51
|
Ghoneum A, Abdulfattah AY, Warren BO, Shu J, Said N. Redox Homeostasis and Metabolism in Cancer: A Complex Mechanism and Potential Targeted Therapeutics. Int J Mol Sci 2020; 21:E3100. [PMID: 32354000 PMCID: PMC7247161 DOI: 10.3390/ijms21093100] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Reactive Oxygen Species or "ROS" encompass several molecules derived from oxygen that can oxidize other molecules and subsequently transition rapidly between species. The key roles of ROS in biological processes are cell signaling, biosynthetic processes, and host defense. In cancer cells, increased ROS production and oxidative stress are instigated by carcinogens, oncogenic mutations, and importantly, metabolic reprograming of the rapidly proliferating cancer cells. Increased ROS production activates myriad downstream survival pathways that further cancer progression and metastasis. In this review, we highlight the relation between ROS, the metabolic programing of cancer, and stromal and immune cells with emphasis on and the transcription machinery involved in redox homeostasis, metabolic programing and malignant phenotype. We also shed light on the therapeutic targeting of metabolic pathways generating ROS as we investigate: Orlistat, Biguandes, AICAR, 2 Deoxyglucose, CPI-613, and Etomoxir.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Bailey Olivia Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- The Third Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| |
Collapse
|
52
|
Patwardhan RS, Singh B, Pal D, Checker R, Bandekar M, Sharma D, Sandur SK. Redox regulation of regulatory T-cell differentiation and functions. Free Radic Res 2020; 54:947-960. [DOI: 10.1080/10715762.2020.1745202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raghavendra S. Patwardhan
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Babita Singh
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Debojyoti Pal
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Rahul Checker
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Mayuri Bandekar
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Santosh K. Sandur
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
53
|
Lanser L, Nemati N, Seifert M, Fuchs D, Weiss G, Pölzl G, Kurz K. Inflammation, iron and vitamin D metabolism in different cardiomyopathy aetiologies. Pteridines 2020. [DOI: 10.1515/pteridines-2020-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Immune activation coincides with disturbances in iron and vitamin D metabolism in patients with cardiomyopathy. In this study, we investigated whether there are differences regarding immune activation, iron and vitamin D metabolism between the different cardiomyopathy aetiologies.
Patients and methods: Parameters of iron metabolism (haemoglobin, iron, transferrin, transferrin saturation, ferritin, hepcidin), vitamin D metabolism (Ct-FGF23, parathormone, phosphate, vitamin D) and immune activation (C-reactive protein and neopterin) were determined in 149 patients (98 men, 51 women) with non-ischaemic cardiomyopathy.
Results: Patients with amyloid cardiomyopathy presented with higher neopterin, ferritin and hepcidin levels than other cardiomyopathy aetiologies. Furthermore, they showed the highest rate of cardiovascular events. C-reactive protein levels were significantly higher in patients with inflammatory cardiomyopathy. Patients with virus positive cardiomyopathy presented with significantly higher ferritin and Ct-FGF23 levels compared to patients with virus negative inflammatory cardiomyopathy.
Conclusion: This study indicates that there are some differences regarding the extent of immune activation and inflammation as well as alterations in iron metabolism disorders between different cardiomyopathy aetiologies. Further studies with larger patient cohorts are needed to investigate these findings more precisely.
Collapse
Affiliation(s)
- Lukas Lanser
- Department of Internal Medicine II , Medical University of Innsbruck , 6020 Innsbruck , Austria
| | - Nada Nemati
- Department of Internal Medicine II , Medical University of Innsbruck , 6020 Innsbruck , Austria
| | - Markus Seifert
- Department of Internal Medicine II , Medical University of Innsbruck , 6020 Innsbruck , Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry , Biocenter, Medical University of Innsbruck , 6020 Innsbruck , Austria
| | - Günter Weiss
- Department of Internal Medicine II , Medical University of Innsbruck , 6020 Innsbruck , Austria
| | - Gerhard Pölzl
- Department of Internal Medicine III , Medical University of Innsbruck , 6020 Innsbruck , Austria
| | - Katharina Kurz
- Department of Internal Medicine II , Medical University of Innsbruck , 6020 Innsbruck , Austria
| |
Collapse
|
54
|
Cannata A, De Luca C, Korkina LG, Ferlazzo N, Ientile R, Currò M, Andolina G, Caccamo D. The SNP rs2298383 Reduces ADORA2A Gene Transcription and Positively Associates with Cytokine Production by Peripheral Blood Mononuclear Cells in Patients with Multiple Chemical Sensitivity. Int J Mol Sci 2020; 21:ijms21051858. [PMID: 32182774 PMCID: PMC7084623 DOI: 10.3390/ijms21051858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/06/2023] Open
Abstract
Systemic inflammation and immune activation are striking features of multiple chemical sensitivity (MCS). The rs2298383 SNP of ADORA2A gene, coding for adenosine receptor type 2A (A2AR), has been involved in aberrant immune activation. Here we aimed to assess the prevalence of this SNP in 279 MCS patients and 238 healthy subjects, and its influence on ADORA2A, IFNG and IL4 transcript amounts in peripheral blood mononuclear cells of randomly selected patients (n = 70) and controls (n = 66) having different ADORA2A genotypes. The ADORA2A rs2298383 TT mutated genotype, significantly more frequent in MCS patients than in controls, was associated with a three-fold increased risk for MCS (O.R. = 2.86; C.I. 95% 1.99–4.12, p < 0.0001), while the CT genotype, highly prevalent among controls, resulted to be protective (O.R. = 0.33; C.I. 95% 0.224–0.475, p < 0.0001). Notably, ADORA2A mRNA levels were significantly lower, while IFNG, but not IL4, mRNA levels were significantly higher in TT MCS patients compared with controls. A significant negative correlation was found between ADORA2A and both IFNG and IL4, while a significant positive correlation was found between IFNG and IL4. These findings suggest that A2AR defective signaling may play a relevant role in PBMC shift towards a pro-inflammatory phenotype in MCS patients.
Collapse
Affiliation(s)
- Attilio Cannata
- Department of Biomedical Sciences, Dental Sciences and Morpho-functional Imaging, Polyclinic Hospital University, Messina 989125, Italy; (A.C.); (N.F.); (R.I.); (M.C.); (G.A.)
| | - Chiara De Luca
- R & D Regulatory Affairs Department, Medena AG, Affoltern-am-Albis (ZH) CH-8910, Switzerland;
| | - Liudmila G. Korkina
- Centre of Innovative Biotechnological Investigations Nanolab (CIBI-NANOLAB), Moscow 119571, Russia;
| | - Nadia Ferlazzo
- Department of Biomedical Sciences, Dental Sciences and Morpho-functional Imaging, Polyclinic Hospital University, Messina 989125, Italy; (A.C.); (N.F.); (R.I.); (M.C.); (G.A.)
| | - Riccardo Ientile
- Department of Biomedical Sciences, Dental Sciences and Morpho-functional Imaging, Polyclinic Hospital University, Messina 989125, Italy; (A.C.); (N.F.); (R.I.); (M.C.); (G.A.)
| | - Monica Currò
- Department of Biomedical Sciences, Dental Sciences and Morpho-functional Imaging, Polyclinic Hospital University, Messina 989125, Italy; (A.C.); (N.F.); (R.I.); (M.C.); (G.A.)
| | - Giulia Andolina
- Department of Biomedical Sciences, Dental Sciences and Morpho-functional Imaging, Polyclinic Hospital University, Messina 989125, Italy; (A.C.); (N.F.); (R.I.); (M.C.); (G.A.)
| | - Daniela Caccamo
- Department of Biomedical Sciences, Dental Sciences and Morpho-functional Imaging, Polyclinic Hospital University, Messina 989125, Italy; (A.C.); (N.F.); (R.I.); (M.C.); (G.A.)
- Correspondence:
| |
Collapse
|
55
|
Rezaei F, Fatholahi S, Rezaei F. Assessment of salivary antioxidant status and immunoglobulin E in patients with geographic tongue. J Family Med Prim Care 2020; 9:72-76. [PMID: 32110568 PMCID: PMC7014838 DOI: 10.4103/jfmpc.jfmpc_375_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
Objective: One of the possible ways of changing human health might be through the oral mucosa. One of tongue disorders is geographic tongue (GT), which classic manifestation is an area of erythema, with atrophy of filiform papillae of the tongue, surrounded by a serpiginous, white, hyperkeratotic border. Saliva is a rich source of antioxidant and fulfills an important role in maintaining the normal function of the oral cavity. The purpose of the present study was to investigate the status of salivary antioxidant and immunoglobulin E in patients with GT and healthy people. Materials and Methods: In this case-control study, samples were gathered from high school students in three municipal regions of Kermanshah, Iran by using multistage random cluster sampling method. The samples included 30 patients with GT (15 men and 15 women with the mean age of 17.6 ± 0.72) and 30 healthy volunteers (15 men and 15 women with the mean age of 17.1 ± 0.61). Saliva samples were collected through standard method, and total antioxidant capacity (TAC), catalase (CAT), and salivary immunoglobulin E were measured. Results: In patients with GT, unstimulated salivary shows increased level of immunoglobulin compared with that of control group (P = 0.013). However, there was no significant relationship between control and GT patient groups regarding TAC of saliva (P = 0.91) and CAT (P = 0.83). Conclusion: It seems that the activity of CAT enzyme and TAC of saliva does not play primary role in the pathogenesis of GT. However, the level of immunoglobulin E present in saliva can function as an indicator of increased sensitivity in GT.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Oral Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeedeh Fatholahi
- General Dentist, Department of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farzad Rezaei
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
56
|
Hofer S, Geisler S, Lisandrelli R, Nguyen Ngoc H, Ganzera M, Schennach H, Fuchs D, Fuchs JE, M. Gostner J, Kurz K. Pharmacological Targets of Kaempferol Within Inflammatory Pathways-A Hint Towards the Central Role of Tryptophan Metabolism. Antioxidants (Basel) 2020; 9:E180. [PMID: 32098277 PMCID: PMC7070836 DOI: 10.3390/antiox9020180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
The flavonoid kaempferol is almost ubiquitously contained in edible and medicinal plants and exerts a broad range of interesting pharmacological activities. Interactions with central inflammatory processes can be exploited to treat or attenuate symptoms of disorders associated with chronic immune activation during infections, malignancies, and neurodegenerative or cardiovascular disorders. Many drugs, phytochemicals, and nutritional components target the catabolism of the essential amino acid tryptophan by indoleamine 2,3-dioxygenase 1 (IDO-1) for immunomodulation. We studied the effects of kaempferol by in vitro models with human peripheral blood mononuclear cells (PBMC) and THP-1 derived human myelomonocytic cell lines. Kaempferol suppressed interferon-γ dependent immunometabolic pathways: Formation of the oxidative stress biomarker neopterin and catabolism of tryptophan were inhibited dose-dependently in stimulated cells. In-silico docking studies revealed a potential interaction of kaempferol with the catalytic domain of IDO-1. Kaempferol stimulated nuclear factor kappa B (NF-κB) signaling in lipopolysaccharide (LPS)-treated THP-1 cells, thereby increasing the mRNA expression of interleukin (IL) 1 beta, tumor necrosis factor, and nuclear factor kappa B subunit 1, while IL6 was downregulated. Data suggest that concerted effects of kaempferol on multiple immunologically relevant targets are responsible for its immunomodulatory activity. However, the immunosuppressive effects may be more relevant in a T-cell dominated context.
