51
|
Celhar T, Fairhurst AM. Toll-like receptors in systemic lupus erythematosus: potential for personalized treatment. Front Pharmacol 2014; 5:265. [PMID: 25538618 PMCID: PMC4258990 DOI: 10.3389/fphar.2014.00265] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/14/2014] [Indexed: 01/07/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the loss of tolerance to self-nuclear antigens. The symptoms of SLE, progression of pathology and the array of autoantibodies present in the serum differ significantly from patient to patient, which calls for a personalized approach to treatment. SLE is polygenic and strongly influenced by gender, ethnicity, and environmental factors. Data from genome-wide association studies suggests that polymorphisms in as many as 100 genes contribute to SLE susceptibility. Recent research has focused on genes associated with Toll-like receptors (TLRs), type I interferons, immune regulation pathways, and immune-complex clearance. TLR7 and TLR9 have been extensively studied using lupus-prone mouse models. In multiple systems overexpression of TLR7 drives disease progression but interestingly, a loss of TLR9 results in an almost identical phenotype. While TLR7 overexpression has been linked to human SLE, the possible role of TLR9 in human disease remains elusive. In the present review, we focus on TLR polymorphisms and TLR expression in SLE patients and discuss their potential as biomarkers for individualized treatment.
Collapse
Affiliation(s)
- Teja Celhar
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore, Singapore
| | - Anna-Marie Fairhurst
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore, Singapore
| |
Collapse
|
52
|
Differentiation of neurons restricts Arbovirus replication and increases expression of the alpha isoform of IRF-7. J Virol 2014; 89:48-60. [PMID: 25320290 DOI: 10.1128/jvi.02394-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Susceptibility to alphavirus infection is age dependent, and host maturation is associated with decreased virus replication and less severe encephalitis. To identify factors associated with maturation-dependent restriction of virus replication, we studied AP-7 rat olfactory bulb neuronal cells, which can differentiate in vitro. Differentiation was associated with a 150- to 1,000-fold decrease in replication of the alphaviruses Sindbis virus and Venezuelan equine encephalitis virus, as well as La Crosse bunyavirus. Differentiation delayed synthesis of SINV RNA and protein but did not alter the susceptibility of neurons to infection or virion maturation. Additionally, differentiation slowed virus-induced translation arrest and death of infected cells. Differentiation of uninfected AP-7 neurons was associated with changes in expression of antiviral genes. Expression of key transcription factors was increased, including interferon regulatory factor 3 and 7 (IRF-3 and IRF-7) and STAT-1, suggesting that neuronal maturation may enhance the capacity for antiviral signaling upon infection. IRF-7 produced by undifferentiated AP-7 neurons was exclusively the short dominant negative γ-isoform, while that produced by differentiated neurons was the full-length α-isoform. A similar switch in IRF-7 isoforms also occurred in the brains of maturing C57BL/6J mice. Silencing of IRF expression did not improve virus multiplication in differentiated neurons. Therefore, neuronal differentiation is associated with upregulation of transcription factors that activate antiviral signaling, but this alone does not account for maturation-dependent restriction of virus replication. IMPORTANCE Viral encephalomyelitis is an important cause of age-dependent morbidity and mortality. Because mature neurons are not readily regenerated, recovery from encephalitis suggests that mature neurons utilize unique antiviral mechanisms to block infection and/or clear virus. To identify maturational changes in neurons that may improve outcome, we compared immature and mature cultured neurons for susceptibility to three encephalitic arboviruses and found that replication of Old World and New World alphaviruses and a bunyavirus was reduced in mature compared to immature neurons. Neuronal maturation was associated with increased baseline expression of interferon regulatory factor 3 and 7 mRNAs and production of distinct isoforms of interferon regulatory factor 7 protein. Overall, our studies identified maturational changes in neurons that likely contribute to assembly of immunoregulatory factors prior to infection, a more rapid antiviral response, increased resistance to virus infection, and improved survival.
Collapse
|
53
|
The TIR-domain containing adaptor TRAM is required for TLR7 mediated RANTES production. PLoS One 2014; 9:e107141. [PMID: 25211222 PMCID: PMC4161432 DOI: 10.1371/journal.pone.0107141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/05/2014] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptor 7 (TLR7) plays a vital role in the immune response to ssRNA viruses such as human rhinovirus (HRV) and Influenza, against which there are currently no treatments or vaccines with long term efficacy available. Clearly, a more comprehensive understanding of the TLR7 signaling axis will contribute to its molecular targeting. TRIF related adaptor molecule (TRAM) plays a vital role in TLR4 signaling by recruiting TRIF to TLR4, followed by endosomal trafficking of the complex and initiation of IRF3 dependent type I interferon production as well as NF-κB dependent pro-inflammatory cytokine production. Towards understanding the molecular mechanisms that regulate TLR7 functionality, we found that TRAM−/− murine macrophages exhibited a transcriptional and translational impairment in TLR7 mediated RANTES, but not TNFα, production. Suppression of TRAM expression in human macrophages also resulted in an impairment in TLR7 mediated CCL5 and IFN-β, but not TNFα, gene induction. Furthermore, suppression of endogenous human TRAM expression in human macrophages significantly impaired RV16 induced CCL5 and IFNβ, but not TNFα gene induction. Additionally, TRAM-G2A dose-dependently inhibited TLR7 mediated activation of CCL5, IFNβ and IFNα reporter genes. TLR7-mediated phosphorylation and nuclear translocation of IRF3 was impaired in TRAM−/− cells. Finally, co-immunoprecipitation studies indicated that TRAM physically interacts with MyD88 upon TLR7 stimulation, but not under basal conditions. Our results clearly demonstrate that TRAM plays a, hitherto unappreciated, role in TLR7 signaling through a novel signaling axis containing, but not limited to, MyD88, TRAM and IRF3 towards the activation of anti-viral immunity.
Collapse
|
54
|
Szabo A, Magyarics Z, Pazmandi K, Gopcsa L, Rajnavolgyi E, Bacsi A. TLR ligands upregulate RIG-I expression in human plasmacytoid dendritic cells in a type I IFN-independent manner. Immunol Cell Biol 2014; 92:671-8. [PMID: 24839978 DOI: 10.1038/icb.2014.38] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 04/18/2014] [Accepted: 04/18/2014] [Indexed: 12/24/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are professional type I interferon (IFN)-producing cells that play an essential role in antiviral immunity. In many cell types, detection of intracellular pathogens is mostly dependent on endosomal Toll-like receptors (TLRs) and cytosolic sensors, such as retinoic acid-inducible gene I (RIG-I). However, the possible interplay between these two systems has not yet been elucidated. Here we aimed to study the collaboration of endosomal TLRs and RIG-I in primary human pDCs. We found that under steady-state conditions, pDCs express RIG-I at very low level, but the expression of this receptor is rapidly and dramatically upregulated upon stimulation by the TLR7 ligand imiquimod or the TLR9 ligand type A CpG. We also demonstrated that pDCs are able to sense and respond to 5'-triphosphate double-stranded RNA (5'-ppp-dsRNA) only following activation by endosomal TLRs. Experiments on primary pDCs with functionally blocked IFN-α/β receptor 1 (IFNAR1) and those on human pDC leukemia (pDC-L) cells defective in type I IFN secretion indicated that the upregulation of RIG-I expression in pDCs upon stimulation by endosomal TLR occurs in a type I IFN-independent manner. Selective phosphorylation of signal transducer and activator of transcription 1 (STAT1) on tyrosine 701 could be identified as an early signaling event in this process. Our results show that in contrast to many other cell types, where RIG-I expression is induced by type I IFN, in pDCs a disparate mechanism is responsible for the upregulation of RIG-I. Our findings also indicate that along with autophagy, an additional mechanism is operating in pDCs to promote the detection of replicating viruses.
