51
|
Zhai X, Zhu J, Li J, Wang Z, Zhang G, Nie Y. Fraxetin alleviates BLM-induced idiopathic pulmonary fibrosis by inhibiting NCOA4-mediated epithelial cell ferroptosis. Inflamm Res 2023; 72:1999-2012. [PMID: 37798541 DOI: 10.1007/s00011-023-01800-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a debilitating lung condition with few available treatments. The early driver of wound repair that contributes to IPF has been extensively identified as repetitive alveolar epithelial damage. According to recent reports, IPF is linked to ferroptosis, a unique type of cell death characterized by a fatal buildup of iron and lipid peroxidation. OBJECTIVE AND METHOD There is little information on epithelial cells that induce pulmonary fibrosis by going through ferroptosis. In this study, we used bleomycin (BLM) to examine the impact of ferroptosis on IPF in mouse lung epithelial cells (MLE-12). RESULTS We discovered that BLM increases ferroptosis in MLE-12. Additionally, we found that NCOA4 is overexpressed and plays a key role in the ferroptosis of epithelial cells throughout the IPF process. Using Molecular docking, we found that Fraxetin, a natural component extracted from Fraxinus rhynchophylla, formed a stable binding to NCOA4. In vitro investigations showed that Fraxetin administration greatly decreased ferroptosis and NCOA4 expression, which in turn lowered the release of inflammatory cytokines. CONCLUSION Fraxetin treatment significantly alleviated BLM-induced lung inflammation and fibrosis. Our findings imply that fraxetin possesses inhibitory roles in ferroptosis and can be a potential drug against IPF.
Collapse
Affiliation(s)
- Xiaorun Zhai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jiao Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhixu Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Gufang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
52
|
Sgambellone S, Febo M, Durante M, Marri S, Villano S, Bereshchenko O, Migliorati G, Masini E, Riccardi C, Bruscoli S, Lucarini L. Role of histamine H 4 receptor in the anti-inflammatory pathway of glucocorticoid-induced leucin zipper (GILZ) in a model of lung fibrosis. Inflamm Res 2023; 72:2037-2052. [PMID: 37815550 PMCID: PMC10611623 DOI: 10.1007/s00011-023-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
INTRODUCTION This study investigates the interactions between histaminergic system and glucocorticoid-induced leucin zipper (GILZ) in the inflammatory process and glucocorticoid modulation in lung fibrosis. METHODS Wild-type (WT) and GILZ Knock-Out (KO) mice were treated with bleomycin (0.05 IU) or saline, delivered by intra-tracheal injection. After surgery, mice received a continuous infusion of JNJ7777120 (JNJ, 2 mg/kg b.wt.) or vehicle for 21 days. Lung function was studied by measuring airway resistance to air insufflation through the analysis of pressure at airway opening (PAO). Lung samples were collected to evaluate the expression of histamine H4R, Anx-A1, and p65-NF-kB, the activity of myeloperoxidase (MPO), and the production of pro-inflammatory cytokines. RESULTS Airway fibrosis and remodeling were assessed by measuring TGF-β production and α-SMA deposition. JNJ reduces PAO in WT but not in GILZ KO mice (from 22 ± 1 mm to 15 ± 0.5 and from 24 ± 1.5 to 19 ± 0.5 respectively), MPO activity (from 204 ± 3.13 pmol/mg to 73.88 ± 2.63 in WT and from 221 ± 4.46 pmol/mg to 107 ± 5.54 in GILZ KO), the inflammatory response, TGF-β production, and α-SMA deposition in comparison to WT and GILZ KO vehicle groups. CONCLUSION In conclusion, the role of H4R and GILZ in relation to glucocorticoids could pave the way for innovative therapies to counteract pulmonary fibrosis.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Marta Febo
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Mariaconcetta Durante
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Silvia Marri
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Serafina Villano
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06100, Perugia, Italy
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Emanuela Masini
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Stefano Bruscoli
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Laura Lucarini
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
53
|
Pakhomova A, Pershina O, Bochkov P, Ermakova N, Pan E, Sandrikina L, Dagil Y, Kogai L, Grimm WD, Zhukova M, Avdeev S. Anti-Inflammatory and Antifibrotic Potential of Longidaze in Bleomycin-Induced Pulmonary Fibrosis. Life (Basel) 2023; 13:1932. [PMID: 37763335 PMCID: PMC10532531 DOI: 10.3390/life13091932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is one of the most common forms of interstitial lung disease, characterized by progressive parenchymal fibrosis and respiratory failure. In a model of bleomycin-induced pulmonary fibrosis, the antifibrotic and anti-inflammatory activity of Longidaze (Bovhyaluronidase Azoxymer), which contains a conjugate of the hyaluronidase enzyme with a high molecular weight synthetic carrier azoxymer bromide, was investigated. Experiments were conducted in male C57BL/6 mice. Longidaze was administered at different doses by intranasal and intramuscular routes. Histology, hematology, and enzyme-linked immunosorbent assay were used in the study. The use of Longidaze reduced pulmonary fibrosis, as evidenced by an improvement in histopathologic damage to the lungs, a decrease in the area of connective tissue, and the levels of profibrotic factors (TGF-β1, hydroxyproline, collagen I) in lung tissue. In addition, Longidaze inhibited the inflammatory response in pulmonary fibrosis, and decreased the levels of IL-6, TNF-α, and hyaluronic acid in lung tissue and the recruitment of inflammatory cells into lung tissue. The highest therapeutic efficacy was observed with the use of Longidaze at doses of 120 and 1200 U/kg intramuscularly, which was superior to that of the reference drug pirfenidone axunio. The data presented in this study suggest that Longidaze is a new and promising drug for the treatment of IPF that warrants further investigation in patients with fibrotic interstitial lung disease.
Collapse
Affiliation(s)
- Angelina Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia; (A.P.)
| | - Olga Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia; (A.P.)
| | - Pavel Bochkov
- NPO Petrovax Pharm LLC, Moscow 123112, Russia; (P.B.); (Y.D.)
| | - Natalia Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia; (A.P.)
| | - Edgar Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia; (A.P.)
| | - Lubov Sandrikina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia; (A.P.)
| | - Yulia Dagil
- NPO Petrovax Pharm LLC, Moscow 123112, Russia; (P.B.); (Y.D.)
| | - Lena Kogai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia; (A.P.)
| | - Wolf-Dieter Grimm
- Department of Dental Medicine, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany;
| | - Mariia Zhukova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk 634028, Russia; (A.P.)
| | - Sergey Avdeev
- Department of Pulmonology, Sechenov First Moscow State Medical University, Healthcare Ministry of Russia, 8/2, Trubetskaya Str., Moscow 119991, Russia;
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 28, Orehovyy Bul., Moscow 115682, Russia
| |
Collapse
|
54
|
Zeng Q, Zhou TT, Huang WJ, Huang XT, Huang L, Zhang XH, Sang XX, Luo YY, Tian YM, Wu B, Liu L, Luo ZQ, He B, Liu W, Tang SY. Asarinin attenuates bleomycin-induced pulmonary fibrosis by activating PPARγ. Sci Rep 2023; 13:14706. [PMID: 37679587 PMCID: PMC10485066 DOI: 10.1038/s41598-023-41933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease that lacks effective treatment modalities. Once patients are diagnosed with IPF, their median survival is approximately 3-5 years. PPARγ is an important target for the prevention and treatment of pulmonary fibrosis. Asarinin is a lignan compound that can be extracted from food plant Asarum heterotropoides. In this study, we investigated the therapeutic effects of asarinin in a pulmonary fibrosis model constructed using bleomycin in mice and explored the underlying mechanisms. Intraperitoneal administration of asarinin to mice with pulmonary fibrosis showed that asarinin effectively attenuated pulmonary fibrosis, and this effect was significantly inhibited by the PPARγ inhibitor GW9662. Asarinin inhibited TGF-β1-induced fibroblast-to-myofibroblast transition in vitro, while GW9662 and PPARγ gene silencing significantly inhibited this effect. In addition, asarinin inhibited not only the canonical Smad pathway of TGF-β but also the non-canonical AKT and MAPK pathways by activating PPARγ. Our study demonstrates that asarinin can be used as a therapeutic agent for pulmonary fibrosis, and that PPARγ is its key target.
Collapse
Affiliation(s)
- Qian Zeng
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ting-Ting Zhou
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wen-Jie Huang
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Xiao-Ting Huang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Lei Huang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Xiao-Hua Zhang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Xiao-Xue Sang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yu-Yang Luo
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yu-Mei Tian
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Bin Wu
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lin Liu
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Zi-Qiang Luo
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bin He
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China.
| | - Wei Liu
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
55
|
Han MM, He XY, Tang L, Qi L, Yang MY, Wang Y, Xing L, Jeong JH, Jiang HL. Nanoengineered mesenchymal stem cell therapy for pulmonary fibrosis in young and aged mice. SCIENCE ADVANCES 2023; 9:eadg5358. [PMID: 37467328 PMCID: PMC10355834 DOI: 10.1126/sciadv.adg5358] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
Pulmonary fibrosis (PF) is an age-related interstitial lung disease that results in notable morbidity and mortality. The Food and Drug Administration-approved drugs can decelerate the progression of PF; however, curing aged patients with severe fibrosis is ineffective because of insufficient accumulation of these drugs and wide necrocytosis of type II alveolar epithelial cells (AEC IIs). Here, we constructed a mesenchymal stem cell (MSC)-based nanoengineered platform via the bioconjugation of MSCs and type I collagenase-modified liposomes loaded with nintedanib (MSCs-Lip@NCAF) for treating severe fibrosis. Specifically, MSCs-Lip@NCAF migrated to fibrotic lungs because of the homing characteristic of MSCs and then Lip@NCAF was sensitively released. Subsequently, Lip@NCAF ablated collagen fibers, delivered nintedanib into fibroblasts, and inhibited fibroblast overactivation. MSCs differentiated into AEC IIs to repair alveolar structure and ultimately promote the regeneration of damaged lungs in aged mice. Our findings indicated that MSCs-Lip@NCAF could be used as a promising therapeutic candidate for PF therapy, especially in aged patients.
Collapse
Affiliation(s)
- Meng-Meng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xing-Yue He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ming-Yuan Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
- College of Pharmacy, Yanbian University, Yanji 133002, China
| |
Collapse
|
56
|
Zhang S, Tong X, Liu S, Huang J, Zhang L, Zhang T, Wang D, Fan H. AAV9-Tspyl2 gene therapy retards bleomycin-induced pulmonary fibrosis by modulating downstream TGF-β signaling in mice. Cell Death Dis 2023; 14:389. [PMID: 37391440 PMCID: PMC10313802 DOI: 10.1038/s41419-023-05889-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/19/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating fibrotic lung disease characterized by scarring and destruction of the lung architecture, with limited treatment options. Targeted gene therapy to restore cell division autoantigen-1 (CDA1) expression may be a potential treatment approach to delay the progression of pulmonary fibrosis (PF). Here, we focused on CDA1, which was significantly decreased in human IPF, in a mouse model of bleomycin (BLM)-induced PF, and in transforming growth factor (TGF-β)-challenged lung fibroblasts. In vitro, CDA1 overexpression by lentivirus infection in human embryonic lung fibroblasts (HFL1 cells) inhibited the production of pro-fibrotic and pro-inflammatory cytokines, lung fibroblast-to-myofibroblast transition, and extracellular matrix protein expression induced by exogenous TGF-β1 treatment, whereas CDA1 knockdown with small interfering RNA promoted this effect. CDA1 overexpression also inhibited cell proliferation and migration. In a mouse model of BLM-induced PF, we provided novel evidence that the intratracheal delivery of adeno-associated virus serotype 9 carrying the mouse Tspyl2 gene reduced lung tissue inflammation and fibrosis. Mechanistically, CDA1, as a transcription regulator, could repress the TGF-β signal transduction in vivo and in vitro. In conclusion, our results show that Tspyl2 gene therapy plays an antifibrotic role by inhibiting the lung fibroblast-to-myofibroblast transition and downstream TGF-β/Smad3 signaling transduction in BLM-induced PF in mice, suggesting that CDA1 is an appropriate and promising therapeutic target for PF.