Collapse
Affiliation(s)
- Stefanie Hofer
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria; (S.H.); (R.L.); (J.M.G.)
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80 - 82/IV, 6020 Innsbruck, Austria; (H.N.N.); (M.G.)
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria; (S.G.); (D.F.)
| | - Rebecca Lisandrelli
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria; (S.H.); (R.L.); (J.M.G.)
| | - Hieu Nguyen Ngoc
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80 - 82/IV, 6020 Innsbruck, Austria; (H.N.N.); (M.G.)
| | - Markus Ganzera
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80 - 82/IV, 6020 Innsbruck, Austria; (H.N.N.); (M.G.)
| | - Harald Schennach
- Central Institute of Blood Transfusion and Immunology, University Hospital, Anichstrasse 35, 6020 Innsbruck, Austria;
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria; (S.G.); (D.F.)
| | - Julian E. Fuchs
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria;
| | - Johanna M. Gostner
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria; (S.H.); (R.L.); (J.M.G.)
| | - Katharina Kurz
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
57
|
Secchi C, Orecchioni M, Carta M, Galimi F, Turrini F, Pantaleo A. Signaling Response to Transient Redox Stress in Human Isolated T Cells: Molecular Sensor Role of Syk Kinase and Functional Involvement of IL2 Receptor and L-Selectine. SENSORS 2020; 20:s20020466. [PMID: 31947584 PMCID: PMC7013990 DOI: 10.3390/s20020466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/04/2020] [Accepted: 01/08/2020] [Indexed: 01/04/2023]
Abstract
Reactive oxygen species (ROS) are central effectors of inflammation and play a key role in cell signaling. Previous reports have described an association between oxidative events and the modulation of innate immunity. However, the role of redox signaling in adaptive immunity is still not well understood. This work is based on a novel investigation of diamide, a specific oxidant of sulfhydryl groups, and it is the first performed in purified T cell tyrosine phosphorylation signaling. Our data show that ex vivo T cells respond to –SH group oxidation with a distinctive tyrosine phosphorylation response and that these events elicit specific cellular responses. The expression of two essential T-cell receptors, CD25 and CD62L, and T-cell cytokine release is also affected in a specific way. Experiments with Syk inhibitors indicate a major contribution of this kinase in these phenomena. This pilot work confirms the presence of crosstalk between oxidation of cysteine residues and tyrosine phosphorylation changes, resulting in a series of functional events in freshly isolated T cells. Our experiments show a novel role of Syk inhibitors in applying their anti-inflammatory action through the inhibition of a ROS-generated reaction.
Collapse
Affiliation(s)
- Christian Secchi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy; (M.C.); (F.G.)
- Istituto Nazionale Biostrutture e Biosistemi, University of Sassari, I-07100 Sassari, Italy
- Correspondence: (C.S.); (A.P.); Tel./Fax: +39-079-228-651 (A.P.)
| | - Marco Orecchioni
- La Jolla Institute of Immunology, La Jolla, CA 92093, USA;
- Department of Chemistry and Pharmacy, University of Sassari, I-07100 Sassari, Italy
| | - Marissa Carta
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy; (M.C.); (F.G.)
| | - Francesco Galimi
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy; (M.C.); (F.G.)
- Istituto Nazionale Biostrutture e Biosistemi, University of Sassari, I-07100 Sassari, Italy
| | | | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy; (M.C.); (F.G.)
- Correspondence: (C.S.); (A.P.); Tel./Fax: +39-079-228-651 (A.P.)
| |
Collapse
|
58
|
Neopterin is Associated with Disease Severity and Outcome in Patients with Non-Ischaemic Heart Failure. J Clin Med 2019; 8:jcm8122230. [PMID: 31861167 PMCID: PMC6947372 DOI: 10.3390/jcm8122230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
Inflammation and immune activation play an important role in the pathogenesis of cardiac remodelling in patients with heart failure. The aim of this study was to assess whether biomarkers of inflammation and immune activation are linked to disease severity and the prognosis of heart failure patients. In 149 patients (65.8% men, median age 49.7 years) with heart failure from nonischaemic cardiomyopathy, the biomarkers neopterin and C-reactive protein were tested at the time of diagnosis. Patients were followed-up for a median of 58 months. During follow-up, nineteen patients died, five had a heart transplantation, two needed a ventricular assistance device, and twenty-one patients had to be hospitalised because of heart failure decompensation. Neopterin concentrations correlated with N-terminal prohormone of brain natriuretic peptide (NT-proBNP) concentrations (rs = 0.399, p < 0.001) and rose with higher New York Heart Association (NYHA) class (I: 5.60 nmol/L, II: 6.90 nmol/L, III/IV: 7.80 nmol/L, p = 0.033). Higher neopterin levels were predictive for an adverse outcome (death or hospitalisation due to HF decompensation), independently of age and sex and of established predictors in heart failure such as NYHA class, NT-proBNP, estimated glomerular filtration rate (eGFR), and left ventricular ejection fraction (LV-EF) (HR 2.770; 95% CI 1.419-5.407; p = 0.003). Patients with a neopterin/eGFR ratio ≥ 0.133 (as a combined marker for immune activation and kidney function) had a more than eightfold increased risk of reaching an endpoint compared to patients with a neopterin/eGFR ratio ≤0.065 (HR 8.380; 95% CI 2.889-24.308; p < 0.001). Neopterin is associated with disease severity and is an independent predictor of prognosis in patients with heart failure.
Collapse
|
59
|
Menale C, Robinson LJ, Palagano E, Rigoni R, Erreni M, Almarza AJ, Strina D, Mantero S, Lizier M, Forlino A, Besio R, Monari M, Vezzoni P, Cassani B, Blair HC, Villa A, Sobacchi C. Absence of Dipeptidyl Peptidase 3 Increases Oxidative Stress and Causes Bone Loss. J Bone Miner Res 2019; 34:2133-2148. [PMID: 31295380 PMCID: PMC7203631 DOI: 10.1002/jbmr.3829] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/26/2019] [Accepted: 07/06/2019] [Indexed: 12/29/2022]
Abstract
Controlling oxidative stress through the activation of antioxidant pathways is crucial in bone homeostasis, and impairments of the cellular defense systems involved contribute to the pathogenesis of common skeletal diseases. In this work we focused on the dipeptidyl peptidase 3 (DPP3), a poorly investigated ubiquitous zinc-dependent exopeptidase activating the Keap1-Nrf2 antioxidant pathway. We showed Dpp3 expression in bone and, to understand its role in this compartment, we generated a Dpp3 knockout (KO) mouse model and specifically investigated the skeletal phenotype. Adult Dpp3 KO mice showed a mild growth defect, a significant increase in bone marrow cellularity, and bone loss mainly caused by increased osteoclast activity. Overall, in the mouse model, lack of DPP3 resulted in sustained oxidative stress and in alterations of bone microenvironment favoring the osteoclast compared to the osteoblast lineage. Accordingly, in vitro studies revealed that Dpp3 KO osteoclasts had an inherent increased resorptive activity and ROS production, which on the other hand made them prone to apoptosis. Moreover, absence of DPP3 augmented bone loss after estrogen withdrawal in female mice, further supporting its relevance in the framework of bone pathophysiology. Overall, we show a nonredundant role for DPP3 in the maintenance of bone homeostasis and propose that DPP3 might represent a possible new osteoimmunological player and a marker of human bone loss pathology. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ciro Menale
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Lisa J Robinson
- Department of Pathology, West Virginia University, Morgantown, WV, USA
| | - Eleonora Palagano
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Rosita Rigoni
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Marco Erreni
- Unit of Advanced Optical Microscopy, Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Alejandro J Almarza
- Department of Oral Biology, Department of Bioengineering, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dario Strina
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Stefano Mantero
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Michela Lizier
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Marta Monari
- Clinical Investigation Laboratory, Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Paolo Vezzoni
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Barbara Cassani
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Harry C Blair
- Veterans' Affairs Medical Center and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Villa
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Cristina Sobacchi
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy.,Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| |
Collapse
|
60
|
The Role of ALDH2 in Sepsis and the To-Be-Discovered Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:175-194. [PMID: 31368104 DOI: 10.1007/978-981-13-6260-6_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis, defined as life-threatening tissue damage and organ dysfunction caused by a dysregulated host response to infection, is a critical disease which imposes global health burden. Sepsis-induced organ dysfunction, including circulatory and cardiac dysfunction, hepatic dysfunction, renal dysfunction, etc., contributes to high mortality and long-term disability of sepsis patients. Altered inflammatory response, ROS and reactive aldehyde stress, mitochondrial dysfunction, and programmed cell death pathways (necrosis, apoptosis, and autophagy) have been demonstrated to play crucial roles in septic organ dysfunction. Unfortunately, except for infection control and supportive therapies, no specific therapy exists for sepsis. New specific therapeutic targets are highly warranted. Emerging studies suggested a role of potential therapeutic target of ALDH2, a tetrameric enzyme located in mitochondria to detoxify aldehydes, in septic organ dysfunction. In this article, we will review the presentations and pathophysiology of septic organ dysfunction, as well as summarize and discuss the recent insights regarding ALDH2 in sepsis.
Collapse
|
61
|
Nakamoto A, Mitani M, Urayama K, Maki A, Nakamoto M, Shuto E, Nii Y, Sakai T. Nobiletin Enhances Induction of Antigen-Specific Immune Responses in BALB/c Mice Immunized with Ovalbumin. J Nutr Sci Vitaminol (Tokyo) 2019; 65:278-282. [PMID: 31257269 DOI: 10.3177/jnsv.65.278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We examined the effect of nobiletin (5,6,7,8,3',4'-hexamethoxyflavone) on immune response in ovalbumin (OVA)-immunized mice. Treatment with nobiletin increased OVA-specific IL-4 and IL-10 production. In addition, mice that received nobiletin showed higher levels of OVA-specific IgE, IgG and IgG1 production than did control mice. The antibody response to the thymus-independent antigen 2,4,6-trinitrophenyl-Ficoll was not different in the control and nobiletin groups, suggesting that nobiletin does not directly stimulate antibody production. An in vitro study showed that treatment with nobiletin enhanced the ability of antigen presentation of bone marrow-derived dendritic cells. The in vivo and in vitro results indicate that nobiletin regulates immune function.