Collapse
Affiliation(s)
- Attila Szabo
- Department of Immunology, Medical and Health Sciences Centre, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Magyarics
- Department of Immunology, Medical and Health Sciences Centre, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kitti Pazmandi
- Department of Immunology, Medical and Health Sciences Centre, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Gopcsa
- Department of Haematology and Stem Cell Transplantation, Szent Istvan and Szent Laszlo Hospital of Budapest, Budapest, Hungary
| | - Eva Rajnavolgyi
- Department of Immunology, Medical and Health Sciences Centre, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Bacsi
- Department of Immunology, Medical and Health Sciences Centre, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
55
|
Leucomycin A3, a 16-membered macrolide antibiotic, inhibits influenza A virus infection and disease progression. J Antibiot (Tokyo) 2014; 67:213-22. [PMID: 24496145 DOI: 10.1038/ja.2013.132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/16/2013] [Accepted: 11/10/2013] [Indexed: 11/09/2022]
Abstract
Severe respiratory disease arising from influenza virus infection has a high fatality rate. Neutrophil myeloperoxidase (MPO) has been implicated in the pathogenesis of severe influenza-induced pneumonia because extracellularly released MPO mediates the production of hypochlorous acid, a potent tissue injury factor. To search for candidate anti-influenza compounds, we screened leucomycin A3 (LM-A3), spiramycin (SPM), an erythromycin derivative (EM900, in which anti-bacterial activity has been eliminated), and clarithromycin (CAM), by analyzing their ability to inhibit MPO release in neutrophils from mice and humans. When each candidate was injected into mice infected with a lethal dose of A/H1N1 influenza virus (PR-8), LM-A3 produced the highest survival rate (80.9%). We found that LM-A3 induced beneficial effects on lung pathology and viral proliferation involved in the regulatory activity of MPO release, pro-inflammatory cytokines and interferon-α production in the lung. SPM and EM900 also induced positive survival effects in the infected mice, whereas CAM did not. We further found that these compounds inhibit virus proliferation in human pneumonia epithelial A549 cells in vitro. LM-A3 showed effective action against influenza A virus infection with high anti-viral activity in human host cells, indicating the possibility that LM-A3 is a prospective lead compound for the development of a drug for human influenza. The positive survival effect induced by EM900 suggests that pharmacological architectures between anti-bacterial and anti-influenza virus activities can be dissociated in macrolide derivatives. These observations provide valuable evidence for the potential development of novel macrolide derivatives that have strong anti-viral but no anti-bacterial activity.
Collapse
|
56
|
Bastidas S, Graw F, Smith MZ, Kuster H, Günthard HF, Oxenius A. CD8+T Cells Are Activated in an Antigen-Independent Manner in HIV-Infected Individuals. THE JOURNAL OF IMMUNOLOGY 2014; 192:1732-44. [DOI: 10.4049/jimmunol.1302027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
57
|
Direct, interferon-independent activation of the CXCL10 promoter by NF-κB and interferon regulatory factor 3 during hepatitis C virus infection. J Virol 2013; 88:1582-90. [PMID: 24257594 DOI: 10.1128/jvi.02007-13] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatitis C virus (HCV) infection of hepatocytes leads to transcriptional induction of the chemokine CXCL10, which is considered an interferon (IFN)-stimulated gene. However, we have recently shown that IFNs are not required for CXCL10 induction in hepatocytes during acute HCV infection. Since the CXCL10 promoter contains binding sites for several proinflammatory transcription factors, we investigated the contribution of these factors to CXCL10 transcriptional induction during HCV infection in vitro. Wild-type and mutant CXCL10 promoter-luciferase reporter constructs were used to identify critical sites of transcriptional regulation. The proximal IFN-stimulated response element (ISRE) and NF-κB binding sites positively regulated CXCL10 transcription during HCV infection as well as following exposure to poly(I·C) (a Toll-like receptor 3 [TLR3] stimulus) and 5' poly(U) HCV RNA (a retinoic acid-inducible gene I [RIG-I] stimulus) from two viral genotypes. Conversely, binding sites for AP-1 and CCAAT/enhancer-binding protein β (C/EBP-β) negatively regulated CXCL10 induction in response to TLR3 and RIG-I stimuli, while only C/EBP-β negatively regulated CXCL10 during HCV infection. We also demonstrated that interferon-regulatory factor 3 (IRF3) is transiently recruited to the proximal ISRE during HCV infection and localizes to the nucleus in HCV-infected primary human hepatocytes. Furthermore, IRF3 activated the CXCL10 promoter independently of type I or type III IFN signaling. The data indicate that sensing of HCV infection by RIG-I and TLR3 leads to direct recruitment of NF-κB and IRF3 to the CXCL10 promoter. Our study expands upon current knowledge regarding the mechanisms of CXCL10 induction in hepatocytes and lays the foundation for additional mechanistic studies that further elucidate the combinatorial and synergistic aspects of immune signaling pathways.
Collapse
|
58
|
Clark DN, Read RD, Mayhew V, Petersen SC, Argueta LB, Stutz LA, Till RE, Bergsten SM, Robinson BS, Baumann DG, Heap JC, Poole BD. Four Promoters of IRF5 Respond Distinctly to Stimuli and are Affected by Autoimmune-Risk Polymorphisms. Front Immunol 2013; 4:360. [PMID: 24223576 PMCID: PMC3819785 DOI: 10.3389/fimmu.2013.00360] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/23/2013] [Indexed: 01/18/2023] Open
Abstract
Introduction: Autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis affect millions of people worldwide. Interferon regulatory factor 5 (IRF5) contains polymorphisms associated with these autoimmune diseases. Two of these functional polymorphisms are found upstream of the IRF5 gene. rs2004640, which is a single nucleotide polymorphism and the CGGGG insertion/deletion (indel) were studied. IRF5 uses four different promoters for its four first exons: 1A, 1B, 1C, and 1D. Each promoter was analyzed, including functional differences due to the autoimmune-risk polymorphisms. Results: IRF5 promoters were analyzed using ChIP-Seq data (ENCODE database) and the FactorBook database to define transcription factor binding sites. To verify promoter activity, the promoters were cloned into luciferase plasmids. Each construct exhibited luciferase activity. Exons 1A and 1D contain putative PU.1 and NFkB binding sites. Imiquimod, a Toll-like receptor 7 (TLR7) ligand, was used to activate these transcription factors. IRF5 levels were doubled after imiquimod treatment (p < 0.001), with specific increases in the 1A promoter (2.2-fold, p = 0.03) and 1D promoter (2.8-fold, p = 0.03). A putative binding site for p53, which affects apoptosis, was found in the promoter for exon 1B. However, site-directed mutagenesis of the p53 site showed no effect in a reporter assay. Conclusion: The IRF5 exon 1B promoter has been characterized, and the responses of each IRF5 promoter to TLR7 stimulation have been determined. Changes in promoter activity and gene expression are likely due to specific and distinct transcription factors that bind to each promoter. Since high expression of IRF5 contributes to the development of autoimmune disease, understanding the source of increased IRF5 levels is key to understanding autoimmune etiology.
Collapse
Affiliation(s)
- Daniel N Clark
- Department of Microbiology and Molecular Biology, Brigham Young University , Provo, UT , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Tat engagement of p38 MAP kinase and IRF7 pathways leads to activation of interferon-stimulated genes in antigen-presenting cells. Blood 2013; 121:4090-100. [PMID: 23535064 DOI: 10.1182/blood-2012-10-461566] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As a result of its interaction with transcription factors, HIV type 1 (HIV-1) Tat can modulate the expression of both HIV and cellular genes. In antigen-presenting cells Tat induces the expression of a subset of interferon (IFN)-stimulated genes (ISGs) in the absence of IFNs. We investigated the genome-wide Tat association with promoters in immature dendritic cells and in monocyte-derived macrophages. Among others, Tat associated with the MAP2K6, MAP2K3, and IRF7 promoters that are functionally part of IL-1 and p38 mitogen-activated protein kinase (MAPK) signaling pathways. The association correlated with their increased gene expression, increased activation of p38 MAPK and of phosphorylated signal transducer and activator of transcription 1 (STAT1), and consequent induction of ISGs. Probing these pathways with RNA interference, pharmacological p38 MAPK inhibition, and in cell lines lacking STAT1s or the type I IFN receptor chain confirmed the role of MAPKKs and IRF7 in Tat-mediated modulation of ISGs and excluded the involvement of IFNs in this modulation. Tat interaction with the 2 MAPKK and IRF7 promoters in HIV-1-infected cells and the resulting persistent activation of ISGs, which include inflammatory cytokines and chemokines, can contribute to the increased immune activation that characterizes HIV infection.