Collapse
Affiliation(s)
- Shijie Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Sitong Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Jizhen Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Tianli Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Dongguang Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
57
|
Vizier R, Garnier AR, Dias A, Moreau M, Claron M, Collin B, Denat F, Bellaye PS, Goncalves V. SPECT Imaging of Lysyl Oxidase-like 2 in a Model of Idiopathic Pulmonary Fibrosis. Mol Pharm 2023. [PMID: 37307296 DOI: 10.1021/acs.molpharmaceut.3c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Noninvasive imaging of idiopathic pulmonary fibrosis (IPF) remains a challenge. The aim of this study was to develop an antibody-based radiotracer targeting Lysyl Oxidase-like 2 (LOXL2), an enzyme involved in the fibrogenesis process, for SPECT/CT imaging of pulmonary fibrosis. The bifunctional chelator DOTAGA-PEG4-NH2 was chemoenzymatically conjugated to the murine antibody AB0023 using microbial transglutaminase, resulting in a degree of labeling (number of chelators per antibody) of 2.3. Biolayer interferometry confirmed that the binding affinity of DOTAGA-AB0023 to LOXL2 was preserved with a dissociation constant of 2.45 ± 0.04 nM. DOTAGA-AB0023 was then labeled with 111In and in vivo experiments were carried out in a mice model of progressive pulmonary fibrosis induced by intratracheal administration of bleomycin. [111In]In-DOTAGA-AB0023 was injected in three groups of mice (control, fibrotic, and treated with nintedanib). SPECT/CT images were recorded over 4 days p.i. and an ex vivo biodistribution study was performed by gamma counting. A significant accumulation of the tracer in the lungs of the fibrotic mice was observed at D18 post-bleomycin. Interestingly, the tracer uptake was found selectively upregulated in fibrotic lesions observed on CT scans. Images of mice that received the antifibrotic drug nintedanib from D8 up to D18 showed a decrease in [111In]In-DOTAGA-AB0023 lung uptake associated with a decrease in pulmonary fibrosis measured by CT scan. In conclusion, we report the first radioimmunotracer targeting the protein LOXL2 for nuclear imaging of IPF. The tracer showed promising results in a preclinical model of bleomycin-induced pulmonary fibrosis, with high lung uptake in fibrotic areas, and accounted for the antifibrotic activity of nintedanib.
Collapse
Affiliation(s)
- Romane Vizier
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
| | - Anaïs-Rachel Garnier
- Centre Georges François Leclerc, Service de Médecine Nucléaire, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon Cedex, France
| | - Alexandre Dias
- Centre Georges François Leclerc, Service de Médecine Nucléaire, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon Cedex, France
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
| | - Michael Claron
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
| | - Bertrand Collin
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
- Centre Georges François Leclerc, Service de Médecine Nucléaire, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon Cedex, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
| | - Pierre-Simon Bellaye
- Centre Georges François Leclerc, Service de Médecine Nucléaire, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon Cedex, France
| | - Victor Goncalves
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
| |
Collapse
|
58
|
Miao Y, Wang Y, Bi Z, Huang K, Gao J, Li X, Li S, Wei L, Zhou H, Yang C. Antifibrotic mechanism of avitinib in bleomycin-induced pulmonary fibrosis in mice. BMC Pulm Med 2023; 23:94. [PMID: 36949426 PMCID: PMC10031887 DOI: 10.1186/s12890-023-02385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by alveolar epithelial cell injury and lung fibroblast overactivation. At present, only two drugs are approved by the FDA for the treatment of IPF, including the synthetic pyridinone drug, pirfenidone, and the tyrosine kinase inhibitor, nintedanib. Avitinib (AVB) is a novel oral and potent third-generation tyrosine kinase inhibitor for treating non-small cell lung cancer (NSCLC). However, the role of avitinib in pulmonary fibrosis has not yet been established. In the present study, we used in vivo and in vitro models to evaluate the role of avitinib in pulmonary fibrosis. In vivo experiments first verified that avitinib significantly alleviated bleomycin-induced pulmonary fibrosis in mice. Further in vitro molecular studies indicated that avitinib inhibited myofibroblast activation, migration and extracellular matrix (ECM) production in NIH-3T3 cells, mainly by inhibiting the TGF-β1/Smad3 signalling pathways. The cellular experiments also indicated that avitinib improved alveolar epithelial cell injury in A549 cells. In conclusion, the present findings demonstrated that avitinib attenuates bleomycin-induced pulmonary fibrosis in mice by inhibiting alveolar epithelial cell injury and myofibroblast activation.
Collapse
Affiliation(s)
- Yang Miao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Yanhua Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Zhun Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Kai Huang
- Tianjin Jikun Technology Co., Ltd. Tianjin, Tianjin, 301700, People's Republic of China
| | - Jingjing Gao
- Tianjin Jikun Technology Co., Ltd. Tianjin, Tianjin, 301700, People's Republic of China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Shimeng Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Luqing Wei
- Tianjin Beichen Hospital, No. 7 Beiyi Road, Beichen District, Tianjin, 300400, People's Republic of China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
59
|
Baricitinib Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice by Inhibiting TGF-β1 Signaling Pathway. Molecules 2023; 28:molecules28052195. [PMID: 36903446 PMCID: PMC10004526 DOI: 10.3390/molecules28052195] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease with unknown etiology, high mortality and limited treatment options. It is characterized by myofibroblast proliferation and extensive deposition of extracellular matrix (ECM), which will lead to fibrous proliferation and the destruction of lung structure. Transforming growth factor-β1 (TGF-β1) is widely recognized as a central pathway of pulmonary fibrosis, and the suppression of TGF-β1 or the TGF-β1-regulated signaling pathway may thus offer potential antifibrotic therapies. JAK-STAT is a downstream signaling pathway regulated by TGF-β1. JAK1/2 inhibitor baricitinib is a marketed drug for the treatment of rheumatoid arthritis, but its role in pulmonary fibrosis has not been reported. This study explored the potential effect and mechanism of baricitinib on pulmonary fibrosis in vivo and in vitro. The in vivo studies have shown that baricitinib can effectively attenuate bleomycin (BLM)-induced pulmonary fibrosis, and in vitro studies showed that baricitinib attenuates TGF-β1-induced fibroblast activation and epithelial cell injury by inhibiting TGF-β1/non-Smad and TGF-β1/JAK/STAT signaling pathways, respectively. In conclusion, baricitinib, a JAK1/2 inhibitor, impedes myofibroblast activation and epithelial injury via targeting the TGF-β1 signaling pathway and reduces BLM-induced pulmonary fibrosis in mice.
Collapse
|
60
|
Lee YE, Go GY, Koh EY, Yoon HN, Seo M, Hong SM, Jeong JH, Kim JC, Cho D, Kim TS, Kim SC, Jun E, Jang M. Synergistic therapeutic combination with a CAF inhibitor enhances CAR-NK-mediated cytotoxicity via reduction of CAF-released IL-6. J Immunother Cancer 2023; 11:e006130. [PMID: 36849201 PMCID: PMC9972461 DOI: 10.1136/jitc-2022-006130] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) contribute to an impaired functionality of natural killer (NK) cells that have emerged as a promising therapeutic modality. The interaction between CAFs and NK cells within the TME exerts major inhibitory effects on immune responses, indicating CAF-targeted therapies as potential targets for effective NK-mediated cancer killing. METHODS To overcome CAF-induced NK dysfunction, we selected an antifibrotic drug, nintedanib, for synergistic therapeutic combination. To evaluate synergistic therapeutic efficacy, we established an in vitro 3D Capan2/patient-derived CAF spheroid model or in vivo mixed Capan2/CAF tumor xenograft model. The molecular mechanism of NK-mediated synergistic therapeutic combination with nintedanib was revealed through in vitro experiments. In vivo therapeutic combination efficacy was subsequently evaluated. Additionally, the expression score of target proteins was measured in patient-derived tumor sections by the immunohistochemical method. RESULTS Nintedanib blocked the platelet-derived growth factor receptor β (PDGFRβ) signaling pathway and diminished the activation and growth of CAFs, markedly reducing CAF-secreted IL-6. Moreover, coadministration of nintedanib improved the mesothelin (MSLN) targeting chimeric antigen receptor-NK-mediated tumor killing abilities in CAF/tumor spheroids or a xenograft model. The synergistic combination resulted in intense NK infiltration in vivo. Nintedanib alone exerted no effects, whereas blockade of IL-6 trans-signaling ameliorated the function of NK cells. The combination of the expression of MSLN and the PDGFRβ+-CAF population area, a potential prognostic/therapeutic marker, was associated with inferior clinical outcomes. CONCLUSION Our strategy against PDGFRβ+-CAF-containing pancreatic cancer allows improvements in the therapy of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Young Eun Lee
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Korea (the Republic of)
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea (the Republic of)
| | - Ga-Yeon Go
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Korea (the Republic of)
| | - Eun-Young Koh
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea (the Republic of)
| | - Han-Na Yoon
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Korea (the Republic of)
| | - Minkoo Seo
- Corporate Research & Development Center, UCI therapeutics, Seoul, Korea (the Republic of)
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Ji Hye Jeong
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea (the Republic of)
| | - Jin-Chul Kim
- Natural Product Research Center, Institute of Natural Products, Korea Institute of Science and Technology, Gangneung, Korea (the Republic of)
| | - Duck Cho
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea (the Republic of)
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea (the Republic of)
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea (the Republic of)
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea (the Republic of)
| | - Eunsung Jun
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea (the Republic of)
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea (the Republic of)
| | - Mihue Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Korea (the Republic of)
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea (the Republic of)
| |
Collapse
|
61
|
Interstitial Macrophages Lead Early Stages of Bleomycin-Induced Lung Fibrosis and Induce Fibroblasts Activation. Cells 2023; 12:cells12030402. [PMID: 36766744 PMCID: PMC9913327 DOI: 10.3390/cells12030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
A progressive fibrosing phenotype is critical in several lung diseases. It is irreversible and associated with early patient mortality. Growing evidence has revealed pulmonary macrophages' role as modulators of the fibrotic processes. The proportion, phenotype, and function of alveolar (AM) and interstitial macrophages (IM) at the early stages of bleomycin-induced pulmonary fibrosis have not been clearly described. In this way, our study aimed to characterize these macrophage populations and investigate the effect on fibroblast activation. C57BL/6 mice were intratracheally injected with bleomycin and were sacrificed at day 3, 5, and 7 for the performance of flow cytometry and fluorescent-activated cell sorting analysis for protein and gene expression quantification. After bleomycin administration, the proportion of IM was significantly higher than that of AM, which showed a decay during the inflammatory phase, and peaked at day 7. At day 7 of the inflammatory phase, AM started shifting their phenotype from M1-like towards M2, while IM showed a M2-like phenotype. Conditioned medium derived from IM sorted at day 7 induced fibroblast activation and differentiation in myofibroblasts in vitro. Our findings indicate that IM are the largest macrophage population at the early stages of experimental pulmonary fibrosis and are secreted mediators able to activate fibroblasts, pointing to macrophage modulation as a potential therapeutic strategy to restrain progressive fibrosing lung disorders.
