51
|
Wang X, Liang T, Mao Y, Li Z, Li X, Zhu X, Cao F, Zhang J. Nervonic acid improves liver inflammation in a mouse model of Parkinson's disease by inhibiting proinflammatory signaling pathways and regulating metabolic pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154911. [PMID: 37276724 DOI: 10.1016/j.phymed.2023.154911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Nervonic acid (NA) - a type of bioactive fatty acid that is found in natural sources - can inhibit inflammatory reactions and regulate immune system balance. Therefore, the use of NA for the treatment of neurodegenerative diseases has received considerable attention. Our previous study found that NA inhibited inflammatory responses in the brain of Parkinson's disease (PD) mouse models. In addition to the brain, PD is also associated with visceral organ dysfunction, especially impaired liver function. Thus, studying the role of NA in PD-mediated inflammation of the liver is particularly important. METHODS A combined transcriptome and metabolomic approach was utilized to investigate the anti-inflammatory effects of NA on the liver of PD mice. Inflammatory signaling molecules and metabolic pathway-related genes were examined in the liver using real-time PCR and western blotting. RESULTS Liver transcriptome analysis revealed that NA exerted anti-inflammatory effects by controlling several pro-inflammatory signaling pathways, such as the down-regulation of the tumor necrosis factor and nuclear factor kappa B signaling pathways, both of which were essential in the development of inflammatory disease. In addition, liver metabolomic results revealed that metabolites related to steroid hormone biosynthesis, arachidonic acid metabolism, and linoleic acid metabolism were up-regulated and those related to valine, leucine, and isoleucine degradation pathways were down-regulated in NA treatment groups compared with the PD model. The integration of metabolomic and transcriptomic results showed NA significantly exerted its anti-inflammatory function by regulating the transcription and metabolic pathways of multiple genes. Particularly, linoleic acid metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis were the crucial pathways of the anti-inflammatory action of NA. Key genes in these metabolic pathways and key molecules in inflammatory signaling pathways were also verified, which were consistent with transcriptomic results. CONCLUSION These findings provide novel insights into the liver protective effects of NA against PD mice. This study also showed that NA could be a useful dietary element for improving and treating PD-induced liver inflammation.
Collapse
Affiliation(s)
- Xueqi Wang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Tingyu Liang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Ying Mao
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Zhengdou Li
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Xu Li
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Xinliang Zhu
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China; Institute of Rural Development and Research, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Fuliang Cao
- Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China.
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China; Institute of Rural Development and Research, Northwest Normal University, Lanzhou, Gansu Province 730070, China.
| |
Collapse
|
52
|
Qi L, Li X, Zhang F, Zhu X, Zhao Q, Yang D, Hao S, Li T, Li X, Tian T, Feng J, Sun X, Wang X, Gao S, Wang H, Ye J, Cao S, He Y, Wang H, Wei B. VEGFR-3 signaling restrains the neuron-macrophage crosstalk during neurotropic viral infection. Cell Rep 2023; 42:112489. [PMID: 37167063 DOI: 10.1016/j.celrep.2023.112489] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
Upon recognizing danger signals produced by virally infected neurons, macrophages in the central nervous system (CNS) secrete multiple inflammatory cytokines to accelerate neuron apoptosis. The understanding is limited about which key effectors regulate macrophage-neuron crosstalk upon infection. We have used neurotropic-virus-infected murine models to identify that vascular endothelial growth factor receptor 3 (VEGFR-3) is upregulated in the CNS macrophages and that virally infected neurons secrete the ligand VEGF-C. When cultured with VEGF-C-containing supernatants from virally infected neurons, VEGFR-3+ macrophages suppress tumor necrosis factor α (TNF-α) secretion to reduce neuron apoptosis. Vegfr-3ΔLBD/ΔLBD (deletion of ligand-binding domain in myeloid cells) mice or mice treated with the VEGFR-3 kinase inhibitor exacerbate the severity of encephalitis, TNF-α production, and neuron apoptosis post Japanese encephalitis virus (JEV) infection. Activating VEGFR-3 or blocking TNF-α can reduce encephalitis and neuronal damage upon JEV infection. Altogether, we show that the inducible VEGF-C/VEGFR-3 module generates protective crosstalk between neurons and macrophages to alleviate CNS viral infection.