Collapse
|
60
|
Expression of type I interferon-induced antiviral state and pro-apoptosis markers during experimental infection with low or high virulence bovine viral diarrhea virus in beef calves. Virus Res 2013; 173:260-9. [PMID: 23458997 DOI: 10.1016/j.virusres.2013.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/01/2013] [Accepted: 02/20/2013] [Indexed: 12/23/2022]
Abstract
The objective of this study was to compare the mRNA expression of host genes involved in type-I interferon-induced antiviral state (IFN-α, IFN-β, Mx-1, PKR, OAS-1 and ISG-15), and apoptosis (caspase-3, -8, and -9), after experimental infection of beef calves with low or high virulence noncytopathic (ncp) bovine viral diarrhea virus (BVDV) strains. Thirty BVDV-naïve, clinically normal calves were randomly assigned to three groups. Calves were intranasally inoculated with low (LV; n=10, strain SD-1) or high (HV; n=10, strain 1373) virulence ncp BVDV or BVDV-free cell culture medium (Control, n=10). Quantitative RT-PCR was used to determine the target gene expression in tracheo-bronchial lymph nodes and spleen 5 days after infection. Interferon-α and -β mRNA levels were up-regulated in tracheo-bronchial lymph nodes (P<0.05) in the HV group, but not in the LV group, compared with the control group. There was an up-regulation of type I interferon-induced genes in spleen and tracheo-bronchial lymph nodes of HV and LV groups, compared with the control group (P<0.01). mRNA levels of OAS-1 and ISG-15 were significantly higher in LV than HV calves (P<0.05). A significant up-regulation of caspase-8 and -9 was observed in tracheo-bronchial lymph nodes in the LV group (P=0.01), but not in the HV group. In conclusion, experimental infection with either high or low virulence BVDV strains induced a significant expression of the type I interferon-induced genes in beef calves. There was a differential expression of some interferon-induced genes (OAS-1 and ISG-15) and pro-apoptosis markers based on BVDV virulence and genotype.
Collapse
|
61
|
Brownell J, Polyak SJ. Molecular pathways: hepatitis C virus, CXCL10, and the inflammatory road to liver cancer. Clin Cancer Res 2013; 19:1347-52. [PMID: 23322900 DOI: 10.1158/1078-0432.ccr-12-0928] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An estimated 170 million people worldwide are chronically infected with the hepatitis C virus (HCV), which is characterized histologically by a persistent immune and inflammatory response that fails to clear HCV from hepatocytes. This response is recruited to the liver, in part, by the chemokine CXCL10, the serum and intrahepatic levels of which have been inversely linked to the outcome of interferon-based therapies for hepatitis C. Bystander tissue damage from this ineffective response is thought to lead to increased hepatocyte turnover and the development of fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). However, CXCL10 is traditionally viewed as an orchestrator of the angiostatic and antitumor immune response. In this review, we will explore this duality and the pathways by which CXCL10 is produced by hepatocytes during HCV infection, its effects on resident and infiltrating immune cells, and how deregulation of these cell populations within the liver may lead to chronic liver inflammation. We will also discuss potential host-directed therapies to slow or reverse HCV-induced inflammation that leads to fibrosis, cirrhosis, and HCCs.
Collapse
Affiliation(s)
- Jessica Brownell
- Pathobiology Program, Department of Global Health, University of Washington, Seattle, Washington 98104, USA
| | | |
Collapse
|
62
|
Wu W, Zhang W, Booth JL, Metcalf JP. Influenza A(H1N1)pdm09 virus suppresses RIG-I initiated innate antiviral responses in the human lung. PLoS One 2012; 7:e49856. [PMID: 23185463 PMCID: PMC3503992 DOI: 10.1371/journal.pone.0049856] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 10/15/2012] [Indexed: 12/31/2022] Open
Abstract
Influenza infection is a major cause of morbidity and mortality. Retinoic acid-inducible gene I (RIG-I) is believed to play an important role in the recognition of, and response to, influenza virus and other RNA viruses. Our study focuses on the hypothesis that pandemic H1N1/09 influenza virus alters the influenza-induced proinflammatory response and suppresses host antiviral activity. We first compared the innate response to a clinical isolate of influenza A(H1N1)pdm09 virus, OK/09, a clinical isolate of seasonal H3N2 virus, OK/06, and to a laboratory adapted seasonal H1N1 virus, PR8, using a unique human lung organ culture model. Exposure of human lung tissue to either pandemic or seasonal influenza virus resulted in infection and replication in alveolar epithelial cells. Pandemic virus induces a diminished RIG-I mRNA and antiviral cytokine response than seasonal virus in human lung. The suppression of antiviral response and RIG-I mRNA expression was confirmed at the protein level by ELISA and western blot. We performed a time course of RIG-I and interferon-β (IFN-β) mRNA induction by the two viruses. RIG-I and IFN-β induction by OK/09 was of lower amplitude and shorter duration than that caused by PR8. In contrast, the pandemic virus OK/09 caused similar induction of proinflammatory cytokines, IL-8 and IL-6, at both the transcriptional and translational level as PR8 in human lung. Differential antiviral responses did not appear to be due to a difference in cellular infectivity as immunohistochemistry showed that both viruses infected alveolar macrophages and epithelial cells. These findings show that influenza A(H1N1)pdm09 virus suppresses anti-viral immune responses in infected human lung through inhibition of viral-mediated induction of the pattern recognition receptor, RIG-I, though proinflammatory cytokine induction was unaltered. This immunosuppression of the host antiviral response by pandemic virus may have contributed to the more serious lung infections that occurred in the H1N1 pandemic of 2009.
Collapse
MESH Headings
- Antiviral Agents
- DEAD Box Protein 58
- DEAD-box RNA Helicases/administration & dosage
- DEAD-box RNA Helicases/metabolism
- Humans
- Immunity, Innate/drug effects
- Immunity, Innate/immunology
- Immunosuppression Therapy
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/metabolism
- Influenza, Human/immunology
- Influenza, Human/metabolism
- Influenza, Human/virology
- Interferon-beta/administration & dosage
- Interferon-beta/immunology
- Interleukin-6/immunology
- Interleukin-6/metabolism
- Interleukin-8/immunology
- Interleukin-8/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/virology
- Organ Culture Techniques
- Pandemics
- Receptors, Immunologic
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Wei Zhang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - J. Leland Booth
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jordan P. Metcalf
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
63
|
Balzarolo M, Karrich JJ, Engels S, Blom B, Medema JP, Wolkers MC. The transcriptional regulator NAB2 reveals a two-step induction of TRAIL in activated plasmacytoid DCs. Eur J Immunol 2012; 42:3019-27. [PMID: 22806638 DOI: 10.1002/eji.201242385] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/11/2012] [Accepted: 07/11/2012] [Indexed: 01/27/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are key players in antiviral immunity. In addition to massive type I interferon production, activated pDCs express the apoptosis-inducing molecule TRAIL, which enables them to clear infected cells that express the TRAIL receptors TRAIL-R1 and TRAIL-R2. In this study, we examined the molecular mechanisms that govern TRAIL expression in human pDCs. We identify NGFI-A-binding protein 2 (NAB2) as a novel transcriptional regulator that governs TRAIL induction in stimulated pDCs. We show with the pDC-like cell line CAL-1 that NAB2 is exclusively induced downstream of TLR7 and TLR9 signaling, and not upon type I IFN-R signaling. Furthermore, PI3K signaling is required for NAB2-mediated TRAIL expression. Finally, we show that TRAIL induction in CpG-activated human pDCs occurs through two independent signaling pathways: the first is initiated through TLR9 signaling upon recognition of nucleic acids, followed by type I IFN-R-mediated signaling. In conclusion, our data suggest that these two pathways are downstream of different activation signals, but act in concert to allow for full TRAIL expression in pDCs.
Collapse
Affiliation(s)
- Melania Balzarolo
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
64
|
Schmidt SV, Nino-Castro AC, Schultze JL. Regulatory dendritic cells: there is more than just immune activation. Front Immunol 2012; 3:274. [PMID: 22969767 PMCID: PMC3432880 DOI: 10.3389/fimmu.2012.00274] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/10/2012] [Indexed: 12/11/2022] Open
Abstract
The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34(+) stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies.
Collapse
Affiliation(s)
- Susanne V Schmidt
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn Bonn, Germany
| | | | | |
Collapse
|
65
|
Manches O, Fernandez MV, Plumas J, Chaperot L, Bhardwaj N. Activation of the noncanonical NF-κB pathway by HIV controls a dendritic cell immunoregulatory phenotype. Proc Natl Acad Sci U S A 2012; 109:14122-7. [PMID: 22879398 PMCID: PMC3435221 DOI: 10.1073/pnas.1204032109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
HIV modulates plasmacytoid dendritic cell (pDC) activation via Toll-like receptor 7, inducing type I IFN and inflammatory cytokines. Simultaneously, pDCs up-regulate the expression of indoleamine 2,3 dioxygenase (IDO), which is essential for the induction of regulatory T cells (Tregs), which function to down-modulate immune activation. Here we demonstrate the crucial importance of the noncanonical NF-κB pathway in the establishment of this immunoregulatory phenotype in pDCs. In response to HIV, the noncanonical NF-κB pathway directly induces IDO and involves the recruitment of TNF receptor-associated factor-3 to the Toll-like receptor/MyD88 complex, NF-κB-inducing kinase-dependent IκB kinase-α activation, and p52/RelB nuclear translocation. We also show that pDC-induced Tregs can inhibit conventional DC (cDC) maturation partially through cytotoxic T-lymphocyte antigen (CTLA)-4 engagement. Furthermore, CTLA-4 induces IDO in cDCs in a NF-κB-inducing kinase-dependent way. These CTLA-4-conditioned cDCs can in turn induce Treg differentiation in an IDO-dependent manner. Thus, the noncanonical NF-κB pathway is integral in controlling immunoregulatory phenotypes of both pDCs and cDCs.