Collapse
Affiliation(s)
- Akiko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Mami Mitani
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Kana Urayama
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Akari Maki
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Mariko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Emi Shuto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Yoshitaka Nii
- Food and Biotechnology Division, Tokushima Prefectural Industrial Technology Center
| | - Tohru Sakai
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
62
|
Lira DGD, Oliveira DCD, Brayner FA, Aires ADL, Albuquerque MCPA, Vieira LD, Castro CMMBD, Paixão AD. Superimposing a high-fat diet on Schistosoma mansoni infection affects renin-angiotensin system components in the mouse kidney. Rev Soc Bras Med Trop 2019; 52:e20180371. [PMID: 30843967 DOI: 10.1590/0037-8682-0371-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/25/2019] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The levels of the full-length form of the (pro)renin receptor (PRR), a component of the renin-angiotensin system (RAS), may be reduced in the membranes of kidneys in renal diseases. This study aimed to investigate the RAS components in the kidneys of mice submitted to a combination of a high-fat diet and Schistosoma mansoni infection. METHODS Female BALB/c mice were maintained on a control or high-fat diet from 3 weeks of age. After 10 weeks on the designated diets, half the mice in each group were infected with S. mansoni cercariae. The blood and kidneys were harvested 8 weeks after infection. RESULTS The high-fat diet increased the number of eggs in the feces and the number of adult worms in the mesenteric bed. Schistosoma mansoni infection reduced the plasma levels of glucose, triglycerides, and HDL cholesterol in the control and high-fat diet groups. In mice on the control diet, S. mansoni infection resulted in increased expression of IL-6 in the kidneys; however, in mice on the high-fat diet, the levels of IL-6 were reduced and those of superoxide anions were increased. The RAS components evaluated were ACE2, renin, PRR, AT1R, and AT2R, and the levels of PRR were found to be reduced in the kidneys of infected mice on the high-fat diet. CONCLUSIONS The finding regarding PRR is not yet clear. However, combining a high-fat diet and S. mansoni infection resulted in increased oxidative stress in the kidney that can aggravate hypertension as well as its associated complications.
Collapse
Affiliation(s)
- Danielle Guedes Dantas Lira
- Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | | | - Fábio André Brayner
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Centro de Pesquisas Aggeu Magalhães, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - André de Lima Aires
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Mônica Camelo Pessoa A Albuquerque
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Leucio Duarte Vieira
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Célia Maria Machado Barbosa de Castro
- Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, PE, Brasil.,Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Ana Durce Paixão
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, PE, Brasil
| |
Collapse
|
63
|
Clinical Significance of Increased Serum Neopterin in Chronic Kidney Failure as a Biomarker of Cell-mediated Immunity. J Med Biochem 2019; 38:1-5. [PMID: 30820177 PMCID: PMC6298458 DOI: 10.2478/jomb-2018-0019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/28/2018] [Indexed: 12/25/2022] Open
Abstract
Background Neopterin is a pyrazino-pyrimidine compound which is used as a marker of cell-mediated immunity in a variety of diseases. It is known that neopterin levels increase in diseases where interferon-gamma (IFN-g) stimulation is present, and also as a result of deficiencies in renal function, given that the primary means of elimination of neopterin is through the kidneys. In this study, we aimed to investigate the role of increased neopterin levels as a prognostic biomarker in patients with impaired renal function. Methods A total of 90 individuals including 63 patients with chronic kidney failure (CKF) and 27 healthy volunteers were included in the study. Serum neopterin concentrations were measured using the enzyme-linked immunosorbent assay. A Mann-Whitney U test and a Pearson Correlation Test were used in the statistical analysis, with a p value of <0.05 being considered statistically significant. Results The mean age was 52.21±0.16 years in the patient group and 56.55±0.32 years in the control group. In the CKF patients, serum neopterin levels increased to a significantly greater degree than in the control group (p<0.001), while no statistically significant correlation was identified between serum neopterin levels and age (p>0.05). Conclusions A significant increase was found in the serum neopterin levels in the CKF patients, due to both the triggering of the disease and the reduction of neopterin elimination.
Collapse
|
64
|
Paiola M, Moreira C, Duflot A, Knigge T, Monsinjon T. Oestrogen differentially modulates lymphoid and myeloid cells of the European sea bass in vitro by specifically regulating their redox biology. FISH & SHELLFISH IMMUNOLOGY 2019; 86:713-723. [PMID: 30513382 DOI: 10.1016/j.fsi.2018.11.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 05/02/2023]
Abstract
Besides their obvious role in sex determination and reproduction, oestrogens display a prominent and complex immunomodulatory role across all vertebrates. To date, our knowledge on the oestrogenic immunomodulation in non-mammalian species is, however, scarce. In both teleosts and mammals, the direct immunomodulatory function of oestrogen is underscored by the presence of multiple oestrogen receptor subtypes in the various immune cells. For a better understanding of the regulatory processes, we investigated the oestrogen receptor expression in two major lymphoid organs of European sea bass: the head-kidney and the spleen. All oestrogen receptor subtypes, including nuclear and membrane oestrogen receptors, were present in both immune organs as well as in the isolated leucocytes. The same findings have been previously made for the thymus. To determine the oestrogen responsiveness of the different immune cell populations and to evaluate the importance of non-genomic and genomic pathways, we assessed the kinetics and the concentration dependent effects of 17β-oestradiol on isolated leucocytes from the head-kidney, the spleen and the thymus in vitro. Given the importance of reactive oxygen species as signalling and defence components in mammalian immune cells, the oxidative burst capacity, the redox status and the viability of both lymphoid and myeloid cells were measured by flow cytometry. The treatment with 17β-oestradiol specifically modulated these parameters depending on (1) the time kinetic, (2) the concentration of 17β-oestradiol, (3) the immune cell population (lymphoid and myeloid cells) as well as (4) the lymphoid organs from which they originated. The observed in vitro oestrogenic effects as well the presence of various oestrogen receptor subtypes in the immune cells of sea bass suggest a complex and direct oestrogenic action via multiple interconnected oestrogen-signalling pathways. Additionally, our study suggests that the oestrogenic regulation of the sea bass immune function involves a direct and tissue specific modulation of the immune cell redox biology comprising redox signalling, NADPH-oxidase activity and H2O2-permeability, thus changing oxidative burst capacity and immature T cell fate because oestrogen impacted thymocyte viability. Importantly, immune cells from both primary and secondary lymphoid organs have shown specific in vitro oestrogen-responsiveness. As established in mammals, oestrogen is likely to be specifically and directly involved in immature T cell differentiation and mature immunocompetent cell function in sea bass too.
Collapse
Affiliation(s)
- Matthieu Paiola
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France
| | - Catarina Moreira
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France
| | - Aurélie Duflot
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France
| | - Thomas Knigge
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France
| | - Tiphaine Monsinjon
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France.
| |
Collapse
|
65
|
Lycopene mitigates pulmonary emphysema induced by cigarette smoke in a murine model. J Nutr Biochem 2019; 65:93-100. [DOI: 10.1016/j.jnutbio.2018.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 10/09/2018] [Accepted: 12/15/2018] [Indexed: 12/20/2022]
|
66
|
Perturbation in cellular redox homeostasis: Decisive regulator of T cell mediated immune responses. Int Immunopharmacol 2019; 67:449-457. [DOI: 10.1016/j.intimp.2018.12.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022]
|
67
|
Oxidative Stress and Nutraceuticals in the Modulation of the Immune Function: Current Knowledge in Animals of Veterinary Interest. Antioxidants (Basel) 2019; 8:antiox8010028. [PMID: 30669304 PMCID: PMC6356544 DOI: 10.3390/antiox8010028] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
In the veterinary sector, many papers deal with the relationships between inflammation and oxidative stress. However, few studies investigate the mechanisms of action of oxidised molecules in the regulation of immune cells. Thus, authors often assume that these events, sometime leading to oxidative stress, are conserved among species. The aim of this review is to draw the state-of-the-art of the current knowledge about the role of oxidised molecules and dietary antioxidant compounds in the regulation of the immune cell functions and suggest some perspectives for future investigations in animals of veterinary interest.
Collapse
|
68
|
Ghazalee NS, Jantan I, Arshad L, Haque MA. Immunosuppressive effects of the standardized extract of Zingiber zerumbet on innate immune responses in Wistar rats. Phytother Res 2019; 33:929-938. [PMID: 30618097 DOI: 10.1002/ptr.6285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 11/09/2022]
Abstract
Zingiber zerumbet rhizome has been used in traditional medicine mainly for the treatment of various immune-inflammatory related ailments and has been shown to exhibit a wide spectrum of biological effects especially antioxidant and anti-inflammatory activities. The present study was aimed to investigate the immunosuppressive effects of the standardized 80% ethanol extract of Z. zerumbet at 100, 200, and 400 mg/kg on the innate immune responses in male Wistar rats. The immune parameters determined were chemotaxis of neutrophils, Mac-1 expression, engulfment of Escherichia coli by neutrophils, reactive oxygen species production, and plasma lysozyme and ceruloplasmin levels. Zerumbone was qualitatively and quantitatively determined in the extract by using a validated reversed-phase HPLC, whereas liquid chromatography tandem-mass spectrometry (LC -MS/MS) was used to profile the secondary metabolites. Z. zerumbet significantly inhibited the migration of neutrophils, expressions of CD11b/CD18 integrin, phagocytic activity, and production of reactive oxygen species in a dose-dependent manner. The extract also dose-dependently inhibited the expressions of lysozyme and ceruloplasmin in the rat plasma. Z. zerumbet extract possessed strong inhibitory effects on the innate immune responses and has potential to be developed into an effective immunosuppressive agent.
Collapse
Affiliation(s)
- Nor Shazliana Ghazalee
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Subang Jaya, Malaysia
| | - Laiba Arshad
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Md Areeful Haque
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
69
|
Sulforaphane as anticancer agent: A double-edged sword? Tricky balance between effects on tumor cells and immune cells. Adv Biol Regul 2018; 71:79-87. [PMID: 30528536 DOI: 10.1016/j.jbior.2018.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022]
Abstract
Sulforaphane (SFN) is a naturally occurring isothiocyanate derived from cruciferous vegetables such as broccoli. It has been reported to inhibit the growth of a variety of cancers, such as breast, prostate, colon, skin, lung, gastric or bladder cancer. SFN is supposed to act primarily as an antioxidant due to the activation of the Nrf2-Keap1 signaling pathway. This enhances the activity of phase II detoxifying enzymes and the trapping of free radicals. Finally, SFN induces cell cycle arrest or apoptosis of tumor cells. Here, we discuss effects of SFN on the immune defense system. In contrast to the situation in tumor cells, SFN acts pro-oxidatively in primary human T cells. It increases intracellular ROS levels and decreases GSH, resulting in inhibition of T cell activation and T cell effector functions. Regarding the use of SFN as an "anticancer agent" we conclude that SFN could act as a double-edged sword. On the one hand it reduces carcinogenesis, on the other hand it blocks the T cell-mediated immune response, the latter being important for immune surveillance of tumors. Thus, SFN could also interfere with the successful application of immunotherapy by immune checkpoint inhibitors (e.g. CTLA-4 antibodies and PD-1/PD-L1 antibodies) or CAR T cells. Therefore, a combination of SFN with T cell-mediated cancer immunotherapies does not seem advisable.
Collapse
|
70
|
Ogrenim G, Cesur MG, Onal T, Kara M, Sirin FB, Yalcin GD, Inan S. Influence of omega-3 fatty acid on orthodontic tooth movement in rats: A biochemical, histological, immunohistochemical and gene expression study. Orthod Craniofac Res 2018; 22:24-31. [PMID: 30447132 DOI: 10.1111/ocr.12253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of omega-3 fatty acids on orthodontic tooth movement. SETTING AND SAMPLE POPULATION For this study, 56 12-week-old adult male Wistar albino rats from the Animal Laboratory at Adnan Menderes University, Faculty of Medicine, were used. MATERIAL AND METHODS Rats were randomly divided into seven groups (n = 8 each): control group (without any treatment), tooth movement groups (three groups of animals with only tooth movement) and omega groups (three groups of animals with tooth movement and omega-3 administration). Omega-3 fatty acids were administered to the rats systemically during the tooth movement period. On the 3rd, 7th and 14th days after the orthodontic tooth movement, the rats were sacrificed and biochemical, histological, immunohistochemical andgene expression examinations were performed. RESULTS On the 14th experimental day, the amount of tooth movement in the omega groups was significantly lower than the tooth movement groups (P = 0.012). Biochemical experimentsshowed that the omega groups had significantly lower total oxidant levels and higher total antioxidant levels compared to the tooth movement group on the 14th experimental day (P = 0.001). The levels of RANKL, IL-6 and IL-1β in the omega groups were significantly lower than the tooth movement groups on all experimental days (P < 0.05). CONCLUSION Systemic administration of omega-3 fatty acids showed antioxidant and antiinflammatory effects and decelerate the orthodontic tooth movement.