Collapse
|
62
|
Li X, Ma X, Miao Y, Zhang J, Xi B, Li W, Zhang Q, Chen L, Yang Y, Li H, Wei L, Zhou H, Yang C. Duvelisib attenuates bleomycin-induced pulmonary fibrosis via inhibiting the PI3K/Akt/mTOR signalling pathway. J Cell Mol Med 2023; 27:422-434. [PMID: 36651446 PMCID: PMC9889612 DOI: 10.1111/jcmm.17665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease that seriously threatens the health of patients. The pathogenesis of IPF is still unclear, and there is a lack of effective therapeutic drugs. Myofibroblasts are the main effector cells of IPF, leading to excessive deposition of extracellular matrix (ECM) and promoting the progression of fibrosis. Inhibiting the excessive activation and relieving autophagy blockage of myofibroblasts is the key to treat IPF. PI3K/Akt/mTOR pathway plays a key regulatory role in promoting fibroblast activation and autophagy inhibition in lung fibrosis. Duvelisib is a PI3K inhibitor that can simultaneously inhibit the activities of PI3K-δ and PI3K-γ, and is mainly used for the treatment of relapsed/refractory chronic lymphocytic leukaemia (CLL) and small lymphocytic lymphoma tumour (SLL). In this study, we aimed to examine the effects of Duvelisib on pulmonary fibrosis. We used a mouse model of bleomycin-induced pulmonary fibrosis to evaluate the effects of Duvelisib on pulmonary fibrosis in vivo and further explored the potential pharmacological mechanisms of Duvelisib in lung fibroblasts in vitro. The in vivo experiments showed that Duvelisib significantly alleviated bleomycin-induced collagen deposition and improved pulmonary function. In vitro and in vivo pharmacological experiments showed that Duvelisib dose-dependently suppressed lung fibroblast activation and improved autophagy inhibition by inhibiting the phosphorylation of PI3K, Akt and mTOR. Our results indicate that Duvelisib can alleviate the severity of pulmonary fibrosis and provide potential drugs for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Xiaoyang Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Yang Miao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Jianwei Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Buri Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Wenqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Qianyi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Li Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Yue Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Hongli Li
- Department of Respiratory and Critical Care MedicineTianjin Beichen HospitalTianjinChina
| | - Luqing Wei
- Department of Respiratory and Critical Care MedicineTianjin Beichen HospitalTianjinChina
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina,Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| |
Collapse
|
63
|
Chen G, Li J, Liu H, Zhou H, Liu M, Liang D, Meng Z, Gan H, Wu Z, Zhu X, Han P, Liu T, Gu R, Liu S, Dou G. Cepharanthine Ameliorates Pulmonary Fibrosis by Inhibiting the NF-κB/NLRP3 Pathway, Fibroblast-to-Myofibroblast Transition and Inflammation. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020753. [PMID: 36677811 PMCID: PMC9864377 DOI: 10.3390/molecules28020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Pulmonary fibrosis (PF) is one of the sequelae of Corona Virus Disease 2019 (COVID-19), and currently, lung transplantation is the only viable treatment option. Hence, other effective treatments are urgently required. We investigated the therapeutic effects of an approved botanical drug, cepharanthine (CEP), in a cell culture model of transforming growth factor-β1 (TGF-β1) and bleomycin (BLM)-induced pulmonary fibrosis rat models both in vitro and in vivo. In this study, CEP and pirfenidone (PFD) suppressed BLM-induced lung tissue inflammation, proliferation of blue collagen fibers, and damage to lung structures in vivo. Furthermore, we also found increased collagen deposition marked by α-smooth muscle actin (α-SMA) and Collagen Type I Alpha 1 (COL1A1), which was significantly alleviated by the addition of PFD and CEP. Moreover, we elucidated the underlying mechanism of CEP against PF in vitro. Various assays confirmed that CEP reduced the viability and migration and promoted apoptosis of myofibroblasts. The expression levels of myofibroblast markers, including COL1A1, vimentin, α-SMA, and Matrix Metallopeptidase 2 (MMP2), were also suppressed by CEP. Simultaneously, CEP significantly suppressed the elevated Phospho-NF-κB p65 (p-p65)/NF-κB p65 (p65) ratio, NOD-like receptor thermal protein domain associated protein 3 (NLRP3) levels, and elevated inhibitor of NF-κB Alpha (IκBα) degradation and reversed the progression of PF. Hence, our study demonstrated that CEP prevented myofibroblast activation and treated BLM-induced pulmonary fibrosis in a dose-dependent manner by regulating nuclear factor kappa-B (NF-κB)/ NLRP3 signaling, thereby suggesting that CEP has potential clinical application in pulmonary fibrosis in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ruolan Gu
- Correspondence: (R.G.); (S.L.); (G.D.)
| | | | | |
Collapse
|
64
|
Guilherme RF, Silva JBN, Waclawiack I, Fraga-Junior VS, Nogueira TO, Pecli C, Araújo-Silva CA, Magalhães NS, Lemos FS, Bulant CA, Blanco PJ, Serra R, Svensjö E, Scharfstein J, Moraes JA, Canetti C, Benjamim CF. Pleiotropic antifibrotic actions of aspirin-triggered resolvin D1 in the lungs. Front Immunol 2023; 14:886601. [PMID: 36960058 PMCID: PMC10030054 DOI: 10.3389/fimmu.2023.886601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 02/02/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Pulmonary fibrosis is a destructive, progressive disease that dramatically reduces life quality of patients, ultimately leading to death. Therapeutic regimens for pulmonary fibrosis have shown limited benefits, hence justifying the efforts to evaluate the outcome of alternative treatments. Methods Using a mouse model of bleomycin (BLM)-induced lung fibrosis, in the current work we asked whether treatment with pro-resolution molecules, such as pro-resolving lipid mediators (SPMs) could ameliorate pulmonary fibrosis. To this end, we injected aspirin-triggered resolvin D1 (7S,8R,17R-trihydroxy-4Z,9E,11E,13Z,15E19Z-docosahexaenoic acid; ATRvD1; i.v.) 7 and 10 days after BLM (intratracheal) challenge and samples were two weeks later. Results and discussion Assessment of outcome in the lung tissues revealed that ATRvD1 partially restored lung architecture, reduced leukocyte infiltration, and inhibited formation of interstitial edema. In addition, lung tissues from BLM-induced mice treated with ATRvD1 displayed reduced levels of TNF-α, MCP-1, IL-1-β, and TGF-β. Of further interest, ATRvD1 decreased lung tissue expression of MMP-9, without affecting TIMP-1. Highlighting the beneficial effects of ATRvD1, we found reduced deposition of collagen and fibronectin in the lung tissues. Congruent with the anti-fibrotic effects that ATRvD1 exerted in lung tissues, α-SMA expression was decreased, suggesting that myofibroblast differentiation was inhibited by ATRvD1. Turning to culture systems, we next showed that ATRvD1 impaired TGF-β-induced fibroblast differentiation into myofibroblast. After showing that ATRvD1 hampered extracellular vesicles (EVs) release in the supernatants from TGF-β-stimulated cultures of mouse macrophages, we verified that ATRvD1 also inhibited the release of EVs in the bronco-alveolar lavage (BAL) fluid of BLM-induced mice. Motivated by studies showing that BLM-induced lung fibrosis is linked to angiogenesis, we asked whether ATRvD1 could blunt BLM-induced angiogenesis in the hamster cheek pouch model (HCP). Indeed, our intravital microscopy studies confirmed that ATRvD1 abrogates BLM-induced angiogenesis. Collectively, our findings suggest that treatment of pulmonary fibrosis patients with ATRvD1 deserves to be explored as a therapeutic option in the clinical setting.
Collapse
Affiliation(s)
- Rafael F. Guilherme
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Bruno N.F. Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia, Imunobiologia e Estudos em Saúde, Universidade Federal do Tocantins, Palmas, TO, Brazil
| | - Ingrid Waclawiack
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanderlei S. Fraga-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís O. Nogueira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cyntia Pecli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlla A. Araújo-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia S. Magalhães
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Felipe S. Lemos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Carlos A. Bulant
- Pladema Institute, National Scientific and Technical Research Council (CONICET), Tandil, Buenos Aires, Argentina
| | - Pablo J. Blanco
- Departamento de Métodos Matemático e Computacional, Laboratório Nacional para Computação Científica, Rio de Janeiro, Brazil
| | - Rafaela Serra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erik Svensjö
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Júlio Scharfstein
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João A. Moraes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Canetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia F. Benjamim
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Claudia F. Benjamim,
| |
Collapse
|
65
|
Mai TH, Han LW, Hsu JC, Kamath N, Pan L. Idiopathic pulmonary fibrosis therapy development: a clinical pharmacology perspective. Ther Adv Respir Dis 2023; 17:17534666231181537. [PMID: 37392011 PMCID: PMC10333628 DOI: 10.1177/17534666231181537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023] Open
Abstract
Drug development for idiopathic pulmonary fibrosis (IPF) has been challenging due to poorly understood disease etiology, unpredictable disease progression, highly heterogeneous patient populations, and a lack of robust pharmacodynamic biomarkers. Moreover, because lung biopsy is invasive and dangerous, making the extent of fibrosis as a direct longitudinal measurement of IPF disease progression unfeasible, most clinical trials studying IPF can only assess progression of fibrosis indirectly through surrogate measures. This review discusses current state-of-art practices, identifies knowledge gaps, and brainstorms development opportunities for preclinical to clinical translation, clinical populations, pharmacodynamic endpoints, and dose optimization strategies. This article highlights clinical pharmacology perspectives in leveraging real-world data as well as modeling and simulation, special population considerations, and patient-centric approaches for designing future studies.
Collapse
Affiliation(s)
- Tu H. Mai
- Genentech Inc., South San Francisco, CA,
USA
| | | | - Joy C. Hsu
- Genentech Inc., South San Francisco, CA,
USA
| | | | - Lin Pan
- Genentech, Inc., 1 DNA Way, South San
Francisco, CA 94008, USA
| |
Collapse
|
66
|
Guan R, Yuan L, Li J, Wang J, Li Z, Cai Z, Guo H, Fang Y, Lin R, Liu W, Wang L, Zheng Q, Xu J, Zhou Y, Qian J, Ding M, Luo J, Li Y, Yang K, Sun D, Yao H, He J, Lu W. Bone morphogenetic protein 4 inhibits pulmonary fibrosis by modulating cellular senescence and mitophagy in lung fibroblasts. Eur Respir J 2022; 60:13993003.02307-2021. [PMID: 35777761 PMCID: PMC9808813 DOI: 10.1183/13993003.02307-2021] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 06/22/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Accumulation of myofibroblasts is critical to fibrogenesis in idiopathic pulmonary fibrosis (IPF). Senescence and insufficient mitophagy in fibroblasts contribute to their differentiation into myofibroblasts, thereby promoting the development of lung fibrosis. Bone morphogenetic protein 4 (BMP4), a multifunctional growth factor, is essential for the early stage of lung development; however, the role of BMP4 in modulating lung fibrosis remains unknown. METHODS The aim of this study was to evaluate the role of BMP4 in lung fibrosis using BMP4-haplodeleted mice, BMP4-overexpressed mice, primary lung fibroblasts and lung samples from patients with IPF. RESULTS BMP4 expression was downregulated in IPF lungs and fibroblasts compared to control individuals, negatively correlated with fibrotic genes, and BMP4 decreased with transforming growth factor (TGF)-β1 stimulation in lung fibroblasts in a time- and dose-dependent manner. In mice challenged with bleomycin, BMP4 haploinsufficiency perpetuated activation of lung myofibroblasts and caused accelerated lung function decline, severe fibrosis and mortality. BMP4 overexpression using adeno-associated virus 9 vectors showed preventative and therapeutic efficacy against lung fibrosis. In vitro, BMP4 attenuated TGF-β1-induced fibroblast-to-myofibroblast differentiation and extracellular matrix (ECM) production by reducing impaired mitophagy and cellular senescence in lung fibroblasts. Pink1 silencing by short-hairpin RNA transfection abolished the ability of BMP4 to reverse the TGF-β1-induced myofibroblast differentiation and ECM production, indicating dependence on Pink1-mediated mitophagy. Moreover, the inhibitory effect of BMP4 on fibroblast activation and differentiation was accompanied with an activation of Smad1/5/9 signalling and suppression of TGF-β1-mediated Smad2/3 signalling in vivo and in vitro. CONCLUSION Strategies for enhancing BMP4 signalling may represent an effective treatment for pulmonary fibrosis.
Collapse
Affiliation(s)
- Ruijuan Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,These authors contributed equally to this work
| | - Liang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,These authors contributed equally to this work
| | - Jingpei Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,These authors contributed equally to this work
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,These authors contributed equally to this work
| | - Ziying Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhou Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hua Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaowei Fang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ran Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lan Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingyi Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - You Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Qian
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, China
| | - Mingjing Ding
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, China
| | - Jieping Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dejun Sun
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, China
| | - Hongwei Yao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Wenju Lu and Jianxing He contributed equally to this article as lead authors and supervised the work
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China .,Wenju Lu and Jianxing He contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
67
|
Bao L, Ye J, Liu N, Shao Y, Li W, Fan X, Zhao D, Wang H, Chen X. Resveratrol Ameliorates Fibrosis in Rheumatoid Arthritis-Associated Interstitial Lung Disease via the Autophagy-Lysosome Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238475. [PMID: 36500562 PMCID: PMC9740423 DOI: 10.3390/molecules27238475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/11/2022]
Abstract
Interstitial lung disease associated with rheumatoid arthritis (RA-ILD) can lead to interstitial fibrosis and even lung failure as a complication of rheumatoid arthritis (RA), and there is currently no effective treatment and related basic research. Studies have found that resveratrol (Res) can improve the progression of RA by regulating autophagy, and increasing evidence supports the connection between autophagy and common interstitial lung disease (ILD). We explored changes in autophagy levels in fibrotic lungs in RA-ILD and found that the level of autophagy is enhanced in the early stage but inhibited in the late stage. However, resveratrol treatment improved the level of autophagy and reversed the inhibition of autophagy, and attenuated fibrosis. We created corresponding cell models that exhibited the same phenotypic changes as animal models; under the effect of resveratrol, the level of fibrosis changed accordingly, and the fusion process of lysosomes and autophagosomes in autophagy was liberated from the inhibition state. Resveratrol effects were reversed by the addition of the late autophagy inhibitor chloroquine. These results suggest that resveratrol attenuates pulmonary fibrosis, increases autophagic flux, and modulates the autophagy-lysosome pathway, and particularly it may work by improving the formation of autophagic lysosomes, which may be an effective treatment for induced RA-ILD.