Collapse
MESH Headings
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Gene Expression/immunology
- Gene Knockdown Techniques
- HIV Infections/immunology
- HIV Infections/metabolism
- Humans
- I-kappa B Kinase/genetics
- I-kappa B Kinase/immunology
- I-kappa B Kinase/metabolism
- Immunophenotyping
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Myeloid Differentiation Factor 88/immunology
- Myeloid Differentiation Factor 88/metabolism
- NF-kappa B p52 Subunit/immunology
- NF-kappa B p52 Subunit/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/immunology
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/virology
- TNF Receptor-Associated Factor 3/immunology
- TNF Receptor-Associated Factor 3/metabolism
- NF-kappaB-Inducing Kinase
Collapse
Affiliation(s)
- Olivier Manches
- Cancer Institute, New York University Langone Medical Center, New York, NY 10016
| | | | - Joel Plumas
- Immunologie et Immunotherapie des Cancers, U823, Institut National de la Santé et de la Recherche Médicale, 38700 La Tronche, France
- Université Joseph Fourier, 38000 Grenoble, France; and
- Laboratoire R&D, Etablissement Français du sang Rhône-Alpes, 38700 La Tronche, France
| | - Laurence Chaperot
- Immunologie et Immunotherapie des Cancers, U823, Institut National de la Santé et de la Recherche Médicale, 38700 La Tronche, France
- Université Joseph Fourier, 38000 Grenoble, France; and
- Laboratoire R&D, Etablissement Français du sang Rhône-Alpes, 38700 La Tronche, France
| | - Nina Bhardwaj
- Cancer Institute, New York University Langone Medical Center, New York, NY 10016
| |
Collapse
|
66
|
Lo CC, Schwartz JA, Johnson DJ, Yu M, Aidarus N, Mujib S, Benko E, Hyrcza M, Kovacs C, Ostrowski MA. HIV delays IFN-α production from human plasmacytoid dendritic cells and is associated with SYK phosphorylation. PLoS One 2012; 7:e37052. [PMID: 22693567 PMCID: PMC3365039 DOI: 10.1371/journal.pone.0037052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 04/16/2012] [Indexed: 12/12/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are the major producers of type I interferons (IFNs) in humans and rapidly produce IFN-α in response to virus exposure. Although HIV infection is associated with pDC activation, it is unclear why the innate immune response is unable to effectively control viral replication. We systematically compared the effect of HIV, Influenza, Sendai, and HSV-2 at similar target cell multiplicity of infection (M.O.I.) on human pDC function. We found that Influenza, Sendai, HSV-2 and imiquimod are able to rapidly induce IFN-α production within 4 hours to maximal levels, whereas HIV had a delayed induction that was maximal only after 24 hours. In addition, maximal IFN-α induction by HIV was at least 10 fold less than that of the other viruses in the panel. HIV also induced less TNF-α and MIP-1β but similar levels of IP-10 compared to other viruses, which was also mirrored by delayed upregulation of pDC activation markers CD83 and CD86. BDCA-2 has been identified as an inhibitory receptor on pDC, signaling through a pathway that involves SYK phosphorylation. We find that compared to Influenza, HIV induces the activation of the SYK pathway. Thus, HIV delays pDC IFN-α production and pDC activation via SYK phosphorylation, allowing establishment of viral populations.
Collapse
Affiliation(s)
- Calvin C. Lo
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jordan A. Schwartz
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Dylan J. Johnson
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Monica Yu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nasra Aidarus
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shariq Mujib
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erika Benko
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Martin Hyrcza
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Colin Kovacs
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Mario A. Ostrowski
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
67
|
Pauls E, Shpiro N, Peggie M, Young ER, Sorcek RJ, Tan L, Choi HG, Cohen P. Essential role for IKKβ in production of type 1 interferons by plasmacytoid dendritic cells. J Biol Chem 2012; 287:19216-28. [PMID: 22511786 DOI: 10.1074/jbc.m112.345405] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are characterized by their ability to produce high levels of type 1 interferons in response to ligands that activate TLR7 and TLR9, but the signaling pathways required for IFN production are incompletely understood. Here we exploit the human pDC cell line Gen2.2 and improved pharmacological inhibitors of protein kinases to address this issue. We demonstrate that ligands that activate TLR7 and TLR9 require the TAK1-IKKβ signaling pathway to induce the production of IFNβ via a pathway that is independent of the degradation of IκBα. We also show that IKKβ activity, as well as the subsequent IFNβ-stimulated activation of the JAK-STAT1/2 signaling pathway, are essential for the production of IFNα by TLR9 ligands. We further show that TLR7 ligands CL097 and R848 fail to produce significant amounts of IFNα because the activation of IKKβ is not sustained for a sufficient length of time. The TLR7/9-stimulated production of type 1 IFNs is inhibited by much lower concentrations of IKKβ inhibitors than those needed to suppress the production of NFκB-dependent proinflammatory cytokines, such as IL-6, suggesting that drugs that inhibit IKKβ may have a potential for the treatment of forms of lupus that are driven by self-RNA and self-DNA-induced activation of TLR7 and TLR9, respectively.
Collapse
Affiliation(s)
- Eduardo Pauls
- MRC Protein Phosphorylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Scotland DD1 5EH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Virus-activated interferon regulatory factor 7 upregulates expression of the interferon-regulated BST2 gene independently of interferon signaling. J Virol 2012; 86:3513-27. [PMID: 22301143 DOI: 10.1128/jvi.06971-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BST-2/tetherin is an interferon (IFN)-inducible host restriction factor that inhibits the release of many enveloped viruses and functions as a negative-feedback regulator of IFN production by plasmacytoid dendritic cells. Currently, mechanisms underlying BST2 transcriptional regulation by type I IFN remain largely unknown. Here, we demonstrate that the BST2 promoter is a secondary target of the IFN cascade and show that a single IRF binding site is sufficient to render this promoter responsive to IFN-α. Interestingly, expression of IRF-1 or virus-activated forms of IRF-3 and IRF-7 stimulated the BST2 promoter even under conditions where type I IFN signaling was inhibited. Indeed, vesicular stomatitis virus could directly upregulate BST-2 during infection of mouse embryonic fibroblasts through a process that required IRF-7 but was independent from the type I IFN cascade; however, in order to achieve optimal BST-2 induction, the type I IFN cascade needed to be engaged through activation of IRF-3. Furthermore, using human peripheral blood mononuclear cells, we show that BST-2 upregulation is part of an early intrinsic immune response since TLR8 and TLR3 agonists, known to trigger pathways that mediate activation of IRF proteins, could upregulate BST-2 prior to engagement of the type I IFN pathway. Collectively, our findings reveal that BST2 is activated by the same signals that trigger type I IFN production, outlining a regulatory mechanism ensuring that production of type I IFN and expression of a host restriction factor involved in the IFN negative-feedback loop are closely coordinated.
Collapse
|
69
|
Rossetti M, Cavarelli M, Gregori S, Scarlatti G. HIV-Derived Vectors for Gene Therapy Targeting Dendritic Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:239-61. [DOI: 10.1007/978-1-4614-4433-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
70
|
LIESKOVSKÁ J, KOPECKÝ J. Tick saliva suppresses IFN signalling in dendritic cells upon Borrelia afzelii infection. Parasite Immunol 2011; 34:32-9. [DOI: 10.1111/j.1365-3024.2011.01345.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
71
|
Hepatitis C virus fails to activate NF-κB signaling in plasmacytoid dendritic cells. J Virol 2011; 86:1090-6. [PMID: 22090103 DOI: 10.1128/jvi.05444-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) respond to viral infection by production of alpha interferon (IFN-α), proinflammatory cytokines, and cell differentiation. The elimination of hepatitis C virus (HCV) in more than 50% of chronically infected patients by treatment with IFN-α suggests that pDCs can play an important role in the control of HCV infection. pDCs exposed to HCV-infected hepatoma cells, in contrast to cell-free HCV virions, produce large amounts of IFN-α. To further investigate the molecular mechanism of HCV sensing, we studied whether exposure of pDCs to HCV-infected hepatoma cells activates, in parallel to interferon regulatory factor 7 (IRF7)-mediated production of IFN-α, nuclear factor kappa B (NF-κB)-dependent pDC responses, such as expression of the differentiation markers CD40, CCR7, CD86, and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and secretion of the proinflammatory cytokines TNF-α and interleukin 6 (IL-6). We demonstrate that exposure of pDCs to HCV-infected hepatoma cells surprisingly did not induce phosphorylation of NF-κB or cell surface expression of CD40, CCR7, CD86, or TRAIL or secretion of TNF-α and IL-6. In contrast, CpG-A and CpG-B induced production of TNF-α and IL-6 in pDCs exposed to the HCV-infected hepatoma cells, showing that cell-associated virus did not actively inhibit Toll-like receptor (TLR)-mediated NF-κB phosphorylation. Our results suggest that cell-associated HCV signals in pDCs via an endocytosis-dependent mechanism and IRF7 but not via the NF-κB pathway. In spite of IFN-α induction, cell-associated HCV does not induce a full functional response of pDCs. These findings contribute to the understanding of evasion of immune responses by HCV.