Collapse
Affiliation(s)
- Gozde Ogrenim
- Department of Orthodontics, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mine G Cesur
- Department of Orthodontics, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Tuna Onal
- Department of Histology and Embryology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Murat Kara
- Department of Medical Genetics, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Fevziye B Sirin
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Gizem D Yalcin
- Department of Medical Biology, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Sevinc Inan
- Department of Histology and Embryology, Faculty of Medicine, Izmır Ekonomi University, Izmir, Turkey
| |
Collapse
|
71
|
Liang J, Jahraus B, Balta E, Ziegler JD, Hübner K, Blank N, Niesler B, Wabnitz GH, Samstag Y. Sulforaphane Inhibits Inflammatory Responses of Primary Human T-Cells by Increasing ROS and Depleting Glutathione. Front Immunol 2018; 9:2584. [PMID: 30487791 PMCID: PMC6246742 DOI: 10.3389/fimmu.2018.02584] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/19/2018] [Indexed: 11/20/2022] Open
Abstract
The activity and function of T-cells are influenced by the intra- and extracellular redox milieu. Oxidative stress induces hypo responsiveness of untransformed T-cells. Vice versa increased glutathione (GSH) levels or decreased levels of reactive oxygen species (ROS) prime T-cell metabolism for inflammation, e.g., in rheumatoid arthritis. Therefore, balancing the T-cell redox milieu may represent a promising new option for therapeutic immune modulation. Here we show that sulforaphane (SFN), a compound derived from plants of the Brassicaceae family, e.g., broccoli, induces a pro-oxidative state in untransformed human T-cells of healthy donors or RA patients. This manifested as an increase of intracellular ROS and a marked decrease of GSH. Consistently, increased global cysteine sulfenylation was detected. Importantly, a major target for SFN-mediated protein oxidation was STAT3, a transcription factor involved in the regulation of TH17-related genes. Accordingly, SFN significantly inhibited the activation of untransformed human T-cells derived from healthy donors or RA patients, and downregulated the expression of the transcription factor RORγt, and the TH17-related cytokines IL-17A, IL-17F, and IL-22, which play a major role within the pathophysiology of many chronic inflammatory/autoimmune diseases. The inhibitory effects of SFN could be abolished by exogenously supplied GSH and by the GSH replenishing antioxidant N-acetylcysteine (NAC). Together, our study provides mechanistic insights into the mode of action of the natural substance SFN. It specifically exerts TH17 prone immunosuppressive effects on untransformed human T-cells by decreasing GSH and accumulation of ROS. Thus, SFN may offer novel clinical options for the treatment of TH17 related chronic inflammatory/autoimmune diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Jie Liang
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Beate Jahraus
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Emre Balta
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Jacqueline D. Ziegler
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Katrin Hübner
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Norbert Blank
- Division of Rheumatology, Department of Internal Medicine V, Heidelberg University, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Guido H. Wabnitz
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
72
|
α-Tocopherol Ameliorates Redox Equilibrium and Reduces Inflammatory Response Caused by Chronic Variable Stress. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7210783. [PMID: 30533439 PMCID: PMC6250045 DOI: 10.1155/2018/7210783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/20/2018] [Accepted: 10/28/2018] [Indexed: 12/14/2022]
Abstract
Chronic exposure to stress factors contributes to the development of depression by generating excess of reactive oxygen species which leads to oxidative stress and inflammatory processes. The aim of the study was to assess the potential protective properties of α-tocopherol supplementation on the rats exposed to chronic variable stress (CVS). Male Wistar rats (50-55 days old, weighing 200-250 g) were divided into three groups (n=10): control, stressed, and stressed and receiving (+)-α-tocopherol solution in a dose of 100 mg/kg/day. Rats in the stressed groups were exposed to CVS for 40 days. Markers of redox disorders (glutathione reduced and oxidized levels, GSH/GSSG ratio, glutathione peroxidase, glutathione reductase activities, total antioxidant status, and lipid peroxidation) and inflammatory response (IL-1β, IL6, and TNF-α) were determined in the blood. Additionally, molecular biomarkers of depression (expression of Fkbp5 and Tph2) were studied in hippocampus. The biochemical analysis was inconclusive about the presence of oxidative stress in the blood of rats exposed to CVS. However, changes in all parameters suggest presence of redox equilibrium disorders. Similarly, activation of inflammatory processes was observed as a result of CVS. Molecular effects of environmental stress in hippocampus were also observed. Generally, α-tocopherol ameliorated redox equilibrium disorders, tempered inflammatory response, and protected from changes in determined molecular markers of depression.
Collapse
|
73
|
Bozem M, Knapp P, Mirčeski V, Slowik EJ, Bogeski I, Kappl R, Heinemann C, Hoth M. Electrochemical Quantification of Extracellular Local H 2O 2 Kinetics Originating from Single Cells. Antioxid Redox Signal 2018; 29:501-517. [PMID: 28314376 PMCID: PMC6056260 DOI: 10.1089/ars.2016.6840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIMS H2O2 is produced by all eukaryotic cells under physiological and pathological conditions. Due to its enormous relevance for cell signaling at low concentrations and antipathogenic function at high concentrations, precise quantification of extracellular local hydrogen peroxide concentrations ([H2O2]) originating from single cells is required. RESULTS Using a scanning electrochemical microscope and bare platinum disk ultramicroelectrodes, we established sensitive long-term measurements of extracellular [H2O2] kinetics originating from single primary human monocytes (MCs) ex vivo. For the electrochemical techniques square wave voltammetry, cyclic and linear scan voltammetry, and chronoamperometry, detection limits for [H2O2] were determined to be 5, 50, and 500 nM, respectively. Following phorbol ester stimulation, local [H2O2] 5-8 μm above a single MC increased by 3.4 nM/s within the first 10 min before reaching a plateau. After extracellular addition of H2O2 to an unstimulated MC, the local [H2O2] decreased on average by 4.2 nM/s due to degradation processes of the cell. Using the scanning mode of the setup, we found that H2O2 is evenly distributed around the producing cell and can still be detected up to 30 μm away from the cell. The electrochemical single-cell measurements were validated in MC populations using electron spin resonance spectroscopy and the Amplex® UltraRed assay. Innovation and Conclusion: We demonstrate a highly sensitive, spatially, and temporally resolved electrochemical approach to monitor dynamics of production and degradation processes for H2O2 separately. Local extracellular [H2O2] kinetics originating from single cells is quantified in real time. Antioxid. Redox Signal. 29, 501-517.
Collapse
Affiliation(s)
- Monika Bozem
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | - Phillip Knapp
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | - Valentin Mirčeski
- 2 Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss Kiril i Metodij University , Skopje, Macedonia
| | - Ewa J Slowik
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | - Ivan Bogeski
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany .,3 Cardiovascular Physiology, University Medical Center, University of Göttingen , Göttingen, Germany
| | - Reinhard Kappl
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | | | - Markus Hoth
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| |
Collapse
|
74
|
Schaefer K, Webb NE, Pang M, Hernandez-Davies JE, Lee KP, Gonzalez P, Douglass MV, Lee B, Baum LG. Galectin-9 binds to O-glycans on protein disulfide isomerase. Glycobiology 2018; 27:878-887. [PMID: 28810662 DOI: 10.1093/glycob/cwx065] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
Changes in the T cell surface redox environment regulate critical cell functions, such as cell migration, viral entry and cytokine production. Cell surface protein disulfide isomerase (PDI) contributes to the regulation of T cell surface redox status. Cell surface PDI can be released into the extracellular milieu or can be internalized by T cells. We have found that galectin-9, a soluble lectin expressed by T cells, endothelial cells and dendritic cells, binds to and retains PDI on the cell surface. While endogenous galectin-9 is not required for basal cell surface PDI expression, exogenous galectin-9 mediated retention of cell surface PDI shifted the disulfide/thiol equilibrium on the T cell surface. O-glycans on PDI are required for galectin-9 binding, and PDI recognition appears to be specific for galectin-9, as galectin-1 and galectin-3 do not bind PDI. Galectin-9 is widely expressed by immune and endothelial cells in inflamed tissues, suggesting that T cells would be exposed to abundant galectin-9, in cis and in trans, in infectious or autoimmune conditions.
Collapse
Affiliation(s)
| | - Nicholas E Webb
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Mabel Pang
- Department of Pathology and Laboratory Medicine
| | | | | | | | | | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, USA
| | | |
Collapse
|
75
|
Dimitrova E, Caromile LA, Laubenbacher R, Shapiro LH. The innate immune response to ischemic injury: a multiscale modeling perspective. BMC SYSTEMS BIOLOGY 2018; 12:50. [PMID: 29631571 PMCID: PMC5891907 DOI: 10.1186/s12918-018-0580-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022]
Abstract
Background Cell death as a result of ischemic injury triggers powerful mechanisms regulated by germline-encoded Pattern Recognition Receptors (PRRs) with shared specificity that recognize invading pathogens and endogenous ligands released from dying cells, and as such are essential to human health. Alternatively, dysregulation of these mechanisms contributes to extreme inflammation, deleterious tissue damage and impaired healing in various diseases. The Toll-like receptors (TLRs) are a prototypical family of PRRs that may be powerful anti-inflammatory targets if agents can be designed that antagonize their harmful effects while preserving host defense functions. This requires an understanding of the complex interactions and consequences of targeting the TLR-mediated pathways as well as technologies to analyze and interpret these, which will then allow the simulation of perturbations targeting specific pathway components, predict potential outcomes and identify safe and effective therapeutic targets. Results We constructed a multiscale mathematical model that spans the tissue and intracellular scales, and captures the consequences of targeting various regulatory components of injury-induced TLR4 signal transduction on potential pro-inflammatory or pro-healing outcomes. We applied known interactions to simulate how inactivation of specific regulatory nodes affects dynamics in the context of injury and to predict phenotypes of potential therapeutic interventions. We propose rules to link model behavior to qualitative estimates of pro-inflammatory signal activation, macrophage infiltration, production of reactive oxygen species and resolution. We tested the validity of the model by assessing its ability to reproduce published data not used in its construction. Conclusions These studies will enable us to form a conceptual framework focusing on TLR4-mediated ischemic repair to assess potential molecular targets that can be utilized therapeutically to improve efficacy and safety in treating ischemic/inflammatory injury.