Collapse
Affiliation(s)
- Lanxin Bao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230601, China
| | - Jing Ye
- Department of Respiratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Nannan Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230601, China
| | - Yubao Shao
- Microscopic Morphological Center Laboratory, Anhui Medical University, Hefei 230032, China
| | - Wenhao Li
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xuefei Fan
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230601, China
| | - Dahai Zhao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Correspondence: (D.Z.); (H.W.); (X.C.)
| | - Hongzhi Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230601, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
- Correspondence: (D.Z.); (H.W.); (X.C.)
| | - Xiaoyu Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230601, China
- Microscopic Morphological Center Laboratory, Anhui Medical University, Hefei 230032, China
- Correspondence: (D.Z.); (H.W.); (X.C.)
| |
Collapse
|
68
|
Chen S, Wei Y, Li S, Miao Y, Gu J, Cui Y, Liu Z, Liang J, Wei L, Li X, Zhou H, Yang C. Zanubrutinib attenuates bleomycin-induced pulmonary fibrosis by inhibiting the TGF-β1 signaling pathway. Int Immunopharmacol 2022; 113:109316. [DOI: 10.1016/j.intimp.2022.109316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/11/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
69
|
Wang H, Wen Y, Wang L, Wang J, Chen H, Chen J, Guan J, Xie S, Chen Q, Wang Y, Tao A, Du Y, Yan J. DDR1 activation in macrophage promotes IPF by regulating NLRP3 inflammasome and macrophage reaction. Int Immunopharmacol 2022; 113:109294. [DOI: 10.1016/j.intimp.2022.109294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022]
|
70
|
CD147 contributes to SARS-CoV-2-induced pulmonary fibrosis. Signal Transduct Target Ther 2022; 7:382. [PMID: 36424379 PMCID: PMC9691700 DOI: 10.1038/s41392-022-01230-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/24/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
COVID-19 patients can develop clinical and histopathological features associated with fibrosis, but the pathogenesis of fibrosis remains poorly understood. CD147 has been identified as a universal receptor for SARS-CoV-2 and its variants, which could initiate COVID-19-related cytokine storm. Here, we systemically analyzed lung pathogenesis in SARS-CoV-2- and its delta variant-infected humanized CD147 transgenic mice. Histopathology and Transmission Electron Microscopy revealed inflammation, fibroblast expansion and pronounced fibrotic remodeling in SARS-CoV-2-infected lungs. Consistently, RNA-sequencing identified a set of fibrosis signature genes. Furthermore, we identified CD147 as a crucial regulator for fibroblast activation induced by SARS-CoV-2. We found conditional knockout of CD147 in fibroblast suppressed activation of fibroblasts, decreasing susceptibility to bleomycin-induced pulmonary fibrosis. Meplazumab, a CD147 antibody, was able to inhibit the accumulation of activated fibroblasts and the production of ECM proteins, thus alleviating the progression of pulmonary fibrosis caused by SARS-CoV-2. In conclusion, we demonstrated that CD147 contributed to SARS-CoV-2-triggered progressive pulmonary fibrosis and identified CD147 as a potential therapeutic target for treating patients with post-COVID-19 pulmonary fibrosis.
Collapse
|
71
|
Chi J, Hsiao Y, Liang H, Huang T, Chen F, Chen C, Ko C, Cheng C, Wang J. Blockade of the pentraxin 3/CD44 interaction attenuates lung injury-induced fibrosis. Clin Transl Med 2022; 12:e1099. [PMID: 36336784 PMCID: PMC9637652 DOI: 10.1002/ctm2.1099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Fibrosing interstitial lung diseases (fILD) are potentially fatal with limited therapeutic options and no effective strategies to reverse fibrogenesis. Myofibroblasts are chief effector cells in fibrosis that excessively deposit collagen in the pulmonary interstitium and lead to progressive impairment of gaseous exchange. METHODS Plasma and lung specimens from patients with fILD were applied for detecting pentraxin 3 (PTX3) abundance by ELISA and Immunohistochemistry. Masson's trichrome and Sirius red stains and hydroxyproline assay were performed for assessing collagen accumulation in the lungs of bleomycin-exposed conditional Ptx3-deficient and PTX3-neutralizing antibody (αPTX3i)-treated mice. Downstream effectors including signaling pathways and fibrotic genes were examined for assessing CD44-involved PTX3-induced fibrosis in HFL1 and primary mouse fibroblasts. RESULTS PTX3 was upregulated in the lungs and plasma of bleomycin-exposed mice and correlated with disease severity and adverse outcomes in fILD patients. Decreased collagen accumulation, attenuation of alveolar fibrosis and fibrotic markers, and improved lung function were observed in bleomycin-exposed conditional Ptx3-deficient mice. PTX3 activates lung fibroblasts to differentiate towards migrative and highly collagen-expressing myofibroblasts. Lung fibroblasts with CD44 inactivation attenuated the PI3K-AKT1, NF-κB, and JNK signaling pathways and fibrotic markers. αPTX3i mimic-based therapeutic studies demonstrated abrogation of the migrative fibroblast phenotype and myofibroblast activation in vitro. Notably, αPTX3i inhibited lung fibrosis, reduced collagen deposition, increased mouse survival, and improved lung function in bleomycin-induced pulmonary fibrosis. CONCLUSIONS The present study reveals new insights into the involvement of the PTX3/CD44 axis in fibrosis and suggests PTX3 as a promising therapeutic target in fILD patients.
Collapse
Affiliation(s)
- Jhih‐Ying Chi
- Department of Biotechnology and Bioindustry SciencesCollege of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
| | - Yu‐Wei Hsiao
- Department of Biotechnology and Bioindustry SciencesCollege of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
| | - Hsin‐Yin Liang
- Department of Biotechnology and Bioindustry SciencesCollege of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
- International Research Center for Wound Repair and RegenerationNational Cheng Kung UniversityTainanTaiwan
| | - Tang‐Hsiu Huang
- Division of Chest MedicineDepartment of Internal MedicineNational Cheng Kung University HospitalCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
- Institute of Clinical MedicineCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Feng‐Wei Chen
- Institute of Basic Medical SciencesCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Chen‐Yang Chen
- Department of Biotechnology and Bioindustry SciencesCollege of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
| | - Chiung‐Yuan Ko
- Ph.D. Program in Medical NeuroscienceCollege of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
| | - Chao‐Chun Cheng
- Institute of Basic Medical SciencesCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Ju‐Ming Wang
- Department of Biotechnology and Bioindustry SciencesCollege of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
- International Research Center for Wound Repair and RegenerationNational Cheng Kung UniversityTainanTaiwan
- Graduate Institute of Medical SciencesCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
72
|
Pei Z, Qin Y, Fu X, Yang F, Huo F, Liang X, Wang S, Cui H, Lin P, Zhou G, Yan J, Wu J, Chen ZN, Zhu P. Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model. Redox Biol 2022; 57:102509. [PMID: 36302319 PMCID: PMC9614651 DOI: 10.1016/j.redox.2022.102509] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease characterized by excessive proliferation of fibroblasts and excessive accumulation of extracellular matrix (ECM). Ferroptosis is a novel form of cell death characterized by the lethal accumulation of iron and lipid peroxidation, which is associated with many diseases. Our study addressed the potential role played by ferroptosis and iron accumulation in the progression of pulmonary fibrosis. We found that the inducers of pulmonary fibrosis and injury, namely, bleomycin (BLM) and lipopolysaccharide (LPS), induced ferroptosis of lung epithelial cells. Both the ferroptosis inhibitor liproxstatin-1 (Lip-1) and the iron chelator deferoxamine (DFO) alleviated the symptoms of pulmonary fibrosis induced by bleomycin or LPS. TGF-β stimulation upregulated the expression of transferrin receptor protein 1 (TFRC) in the human lung fibroblast cell line (MRC-5) and mouse primary lung fibroblasts, resulting in increased intracellular Fe2+, which promoted the transformation of fibroblasts into myofibroblasts. Mechanistically, TGF-β enhanced the expression and nuclear localization of the transcriptional coactivator tafazzin (TAZ), which combined with the transcription factor TEA domain protein (TEAD)-4 to promote the transcription of TFRC. In addition, elevated Fe2+ failed to induce the ferroptosis of fibroblasts, which might be related to the regulation of iron export and lipid metabolism. Finally, we specifically knocked out TFRC expression in fibroblasts in mice, and compared with those in the control mice, the symptoms of pulmonary fibrosis were reduced in the knockout mice after bleomycin induction. Collectively, these findings suggest the therapeutic potential of ferroptosis inhibitors and iron chelators in treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhuo Pei
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yifei Qin
- Guangzhou (Jinan) Biomedical Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xianghui Fu
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Fengfan Yang
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Fei Huo
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xue Liang
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shijie Wang
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hongyong Cui
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Peng Lin
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Gang Zhou
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiangna Yan
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiao Wu
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Ping Zhu
- National Translational Science Center for Molecular Medicine and Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
73
|
Di Carmine S, Scott MM, McLean MH, McSorley HJ. The role of interleukin-33 in organ fibrosis. DISCOVERY IMMUNOLOGY 2022; 1:kyac006. [PMID: 38566909 PMCID: PMC10917208 DOI: 10.1093/discim/kyac006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/06/2022] [Accepted: 09/22/2022] [Indexed: 04/04/2024]
Abstract
Interleukin (IL)-33 is highly expressed in the nucleus of cells present at barrier sites and signals via the ST2 receptor. IL-33 signalling via ST2 is essential for return to tissue homeostasis after acute inflammation, promoting fibrinogenesis and wound healing at injury sites. However, this wound-healing response becomes aberrant during chronic or sustained inflammation, leading to transforming growth factor beta (TGF-β) release, excessive extracellular matrix deposition, and fibrosis. This review addresses the role of the IL-33 pathway in fibrotic diseases of the lung, liver, gastrointestinal tract, skin, kidney and heart. In the lung and liver, IL-33 release leads to the activation of pro-fibrotic TGF-β, and in these sites, IL-33 has clear pro-fibrotic roles. In the gastrointestinal tract, skin, and kidney, the role of IL-33 is more complex, being both pro-fibrotic and tissue protective. Finally, in the heart, IL-33 serves cardioprotective functions by favouring tissue healing and preventing cardiomyocyte death. Altogether, this review indicates the presence of an unclear and delicate balance between resolving and pro-fibrotic capabilities of IL-33, which has a central role in the modulation of type 2 inflammation and fibrosis in response to tissue injury.
Collapse
Affiliation(s)
- Samuele Di Carmine
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, UK
| | - Molly M Scott
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Mairi H McLean
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, UK
| |
Collapse
|
74
|
A glucocorticoid-receptor agonist ameliorates bleomycin-induced alveolar simplification in newborn rats. Pediatr Res 2022; 93:1551-1558. [PMID: 36068343 DOI: 10.1038/s41390-022-02257-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glucocorticoids (GCs) are highly effective yet problematic agents against bronchopulmonary dysplasia (BPD). The dimeric trans-activation of GCs induces unfavorable effects, while monomeric trans-repression suppresses inflammation-related genes. Recently, non-steroidal-selective glucocorticoid-receptor agonists and modulators (SEGRAMs) with only the trans-repressive action have been designed. METHODS Using a bleomycin (Bleo)-induced alveolar simplification newborn rat model (recapitulating arrested alveolarization during BPD), we evaluated the therapeutic effects of compound-A (CpdA), a SEGRAM. Sprague-Dawley rats were administered Bleo from postnatal day (PD) 0 to 10 and treated with dexamethasone (Dex) or CpdA from PD 0 to 13. The morphological changes and mRNA expression of inflammatory mediators, including interleukin (IL)-1β, C-X-C motif chemokine ligand 1 (CXCL1), and C-C motif chemokine 2 (CCL2) were investigated. RESULTS Similar to the effects of Dex, CpdA exerted protective effects on morphological derangements and inhibited macrophage infiltration and production of pro-inflammatory mediators in Bleo-treated animals. The effects of CpdA were probably mediated by GC receptor (GR)-dependent trans-repression, because unlike the Dex-treated group, anti-inflammatory genes specifically induced by GR-dependent trans-activation (such as "glucocorticoid-induced leucine zipper, GILZ") were not upregulated. CONCLUSIONS CpdA improved lung inflammation, inhibited the arrest of alveolar maturation, and restored histological and biochemical changes in a Bleo-induced alveolar simplification model. IMPACT SEGRAMs have attracted widespread attention because they are expected to not exhibit unfavorable effects of GCs. Compound A, one of the SEGRAMs, improved lung morphometric changes and decreased lung inflammation in a bleomycin-induced arrested alveolarization, a newborn rat model representing one of the main features of BPD pathology. Compound A did not elicit bleomycin-induced poor weight gain, in contrast to dexamethasone treatment. SEGRAMs, including compound A, may be promising candidates for the therapy of BPD with less adverse effects compared with GCs.