Collapse
|
72
|
Abstract
Foamy viruses (FV) are nonpathogenic retroviruses that have cospeciated with primates for millions of years. FV can be transmitted through severe bites from monkeys to humans. Viral loads remain generally low in infected humans, and no secondary transmission has been reported. Very little is known about the ability of FV to trigger an innate immune response in human cells. A few previous reports suggested that FV do not induce type I interferon (IFN) in nonhematopoietic cells. Here, we examined how human hematopoietic cells sense FV particles and FV-infected cells. We show that peripheral blood mononuclear cells (PBMCs), plasmacytoid dendritic cells (pDCs), and the pDC-like cell line Gen2.2 detect FV, produce high levels of type I IFN, and express the IFN-stimulated gene MxA. Fewer than 20 FV-infected cells are sufficient to trigger an IFN response. Both prototypic and primary viruses stimulated IFN release. Donor cells expressing a replication-defective virus, carrying a mutated reverse transcriptase, induced IFN production by target cells as potently as wild-type virus. In contrast, an FV strain with env deleted, which does not produce viral particles, was inactive. IFN production was blocked by an inhibitor of endosomal acidification (bafilomycin A1) and by an endosomal Toll-like receptor (TLR) antagonist (A151). Silencing experiments in Gen2.2 further demonstrated that TLR7 is involved in FV recognition. Therefore, FV are potent inducers of type I IFN by pDCs and by PBMCs. This previously underestimated activation of the innate immune response may be involved in the control of viral replication in humans.
Collapse
|
73
|
Puig M, Tosh KW, Schramm LM, Grajkowska LT, Kirschman KD, Tami C, Beren J, Rabin RL, Verthelyi D. TLR9 and TLR7 agonists mediate distinct type I IFN responses in humans and nonhuman primates in vitro and in vivo. J Leukoc Biol 2011; 91:147-58. [DOI: 10.1189/jlb.0711371] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
74
|
Nickel T, Emslander I, Sisic Z, David R, Schmaderer C, Marx N, Schmidt-Trucksäss A, Hoster E, Halle M, Weis M, Hanssen H. Modulation of dendritic cells and toll-like receptors by marathon running. Eur J Appl Physiol 2011; 112:1699-708. [PMID: 21881949 DOI: 10.1007/s00421-011-2140-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 08/18/2011] [Indexed: 12/11/2022]
Abstract
The focus of this study was to assess exercise-induced alterations of circulating dendritic cell (DC) subpopulations and toll-like receptor (TLR) expression after marathon running. Blood sampling was performed in 15 obese non-elite (ONE), 16 lean non-elite (LNE) and 16 lean elite (LE) marathon runners pre- and post-marathon as well as 24 h after the race. Circulating DC-fractions were measured by flow-cytometry analyzing myeloid DCs (BDCA-1+) and plasmacytoid DCs (BDCA-2+). We further analyzed the (TLR) -2/-4/-7 in peripheral blood mononuclear cells (rt-PCR/Western Blot) and the cytokines CRP, IL-6, IL-10, TNF-α and oxLDL by ELISA. After the marathon, BDCA-1 increased significantly in all groups [LE (pre/post): 0.35/0.47%; LNE: 0.26/0.50% and ONE: 0.30/0.49%; all p < 0.05]. In contrast, we found a significant decrease for BDCA-2 directly after the marathon (LE: 0.09/0.01%; LNE: 0.12/0.03% and ONE: 0.10/0.02%; all p < 0.05). Levels of TLR-7 mRNA decreased in all groups post-marathon (LE 44%, LNE 67% and ONE 52%; all p < 0.01), with a consecutive protein reduction (LE 31%, LNE 52%, ONE 42%; all p < 0.05) 24 h later. IL-6 and IL-10 levels increased immediately after the run, whereas increases of TNF-α and CRP-levels were seen after 24 h. oxLDL levels remained unchanged post-marathon. In our study population, we did not find any relevant differences regarding training level or body weight. Prolonged endurance exercise induces both pro- and anti-inflammatory cytokines. Anti-inflammatory cytokines, such as IL-10, may help to prevent excessive oxidative stress. Marathon running is associated with alterations of DC subsets and TLR-expression independent of training level or body weight. Myeloid and plasmacytoid DCs are differently affected by the excessive physical stress. Immunomodulatory mechanisms seem to play a key role in the response and adaptation to acute excessive exercise.
Collapse
Affiliation(s)
- Thomas Nickel
- Medizinische Klinik und Poliklinik 1, Campus Grosshadern, Ludwig-Maximilians-Universität München, Marchioninistr 15, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Antigen-dependent and -independent mechanisms of T and B cell hyperactivation during chronic HIV-1 infection. J Virol 2011; 85:12102-13. [PMID: 21849433 DOI: 10.1128/jvi.05607-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Continuous loss of CD4(+) T lymphocytes and systemic immune activation are hallmarks of untreated chronic HIV-1 infection. Chronic immune activation during HIV-1 infection is characterized by increased expression of activation markers on T cells, elevated levels of proinflammatory cytokines, and B cell hyperactivation together with hypergammaglobulinemia. Importantly, hyperactivation of T cells is one of the best predictive markers for progression toward AIDS, and it is closely linked to CD4(+) T cell depletion and sustained viral replication. Aberrant activation of T cells is observed mainly for memory CD4(+) and CD8(+) T cells and is documented, in addition to increased expression of surface activation markers, by increased cell cycling and apoptosis. Notably, the majority of these activated T cells are neither HIV specific nor HIV infected, and the antigen specificities of hyperactivated T cells are largely unknown, as are the exact mechanisms driving their activation. B cells are also severely affected by HIV-1 infection, which is manifested by major changes in B cell subpopulations, B cell hyperactivation, and hypergammaglobulinemia. Similar to those of T cells, the mechanisms underlying this aberrant B cell activation remain largely unknown. In this review, we summarized current knowledge about proposed antigen-dependent and -independent mechanisms leading to lymphocyte hyperactivation in the context of HIV-1 infection.
Collapse
|
76
|
Abstract
PURPOSE OF REVIEW The recent pandemic of a novel H1N1 influenza virus has stressed the importance of effective approaches to prevent viral infection. The innate immune system is our first line of defense against invading viruses. This review aims to give a brief summary of recent findings on the response of the innate immune system to influenza virus. RECENT FINDINGS Three families of pattern recognition receptors, toll-like receptors (TLRs), retinoic acid-inducible gene 1 protein like helicases (RLRs) and nucleotide-binding domain and leucine-rich-repeat-containing proteins (NLRs), are involved in recognition of influenza virus and they cooperatively operate to respond to the virus in cell culture or mouse models. Influenza virus mainly induces two types of innate immune cytokine responses: a proinflammatory response and an antiviral response. Recently, the NLRP3 inflammasome has proved to be an essential component in the host defense against influenza infection. The mitochondrion, traditionally recognized for its key role in respiration, metabolism and apoptosis, is becoming recognized as an important organelle for regulation of innate immune responses to influenza virus. SUMMARY The NLRP3 inflammasome is an essential component in the host defense against influenza infection. Further investigations are required to elucidate whether NLRP3 is associated with the adaptive response and to identify the components of influenza virus that activate this important mediator. The role of mitochondria as a potential central platform of innate response is becoming appreciated.