Collapse
Affiliation(s)
- Elena Dimitrova
- Department of Mathematical Sciences, Clemson University, Clemson, SC, USA
| | - Leslie A Caromile
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, 06030, CT, USA
| | - Reinhard Laubenbacher
- Center for Quantitative Medicine, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA. .,Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Linda H Shapiro
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, 06030, CT, USA.
| |
Collapse
|
76
|
McMurtrey JJ, Tso MOM. A review of the immunologic findings observed in retinitis pigmentosa. Surv Ophthalmol 2018; 63:769-781. [PMID: 29551596 DOI: 10.1016/j.survophthal.2018.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
Most patients suffering from retinitis pigmentosa (RP) inherit the disorder; however, the immune-pathologic features associated with this disease have yet to be extensively studied. Six reports correlate antiretinal immune activity with vision deterioration in RP patients. Some of these patients have sporadic RP that occurs in excess of expected gene segregation during inheritance. The hypothesis that a primary immune-mediated disease process occurs in this sporadic group is supported by significant associations of RP with autoimmune endocrinopathies and other immune-related conditions or factors; however, no immunologic difference regarding RP family history is reported in the peripheral blood studies of RP patients. Twenty-one percent to 51% of RP patients display antiretinal antibodies, whereas 19-58% have antiretinal lymphocyte reactivity to retinal extract, and 60-85% have activated T cells. Mutations in animal models of RP have been shown to cause endoplasmic reticulum stress that may initiate immunopathology for genetic RP, but oxidative stress also encourages immune cytotoxicity. In addition, necrotic cell death is evident, which promotes inflammatory conditions. We review mechanisms and evidence for an occult inflammation in genetic RP and examine reports of efficacy in retarding RP progression with anti-inflammatory agents in clinical trials.
Collapse
Affiliation(s)
- John J McMurtrey
- The Wilmer Ophthalmological Institute, The Johns Hopkins University and Hospital, Baltimore, Maryland, USA.
| | - Mark O M Tso
- The Wilmer Ophthalmological Institute, The Johns Hopkins University and Hospital, Baltimore, Maryland, USA
| |
Collapse
|
77
|
Bekeschus S, Lackmann JW, Gümbel D, Napp M, Schmidt A, Wende K. A Neutrophil Proteomic Signature in Surgical Trauma Wounds. Int J Mol Sci 2018. [PMID: 29518953 PMCID: PMC5877622 DOI: 10.3390/ijms19030761] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Non-healing wounds continue to be a clinical challenge for patients and medical staff. These wounds have a heterogeneous etiology, including diabetes and surgical trauma wounds. It is therefore important to decipher molecular signatures that reflect the macroscopic process of wound healing. To this end, we collected wound sponge dressings routinely used in vacuum assisted therapy after surgical trauma to generate wound-derived protein profiles via global mass spectrometry. We confidently identified 311 proteins in exudates. Among them were expected targets belonging to the immunoglobulin superfamily, complement, and skin-derived proteins, such as keratins. Next to several S100 proteins, chaperones, heat shock proteins, and immune modulators, the exudates presented a number of redox proteins as well as a discrete neutrophil proteomic signature, including for example cathepsin G, elastase, myeloperoxidase, CD66c, and lipocalin 2. We mapped over 200 post-translational modifications (PTMs; cysteine/methionine oxidation, tyrosine nitration, cysteine trioxidation) to the proteomic profile, for example, in peroxiredoxin 1. Investigating manually collected exudates, we confirmed presence of neutrophils and their products, such as microparticles and fragments containing myeloperoxidase and DNA. These data confirmed known and identified less known wound proteins and their PTMs, which may serve as resource for future studies on human wound healing.
Collapse
Affiliation(s)
- Sander Bekeschus
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Jan-Wilm Lackmann
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Denis Gümbel
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, Greifswald University, Medical Center Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany.
| | - Matthias Napp
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, Greifswald University, Medical Center Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany.
| | - Anke Schmidt
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Kristian Wende
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| |
Collapse
|
78
|
Immunomodulatory Effects of Diterpene Quinone Derivatives from the Roots of Horminum pyrenaicum in Human PBMC. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2980295. [PMID: 29576845 PMCID: PMC5821946 DOI: 10.1155/2018/2980295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/19/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022]
Abstract
Several phytochemicals were shown to interfere with redox biology in the human system. Moreover, redox biochemistry is crucially involved in the orchestration of immunological cascades. When screening for immunomodulatory compounds, the two interferon gamma- (IFN-γ-) dependent immunometabolic pathways of tryptophan breakdown via indoleamine 2,3-dioxygenase-1 (IDO-1) and neopterin formation by GTP-cyclohydrolase 1 (GTP-CH-I) represent prominent targets, as IFN-γ-related signaling is strongly sensitive to oxidative triggers. Herein, the analysis of these pathway activities in human peripheral mononuclear cells was successfully applied in a bioactivity-guided fractionation strategy to screen for anti-inflammatory substances contained in the root of Horminum (H.) pyrenaicum L. (syn. Dragon's mouth), the only representative of the monophyletic genus Horminum. Four abietane diterpene quinone derivatives (horminone, 7-O-acetylhorminone, inuroyleanol and its 15,16-dehydro-derivative, a novel natural product), two nor-abietane diterpene quinones (agastaquinone and 3-deoxyagastaquinone) and two abeo 18 (4 → 3) abietane diterpene quinones (agastol and its 15,16-dehydro-derivative) could be identified. These compounds were able to dose-dependently suppress the above mentioned pathways with different potency. Beside the description of new active compounds, this study demonstrates the feasibility of integrating IDO-1 and GTP-CH-I activity in the search for novel anti-inflammatory compounds, which can then be directed towards a more detailed mode of action analysis.
Collapse
|
79
|
Jourdan T, Nicoloro SM, Zhou Z, Shen Y, Liu J, Coffey NJ, Cinar R, Godlewski G, Gao B, Aouadi M, Czech MP, Kunos G. Decreasing CB 1 receptor signaling in Kupffer cells improves insulin sensitivity in obese mice. Mol Metab 2017; 6:1517-1528. [PMID: 29107297 PMCID: PMC5681272 DOI: 10.1016/j.molmet.2017.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022] Open
Abstract
Objective Obesity-induced accumulation of ectopic fat in the liver is thought to contribute to the development of insulin resistance, and increased activity of hepatic CB1R has been shown to promote both processes. However, lipid accumulation in liver can be experimentally dissociated from insulin resistance under certain conditions, suggesting the involvement of additional mechanisms. Obesity is also associated with pro-inflammatory changes which, in turn, can promote insulin resistance. Kupffer cells (KCs), the liver's resident macrophages, are the major source of pro-inflammatory cytokines in the liver, such as TNF-α, which has been shown to inhibit insulin signaling in multiple cell types, including hepatocytes. Here, we sought to identify the role of CB1R in KCs in obesity-induced hepatic insulin resistance. Methods We used intravenously administered β-D-glucan-encapsulated siRNA to knock-down CB1R gene expression selectively in KCs. Results We demonstrate that a robust knock-down of the expression of Cnr1, the gene encoding CB1R, results in improved glucose tolerance and insulin sensitivity in diet-induced obese mice, without affecting hepatic lipid content or body weight. Moreover, Cnr1 knock-down in KCs was associated with a shift from pro-inflammatory M1 to anti-inflammatory M2 cytokine profile and improved insulin signaling as reflected by increased insulin-induced Akt phosphorylation. Conclusion These findings suggest that CB1R expressed in KCs plays a critical role in obesity-related hepatic insulin resistance via a pro-inflammatory mechanism. CB1R signaling promotes hepatic insulin resistance by promoting hepatic steatosis and hepatic inflammation. CB1R knock-down in liver macrophages (Kupffer cells, KCs) improves global insulin resistance and glucose homeostasis. CB1R expressed in KCs play a critical role in hepatic insulin resistance independent of ectopic fat in the liver or adipose tissue inflammation.
Collapse
Affiliation(s)
- Tony Jourdan
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD 20852, USA.
| | - Sarah M Nicoloro
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Yuefei Shen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jie Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Nathan J Coffey
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Myriam Aouadi
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD 20852, USA.
| |
Collapse
|
80
|
Nonaka Y, Izumo T, Maekawa T, Shibata H. Anti-stress effect of the Lactobacillus pentosus strain S-PT84 in mice. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2017; 36:121-128. [PMID: 28748133 PMCID: PMC5510157 DOI: 10.12938/bmfh.17-003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022]
Abstract
We investigated if the orally administered Lactobacillus pentosus strain S-PT84 (S-PT84) might show anti-stress activity and ameliorate stress-induced immune suppression in mice. Stress of mice induced an increase in serum corticosterone and a decrease in splenic natural killer activity and in the number of splenocytes versus control mice. However, these changes were not observed in stressed mice that had been administered S-PT84. Furthermore, interleukin (IL)-12 and IL-10 production, which was downregulated in lipopolysaccharide-activated macrophages from stressed mice, was maintained at control levels in the macrophages of stressed mice that had been fed S-PT84. Interferon-γ production, which was downregulated in concanavalin A-activated splenocytes from stressed mice, tended to be maintained at control levels in stressed mice that had been fed S-PT84, although IL-4 production by these cells was not influenced by S-PT84 administration. Additionally, reduced glutathione (GSH) levels were decreased in serum and peritoneal macrophages from stressed mice versus controls, but these GSH levels were significantly higher in stressed animals that had been administered S-PT84 compared with those that had not. These results suggest that S-PT84 exerts anti-stress activity through immune modulation and/or antioxidative activity.
Collapse
Affiliation(s)
- Yuji Nonaka
- Research Institute, Suntory Global Innovation Center Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.,Institute for Health Care Science, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Takayuki Izumo
- Institute for Health Care Science, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Toshihiro Maekawa
- Institute for Health Care Science, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| |
Collapse
|
81
|
Carasi P, Rodríguez E, da Costa V, Frigerio S, Brossard N, Noya V, Robello C, Anegón I, Freire T. Heme-Oxygenase-1 Expression Contributes to the Immunoregulation Induced by Fasciola hepatica and Promotes Infection. Front Immunol 2017; 8:883. [PMID: 28798750 PMCID: PMC5526848 DOI: 10.3389/fimmu.2017.00883] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/11/2017] [Indexed: 02/04/2023] Open
Abstract
Fasciola hepatica, also known as the liver fluke, is a trematode that infects livestock and humans causing fasciolosis, a zoonotic disease of increasing importance due to its worldwide distribution and high economic losses. This parasite immunoregulates the host immune system by inducing a strong Th2 and regulatory T immune response by immunomodulating dendritic cell (DC) maturation and alternative activation of macrophages. In this paper, we show that F. hepatica infection in mice induces the upregulation of heme-oxygenase-1 (HO-1), the rate-limiting enzyme in the catabolism of free heme that regulates the host inflammatory response. We show and characterize two different populations of antigen presenting cells that express HO-1 during infection in the peritoneum of infected animals. Cells that expressed high levels of HO-1 expressed intermediate levels of F4/80 but high expression of CD11c, CD38, TGFβ, and IL-10 suggesting that they correspond to regulatory DCs. On the other hand, cells expressing intermediate levels of HO-1 expressed high levels of F4/80, CD68, Ly6C, and FIZZ-1, indicating that they might correspond to alternatively activated macrophages. Furthermore, the pharmacological induction of HO-1 with the synthetic metalloporphyrin CoPP promoted F. hepatica infection increasing the clinical signs associated with the disease. In contrast, treatment with the HO-1 inhibitor SnPP protected mice from parasite infection, indicating that HO-1 plays an essential role during F. hepatica infection. Finally, HO-1 expression during F. hepatica infection was associated with TGFβ and IL-10 levels in liver and peritoneum, suggesting that HO-1 controls the expression of these immunoregulatory cytokines during infection favoring parasite survival in the host. These results contribute to the elucidation of the immunoregulatory mechanisms induced by F. hepatica in the host and provide alternative checkpoints to control fasciolosis.