Collapse
|
75
|
Assessment of traditional Chinese medicine pattern in a bleomycin-induced pulmonary fibrosis mouse model: A pilot study. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
76
|
Kadefors M, Berlin F, Wildt M, Dellgren G, Rolandsson Enes S, Aspberg A, Westergren-Thorsson G. Dipeptidyl peptidase 4 expression is not associated with an activated fibroblast phenotype in idiopathic pulmonary fibrosis. Front Pharmacol 2022; 13:953771. [PMID: 36120350 PMCID: PMC9473336 DOI: 10.3389/fphar.2022.953771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP4) has been proposed as a marker for activated fibroblasts in fibrotic disease. We aimed to investigate whether a profibrotic DPP4 phenotype is present in lung tissue from patients with idiopathic pulmonary fibrosis (IPF). The presence of DPP4+ fibroblasts in normal and IPF lung tissue was investigated using flow cytometry and immunohistology. In addition, the involvement of DPP4 in fibroblast activation was examined in vitro, using CRISPR/Cas9 mediated genetic inactivation to generate primary DPP4 knockout lung fibroblasts. We observed a reduced frequency of primary DPP4+ fibroblasts in IPF tissue using flow cytometry, and an absence of DPP4+ fibroblasts in pathohistological features of IPF. The in vivo observations were supported by results in vitro showing a decreased expression of DPP4 on normal and IPF fibroblasts after profibrotic stimuli (transforming growth factor β) and no effect on the expression of activation markers (α-smooth muscle actin, collagen I and connective tissue growth factor) upon knockout of DPP4 in lung fibroblasts with or without activation with profibrotic stimuli.
Collapse
Affiliation(s)
- Måns Kadefors
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- *Correspondence: Måns Kadefors,
| | - Frida Berlin
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Marie Wildt
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Göran Dellgren
- Transplant Institute and Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Anders Aspberg
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | |
Collapse
|
77
|
Cheng L, Wang D, Deng B, Li J, Zhang J, Guo X, Yan T, Yue X, An Y, Zhang B, Xie J. DR7dA, a Novel Antioxidant Peptide Analog, Demonstrates Antifibrotic Activity in Pulmonary Fibrosis In Vivo and In Vitro. J Pharmacol Exp Ther 2022; 382:100-112. [PMID: 35772783 DOI: 10.1124/jpet.121.001031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Pulmonary fibrosis (PF), which is characterized by enhanced extracellular matrix (ECM) deposition, is an interstitial lung disease that lacks an ideal clinical treatment strategy. It has an extremely poor prognosis, with an average survival of 3-5 years after diagnosis. Our previous studies have shown that the antioxidant peptide DR8 (DHNNPQIR-NH2), which is extracted and purified from rapeseed, can alleviate PF and renal fibrosis. However, natural peptides are easily degraded by proteases in vivo, which limits their potency. We have since synthesized a series of DR8 analogs based on amino acid scanning substitution. DR7dA [DHNNPQ (D-alanine) R-NH2] is an analog of DR8 in which L-isoleucine (L-Ile) is replaced with D-alanine (D-Ala), and its half-life is better than that of DR8. In the current study, we verified that DR7dA ameliorated tumor growth factor (TGF)-β1-induced fibrogenesis and bleomycin-induced PF. The results indicated that DR7dA reduced the protein and mRNA levels of TGF-β1 target genes in TGF-β1-induced models. Surprisingly, DR7dA blocked fibrosis in a lower concentration range than DR8 in cells. In addition, DR7dA ameliorated tissue pathologic changes and ECM accumulation in mice. BLM caused severe oxidative damage, but administration of DR7dA reduced oxidative stress and restored antioxidant defense. Mechanistic studies suggested that DR7dA inhibits ERK, P38, and JNK phosphorylation in vivo and in vitro All results indicated that DR7dA attenuated PF by inhibiting ECM deposition and oxidative stress via blockade of the mitogen-activated protein kinase (MAPK) pathway. Hence, compared with its parent peptide, DR7dA has higher druggability and could be a candidate compound for PF treatment in the future. SIGNIFICANCE STATEMENT: In order to improve druggability of DR8, we investigated the structure-activity relationship of it and replaced the L-isoleucine with D-alanine. We found that the stability and antifibrotic activity of DR7dA were significantly improved than DR8, as well as DR7dA significantly attenuated tumor growth factor (TGF)-β1-induced fibrogenesis and ameliorated bleomycin-induced fibrosis by inhibiting extracellular matrix deposition and oxidative stress via blockade of the MAPK pathway, suggesting DR7dA may be a promising candidate compound for the treatment of PF.
Collapse
Affiliation(s)
- Lu Cheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Dan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Bochuan Deng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Jieru Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Jiao Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Tiantian Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Xin Yue
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Yingying An
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066 (L.C., D.W., B.D., J.L., J.Z., X.G., T.Y., X.Y., Y.A., B.Z., J.X.) and School of Life Sciences (L.C., D.W.), Lanzhou University, Lanzhou, China
| |
Collapse
|
78
|
Zhong W, Chen W, Liu Y, Zhang J, Lu Y, Wan X, Qiao Y, Huang H, Zeng Z, Li W, Meng X, Zhao H, Zou M, Cai S, Dong H. Extracellular HSP90α promotes cellular senescence by modulating TGF-β signaling in pulmonary fibrosis. FASEB J 2022; 36:e22475. [PMID: 35899478 DOI: 10.1096/fj.202200406rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/11/2022]
Abstract
Recent findings suggest that extracellular heat shock protein 90α (eHSP90α) promotes pulmonary fibrosis, but the underlying mechanisms are not well understood. Aging, especially cellular senescence, is a critical risk factor for idiopathic pulmonary fibrosis (IPF). Here, we aim to investigate the role of eHSP90α on cellular senescence in IPF. Our results found that eHSP90α was upregulated in bleomycin (BLM)-induced mice, which correlated with the expression of senescence markers. This increase in eHSP90α mediated fibroblast senescence and facilitated mitochondrial dysfunction. eHSP90α activated TGF-β signaling through the phosphorylation of the SMAD complex. The SMAD complex binding to p53 and p21 promoters triggered their transcription. In vivo, the blockade of eHSP90α with 1G6-D7, a specific eHSP90α antibody, in old mice attenuated the BLM-induced lung fibrosis. Our findings elucidate a crucial mechanism underlying eHSP90α-induced cellular senescence, providing a framework for aging-related fibrosis interventions.
Collapse
Affiliation(s)
- Wenshan Zhong
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimou Chen
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanyuan Liu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinming Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Lu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Wan
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujie Qiao
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haohua Huang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaojin Zeng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Li
- Department of Dermatology, The USC-Norris Comprehensive Cancer Center, University of Southern California Keck Medical Center, Los Angeles, California, USA
| | - Xiaojing Meng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Haijin Zhao
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
79
|
Kuronuma K, Otsuka M, Wakabayashi M, Yoshioka T, Kobayashi T, Kameda M, Morioka Y, Chiba H, Takahashi H. Role of transient receptor potential vanilloid 4 in therapeutic anti-fibrotic effects of pirfenidone. Am J Physiol Lung Cell Mol Physiol 2022; 323:L193-L205. [PMID: 35787697 DOI: 10.1152/ajplung.00565.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fatal lung disorder characterized by aberrant extracellular matrix deposition in the interstitium. Pirfenidone is an anti-fibrotic agent used to treat patients with IPF. Pirfenidone shows a pleiotropic mode of action, but its underlying anti-fibrotic mechanism is unclear. Transient receptor potential vanilloid 4 (TRPV4), which is a mechanosensitive calcium channel, was recently shown to be related to pulmonary fibrosis. To clarify the anti-fibrotic mechanisms of pirfenidone, we investigated whether TRPV4 blockade has a pharmacological effect in a murine model of pulmonary fibrosis and whether pirfenidone contributes to suppression of TRPV4. Our synthetic TRPV4 antagonist and pirfenidone treatment attenuated lung injury in the bleomycin mouse model. TRPV4-mediated increases in intracellular calcium were inhibited by pirfenidone. Additionally, TRPV4-stimulated interleukin-8 release from cells was reduced and a delay in cell migration was abolished by pirfenidone. Furthermore, pirfenidone decreased TRPV4 endogenous ligands in bleomycin-administered mouse lungs and their production by microsomes of human lungs. We found TRPV4 expression in the bronchiolar and alveolar epithelium and activated fibroblasts of the lungs in patients with IPF. Finally, we showed that changes in forced vital capacity of patients with IPF treated with pirfenidone were significantly correlated with metabolite levels of TRPV4 endogenous ligands in bronchoalveolar lavage fluid. These results suggest that the anti-fibrotic action of pirfenidone is partly mediated by TRPV4 and that TRPV4 endogenous ligands in bronchoalveolar lavage fluid may be biomarkers for distinguishing responders to pirfenidone.
Collapse
Affiliation(s)
- Koji Kuronuma
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuo Otsuka
- Department of Respiratory Medicine, Sapporo-Kosei General Hospital, Sapporo, Japan
| | - Masato Wakabayashi
- Translational Research Unit, Biomarker R&D Department, Shionogi Co., Ltd., Osaka, Japan
| | - Takeshi Yoshioka
- Translational Research Unit, Biomarker R&D Department, Shionogi Co., Ltd., Osaka, Japan
| | - Tomofumi Kobayashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masami Kameda
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasuhide Morioka
- Drug Discovery and Disease Research Laboratory, Shionogi Co., Ltd., Osaka, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
80
|
Perreault A, Harper K, Lebel M, Charbonneau M, Adam D, Brochiero E, Cantin AM, Leduc M, Gagnon L, Dubois CM. Human Lung Tissue Implanted on the Chick Chorioallantoic Membrane as a Novel In Vivo Model of IPF. Am J Respir Cell Mol Biol 2022; 67:164-172. [PMID: 35612953 DOI: 10.1165/rcmb.2022-0037ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with no curative pharmacological treatment. Current preclinical models fail to accurately reproduce human pathophysiology and are therefore poor predictors of clinical outcomes. Here, we investigated whether the chick embryo chorioallantoic membrane (CAM) assay supports the implantation of xenografts derived from IPF lung tissue and primary IPF lung fibroblasts and can be used to evaluate the efficacy of antifibrotic drugs. We demonstrate that IPF xenografts maintain their integrity and are perfused with chick embryo blood. Size measurements indicate that the xenografts amplify on the CAM, and Ki67 and pro-collagen type I immunohistochemical staining highlight the presence of proliferative and functional cells in the xenografts. Moreover, the IPF phenotype and immune microenvironment of lung tissues are retained when cultivated on the CAM and the fibroblast xenografts mimic invasive IPF fibroblastic foci. Daily treatments of the xenografts with nintedanib and PBI-4050 significantly reduce their size, fibrosis-associated gene expression, and collagen deposition. Similar effects are found with GLPG1205 and fenofibric acid, two drugs that target the immune microenvironment. Our CAM-IPF model represents the first in vivo model of IPF that uses human lung tissue. This rapid and cost-effective assay could become a valuable tool for predicting the efficacy of antifibrotic drug candidates for IPF.