Collapse
|
77
|
Interferon regulatory transcription factor 3 protects mice from uterine horn pathology during Chlamydia muridarum genital infection. Infect Immun 2011; 79:3922-33. [PMID: 21788382 DOI: 10.1128/iai.00140-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mice with the type I interferon (IFN) receptor gene knocked out (IFNAR KO mice) or deficient for alpha/beta IFN (IFN-α/β) signaling clear chlamydial infection earlier than control mice and develop less oviduct pathology. Initiation of host IFN-β transcription during an in vitro chlamydial infection requires interferon regulatory transcription factor 3 (IRF3). The goal of the present study was to characterize the influence of IRF3 on chlamydial genital infection and its relationship to IFN-β expression in the mouse model. IRF3 KO mice were able to resolve infection as well as control mice, overcoming increased chlamydial colonization and tissue burden early during infection. As previously observed for IFNAR KO mice, IRF3 KO mice generated a potent antigen-specific T cell response. However, in contrast to IFNAR KO mice, IRF3 KO mice exhibited unusually severe dilatation and pathology in the uterine horns but normal oviduct pathology after infection. Although IFN-β expression in vivo was dependent on the presence of IRF3 early in infection (before day 4), the IFN-independent function of IRF3 was likely driving this phenotype. Specifically, early during infection, the number of apoptotic cells and the number of inflammatory cells were significantly less in uterine horns from IRF3 KO mice than in those from control mice, despite an increased chlamydial burden. To delineate the effects of IFN-β versus IRF3, neutralizing IFN-β antibody was administered to wild-type (WT) mice during chlamydial infection. IFN-β depletion in WT mice mimicked that in IFNΑR KO mice but not that in IRF3 KO mice with respect to both chlamydial clearance and reduced oviduct pathology. These data suggest that IRF3 has a role in protection from uterine horn pathology that is independent of its function in IFN-β expression.
Collapse
|
78
|
Analysis of the cumulative changes in Graves’ disease thyroid glands points to IFN signature, plasmacytoid DCs and alternatively activated macrophages as chronicity determining factors. J Autoimmun 2011; 36:189-200. [DOI: 10.1016/j.jaut.2011.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 12/21/2022]
|
79
|
Human immunodeficiency virus type 1 modified to package Simian immunodeficiency virus Vpx efficiently infects macrophages and dendritic cells. J Virol 2011; 85:6263-74. [PMID: 21507971 DOI: 10.1128/jvi.00346-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The lentiviral accessory protein Vpx is thought to facilitate the infection of macrophages and dendritic cells by counteracting an unidentified host restriction factor. Although human immunodeficiency virus type 1 (HIV-1) does not encode Vpx, the accessory protein can be provided to monocyte-derived macrophages (MDM) and monocyte-derived dendritic cells (MDDC) in virus-like particles, dramatically enhancing their susceptibility to HIV-1. Vpx and the related accessory protein Vpr are packaged into virions through a virus-specific interaction with the p6 carboxy-terminal domain of Gag. We localized the minimal Vpx packaging motif of simian immunodeficiency virus SIVmac(239) p6 to a 10-amino-acid motif and introduced this sequence into an infectious HIV-1 provirus. The chimeric virus packaged Vpx that was provided in trans and was substantially more infectious on MDDC and MDM than the wild-type virus. We further modified the virus by introducing the Vpx coding sequence in place of nef. The resulting virus produced Vpx and replicated efficiently in MDDC and MDM. The virus also induced a potent type I interferon response in MDDC. In a coculture system, the Vpx-containing HIV-1 was more efficiently transmitted from MDDC to T cells. These findings suggest that in vivo, Vpx may facilitate transmission of the virus from dendritic cells to T cells. In addition, the chimeric virus could be used to design dendritic cell vaccines that induce an enhanced innate immune response. This approach could also be useful in the design of lentiviral vectors that transduce these relatively resistant cells.
Collapse
|
80
|
Abstract
Interferon regulatory factor 7 (IRF7) was originally identified in the context of Epstein-Barr virus (EBV) infection, and has since emerged as the crucial regulator of type I interferons (IFNs) against pathogenic infections, which activate IRF7 by triggering signaling cascades from pathogen recognition receptors (PRRs) that recognize pathogenic nucleic acids. Moreover, IRF7 is a multifunctional transcription factor, underscored by the fact that it is associated with EBV latency, in which IRF7 is induced as well as activated by the EBV principal oncoprotein latent membrane protein-1 (LMP1). Aberrant production of type I IFNs is associated with many types of diseases such as cancers and autoimmune disorders. Thus, tight regulation of IRF7 expression and activity is imperative in dictating appropriate type I IFN production for normal IFN-mediated physiological functions. Posttranslational modifications have important roles in regulation of IRF7 activity, exemplified by phosphorylation, which is indicative of its activation. Furthermore, mounting evidence has shed light on the importance of regulatory ubiquitination in activation of IRF7. Albeit these exciting findings have been made in the past decade since its discovery, many questions related to IRF7 remain to be addressed.
Collapse
|
81
|
Abstract
Cell-free HIV-1 virions are poor stimulators of type I interferon (IFN) production. We examined here how HIV-infected cells are recognized by plasmacytoid dendritic cells (pDCs) and by other cells. We show that infected lymphocytes are more potent inducers of IFN than virions. There are target cell-type differences in the recognition of infected lymphocytes. In primary pDCs and pDC-like cells, recognition occurs in large part through TLR7, as demonstrated by the use of inhibitors and by TLR7 silencing. Donor cells expressing replication-defective viruses, carrying mutated reverse transcriptase, integrase or nucleocapsid proteins induced IFN production by target cells as potently as wild-type virus. In contrast, Env-deleted or fusion defective HIV-1 mutants were less efficient, suggesting that in addition to TLR7, cytoplasmic cellular sensors may also mediate sensing of infected cells. Furthermore, in a model of TLR7-negative cells, we demonstrate that the IRF3 pathway, through a process requiring access of incoming viral material to the cytoplasm, allows sensing of HIV-infected lymphocytes. Therefore, detection of HIV-infected lymphocytes occurs through both endosomal and cytoplasmic pathways. Characterization of the mechanisms of innate recognition of HIV-infected cells allows a better understanding of the pathogenic and exacerbated immunologic events associated with HIV infection. AIDS is characterized by a hyperactivation of the immune system. Innate and inflammatory responses, associated with an exacerbated production of cytokines like type I interferons (IFN) and of chemokines, deregulate the normal functioning of T lymphocytes and other cells. The events that trigger this inappropriate activation remain poorly understood. Plasmacytoid dendritic cells (pDCs) normally produce IFN when they encounter viruses. Here we examined how HIV-infected cells are recognized by pDCs, as well as by other immune and non-immune cells. We show that viruses transmitted via cell-to-cell contacts are more potent inducers of IFN than cell-free viral particles. In pDCs, recognition occurs in large part through TLR7, a cellular receptor detecting viral genetic materials after capture in intracellular vesicles. Donor cells expressing replication-defective viruses are also able to trigger IFN production by target cells. We further show that in TLR7-negative, non-hematopoietic cells an additional cytoplasmic pathway allows sensing of HIV-infected lymphocytes. Therefore, detection of HIV-infected lymphocytes occurs at different intracellular localizations, and does not require ongoing viral replication. Characterization of the mechanisms of innate HIV-1 recognition allows a better understanding of the pathology of HIV infection, and has consequences for the design of vaccine strategies.
Collapse
|
82
|
Rossetti M, Gregori S, Hauben E, Brown BD, Sergi LS, Naldini L, Roncarolo MG. HIV-1-derived lentiviral vectors directly activate plasmacytoid dendritic cells, which in turn induce the maturation of myeloid dendritic cells. Hum Gene Ther 2011; 22:177-88. [PMID: 20825284 DOI: 10.1089/hum.2010.085] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lentiviral vectors (LV) can induce type I interferon (IFN I) production from murine plasmacytoid dendritic cells (pDC), but not myeloid (my)DC. Here, we investigated whether this mechanism is conserved in human DC. MyDC and pDC were isolated from peripheral blood and transduced with increasing vector concentrations. Compared with in vitro differentiated monocyte-derived DC, the transduction efficiency of peripheral blood DC was low (ranging from <1% to 45%), with pDC showing the lowest susceptibility to LV transduction. Phenotype and function of myDC were not directly modified by LV transduction; by contrast, pDC produced significant levels of IFN-α and tumor necrosis factor-α. pDC activation was dependent on functional vector particles and was mediated by Toll-like receptor 7/9 triggering. Coculture of myDC with pDC in the presence of LV resulted in myDC activation, with CD86 up-regulation and interleukin-6 secretion. These findings demonstrate that the induction of transgene-specific immunity is triggered by an innate immune response with pDC activation and consequent myDC maturation, a response that closely resembles the one induced by functional viruses. This information is important to design strategies aimed at using LV in humans for gene therapy, where adverse immune responses must be avoided, or for cancer immunotherapy, where inducing immunity is the goal.