Collapse
Affiliation(s)
- Paula Carasi
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Facultad de Medicina, Departamento de Inmunobiología, Universidad de República, Montevideo, Uruguay
| | - Ernesto Rodríguez
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Facultad de Medicina, Departamento de Inmunobiología, Universidad de República, Montevideo, Uruguay
| | - Valeria da Costa
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Facultad de Medicina, Departamento de Inmunobiología, Universidad de República, Montevideo, Uruguay
| | - Sofía Frigerio
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Facultad de Medicina, Departamento de Inmunobiología, Universidad de República, Montevideo, Uruguay
| | - Natalie Brossard
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Facultad de Medicina, Departamento de Inmunobiología, Universidad de República, Montevideo, Uruguay
| | - Verónica Noya
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Facultad de Medicina, Departamento de Inmunobiología, Universidad de República, Montevideo, Uruguay
| | - Carlos Robello
- Departamento de Bioquimica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ignacio Anegón
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Teresa Freire
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Facultad de Medicina, Departamento de Inmunobiología, Universidad de República, Montevideo, Uruguay
| |
Collapse
|
82
|
Dalkner N, Platzer M, Bengesser SA, Birner A, Fellendorf FT, Queissner R, Painold A, Mangge H, Fuchs D, Reininghaus B, Kapfhammer HP, Holasek SJ, Reininghaus EZ. The role of tryptophan metabolism and food craving in the relationship between obesity and bipolar disorder. Clin Nutr 2017; 37:1744-1751. [PMID: 28712531 DOI: 10.1016/j.clnu.2017.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/22/2017] [Accepted: 06/25/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND & AIMS Individuals with bipolar disorder (BD) have a significantly increased risk of obesity-related conditions. The imbalance between food intake and energy expenditure is assumed to be a major risk factor for obesity in BD. This study analyzed food craving in relation to anthropometric, metabolic, and neurobiological parameters in a well-characterized cohort of euthymic individuals with BD. METHODS One-hundred-thirty-five patients completed the Food-Craving Inventory assessing four categories of food craving (fat, fast-food, sweets and carbohydrate craving). Additionally, clinical, metabolic and anthropometric parameters were assessed. RESULTS Higher levels of fat craving were observed in males, versus females, with BD. High levels of carbohydrate craving positively correlated with kynurenine and the kynurenine-to-tryptophan ratio. Higher serum nitrite and neopterin levels were related to fat craving. Parameters of fat metabolism (triglycerides, high-density lipoprotein) were associated with fat and fast-food craving. Anthropometric measures of obesity (e.g. body mass index, waist-to-hip-ratio) were not related to food craving. CONCLUSIONS Overweight/obese individuals with BD show an increased driving of tryptophan down the kynurenine pathways, as indicated by an increase in the serum kynurenine-to-tryptophan ratio. The driving of tryptophan down the kynurenine pathway is mediated by immune-inflammatory activity and stress. The correlation of increased kynurenine with food craving, especially carbohydrate craving, probably indicates a regulatory deficit in the maintenance of chronic inflammatory processes in obesity and BD. Food craving seems to be of clinical importance in the treatment of metabolic disturbances in BD, although not associated with anthropometric measures of obesity. Rather, food craving correlates with blood metabolic parameters and an increased activation of the kynurenine pathway, both of which are linked to higher affective symptomatology and the development of cardiovascular diseases.
Collapse
Affiliation(s)
- N Dalkner
- Department of Psychiatry, Medical University Graz, Austria
| | - M Platzer
- Department of Psychiatry, Medical University Graz, Austria.
| | - S A Bengesser
- Department of Psychiatry, Medical University Graz, Austria
| | - A Birner
- Department of Psychiatry, Medical University Graz, Austria
| | - F T Fellendorf
- Department of Psychiatry, Medical University Graz, Austria
| | - R Queissner
- Department of Psychiatry, Medical University Graz, Austria
| | - A Painold
- Department of Psychiatry, Medical University Graz, Austria
| | - H Mangge
- Research Unit on Lifestyle and Inflammation-associated Risk Biomarkers, Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Austria
| | - D Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Austria
| | - B Reininghaus
- Therapiezentrum Justuspark, Versicherungsanstalt öffentlich Bediensteter, Bad Hall, Austria
| | - H P Kapfhammer
- Department of Psychiatry, Medical University Graz, Austria
| | - S J Holasek
- Department of Pathophysiology and Immunology, Medical University Graz, Austria
| | | |
Collapse
|
83
|
Mimura K, Kua LF, Shimasaki N, Shiraishi K, Nakajima S, Siang LK, Shabbir A, So J, Yong WP, Kono K. Upregulation of thioredoxin-1 in activated human NK cells confers increased tolerance to oxidative stress. Cancer Immunol Immunother 2017; 66:605-613. [PMID: 28224212 PMCID: PMC11028527 DOI: 10.1007/s00262-017-1969-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 02/01/2017] [Indexed: 12/27/2022]
Abstract
Adoptive transfer of immune cells, such as T lymphocytes and NK cells, has potential to control cancer growth. However, this can be counteracted by immune escape mechanisms within the tumor microenvironment, including those mediated by reactive oxygen species (ROS). Here, we determined the levels of anti-oxidant molecules in NK cells and their capacity to overcome ROS-induced immune suppression. We investigated the effect of H2O2 on resting NK cells, IL-2-activated NK cells and NK cells expanded by coculture with the K562 leukemia cell line genetically modified to express membrane-bound IL-15 and 4-1BB ligand (K562-mb15-41BBL). Expression of anti-oxidant and anti-apoptotic genes was evaluated by expression array, and protein levels of anti-oxidant molecules by Western blot. Activated NK cells, IL-2-activated NK cells and NK cells expanded by K562-mb15-41BBL were significantly more resistant to H2O2-induced cell death than resting NK. Thioredoxin-1 (TXN1) and peroxiredoxin-1 (PRDX1) were also up-regulated in activated NK cells. Moreover, H2O2-induced cell death after IL-2 activation was significantly induced in the presence of an anti-TXN1-neutralising antibody. Collectively, these data document that activated NK cells can resist to H2O2-induced cell death by up-regulation of TXN1.
Collapse
Affiliation(s)
- Kousaku Mimura
- Department of Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore, Singapore
- Department of Surgery, Fujikawa Hospital, Kyonan Medical Center, 340-1 Kajikazawa, Fujikawa-cho, Minamikoma-gun, Yamanashi, Japan
| | - Ley-Fang Kua
- Department of Hematology-Oncology, National University of Singapore, 1E Kent Ridge Road, Singapore, Singapore
| | - Noriko Shimasaki
- Department of Pediatrics, National University of Singapore, 1E Kent Ridge Road, Singapore, Singapore
| | - Kensuke Shiraishi
- Department of Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore, Singapore
- Department of Surgery, Fujikawa Hospital, Kyonan Medical Center, 340-1 Kajikazawa, Fujikawa-cho, Minamikoma-gun, Yamanashi, Japan
| | - Shotaro Nakajima
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore, Singapore
| | - Lim Kee Siang
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore, Singapore
| | - Asim Shabbir
- Department of Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore, Singapore
| | - Jimmy So
- Department of Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore, Singapore
| | - Wei-Peng Yong
- Department of Hematology-Oncology, National University of Singapore, 1E Kent Ridge Road, Singapore, Singapore
| | - Koji Kono
- Department of Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore, Singapore.
- Department of Organ Regulatory Surgery and Advanced Cancer Immunotherapy, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295, Japan.
| |
Collapse
|
84
|
Abstract
Abstract
Pterins are widely conserved biomolecules that play essential roles in diverse organisms. First described as enzymatic cofactors in eukaryotic systems, bacterial pterins were discovered in cyanobacteria soon after. Several pterin structures unique to bacteria have been described, with conjugation to glycosides and nucleotides commonly observed. Despite this significant structural diversity, relatively few biological functions have been elucidated. Molybdopterin, the best studied bacterial pterin, plays an essential role in the function of the Moco cofactor. Moco is an essential component of molybdoenzymes such as sulfite oxidase, nitrate reductase, and dimethyl sulfoxide reductase, all of which play important roles in bacterial metabolism and global nutrient cycles. Outside of the molybdoenzymes, pterin cofactors play important roles in bacterial cyanide utilization and aromatic amino acid metabolism. Less is known about the roles of pterins in nonenzymatic processes. Cyanobacterial pterins have been implicated in phenotypes related to UV protection and phototaxis. Research describing the pterin-mediated control of cyclic nucleotide metabolism, and their influence on virulence and attachment, points to a possible role for pterins in regulation of bacterial behavior. In this review, we describe the variety of pterin functions in bacteria, compare and contrast structural and mechanistic differences, and illuminate promising avenues of future research.
Collapse
Affiliation(s)
- Nathan Feirer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
85
|
Bozhkov AI, Nikitchenko YV, Klimova EM, Linkevych OS, Lebid KM, Al-Bahadli AMM, Alsardia MMA. Young and old rats have different strategies of metabolic adaptation to Cu-induced liver fibrosis. ADVANCES IN GERONTOLOGY 2017. [DOI: 10.1134/s2079057017010040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
86
|
Wyatt LH, Luz AL, Cao X, Maurer LL, Blawas AM, Aballay A, Pan WKY, Meyer JN. Effects of methyl and inorganic mercury exposure on genome homeostasis and mitochondrial function in Caenorhabditis elegans. DNA Repair (Amst) 2017; 52:31-48. [PMID: 28242054 PMCID: PMC5394729 DOI: 10.1016/j.dnarep.2017.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 12/05/2016] [Accepted: 02/06/2017] [Indexed: 12/21/2022]
Abstract
Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Reported impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H2O2), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl2, low-level DNA damage (∼0.25 lesions/10kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H2O2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H2O2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H2O2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or no effects on survival on pathogenic bacteria. Overall, mercury exposure disrupted mitochondrial endpoints in a mercury-compound dependent fashion.
Collapse
Affiliation(s)
- Lauren H Wyatt
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Anthony L Luz
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Xiou Cao
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Laura L Maurer
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Ashley M Blawas
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Alejandro Aballay
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - William K Y Pan
- Nicholas School of the Environment, Duke University, Durham, NC, United States; Duke Global Health Institute, Duke University, Durham, NC, United States
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| |
Collapse
|
87
|
Buczko P, Knaś M, Grycz M, Szarmach I, Zalewska A. Orthodontic treatment modifies the oxidant-antioxidant balance in saliva of clinically healthy subjects. Adv Med Sci 2017; 62:129-135. [PMID: 28242484 DOI: 10.1016/j.advms.2016.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 06/28/2016] [Accepted: 11/29/2016] [Indexed: 01/05/2023]
Abstract
PURPOSE The aim of our study was to analyse salivary markers of oxidative stress and an antioxidant response in clinically healthy subjects with fixed orthodontic appliances. MATERIAL/METHODS 37 volunteers were included in the study. Unstimulated (UWS) and stimulated (SWS) whole saliva were analysed for oxidative and antioxidant status and nickel levels immediately before the insertion of the appliances, an one week after and twenty four weeks after the insertion of fixed appliances. RESULTS A significant increase in tiobarbituric acid reactive substance (TBARS) and total oxidant status (TOS) one week, and total protein concentration twenty four weeks after the attachment of orthodontic appliances was found in the saliva. The markers of antioxidant status: superoxide dismutase (SOD), catalase (CAT), uric acid (UA), peroxidase (Px), and total antioxidant status (TAS) were not changed in all periods in UWS. In SWS a significant decrease in SOD1 and CAT was found whereas Px was increased one week after treatment and UA twenty four weeks following treatment. TAS was decreased in UWS and SWS twenty four weeks after orthodontic treatment. Oxidative status index (OSI) was elevated both in UWS and SWS one week after orthodontic treatment in comparison to the results obtained before and twenty four weeks. One week after treatment an increased concentration of nickel was also observed. CONCLUSIONS Orthodontic treatment modifies the oxidative-antioxidative balance in the saliva of clinically healthy subjects. Increased nickel concentration in saliva, released from orthodontic appliances, seems to be responsible for changes in the oxidative status of the saliva.