Collapse
Affiliation(s)
- Alexis Perreault
- Université de Sherbrooke, 7321, Department of Immunology and Cell Biology, Sherbrooke, Quebec, Canada
| | - Kelly Harper
- Université de Sherbrooke, 7321, Department of Immunology and Cell Biology, Sherbrooke, Quebec, Canada
| | - Mégane Lebel
- Université de Sherbrooke, 7321, Department of Medicine, Pulmonary Division, Sherbrooke, Quebec, Canada
| | - Martine Charbonneau
- Université de Sherbrooke, 7321, Department of Immunology and Cell Biology, Sherbrooke, Quebec, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Montreal, Quebec, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Montréal, Quebec, Canada
| | - André M Cantin
- University of Sherbrooke, Department of Medicine, Pulmonary Division, Sherbrooke, Quebec, Canada
| | - Martin Leduc
- Liminal BioSciences Inc, 262159, Laval, Quebec, Canada
| | - Lyne Gagnon
- Liminal BioSciences Inc, 262159, Laval, Quebec, Canada
| | - Claire M Dubois
- Université de Sherbrooke, 7321, Department of Immunology and Cell Biology, Sherbrooke, Quebec, Canada;
| |
Collapse
|
81
|
Wilson C, Mertens TC, Shivshankar P, Bi W, Collum SD, Wareing N, Ko J, Weng T, Naikawadi RP, Wolters PJ, Maire P, Jyothula SS, Thandavarayan RA, Ren D, Elrod ND, Wagner EJ, Huang HJ, Dickey BF, Ford HL, Karmouty-Quintana H. Sine oculis homeobox homolog 1 plays a critical role in pulmonary fibrosis. JCI Insight 2022; 7:e142984. [PMID: 35420997 PMCID: PMC9220956 DOI: 10.1172/jci.insight.142984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options. The role of the developmental transcription factor Sine oculis homeobox homolog 1 (SIX1) in the pathophysiology of lung fibrosis is not known. IPF lung tissue samples and IPF-derived alveolar type II cells (AT2) showed a significant increase in SIX1 mRNA and protein levels, and the SIX1 transcriptional coactivators EYA1 and EYA2 were elevated. Six1 was also upregulated in bleomycin-treated (BLM-treated) mice and in a model of spontaneous lung fibrosis driven by deletion of Telomeric Repeat Binding Factor 1 (Trf1) in AT2 cells. Conditional deletion of Six1 in AT2 cells prevented or halted BLM-induced lung fibrosis, as measured by a significant reduction in histological burden of fibrosis, reduced fibrotic mediator expression, and improved lung function. These effects were associated with increased macrophage migration inhibitory factor (MIF) in lung epithelial cells in vivo following SIX1 overexpression in BLM-induced fibrosis. A MIF promoter-driven luciferase assay demonstrated direct binding of Six1 to the 5'-TCAGG-3' consensus sequence of the MIF promoter, identifying a likely mechanism of SIX1-driven MIF expression in the pathogenesis of lung fibrosis and providing a potentially novel pathway for targeting in IPF therapy.
Collapse
Affiliation(s)
- Cory Wilson
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Tinne C.J. Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Pooja Shivshankar
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Weizen Bi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Scott D. Collum
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Nancy Wareing
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Junsuk Ko
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Ram P. Naikawadi
- Pulmonary, Critical Care, Allergy and Sleep Medicine, UCSF, San Francisco, California, USA
| | - Paul J. Wolters
- Pulmonary, Critical Care, Allergy and Sleep Medicine, UCSF, San Francisco, California, USA
| | - Pascal Maire
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Soma S.K. Jyothula
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, UTHealth, Houston, Texas, USA
| | | | - Dewei Ren
- Methodist J.C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Nathan D. Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Eric J. Wagner
- Department of Biochemistry and Biophysics, Center for RNA Biology, Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, KMRB G.9629, Rochester, New York, USA
| | - Howard J. Huang
- Methodist J.C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Burton F. Dickey
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Heide L. Ford
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, UTHealth, Houston, Texas, USA
| |
Collapse
|
82
|
Ding Y, Hou Y, Liu Y, Yu T, Cui Y, Nie H. MiR-130a-3p Alleviates Inflammatory and Fibrotic Phases of Pulmonary Fibrosis Through Proinflammatory Factor TNF-α and Profibrogenic Receptor TGF-βRII. Front Pharmacol 2022; 13:863646. [PMID: 35431964 PMCID: PMC9006815 DOI: 10.3389/fphar.2022.863646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis (PF) is a progressive disease characterized by extracellular matrix (ECM) deposition that destroys the normal structure of the lung parenchyma, which is classified into two successive inflammatory and fibrotic phases. To investigate the anti-inflammatory and anti-fibrotic roles of miR-130a-3p in mice with bleomycin (BLM)-induced PF and the underlying mechanism, we performed single-cell RNA-sequencing analysis, which demonstrated that BLM increased/decreased the percentage of macrophages and fibroblasts/epithelial cells in PF lungs, respectively. The differentially expressed genes were enriched in PPAR signaling pathway and lysosome, ECM-receptor interaction and ribosome, and metabolism reaction. Time-course studies demonstrated that the inflammation-related factors increased significantly at day 7 (inflammatory phase), whereas the fibrosis-related factors increased at day 28 (fibrotic phase) after BLM exposure. Meanwhile, miR-130a-3p could ameliorate pulmonary lesions by downregulating the secretion of inflammatory cytokines (IL-1β, IL-6, TNF-α, and TGF-β1) and the deposition of ECM (α-SMA, FN, HYP, and collagen) in the inflammatory and fibrotic phase, respectively. In the LPS-induced inflammatory cell model, the upregulation of miR-130a-3p was mainly achieved by the activation of the NF-κB signaling pathway, which suppressed the proinflammatory factor TNF-α. Comparatively, the TGF-β/Smad signaling pathway was inhibited by miR-130a-3p targeting TGF-βRII in the TGF-β1-deduced fibrotic cell model. The evidence supports that miR-130a-3p exerts an anti-inflammatory and anti-fibrotic effect in BLM-induced PF, implying a potential pharmacological agent in the therapy of PF patients.
Collapse
Affiliation(s)
- Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
83
|
Lu P, Li J, Liu C, Yang J, Peng H, Xue Z, Liu Z. Salvianolic acid B dry powder inhaler for the treatment of idiopathic pulmonary fibrosis. Asian J Pharm Sci 2022; 17:447-461. [PMID: 35782322 PMCID: PMC9237582 DOI: 10.1016/j.ajps.2022.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/27/2022] [Accepted: 04/03/2022] [Indexed: 12/02/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a serious and fatal pulmonary inflammatory disease with an increasing incidence worldwide. The drugs nintedanib and pirfenidone, are listed as conditionally recommended drugs in the “Evidence-Based Guidelines for the Diagnosis and Treatment of Idiopathic Pulmonary Fibrosis”. However, these two drugs have many adverse reactions in clinical application. Salvianolic acid B (Sal B), a water-soluble component of Salvia miltiorrhiza, could alleviate bleomycin-induced peroxidative stress damage, and prevent or delay the onset of IPF by regulating inflammatory factors and fibrotic cytokines during the disease's progression. However, Sal B is poorly absorbed orally, and patient compliance is poor when administered intravenously. Therefore, there is an urgent need to find a new non-injection route of drug delivery. In this study, Sal B was used as model drug and l-leucine (LL) as excipient to prepare Sal B dry powder inhaler (Sal B-DPI) by spray drying method. Modern preparation evaluation methods were used to assess the quality of Sal B-DPI. Sal B-DPI is promising for the treatment of IPF, according to studies on pulmonary irritation evaluation, in vivo and in vitro pharmacodynamics, metabolomics, pharmacokinetics, and lung tissue distribution.
Collapse
Affiliation(s)
- Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- Department of Pharmacy, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, China
| | - Jiawei Li
- College of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chuanxin Liu
- Endocrine and Metabolic Disease Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Medical Key Laboratory of Hereditary Rare Diseases of Henan, Luoyang Sub-center of National Clinical Research Center for Metabolic Diseases, Luoyang, Henan 471003, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Hui Peng
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhifeng Xue
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- Corresponding authors.
| |
Collapse
|
84
|
Banerjee S, Banerjee D, Singh A, Saharan VA. A Comprehensive Investigation Regarding the Differentiation of the Procurable COVID-19 Vaccines. AAPS PharmSciTech 2022; 23:95. [PMID: 35314902 PMCID: PMC8936379 DOI: 10.1208/s12249-022-02247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/06/2022] [Indexed: 11/30/2022] Open
Abstract
COVID-19 caused by coronavirus SARS-CoV-2 became a serious threat to humankind for the past couple of years. The development of vaccine and its immediate application might be the only to escape from the grasp of this demoniac pandemic. Approximately 343 clinical trials on COVID-19 vaccines are ongoing currently, and almost all countries are motivating ongoing researches at warp speed for the development of vaccines against COVID-19. This review explores the progress in the development of the vaccines, their current status of ongoing clinical research, mechanisms, and regulatory approvals. Many pharmaceutical companies are already in the endgame for manufacturing various vaccines of which some are already being marketed across the globe, while others are yet to get approval for marketing. The primary aim of this review is to compare regulatory accepted vaccines in terms of their composition, doses, regulatory status, and efficacy. The study is conducted by grouping into approved and unapproved vaccines for marketing. Different routes of administration of vaccines along with the efficacy of the routes are also presented in the review. A wide range of database and clinical trial data is reviewed for sorting out the information on different vaccines. Unfortunately, many mutations (alpha, beta, gamma, delta, kappa, omicron etc.) of SARS-CoV-2 have attacked people in very short time, which is the great challenge for investigational vaccines. Moreover, some vaccines like Pfizer's BNT162, Oxford's ChAdOx1, Moderna's mRNA-1273, and Bharat Biotech's Covaxin have got regulatory approval in some countries for its distribution which may prove to stand tall against the pandemic.
Collapse
Affiliation(s)
- Surojit Banerjee
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India.
| | - Debadri Banerjee
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Anupama Singh
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Vikas Anand Saharan
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| |
Collapse
|
85
|
Farré R, Martínez-García MA, Gozal D. Systematic reviews and meta-analyses in animal model research: as necessary, and with similar pros and cons, as in patient research. Eur Respir J 2022; 59:59/3/2102438. [PMID: 35301241 DOI: 10.1183/13993003.02438-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain .,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Miguel A Martínez-García
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Pneumology Dept, University and Polytechnic la Fe Hospital, Valencia, Spain
| | - David Gozal
- Dept of Child Health, The University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
86
|
Qin L, Feng B, Luo Q, Zeng Z, Zhang P, Ye X, Qing T. Copper ion and G-quadruplex-mediated fluorescent sensor for highly selective detection of bleomycin in actual samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120572. [PMID: 34753707 DOI: 10.1016/j.saa.2021.120572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Improper dosage of Bleomycin (BLM) can easily lead to a series of side effects such as pulmonary fibrosis and pulmonary toxicity. Therefore, detecting the content of BLM in actual sample is very helpful to make full use of its therapeutic efficacy and reduce its toxicity. Herein, we constructed a copper ion and G-quadruplex mediated label-free sensor to detect BLM. The strategy mainly relies on the chelation of BLM to copper ions, which makes the copper ions lose the quenching ability to the fluorescent dye N-methylmesoporphyrin (NMM) after chelation. With the assistance of the G-quadruplex, the BLM content in the sample can be detected by observing the change in fluorescence. A good linear relationship can be clearly observed within the BLM concentration range of 0.1 nM-75 nM, and the limit of detection was derived as 0.1 nM. This sensor did not involve any labeling or addition of Fe2+, even in the presence of 10 different antibiotics and 11 different metal ions, it still has a good monitoring effect, and can be successfully applied to the detection of BLM in serum and wastewater. Thus, we believe that this work hold great potential in antibiotic monitoring and environmental protection.
Collapse
Affiliation(s)
- Lingfeng Qin
- College of Environment and Resources, Xiangtan University, Xiangtan 411105 Hunan Province, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105 Hunan Province, China
| | - Qi Luo
- College of Environment and Resources, Xiangtan University, Xiangtan 411105 Hunan Province, China
| | - Zihang Zeng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105 Hunan Province, China
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105 Hunan Province, China
| | - Xiaosheng Ye
- Xiangya School of Public Health, Central South University, Changsha 410078 Hunan Province, China.
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan 411105 Hunan Province, China.
| |
Collapse
|
87
|
p62-Nrf2 Regulatory Loop Mediates the Anti-Pulmonary Fibrosis Effect of Bergenin. Antioxidants (Basel) 2022; 11:antiox11020307. [PMID: 35204190 PMCID: PMC8868171 DOI: 10.3390/antiox11020307] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) can severely disrupt lung function, leading to fatal consequences, and there is currently a lack of specific therapeutic drugs. Bergenin is an isocoumarin compound with lots of biological functions including antioxidant activity. This study evaluated the potential beneficial effects of bergenin on pulmonary fibrosis and investigated the possible mechanisms. We found that bergenin alleviated bleomycin-induced pulmonary fibrosis by relieving oxidative stress, reducing the deposition of the extracellular matrix (ECM) and inhibiting the formation of myofibroblasts. Furthermore, we showed that bergenin could induce phosphorylation and expression of p62 and activation of Nrf2, Nrf2 was required for bergenin-induced p62 upregulation, and p62 knockdown reduced bergenin-induced Nrf2 activity. More importantly, knockdown of Nrf2 or p62 could abrogate the antioxidant activity of bergenin and the inhibition effect of bergenin on TGF-β-induced ECM deposition and myofibroblast differentiation. Thereby, a regulatory loop is formed between p62 and Nrf2, which is an important target for bergenin aimed at treating pulmonary fibrosis.