Collapse
Affiliation(s)
- Maura Rossetti
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET) , Department of Regenerative Medicine, Stem Cells and Gene Therapy, Via Olgettina 58, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
83
|
Tajuddin T, Ryan EJ, Norris S, Hegarty JE, O'Farrelly C. Interferon-α suppressed granulocyte colony stimulating factor production is reversed by CL097, a TLR7/8 agonist. J Gastroenterol Hepatol 2010; 25:1883-90. [PMID: 21092001 DOI: 10.1111/j.1440-1746.2010.06281.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIM Neutropenia, a major side-effect of interferon-α (IFN-α) therapy can be effectively treated by the recombinant form of granulocyte colony stimulating factor (G-CSF), an important growth factor for neutrophils. We hypothesized that IFN-α might suppress G-CSF production by peripheral blood mononuclear cells (PBMCs), contributing to the development of neutropenia, and that a toll-like receptor (TLR) agonist might overcome this suppression. METHODS Fifty-five patients who were receiving IFN-α/ribavirin combination therapy for chronic hepatitis C virus (HCV) infection were recruited. Absolute neutrophil counts (ANC), monocyte counts and treatment outcome data were recorded. G-CSF levels in the supernatants of PBMCs isolated from the patients and healthy controls were assessed by enzyme-linked immunosorbent assay following 18 h of culture in the absence or presence of IFN- α or the TLR7/8 agonist, CL097. RESULTS Therapeutic IFN-α caused a significant reduction in neutrophil counts in all patients, with 15 patients requiring therapeutic G-CSF. The reduction in ANC over the course of IFN-α treatment was paralleled by a decrease in the ability of PBMCs to produce G-CSF. In vitro G-CSF production by PBMCs was suppressed in the presence of IFN-α; however, co-incubation with a TLR7/8 agonist significantly enhanced G-CSF secretion by cells obtained both from HCV patients and healthy controls. CONCLUSIONS Suppressed G-CSF production in the presence of IFN-α may contribute to IFN-α-induced neutropenia. However, a TLR7/8 agonist elicits G-CSF secretion even in the presence of IFN-α, suggesting a possible therapeutic role for TLR agonists in treatment of IFN-α-induced neutropenia.
Collapse
Affiliation(s)
- Tariq Tajuddin
- National Liver Transplantation Unit, St. Vincent's University Hospital, Dublin, Ireland
| | | | | | | | | |
Collapse
|
84
|
Manuse MJ, Briggs CM, Parks GD. Replication-independent activation of human plasmacytoid dendritic cells by the paramyxovirus SV5 Requires TLR7 and autophagy pathways. Virology 2010; 405:383-9. [PMID: 20605567 DOI: 10.1016/j.virol.2010.06.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 05/25/2010] [Accepted: 06/08/2010] [Indexed: 01/28/2023]
Abstract
The paramyxovirus Simian Virus 5 (SV5) is a poor inducer of interferon (IFN) secretion in all cell types tested so far, including primary epithelial cells and primary human myeloid dendritic cells. SV5 is hypothesized to limit induction of antiviral responses through control of viral gene expression and production of the V protein antagonist. Plasmacytoid dendritic cells (pDCs) are known to uniquely express toll-like receptor (TLR)-7 and are a main producer of IFN-alpha among peripheral blood mononuclear cells in response to many viruses. Here, we tested whether SV5 would remain a poor inducer of IFN in primary human pDCs. The efficiency of SV5 infection of pDCs could be increased by an increasing multiplicity of infection. pDCs infected by both live and UV-inactivated SV5 induced large amounts of IFN-alpha secretion and resulted in upregulation of maturation markers CD80 and CD86. However, IL-6 secretion was not induced by SV5 infection. When TLR7 signaling was inhibited, SV5 induced less IFN secretion and CD80 expression, and there was a corresponding increase in number of infected cells. Similar effects were seen with inhibitors of cellular autophagy pathways, suggesting that the SV5 activation of pDC requires access to the cytoplasm and autophagic sampling of cytoplasmic contents. These results have implications for control of SV5 infections in vivo and for development of SV5 as a vaccine vector.
Collapse
Affiliation(s)
- Mary J Manuse
- Department of Microbiology and Immunology, School of Medicine, Wake Forest University, Winston-Salem, NC 27157-1064, USA
| | | | | |
Collapse
|
85
|
Deal EM, Jaimes MC, Crawford SE, Estes MK, Greenberg HB. Rotavirus structural proteins and dsRNA are required for the human primary plasmacytoid dendritic cell IFNalpha response. PLoS Pathog 2010; 6:e1000931. [PMID: 20532161 PMCID: PMC2880586 DOI: 10.1371/journal.ppat.1000931] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 04/28/2010] [Indexed: 12/29/2022] Open
Abstract
Rotaviruses are the leading cause of severe dehydrating diarrhea in children worldwide. Rotavirus-induced immune responses, especially the T and B cell responses, have been extensively characterized; however, little is known about innate immune mechanisms involved in the control of rotavirus infection. Although increased levels of systemic type I interferon (IFNalpha and beta) correlate with accelerated resolution of rotavirus disease, multiple rotavirus strains, including rhesus rotavirus (RRV), have been demonstrated to antagonize type I IFN production in a variety of epithelial and fibroblast cell types through several mechanisms, including degradation of multiple interferon regulatory factors by a viral nonstructural protein. This report demonstrates that stimulation of highly purified primary human peripheral plasmacytoid dendritic cells (pDCs) with either live or inactivated RRV induces substantial IFNalpha production by a subset of pDCs in which RRV does not replicate. Characterization of pDC responses to viral stimulus by flow cytometry and Luminex revealed that RRV replicates in a small subset of human primary pDCs and, in this RRV-permissive small subset, IFNalpha production is diminished. pDC activation and maturation were observed independently of viral replication and were enhanced in cells in which virus replicates. Production of IFNalpha by pDCs following RRV exposure required viral dsRNA and surface proteins, but neither viral replication nor activation by trypsin cleavage of VP4. These results demonstrate that a minor subset of purified primary human peripheral pDCs are permissive to RRV infection, and that pDCs retain functionality following RRV stimulus. Additionally, this study demonstrates trypsin-independent infection of primary peripheral cells by rotavirus, which may allow for the establishment of extraintestinal viremia and antigenemia. Importantly, these data provide the first evidence of IFNalpha induction in primary human pDCs by a dsRNA virus, while simultaneously demonstrating impaired IFNalpha production in primary human cells in which RRV replicates. Rotavirus infection of primary human pDCs provides a powerful experimental system for the study of mechanisms underlying pDC-mediated innate immunity to viral infection and reveals a potentially novel dsRNA-dependent pathway of IFNalpha induction.
Collapse
Affiliation(s)
- Emily M. Deal
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Maria C. Jaimes
- BD Biosciences, San Jose, California, United States of America
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Harry B. Greenberg
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Veterans Affairs (VA) Palo Alto Health Care System, Palo Alto, California, United States of America
| |
Collapse
|
86
|
Lenert P. Nucleic acid sensing receptors in systemic lupus erythematosus: development of novel DNA- and/or RNA-like analogues for treating lupus. Clin Exp Immunol 2010; 161:208-22. [PMID: 20456414 DOI: 10.1111/j.1365-2249.2010.04176.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Double-stranded (ds) DNA, DNA- or RNA-associated nucleoproteins are the primary autoimmune targets in SLE, yet their relative inability to trigger similar autoimmune responses in experimental animals has fascinated scientists for decades. While many cellular proteins bind non-specifically negatively charged nucleic acids, it was discovered only recently that several intracellular proteins are involved directly in innate recognition of exogenous DNA or RNA, or cytosol-residing DNA or RNA viruses. Thus, endosomal Toll-like receptors (TLR) mediate responses to double-stranded RNA (TLR-3), single-stranded RNA (TLR-7/8) or unmethylated bacterial cytosine (phosphodiester) guanine (CpG)-DNA (TLR-9), while DNA-dependent activator of IRFs/Z-DNA binding protein 1 (DAI/ZBP1), haematopoietic IFN-inducible nuclear protein-200 (p202), absent in melanoma 2 (AIM2), RNA polymerase III, retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) mediate responses to cytosolic dsDNA or dsRNA, respectively. TLR-induced responses are more robust than those induced by cytosolic DNA- or RNA- sensors, the later usually being limited to interferon regulatory factor 3 (IRF3)-dependent type I interferon (IFN) induction and nuclear factor (NF)-kappaB activation. Interestingly, AIM2 is not capable of inducing type I IFN, but rather plays a role in caspase I activation. DNA- or RNA-like synthetic inhibitory oligonucleotides (INH-ODN) have been developed that antagonize TLR-7- and/or TLR-9-induced activation in autoimmune B cells and in type I IFN-producing dendritic cells at low nanomolar concentrations. It is not known whether these INH-ODNs have any agonistic or antagonistic effects on cytosolic DNA or RNA sensors. While this remains to be determined in the future, in vivo studies have already shown their potential for preventing spontaneous lupus in various animal models of lupus. Several groups are exploring the possibility of translating these INH-ODNs into human therapeutics for treating SLE and bacterial DNA-induced sepsis.