Collapse
Affiliation(s)
- Piotr Buczko
- Department of Orthodontics, Medical University of Bialystok, Bialystok, Poland.
| | - Małgorzata Knaś
- Institute of Health Care Higher Vocational School, Suwalki, Poland
| | - Monika Grycz
- Department of Orthodontics, Medical University of Bialystok, Bialystok, Poland
| | - Izabela Szarmach
- Department of Orthodontics, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Conservative Dentistry Department, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
88
|
Strasser B, Becker K, Fuchs D, Gostner JM. Kynurenine pathway metabolism and immune activation: Peripheral measurements in psychiatric and co-morbid conditions. Neuropharmacology 2017; 112:286-296. [DOI: 10.1016/j.neuropharm.2016.02.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 12/14/2022]
|
89
|
Song Y, Salbu B, Teien HC, Evensen Ø, Lind OC, Rosseland BO, Tollefsen KE. Hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to gamma radiation and depleted uranium singly and in combination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:270-279. [PMID: 27100007 DOI: 10.1016/j.scitotenv.2016.03.222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Radionuclides are a special group of substances posing both radiological and chemical hazards to organisms. As a preliminary approach to understand the combined effects of radionuclides, exposure studies were designed using gamma radiation (Gamma) and depleted uranium (DU) as stressors, representing a combination of radiological (radiation) and chemical (metal) exposure. Juvenile Atlantic salmon (Salmo salar) were exposed to 70mGy external Gamma dose delivered over the first 5h of a 48h period (14mGy/h), 0.25mg/L DU were exposed continuously for 48h and the combination of the two stressors (Combi). Water and tissue concentrations of U were determined to assess the exposure quality and DU bioaccumulation. Hepatic gene expression changes were determined using microarrays in combination with quantitative real-time reverse transcription polymerase chain reaction (qPCR). Effects at the higher physiological levels were determined as plasma glucose (general stress) and hepatic histological changes. The results show that bioaccumulation of DU was observed after both single DU and the combined exposure. Global transcriptional analysis showed that 3122, 2303 and 3460 differentially expressed genes (DEGs) were significantly regulated by exposure to gamma, DU and Combi, respectively. Among these, 349 genes were commonly regulated by all treatments, while the majority was found to be treatment-specific. Functional analysis of DEGs revealed that the stressors displayed similar mode of action (MoA) across treatments such as induction of oxidative stress, DNA damage and disturbance of oxidative phosphorylation, but also stressor-specific mechanisms such as cellular stress and injury, metabolic disorder, programmed cell death, immune response. No changes in plasma glucose level as an indicator of general stress and hepatic histological changes were observed. Although no direct linkage was successfully established between molecular responses and adverse effects at the organism level, the study has enhanced the understanding of the MoA of single radionuclides and mixtures of these.
Collapse
Affiliation(s)
- You Song
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway.
| | - Brit Salbu
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Hans-Christian Teien
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Øystein Evensen
- Norwegian University of Life Sciences (NMBU), Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep., N-0033 Oslo, Norway
| | - Ole Christian Lind
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Bjørn Olav Rosseland
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Department of Ecology and Natural Resource Management (INA), P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| |
Collapse
|
90
|
Wang YT, Kong Y, Song Y, Han W, Zhang YY, Zhang XH, Chang YJ, Jiang ZF, Huang XJ. Increased Type 1 Immune Response in the Bone Marrow Immune Microenvironment of Patients with Poor Graft Function after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2016; 22:1376-1382. [DOI: 10.1016/j.bbmt.2016.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/19/2016] [Indexed: 02/07/2023]
|
91
|
Manti S, Marseglia L, D'Angelo G, Cuppari C, Cusumano E, Arrigo T, Gitto E, Salpietro C. "Cumulative Stress": The Effects of Maternal and Neonatal Oxidative Stress and Oxidative Stress-Inducible Genes on Programming of Atopy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8651820. [PMID: 27504149 PMCID: PMC4967692 DOI: 10.1155/2016/8651820] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/27/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
Abstract
Although extensive epidemiological and laboratory studies have been performed to identify the environmental and immunological causes of atopy, genetic predisposition seems to be the biggest risk factor for allergic diseases. The onset of atopic diseases may be the result of heritable changes of gene expression, without any alteration in DNA sequences occurring in response to early environmental stimuli. Findings suggest that the establishment of a peculiar epigenetic pattern may also be generated by oxidative stress (OS) and perpetuated by the activation of OS-related genes. Analyzing the role of maternal and neonatal oxidative stress and oxidative stress-inducible genes, the purpose of this review was to summarize what is known about the relationship between maternal and neonatal OS-related genes and the development of atopic diseases.
Collapse
Affiliation(s)
- Sara Manti
- Unit of Pediatric Genetics and Immunology, Department of Pediatrics, University of Messina, 98125 Messina, Italy
| | - Lucia Marseglia
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, 98125 Messina, Italy
| | - Gabriella D'Angelo
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, 98125 Messina, Italy
| | - Caterina Cuppari
- Unit of Pediatric Genetics and Immunology, Department of Pediatrics, University of Messina, 98125 Messina, Italy
| | - Erika Cusumano
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, 98125 Messina, Italy
| | - Teresa Arrigo
- Unit of Pediatric Genetics and Immunology, Department of Pediatrics, University of Messina, 98125 Messina, Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, 98125 Messina, Italy
| | - Carmelo Salpietro
- Unit of Pediatric Genetics and Immunology, Department of Pediatrics, University of Messina, 98125 Messina, Italy
| |
Collapse
|
92
|
Immunomodulatory Effects of the Mycosporine-Like Amino Acids Shinorine and Porphyra-334. Mar Drugs 2016; 14:md14060119. [PMID: 27338421 PMCID: PMC4926078 DOI: 10.3390/md14060119] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/06/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022] Open
Abstract
Mycosporine-like amino acids (MAAs) are secondary metabolites, produced by a large variety of microorganisms including algae, cyanobacteria, lichen and fungi. MAAs act as UV-absorbers and photo-protectants. MAAs are suggested to exert pharmaceutical relevant bioactivities in the human system. We particularly focused on their effect on defence and regulatory pathways that are active in inflamed environments. The MAAs shinorine and porphyra-334 were isolated and purified from the red algae Porphyra sp. using chromatographic methods. The effect of MAAs on central signaling cascades, such as transcription factor nuclear factor kappa b (NF-κB) activation, as well as tryptophan metabolism, was investigated in human myelomonocytic THP-1 and THP-1-Blue cells. Cells were exposed to the MAAs in the presence or absence of lipopolysaccharide (LPS). NF-κB activity and the activity of tryptophan degrading enzyme indoleamine 2,3-dioxygenase (IDO-1) were used as readout. Compounds were tested in the concentration range from 12.5 to 200 µg/mL. Both MAAs were able to induce NF-κB activity in unstimulated THP-1-Blue cells, whereby the increase was dose-dependent and more pronounced with shinorine treatment. While shinorine also slightly superinduced NF-κB in LPS-stimulated cells, porphyra-334 reduced NF-κB activity in this inflammatory background. Modulation of tryptophan metabolism was moderate, suppressive in stimulated cells with the lower treatment concentration of both MAAs and with the unstimulated cells upon porphyra-334 treatment. Inflammatory pathways are affected by MAAs, but despite the structural similarity, diverse effects were observed.
Collapse
|
93
|
Ulvik A, Pedersen ER, Svingen GF, McCann A, Midttun Ø, Nygård O, Ueland PM. Vitamin B-6 catabolism and long-term mortality risk in patients with coronary artery disease. Am J Clin Nutr 2016; 103:1417-25. [PMID: 27169836 DOI: 10.3945/ajcn.115.126342] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/05/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Low vitamin B-6 status has been related to increased risk of coronary artery disease (CAD), which is a condition that is associated with inflammation. The most common status marker, plasma pyridoxal 5'-phosphate (PLP), decreases during inflammation; therefore, causal relations are uncertain. OBJECTIVE We evaluated the vitamin B-6 biomarkers PLP, pyridoxal, and pyridoxic acid (PA) and the pyridoxic acid:(pyridoxal + PLP) ratio (PAr), a proposed marker of vitamin B-6 catabolism during activated cellular immunity, as predictors of mortality. DESIGN Associations with risks of long-term all-cause mortality and cardiovascular mortality were evaluated with the use of Cox regression in patients who were undergoing elective coronary angiography for suspected stable angina pectoris (SAP) (n = 4131) and an independent cohort of patients who were hospitalized for acute myocardial infarction (AMI) (n = 3665). RESULTS Plasma PLP (AMI patients only) and PA predicted all-cause mortality in models that were adjusted for established risk predictors, but associations were attenuated or nonsignificant after additional adjustment for inflammatory markers. PAr was correlated with biomarkers of inflammation (Pearson's r ≥ 0.37) and predicted all-cause mortality and cardiovascular mortality after adjustment for established risk predictors. In SAP patients, PAr had greater predictive strength than did current smoking, diabetes, hypertension, apolipoproteins, or C-reactive protein. PAr provided multiadjusted HRs per SD of 1.45 (95% CI: 1.30, 1.63) and 1.31 (95% CI: 1.21, 1.41) in SAP and AMI patients, respectively. In both cohorts, PAr was a particularly strong predictor of all-cause mortality for patients with no previous CAD history (P-interaction ≤ 0.04). CONCLUSION PAr may capture unique aspects of inflammatory activation and thus provide new insights into disease mechanisms that may aid in identifying patients at increased risk of future fatal events.