Collapse
|
88
|
Chalmers JD, Kolb M. The evolution of the European Respiratory Journal: adapting in an era of change. Eur Respir J 2022; 59:59/1/2200037. [PMID: 35086842 DOI: 10.1183/13993003.00037-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 11/05/2022]
Affiliation(s)
- James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Martin Kolb
- Dept of Respiratory Medicine, Pathology and Molecular Medicine, McMaster University and St Joseph's Healthcare, Hamilton, ON, Canada
| |
Collapse
|
89
|
Derseh HB, Goodger JQD, Scheerlinck JPY, Samuel CS, Woodrow IE, Palombo EA, Cumming A, Snibson K. The efficacy and safety of pinocembrin in a sheep model of bleomycin-induced pulmonary fibrosis. PLoS One 2021; 16:e0260719. [PMID: 34855848 PMCID: PMC8638960 DOI: 10.1371/journal.pone.0260719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
The primary flavonoid, pinocembrin, is thought to have a variety of medical uses which relate to its reported anti-oxidant, anti-inflammatory, anti-microbial and anti-cancer properties. Some studies have reported that this flavonoid has anti-fibrotic activities. In this study, we investigated whether pinocembrin would impede fibrosis, dampen inflammation and improve lung function in a large animal model of pulmonary fibrosis. Fibrosis was induced in two localized lung segments in each of the 10 sheep participating in the study. This was achieved via two infusions of bleomycin delivered bronchoscopically at a two-week interval. Another lung segment in the same sheep was left untreated, and was used as a healthy control. The animals were kept for a little over 5 weeks after the final infusion of bleomycin. Pinocembrin, isolated from Eucalyptus leaves, was administered to one of the two bleomycin damaged lung segments at a dose of 7 mg. This dose was given once-weekly over 4-weeks, starting one week after the final bleomycin infusion. Lung compliance (as a measure of stiffness) was significantly improved after four weekly administrations of pinocembrin to bleomycin-damaged lung segments. There were significantly lower numbers of neutrophils and inflammatory cells in the bronchoalveolar lavage of bleomycin-infused lung segments that were treated with pinocembrin. Compared to bleomycin damaged lung segments without drug treatment, pinocembrin administration was associated with significantly lower numbers of immuno-positive CD8+ and CD4+ T cells in the lung parenchyma. Histopathology scoring data showed that pinocembrin treatment was associated with significant improvement in inflammation and overall pathology scores. Hydroxy proline analysis showed that the administration of pinocembrin did not reduce the increased collagen content that was induced by bleomycin in this model. Analyses of Masson’s Trichrome stained sections showed that pinocembrin treatment significantly reduced the connective tissue content in lung segments exposed to bleomycin when compared to bleomycin-infused lungs that did not receive pinocembrin. The striking anti-inflammatory and modest anti-fibrotic remodelling effects of pinocembrin administration were likely linked to the compound’s ability to improve lung pathology and functional compliance in this animal model of pulmonary fibrosis.
Collapse
Affiliation(s)
- Habtamu B. Derseh
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (HBD); (KS)
| | - Jason Q. D. Goodger
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Jean-Pierre Y. Scheerlinck
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Chrishan S. Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Ian E. Woodrow
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | | | - Ken Snibson
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (HBD); (KS)
| |
Collapse
|
90
|
Yaghutian Nezhad L, Mohseni Kouchesfahani H, Alaee S, Bakhtari A. Thymoquinone ameliorates bleomycin-induced reproductive toxicity in male Balb/c mice. Hum Exp Toxicol 2021; 40:S611-S621. [PMID: 34818114 DOI: 10.1177/09603271211048184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bleomycin (BL) is a powerful chemotherapy drug that has devastating effects on spermatogenic function and may make cancer survivors at risk of infertility. Protective effects of thymoquinone (TQ), a phytochemical compound with antioxidant and anticancer influences, were investigated on sperm parameters, testicular structures, and sexual hormones in BL-treated mice. Forty-eight adult male Balb/c mice were randomly divided into six groups. Control group received normal saline; BL group received 10 mg/kg BL; TQ7.5 group received 7.5 mg/kg TQ; TQ15 group received 15 mg/kg TQ; BL+TQ7.5 group received 10 mg/kg BL and 7.5 mg/kg TQ; BL + TQ15 group received 10 mg/kg BL and 15 mg/kg TQ. BL was intraperitoneally used every day through 35 days, and TQ was intraperitoneally injected 3 days before administration of BL and continued twice per week for 35 days. Results showed that BL significantly decreased count, viability, morphology, maturity, and progressive movement of sperm, testosterone, seminiferous tubule diameters, the ratio of testis weight to body weight, number of spermatogonia, spermatocytes, spermatids, and Sertoli cells per tubule, and expression of Bcl2l1 and Bcl2l1/Bax ratio, and increased the non-progressive movement and immotile sperm, intermediate and immature sperm, LH, FSH, and malondialdehyde levels, and tunica albuginea thickness compared to the control group (p < .05). TQ at a level of 7.5 mg/kg ameliorated BL-induced toxicity on measured parameters and returned most of them to the level of the control group. These data suggested TQ in a dose-dependent manner may have positive effects on BL-induced toxicity of the testis in mice model.
Collapse
Affiliation(s)
- L Yaghutian Nezhad
- Department of Animal Biology, Faculty of Biological Sciences, 145440Kharazmi University, Tehran, Iran
| | - H Mohseni Kouchesfahani
- Department of Animal Biology, Faculty of Biological Sciences, 145440Kharazmi University, Tehran, Iran
| | - S Alaee
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, 48435Shiraz University of Medical Sciences, Shiraz, Iran.,Stem Cells Technology Research Center, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | - A Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
91
|
Pelizzo G, Silvestro S, Avanzini MA, Zuccotti G, Mazzon E, Calcaterra V. Mesenchymal Stromal Cells for the Treatment of Interstitial Lung Disease in Children: A Look from Pediatric and Pediatric Surgeon Viewpoints. Cells 2021; 10:3270. [PMID: 34943779 PMCID: PMC8699409 DOI: 10.3390/cells10123270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been proposed as a potential therapy to treat congenital and acquired lung diseases. Due to their tissue-regenerative, anti-fibrotic, and immunomodulatory properties, MSCs combined with other therapy or alone could be considered as a new approach for repair and regeneration of the lung during disease progression and/or after post- surgical injury. Children interstitial lung disease (chILD) represent highly heterogeneous rare respiratory diseases, with a wild range of age of onset and disease expression. The chILD is characterized by inflammatory and fibrotic changes of the pulmonary parenchyma, leading to gas exchange impairment and chronic respiratory failure associated with high morbidity and mortality. The therapeutic strategy is mainly based on the use of corticosteroids, hydroxychloroquine, azithromycin, and supportive care; however, the efficacy is variable, and their long-term use is associated with severe toxicity. The role of MSCs as treatment has been proposed in clinical and pre-clinical studies. In this narrative review, we report on the currently available on MSCs treatment as therapeutical strategy in chILD. The progress into the therapy of respiratory disease in children is mandatory to ameliorate the prognosis and to prevent the progression in adult age. Cell therapy may be a future therapy from both a pediatric and pediatric surgeon's point of view.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy;
| | - Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (E.M.)
| | - Maria Antonietta Avanzini
- Cell Factory, Pediatric Hematology Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy;
- Department of Pediatrics, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy;
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (E.M.)
| | - Valeria Calcaterra
- Department of Pediatrics, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy;
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
92
|
Fibroblast membrane-camouflaged nanoparticles for inflammation treatment in the early stage. Int J Oral Sci 2021; 13:39. [PMID: 34785637 PMCID: PMC8595357 DOI: 10.1038/s41368-021-00144-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
Unrestrained inflammation is harmful to tissue repair and regeneration. Immune cell membrane-camouflaged nanoparticles have been proven to show promise as inflammation targets and multitargeted inflammation controls in the treatment of severe inflammation. Prevention and early intervention of inflammation can reduce the risk of irreversible tissue damage and loss of function, but no cell membrane-camouflaged nanotechnology has been reported to achieve stage-specific treatment in these conditions. In this study, we investigated the prophylactic and therapeutic efficacy of fibroblast membrane-camouflaged nanoparticles for topical treatment of early inflammation (early pulpitis as the model) with the help of in-depth bioinformatics and molecular biology investigations in vitro and in vivo. Nanoparticles have been proven to act as sentinels to detect and competitively neutralize invasive Escherichia coli lipopolysaccharide (E. coli LPS) with resident fibroblasts to effectively inhibit the activation of intricate signaling pathways. Moreover, nanoparticles can alleviate the secretion of multiple inflammatory cytokines to achieve multitargeted anti-inflammatory effects, attenuating inflammatory conditions in the early stage. Our work verified the feasibility of fibroblast membrane-camouflaged nanoparticles for inflammation treatment in the early stage, which widens the potential cell types for inflammation regulation.
Collapse
|
93
|
Animal models of drug-induced pulmonary fibrosis: an overview of molecular mechanisms and characteristics. Cell Biol Toxicol 2021; 38:699-723. [PMID: 34741237 DOI: 10.1007/s10565-021-09676-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by progressive loss of pulmonary function. Drug-induced interstitial lung disease has been reported as a severe adverse effect of some drugs, such as bleomycin, amiodarone, and methotrexate. Based on good characteristics, drug-induced pulmonary fibrosis (PF) animal model has played a key role in our understanding of the molecular mechanisms of PF pathogenesis and recapitulates the specific pathology in patients and helps develop therapeutic strategies. Here, we summarize the mechanisms and characteristics of given fibrotic drug-induced animal models for PFs. Together with the key publications describing these models, this brief but detailed overview would be helpful for the pharmacological research with animal models of PFs. Potential mechanisms underlying drug induced lung toxicity.
Collapse
|
94
|
Li X, Ma L, Wei Y, Gu J, Liang J, Li S, Cui Y, Liu R, Huang H, Yang C, Zhou H. Cabozantinib ameliorates lipopolysaccharide-induced lung inflammation and bleomycin--induced early pulmonary fibrosis in mice. Int Immunopharmacol 2021; 101:108327. [PMID: 34741997 DOI: 10.1016/j.intimp.2021.108327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
The lung, as the primary organ for gas exchange in mammals, is the main target organ for many pathogens and allergens, which may cause acute lung injury. A certain proportion of acute lung injury may progress into irreversible pulmonary fibrosis. Both acute lung injury and pulmonary fibrosis have high mortality rates and few effective treatments. Cabozantinib is a multi-target small molecule tyrosine kinase inhibitor and has been approved for the treatment of multiple malignant solid tumors. In this study, we explored the role of cabozantinib in acute lung injury and pulmonary fibrosis in vivo and in vitro. In the lipopolysaccharide and bleomycin induced mouse lung injury models, cabozantinib significantly improved the pathological state and reduced the infiltration of inflammatory cells in the lung tissues. In the bleomycin induced pulmonary fibrosis model, cabozantinib significantly reduced the area of pulmonary fibrosis and improved lung function in mice. The results of in vitro studies showed that cabozantinib could inhibit the inflammatory response and apoptosis of alveolar epithelial cells by inhibiting the activation of TLR4/NF-κB and NLRP3 inflammasome pathways. At the same time, cabozantinib could inhibit the activation of lung fibroblasts through suppressing the TGF-β1/Smad pathway, and promote the apoptosis of fibroblasts. In summary, cabozantinib could alleviate lung injury through regulating the TLR4 /NF-κB/NLRP3 inflammasome pathway, and alleviate pulmonary fibrosis by inhibiting the TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Ling Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Yuli Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Jinying Gu
- Tianjin Jikun Technology Co., Ltd. Tianjin 301700, People's Republic of China
| | - Jingjing Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Shimeng Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Yunyao Cui
- Tianjin Jikun Technology Co., Ltd. Tianjin 301700, People's Republic of China
| | - Rui Liu
- Tianjin Jikun Technology Co., Ltd. Tianjin 301700, People's Republic of China
| | - Hui Huang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People's Republic of China.
| |
Collapse
|
95
|
Xiong M, Zhao Y, Mo H, Yang H, Yue F, Hu K. Intermittent hypoxia increases ROS/HIF-1α 'related oxidative stress and inflammation and worsens bleomycin-induced pulmonary fibrosis in adult male C57BL/6J mice. Int Immunopharmacol 2021; 100:108165. [PMID: 34560512 DOI: 10.1016/j.intimp.2021.108165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Obstructive sleep apnea (OSA) has been increasingly recognized as a risk factor for idiopathic pulmonary fibrosis (IPF). The intermittent hypoxia (IH) and re-oxygenation of OSA contribute to poor outcomes of IPF, however, the potential mechanism remains unknown. Here, C57BL/6J mice were administered intratracheal injection of Bleomycin (BLM) or saline and then exposed to IH (alternating cycles of FiO2 21% for 60S and FiO2 10% for 30 s, 40 cycles/hour, 8 h/day) to mimic OSA or intermittent air (IA) for 4 days, 8 days or 21 days. This study found that pulmonary fibrosis in BLM + IH treated mice was more severe than that in BLM + IA group at day 8 and 21, but not observed at day 4. Besides, the expression of reactive oxygen species (ROS) and hypoxia inducible factor-1α (HIF-1α),which are related to hypoxia reduced oxidative stress and inflammation, were higher in BLM + IH treated mice than BLM + IA mice, and IH increased these indexes in BLM treated mice from day 4 to day 21. Interestingly, a positive linear correlation between the HIF-1α expression and hydroxyproline (HYP) content was observed. We further found some inflammatory cells in bronchoalveolar lavage fluid were increased significantly from day 4 to 21, and there was a positive correlation between inflammation and ROS expression. Our results demonstrated that IH aggravated BLM-induced pulmonary fibrosis, and ROS/HIF-1α related oxidative stress and inflammation involved. The increase of ROS/HIF-1α related oxidative stress and inflammation may be a potential mechanism of moderate-to-severe OSA in potentiating pulmonary fibrosis of IPF, which warrants further study.
