W. Christman
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Megan N. Ballinger
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| |
Collapse
|