Collapse
Affiliation(s)
- P Lenert
- Department of Internal Medicine, Division of Rheumatology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
87
|
Aspord C, Charles J, Leccia MT, Laurin D, Richard MJ, Chaperot L, Plumas J. A novel cancer vaccine strategy based on HLA-A*0201 matched allogeneic plasmacytoid dendritic cells. PLoS One 2010; 5:e10458. [PMID: 20454561 PMCID: PMC2864288 DOI: 10.1371/journal.pone.0010458] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 04/07/2010] [Indexed: 11/26/2022] Open
Abstract
Background The development of effective cancer vaccines still remains a challenge. Despite the crucial role of plasmacytoid dendritic cells (pDCs) in anti-tumor responses, their therapeutic potential has not yet been worked out. We explored the relevance of HLA-A*0201 matched allogeneic pDCs as vectors for immunotherapy. Methods and Findings Stimulation of PBMC from HLA-A*0201+ donors by HLA-A*0201 matched allogeneic pDCs pulsed with tumor-derived peptides triggered high levels of antigen-specific and functional cytotoxic T cell responses (up to 98% tetramer+ CD8 T cells). The pDC vaccine demonstrated strong anti-tumor therapeutic in vivo efficacy as shown by the inhibition of tumor growth in a humanized mouse model. It also elicited highly functional tumor-specific T cells ex-vivo from PBMC and TIL of stage I-IV melanoma patients. Responses against MelA, GP100, tyrosinase and MAGE-3 antigens reached tetramer levels up to 62%, 24%, 85% and 4.3% respectively. pDC vaccine-primed T cells specifically killed patients' own autologous melanoma tumor cells. This semi-allogeneic pDC vaccine was more effective than conventional myeloid DC-based vaccines. Furthermore, the pDC vaccine design endows it with a strong potential for clinical application in cancer treatment. Conclusions These findings highlight HLA-A*0201 matched allogeneic pDCs as potent inducers of tumor immunity and provide a promising immunotherapeutic strategy to fight cancer.
Collapse
Affiliation(s)
- Caroline Aspord
- Etablissement Français du Sang Rhone-Alpes, R&D Laboratory, La Tronche, France
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
- * E-mail: (CA); (JP)
| | - Julie Charles
- Etablissement Français du Sang Rhone-Alpes, R&D Laboratory, La Tronche, France
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
- Centre Hospitalier Universitaire Grenoble, Michallon Hospital, Dermatology, pole pluridisciplinaire de medecine, Grenoble, France
| | - Marie-Therese Leccia
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
- Centre Hospitalier Universitaire Grenoble, Michallon Hospital, Dermatology, pole pluridisciplinaire de medecine, Grenoble, France
| | - David Laurin
- Etablissement Français du Sang Rhone-Alpes, R&D Laboratory, La Tronche, France
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
| | - Marie-Jeanne Richard
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
- Centre Hospitalier Universitaire Grenoble, Michallon Hospital, Cancerology and Biotherapy, Grenoble, France
| | - Laurence Chaperot
- Etablissement Français du Sang Rhone-Alpes, R&D Laboratory, La Tronche, France
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
| | - Joel Plumas
- Etablissement Français du Sang Rhone-Alpes, R&D Laboratory, La Tronche, France
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
- * E-mail: (CA); (JP)
| |
Collapse
|
88
|
Schulte BM, Kramer M, Ansems M, Lanke KH, van Doremalen N, Piganelli JD, Bottino R, Trucco M, Galama JM, Adema GJ, van Kuppeveld FJ. Phagocytosis of enterovirus-infected pancreatic beta-cells triggers innate immune responses in human dendritic cells. Diabetes 2010; 59:1182-91. [PMID: 20071599 PMCID: PMC2857898 DOI: 10.2337/db09-1071] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Type 1 diabetes is a chronic endocrine disorder in which enteroviruses, such as coxsackie B viruses and echoviruses, are possible environmental factors that can trigger or accelerate disease. The development or acceleration of type 1 diabetes depends on the balance between autoreactive effector T-cells and regulatory T-cells. This balance is particularly influenced by dendritic cells (DCs). The goal of this study was to investigate the interaction between enterovirus-infected human pancreatic islets and human DCs. RESEARCH DESIGN AND METHODS In vitro phagocytosis of human or porcine primary islets or Min6 mouse insuloma cells by DCs was investigated by flow cytometry and confocal analysis. Subsequent innate DC responses were monitored by quantitative PCR and Western blotting of interferon-stimulated genes (ISGs). RESULTS In this study, we show that both mock- and coxsackievirus B3 (CVB3)-infected human and porcine pancreatic islets were efficiently phagocytosed by human monocyte-derived DCs. Phagocytosis of CVB3-infected, but not mock-infected, human and porcine islets resulted in induction of ISGs in DCs, including the retinoic acid-inducible gene (RIG)-I-like helicases (RLHs), RIG-I, and melanoma differentiation-associated gene 5 (Mda5). Studies with murine Min6 insuloma cells, which were also efficiently phagocytosed, revealed that increased ISG expression in DCs upon encountering CVB-infected cells resulted in an antiviral state that protected DCs from subsequent enterovirus infection. The observed innate antiviral responses depended on RNA within the phagocytosed cells, required endosomal acidification, and were type I interferon dependent. CONCLUSIONS Human DCs can phagocytose enterovirus-infected pancreatic cells and subsequently induce innate antiviral responses, such as induction of RLHs. These responses may have important consequences for immune homeostasis in vivo and may play a role in the etiology of type 1 diabetes.
Collapse
Affiliation(s)
- Barbara M. Schulte
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Matthijs Kramer
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Marleen Ansems
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Kjerstin H.W. Lanke
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Neeltje van Doremalen
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Jon D. Piganelli
- Department of Pediatrics, Diabetes Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rita Bottino
- Department of Pediatrics, Diabetes Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Massimo Trucco
- Department of Pediatrics, Diabetes Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jochem M.D. Galama
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Gosse J. Adema
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Frank J.M. van Kuppeveld
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- Corresponding author: Frank J.M. van Kuppeveld,
| |
Collapse
|
89
|
Abstract
Foreign nucleic acids, the signature of invading viruses and certain bacteria, are sensed intracellularly. The nucleic acid-specific Toll-like receptors (TLRs) detect and signal within endolysosomal compartments, triggering the induction of cytokines essential for the innate immune response. These cytokines include proinflammatory molecules produced mainly by macrophages and conventional dendritic cells, as well as type I interferons, which are produced in great quantities by plasmacytoid dendritic cells. The cellular and molecular pathways by which nucleic acids and TLRs meet within the endosome assure host protection yet also place the host at risk for the development of autoimmunity. Here, we review the latest findings on the intracellular TLRs, with special emphasis on ligand uptake, receptor trafficking, signaling, and regulation.
Collapse
|
90
|
Inability of plasmacytoid dendritic cells to directly lyse HIV-infected autologous CD4+ T cells despite induction of tumor necrosis factor-related apoptosis-inducing ligand. J Virol 2009; 84:2762-73. [PMID: 20042498 DOI: 10.1128/jvi.01350-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The function of plasmacytoid dendritic cells (PDC) in chronic human immunodeficiency virus type 1 (HIV-1) infection remains controversial with regard to its potential for sustained alpha interferon (IFN-alpha) production and induction of PDC-dependent tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated cytotoxicity of HIV-infected cells. We address these areas by a study of chronically HIV-1-infected subjects followed through antiretroviral therapy (ART) interruption and by testing PDC cytolytic function against autologous HIV-infected CD4(+) T cells. Rebound in viremia induced by therapy interruption showed a positive association between TRAIL and viral load or T-cell activation, but comparable levels of plasma IFN-alpha/beta were found in viremic ART-treated and control subjects. While PDC from HIV-infected subjects expressed less interferon regulator factor 7 (IRF-7) and produced significantly less IFN-alpha upon Toll-like receptor 7/9 (TLR7/9) engagement than controls, membrane TRAIL expression in PDC from HIV(+) subjects was increased. Moreover, no significant increase in death receptor 5 (DR5) expression was seen in CD4(+) T cells from viremic HIV(+) subjects compared to controls or following in vitro infection/exposure to infectious and noninfectious virus or exogenous IFN-alpha, respectively. Although activated PDC killed the DR5-expressing HIV-infected Sup-T1 cell line, PDC did not lyse primary autologous HIV(+) CD4(+) T cells yet could provide accessory help for NK cells in killing HIV-infected autologous CD4(+) T cells. Taken together, our data show a lack of sustained high levels of soluble IFN-alpha in chronic HIV-1 infection in vivo and document a lack of direct PDC cytolytic activity against autologous infected or uninfected CD4(+) T cells.
Collapse
|