Collapse
Affiliation(s)
- Mengqing Xiong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yang Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Huaheng Mo
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Haizhen Yang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Fang Yue
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
96
|
Ibrahim A, Ciullo A, Li C, Akhmerov A, Peck K, Jones-Ungerleider KC, Morris A, Marchevsky A, Marbàn E, Ibrahim AG. Engineered Fibroblast Extracellular Vesicles Attenuate Pulmonary Inflammation and Fibrosis in Bleomycin-Induced Lung Injury. Front Cell Dev Biol 2021; 9:733158. [PMID: 34660588 PMCID: PMC8512699 DOI: 10.3389/fcell.2021.733158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022] Open
Abstract
Pulmonary fibrosis is a progressive disease for which no curative treatment exists. We have previously engineered dermal fibroblasts to produce extracellular vesicles with tissue reparative properties dubbed activated specialized tissue effector extracellular vesicles (ASTEX). Here, we investigate the therapeutic utility of ASTEX in vitro and in a mouse model of bleomycin-induced lung injury. RNA sequencing demonstrates that ASTEX are enriched in micro-RNAs (miRs) cargo compared with EVs from untransduced dermal fibroblast EVs (DF-EVs). Treating primary macrophages with ASTEX reduced interleukin (IL)6 expression and increased IL10 expression compared with DF-EV-exposed macrophages. Furthermore, exposure of human lung fibroblasts or vascular endothelial cells to ASTEX reduced expression of smooth muscle actin, a hallmark of myofibroblast differentiation (respectively). In vivo, intratracheal administration of ASTEX in naïve healthy mice demonstrated a favorable safety profile with no changes in body weight, lung weight to body weight, fibrotic burden, or histological score 3 weeks postexposure. In an acute phase (short-term) bleomycin model of lung injury, ASTEX reduced lung weight to body weight, IL6 expression, and circulating monocytes. In a long-term setting, ASTEX improved survival and reduced fibrotic content in lung tissue. These results suggest potential immunomodulatory and antifibrotic properties of ASTEX in lung injury.
Collapse
Affiliation(s)
- Abdulrahman Ibrahim
- Faculty of Medicine, University of Queensland/Ochsner Clinical School, New Orleans, LA, United States
| | - Alessandra Ciullo
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Chang Li
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Akbarshakh Akhmerov
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Kiel Peck
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | | | - Ashley Morris
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Alberto Marchevsky
- Pulmonary Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Eduardo Marbàn
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Ahmed Gamal Ibrahim
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
97
|
Toren D, Yanai H, Abu Taha R, Bunu G, Ursu E, Ziesche R, Tacutu R, Fraifeld VE. Systems biology analysis of lung fibrosis-related genes in the bleomycin mouse model. Sci Rep 2021; 11:19269. [PMID: 34588506 PMCID: PMC8481473 DOI: 10.1038/s41598-021-98674-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022] Open
Abstract
Tissue fibrosis is a major driver of pathology in aging and is involved in numerous age-related diseases. The lungs are particularly susceptible to fibrotic pathology which is currently difficult to treat. The mouse bleomycin-induced fibrosis model was developed to investigate lung fibrosis and widely used over the years. However, a systematic analysis of the accumulated results has not been performed. We undertook a comprehensive data mining and subsequent manual curation, resulting in a collection of 213 genes (available at the TiRe database, www.tiredb.org ), which when manipulated had a clear impact on bleomycin-induced lung fibrosis. Our meta-analysis highlights the age component in pulmonary fibrosis and strong links of related genes with longevity. The results support the validity of the bleomycin model to human pathology and suggest the importance of a multi-target therapeutic strategy for pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Dmitri Toren
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, 060031, Bucharest, Romania
| | - Hagai Yanai
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Reem Abu Taha
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Gabriela Bunu
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, 060031, Bucharest, Romania
| | - Eugen Ursu
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, 060031, Bucharest, Romania
| | - Rolf Ziesche
- Internal Medicine II/Pulmonology, Medical University of Vienna, 27271, Wien, Austria
| | - Robi Tacutu
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, 060031, Bucharest, Romania.
| | - Vadim E Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
98
|
Song S, Fu Z, Guan R, Zhao J, Yang P, Li Y, Yin H, Lai Y, Gong G, Zhao S, Yu J, Peng X, He Y, Luo Y, Zhong N, Su J. Intracellular hydroxyproline imprinting following resolution of bleomycin-induced pulmonary fibrosis. Eur Respir J 2021; 59:13993003.00864-2021. [PMID: 34561295 PMCID: PMC9068975 DOI: 10.1183/13993003.00864-2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/14/2021] [Indexed: 11/05/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with few treatment options. The poor success in developing anti-IPF strategies have impelled researchers to reconsider the importance of choice for animal model and assessment methodologies. Currently, it is still not settled whether the bleomycin-induced lung fibrosis mouse model finally returns to resolution.This study aimed to follow the dynamic fibrotic features of BLM (Bleomycin)-treated mouse lungs with extended durations through a combination of the latest technologies (micro-CT imaging and histological detection of degraded collagens) with traditional methods. In addition, we also applied immunohistochemistry to explore the distribution of all hydroxyproline-containing molecules.As determined by classical biochemical method, total lung hydroxyproline contents reached peak at 4-week after bleomycin injury and maintained a steady high level thereafter until the end of the experiments (16-week). This result seemed to partially contradict with the changes of other fibrosis evaluation parameters, which indicated a gradual degradation of collagens and a recovery of lung aeration post the fibrosis peak. This inconsistency was well reconciled by our data from immunostaining against hydroxyproline and a fluorescent peptide staining against degraded collagen, together showing large amounts of hydroxyproline-rich degraded collagen fragments detained and enriched within the intracellular regions at 10- or 16-week, rather than at 4-week post the BLM-treatment. Hence, our present data not only offer respiratory researchers a new perspective towards the resolution nature of mouse lung fibrosis, but also remind them to be cautious while using hydroxyproline content assay to evaluate the severity of fibrosis.
Collapse
Affiliation(s)
- Shengren Song
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China.,State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,These authors contributed equally to this work
| | - Zhenli Fu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,These authors contributed equally to this work
| | - Ruijuan Guan
- Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong, China.,These authors contributed equally to this work
| | - Jie Zhao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,These authors contributed equally to this work
| | - Penghui Yang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,These authors contributed equally to this work
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hang Yin
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yunxin Lai
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gencheng Gong
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Simin Zhao
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiangtian Yu
- Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong, China
| | - Xiaomin Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ying He
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yumei Luo
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nanshan Zhong
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China .,State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jin Su
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China .,Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong, China
| |
Collapse
|
99
|
Ravanetti F, Ferrini E, Ragionieri L, Khalajzeyqami Z, Nicastro M, Ridwan Y, Kleinjan A, Villetti G, Grandi A, Stellari FF. SSC-ILD mouse model induced by osmotic minipump delivered bleomycin: effect of Nintedanib. Sci Rep 2021; 11:18513. [PMID: 34531421 PMCID: PMC8445948 DOI: 10.1038/s41598-021-97728-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by an excessive production and accumulation of collagen in the skin and internal organs often associated with interstitial lung disease (ILD). Its pathogenetic mechanisms are unknown and the lack of animal models mimicking the features of the human disease is creating a gap between the selection of anti-fibrotic drug candidates and effective therapies. In this work, we intended to pharmacologically validate a SSc-ILD model based on 1 week infusion of bleomycin (BLM) by osmotic minipumps in C57/BL6 mice, since it will serve as a tool for secondary drug screening. Nintedanib (NINT) has been used as a reference compound to investigate antifibrotic activity either for lung or skin fibrosis. Longitudinal Micro-CT analysis highlighted a significant slowdown in lung fibrosis progression after NINT treatment, which was confirmed by histology. However, no significant effect was observed on lung hydroxyproline content, inflammatory infiltrate and skin lipoatrophy. The modest pharmacological effect reported here could reflect the clinical outcome, highlighting the reliability of this model to better profile potential clinical drug candidates. The integrative approach presented herein, which combines longitudinal assessments with endpoint analyses, could be harnessed in drug discovery to generate more reliable, reproducible and robust readouts.
Collapse
Affiliation(s)
| | - Erica Ferrini
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Luisa Ragionieri
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Zahra Khalajzeyqami
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Maria Nicastro
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Yanto Ridwan
- Department of Molecular Genetics, Vascular Surgery and Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Alex Kleinjan
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Gino Villetti
- Pharmacology & Toxicology Department, Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Largo Belloli, 11/A, 43122, Parma, Italy
| | - Andrea Grandi
- Pharmacology & Toxicology Department, Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Largo Belloli, 11/A, 43122, Parma, Italy
| | - Franco Fabio Stellari
- Pharmacology & Toxicology Department, Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Largo Belloli, 11/A, 43122, Parma, Italy.
| |
Collapse
|
100
|
Li X, Liu R, Cui Y, Liang J, Bi Z, Li S, Miao Y, Zhang L, Li X, Zhou H, Yang C. Protective Effect of Remdesivir Against Pulmonary Fibrosis in Mice. Front Pharmacol 2021; 12:692346. [PMID: 34512328 PMCID: PMC8427522 DOI: 10.3389/fphar.2021.692346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/13/2021] [Indexed: 01/12/2023] Open
Abstract
Pulmonary fibrosis is a known sequela of severe or persistent lung damage. Existing clinical, imaging and autopsy studies have shown that the lungs exhibit a pathological pulmonary fibrosis phenotype after infection with coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pulmonary fibrosis may be one of the most serious sequelae associated with coronavirus disease 2019 (COVID-19). In this study, we aimed to examine the preventative effects of the antiviral drug remdesivir on pulmonary fibrosis. We used a mouse model of bleomycin-induced pulmonary fibrosis to evaluate the effects of remdesivir on pulmonary fibrosis in vivo and further explored the potential pharmacological mechanisms of remdesivir in lung fibroblasts and alveolar epithelial cells in vitro. The preventive remdesivir treatment was started on the day of bleomycin installation, and the results showed that remdesivir significantly alleviated bleomycin-induced collagen deposition and improved pulmonary function. In vitro experiments showed that remdesivir dose-dependently suppressed TGF-β1-induced lung fibroblast activation and improved TGF-β1-induced alveolar epithelial to mesenchymal transition. Our results indicate that remdesivir can preventatively alleviate the severity of pulmonary fibrosis and provide some reference for the prevention of pulmonary fibrosis in patients with COVID-19.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Rui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yunyao Cui
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jingjing Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zhun Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shimeng Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yang Miao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Liang Zhang
- Department of Thoracic Surgery, Tian Jin First Central Hospital, Tianjin, China
| | - Xiaoping Li
- Department of Thoracic Surgery, Tian Jin First Central Hospital, Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|