Collapse
Affiliation(s)
| | - Eva R Pedersen
- Department of Clinical Science, University of Bergen, Bergen, Norway; and
| | - Gard Ft Svingen
- Department of Clinical Science, University of Bergen, Bergen, Norway; and
| | | | | | - Ottar Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway; and Department of Heart Disease and
| | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway; and Laboratory of Ok Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
94
|
Wang ZJ, Liu XH, Jin L, Pu DY, Huang J, Zhang YG. Transcriptome profiling analysis of rare minnow (Gobiocypris rarus) gills after waterborne cadmium exposure. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:120-128. [PMID: 27292131 DOI: 10.1016/j.cbd.2016.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/09/2016] [Accepted: 05/22/2016] [Indexed: 12/13/2022]
Abstract
Rare minnow (Gobiocypris rarus) is a widely used experimental fish in risk assessments of aquatic pollutants in China. Cadmium (Cd) is one of the most toxic heavy metals in the world; however, few studies have used fish gills, a multi-functional organ. In this study, we characterized the differential expression of adult female rare minnow gills after sub-chronic waterborne Cd (75μg/L CdCl2) exposure for 35d. A total of 452 genes (209 up-regulated and 243 down-regulated) were identified by gene expression profiling using RNA-Seq before and after treatment. Of these differentially expressed genes, 75, 21, and 54 differentially expressed genes are related to ion transport, oxidation-reduction processes, and the immune response, respectively. The results of GO and KEGG enrichment analyses, together with the altered transcript levels of major histocompatibility complex (MHC) class I and class II molecules and the significant increases in the levels of serum tumor necrosis factor α (TNF-α), interleukin 1β (IL1β) and nuclear factor-κB (NF-κB), indicated a disruption of the immune system, particularly the induction of inflammation and autoimmunity. The significant down-regulation of coagulation factor XIII A1 polypeptide (F13A1), tripartite motif-containing protein 21 (TRIM21), and Golgi-associated plant pathogenesis-related protein (GAPr) during both acute (≤96h) and sub-chronic (35d) waterborne Cd exposure, as well as their dosage dependence, suggested that these three genes could be used as sensitive biomarkers for aquatic Cd risk assessment.
Collapse
Affiliation(s)
- Zhi-Jian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, 400715 Chongqing, China
| | - Xiao-Hong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, 400715 Chongqing, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, 400715 Chongqing, China
| | - De-Yong Pu
- Key Laboratory of Freshwater Fish Reproduction and Development Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, 400715 Chongqing, China
| | - Jing Huang
- Key Laboratory of Freshwater Fish Reproduction and Development Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, 400715 Chongqing, China
| | - Yao-Guang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, 400715 Chongqing, China.
| |
Collapse
|
95
|
Cernada M, Bäuerl C, Serna E, Collado MC, Martínez GP, Vento M. Sepsis in preterm infants causes alterations in mucosal gene expression and microbiota profiles compared to non-septic twins. Sci Rep 2016; 6:25497. [PMID: 27180802 PMCID: PMC4867619 DOI: 10.1038/srep25497] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/15/2016] [Indexed: 01/15/2023] Open
Abstract
Sepsis is a life-threatening condition in preterm infants. Neonatal microbiota plays a pivotal role in the immune system maturation. Changes in gut microbiota have been associated to inflammatory disorders; however, a link with sepsis in the neonatal period has not yet been established. We aimed to analyze gut microbiota and mucosal gene expression using non-invasively obtained samples to provide with an integrative perspective of host-microbe interactions in neonatal sepsis. For this purpose, a prospective observational case-control study was conducted in septic preterm dizygotic twins and their non-septic twin controls. Fecal samples were used for both microbiota analysis and host genome-wide expression using exfoliated intestinal cells. Gene expression of exfoliated intestinal cells in septic preterm showed an induction of inflammatory and oxidative stress pathways in the gut and pro-oxidant profile that caused dysbiosis in the gut microbiota with predominance of Enterobacteria and reduction of Bacteroides and Bifidobacterium spp.in fecal samples, leading to a global reduction of beneficial anaerobic bacteria. Sepsis in preterm infants induced low-grade inflammation and oxidative stress in the gut mucosa, and also changes in the gut microbiota. This study highlights the role of inflammation and oxidative stress in neonatal sepsis on gut microbial profiles.
Collapse
Affiliation(s)
- María Cernada
- Health Research Institute (Instituto de Investigación Sanitaria) Hospital La Fe, Av. Fernando Abril Martorell 106; 46026 Valencia, Spain.,Division of Neonatology. University &Polytechnic Hospital La Fe, Avda. Fernando Abril Martorell 106; 46026 Valencia, Spain
| | - Christine Bäuerl
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology. Av. Agustin Escardino 7, 46980 Valencia, Spain
| | - Eva Serna
- Central Research Unit-INCLIVA, Faculty of Medicine, University of Valencia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology. Av. Agustin Escardino 7, 46980 Valencia, Spain
| | - Gaspar Pérez Martínez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology. Av. Agustin Escardino 7, 46980 Valencia, Spain
| | - Máximo Vento
- Health Research Institute (Instituto de Investigación Sanitaria) Hospital La Fe, Av. Fernando Abril Martorell 106; 46026 Valencia, Spain.,Central Research Unit-INCLIVA, Faculty of Medicine, University of Valencia, Spain.,Spanish Maternal and Child Health and Development Network Retics Red SAMID, Health Research Institute Carlos III, Spanish Ministry of Economy and Competitiveness, Sinesio Delgado 4, 28029 Madrid, Spain
| |
Collapse
|
96
|
Abstract
The pathophysiology of psoriasis is complex and dynamic. Recently, the involvement of oxidative stress in the pathogenesis of psoriasis has been proposed. Oxidative stress is an imbalance between oxidants and antioxidants in favor of the oxidants, leading to a disruption of redox signaling and control and/or molecular damage. In this article, the published studies on the role of oxidative stress in psoriasis pathogenesis are reviewed, focusing on the impacts of oxidative stress on dendritic cells, T lymphocytes, and keratinocytes, on angiogenesis and on inflammatory signaling (mitogen-activated protein kinase, nuclear factor-κB, and Janus kinase/signal transducer and activator of transcription). As there is compelling evidence that oxidative stress is involved in the pathogenesis of psoriasis, the possibility of using this information to develop novel strategies for treatment of patients with psoriasis is of considerable interest. In this article, we also review the published studies on treating psoriasis with antioxidants and drugs with antioxidant activity.
Collapse
Affiliation(s)
- Xiran Lin
- a Department of Dermatology , The First Affiliated Hospital of Dalian Medical University , Dalian , China
| | - Tian Huang
- b Department of Dermatology , The Second Affiliated Hospital of Dalian Medical University , Dalian , China
| |
Collapse
|
97
|
Ojiako OA, Chikezie PC, Ogbuji AC. Radical scavenging potentials of single and combinatorial herbal formulations in vitro. J Tradit Complement Med 2016; 6:153-9. [PMID: 27114938 PMCID: PMC4833459 DOI: 10.1016/j.jtcme.2014.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 11/21/2022] Open
Abstract
Reactive oxygen and nitrogen species (RONS) are involved in deleterious/beneficial biological processes. The present study sought to investigate the capacity of single and combinatorial herbal formulations of Acanthus montanus, Emilia coccinea, Hibiscus rosasinensis, and Asystasia gangetica to act as superoxide radicals (SOR), hydrogen peroxide (HP), nitric oxide radical (NOR), hydroxyl radical (HR), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical antagonists using in vitro models. The herbal extracts were single herbal formulations (SHfs), double herbal formulations (DHfs), triple herbal formulations (THfs), and a quadruple herbal formulation (QHf). The phytochemical composition and radical scavenging capacity index (SCI) of the herbal formulations were measured using standard methods. The flavonoids were the most abundant phytochemicals present in the herbal extracts. The SCI50 defined the concentration (μg/mL) of herbal formulation required to scavenge 50% of the investigated radicals. The SHfs, DHfs, THfs, and QHf SCI50 against the radicals followed the order HR > SOR > DPPH radical > HP > NOR. Although the various herbal formulations exhibited ambivalent antioxidant activities in terms of their radical scavenging capabilities, a broad survey of the results of the present study showed that combinatorial herbal formulations (DHfs, THfs, and QHf) appeared to exhibit lower radical scavenging capacities than those of the SHfs in vitro.
Collapse
Affiliation(s)
- Okey A. Ojiako
- Department of Biochemistry, Federal University of Technology, Owerri, Nigeria
| | - Paul C. Chikezie
- Department of Biochemistry, Imo State University, Owerri, Nigeria
| | - Agomuo C. Ogbuji
- Department of Food Science and Technology, Abia State Polytechnic, Aba, Nigeria
| |
Collapse
|
98
|
Abstract
OBJECTIVES The aim of this review was to highlight recent advances in our understanding of the pathogenesis of malignant transformation of endometriosis. METHODS This study reviewed the English-language literature concerning basic science studies of the potential promotion of carcinogenesis. RESULTS Repeated episodes of hemorrhage occur in endometriosis at the onset of menstruation. Extracellular hemoglobin, heme, and iron derivatives in endometriosis cause DNA damage and mutations, which create increased cellular susceptibility to oxidant-mediated cell killing. Excess DNA damage and mutations are linked to cell death, but not carcinogenesis. In response to an oxidative and inflammatory microenvironment, endometriotic cells and macrophages secrete antioxidants that control excess oxidative stress in the surrounding environment. Exposure of endometriotic cells to a sublethal level of oxidative stress may lead to carcinogenesis. Macrophages also secrete immunosuppressive factors that lead to promotion of malignant transformation. DISCUSSION At least two potential scenarios could result in ovarian cancer arising from endometriosis. The first step: extracellular hemoglobin, heme, and iron cause cellular oxidative damage by promoting reactive oxygen species formation, which results in DNA damage and mutations (ovarian cancer initiation from endometriosis). The second step: cancer progression may be associated with persistent antioxidant production favoring a protumoral microenvironment.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- a Department of Obstetrics and Gynecology , Nara Medical University , Japan
| |
Collapse
|
99
|
Wang C, Li P, Liu L, Pan H, Li H, Cai L, Ma Y. Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation. Biomaterials 2016; 79:88-100. [DOI: 10.1016/j.biomaterials.2015.11.040] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/29/2015] [Indexed: 01/07/2023]
|
100
|
Shershakova N, Baraboshkina E, Andreev S, Purgina D, Struchkova I, Kamyshnikov O, Nikonova A, Khaitov M. Anti-inflammatory effect of fullerene C60 in a mice model of atopic dermatitis. J Nanobiotechnology 2016; 14:8. [PMID: 26810232 PMCID: PMC4727272 DOI: 10.1186/s12951-016-0159-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/13/2016] [Indexed: 12/15/2022] Open
Abstract
Background Water-soluble form of fullerene C60 is a promising tool for the control of ROS-dependent inflammation including allergic diseases. Anti-inflammatory effects of C60 (nC60) aqueous dispersion were evaluated in the mouse models of atopic dermatitis using subcutaneous (SC) and epicutaneous (EC) applications during 50 days period. A highly stable nC60 was prepared by exhaustive dialysis of water-organic C60 solution against water, where the size and ζ-potential of fullerene nanoparticles are about 100 nm and −30 mV, respectively. Results To induce skin inflammation, female BALB/c mice were EC sensitized with ovalbumin three times during one-weekly exposures. The nC60 solution was administrated in mice subcutaneously (SC) (0.1 mg/kg) and epicutaneously (EC) (1 mg/kg). Significant suppression of IgE and Th2 cytokines production and a concomitant rise in concentrations of Th1 cytokines were observed in nC60-treated groups. In addition, a significant increase in the levels of Foxp3+ and filaggrin mRNA expression was observed at EC application. Histological examination of skin samples indicated that therapeutic effect was achieved by both EC and SC treatment, but it was more effective with EC. Pronounced reduction of the eosinophil and leukocyte infiltration in treated skin samples was observed. Conclusions We suppose that nC60 treatment shifts immune response from Th2 to Th1 and restores to some extent the function of the skin barrier. This approach can be a good alternative to the treatment of allergic and other inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Sergey Andreev
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia.
| | - Daria Purgina
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia.
| | | | | | | | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia.
| |
Collapse
|