Collapse
Affiliation(s)
- Linlin Qi
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaojing Li
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fang Zhang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China; Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xingguo Zhu
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qi Zhao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Dan Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China
| | - Shujie Hao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Tong Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiangyue Li
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Taikun Tian
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jian Feng
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaochen Sun
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xilin Wang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shangyan Gao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulong He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Cam-Su Genomic Resources Center, Soochow University, Suzhou 215123, China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Bin Wei
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China; Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350000, China.
| |
Collapse
|
53
|
Hashimoto A, Kawamura N, Tarusawa E, Takeda I, Aoyama Y, Ohno N, Inoue M, Kagamiuchi M, Kato D, Matsumoto M, Hasegawa Y, Nabekura J, Schaefer A, Moorhouse AJ, Yagi T, Wake H. Microglia enable cross-modal plasticity by removing inhibitory synapses. Cell Rep 2023; 42:112383. [PMID: 37086724 DOI: 10.1016/j.celrep.2023.112383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/13/2023] [Accepted: 03/28/2023] [Indexed: 04/24/2023] Open
Abstract
Cross-modal plasticity is the repurposing of brain regions associated with deprived sensory inputs to improve the capacity of other sensory modalities. The functional mechanisms of cross-modal plasticity can indicate how the brain recovers from various forms of injury and how different sensory modalities are integrated. Here, we demonstrate that rewiring of the microglia-mediated local circuit synapse is crucial for cross-modal plasticity induced by visual deprivation (monocular deprivation [MD]). MD relieves the usual inhibition of functional connectivity between the somatosensory cortex and secondary lateral visual cortex (V2L). This results in enhanced excitatory responses in V2L neurons during whisker stimulation and a greater capacity for vibrissae sensory discrimination. The enhanced cross-modal response is mediated by selective removal of inhibitory synapse terminals on pyramidal neurons by the microglia in the V2L via matrix metalloproteinase 9 signaling. Our results provide insights into how cortical circuits integrate different inputs to functionally compensate for neuronal damage.
Collapse
Affiliation(s)
- Akari Hashimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Nanami Kawamura
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Etsuko Tarusawa
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Ikuko Takeda
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuki Aoyama
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, Shimotsuke 329-0498, Japan; Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Mio Inoue
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mai Kagamiuchi
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Daisuke Kato
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yoshihiro Hasegawa
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; Department of Physiological Sciences, Graduate University for Advanced Studies, SOKENDAI, Hayama 240-0193, Japan
| | - Anne Schaefer
- Center for Glial Biology, Department of Neuroscience and Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Andrew J Moorhouse
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; Center for Optical Scattering Image Science, Kobe University, Kobe 657-8501, Japan; Department of Physiological Sciences, Graduate University for Advanced Studies, SOKENDAI, Hayama 240-0193, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan.
| |
Collapse
|
54
|
Liu Y, Li H, Wang X, Huang J, Zhao D, Tan Y, Zhang Z, Zhang Z, Zhu L, Wu B, Chen Z, Peng W. Anti-Alzheimers molecular mechanism of icariin: insights from gut microbiota, metabolomics, and network pharmacology. J Transl Med 2023; 21:277. [PMID: 37095548 PMCID: PMC10124026 DOI: 10.1186/s12967-023-04137-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Icariin (ICA), an active ingredient extracted from Epimedium species, has shown promising results in the treatment of Alzheimer's disease (AD), although its potential therapeutic mechanism remains largely unknown. This study aimed to investigate the therapeutic effects and the underlying mechanisms of ICA on AD by an integrated analysis of gut microbiota, metabolomics, and network pharmacology (NP). METHODS The cognitive impairment of mice was measured using the Morris Water Maze test and the pathological changes were assessed using hematoxylin and eosin staining. 16S rRNA sequencing and multi-metabolomics were performed to analyze the alterations in the gut microbiota and fecal/serum metabolism. Meanwhile, NP was used to determine the putative molecular regulation mechanism of ICA in AD treatment. RESULTS Our results revealed that ICA intervention significantly improved cognitive dysfunction in APP/PS1 mice and typical AD pathologies in the hippocampus of the APP/PS1 mice. Moreover, the gut microbiota analysis showed that ICA administration reversed AD-induced gut microbiota dysbiosis in APP/PS1 mice by elevating the abundance of Akkermansia and reducing the abundance of Alistipe. Furthermore, the metabolomic analysis revealed that ICA reversed the AD-induced metabolic disorder via regulating the glycerophospholipid and sphingolipid metabolism, and correlation analysis revealed that glycerophospholipid and sphingolipid were closely related to Alistipe and Akkermansia. Moreover, NP indicated that ICA might regulate the sphingolipid signaling pathway via the PRKCA/TNF/TP53/AKT1/RELA/NFKB1 axis for the treatment of AD. CONCLUSION These findings indicated that ICA may serve as a promising therapeutic approach for AD and that the ICA-mediated protective effects were associated with the amelioration of microbiota disturbance and metabolic disorder.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xiaowei Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Changsha, 410013, People's Republic of China
| | - Di Zhao
- Hunan Academy of Chinese Medicine, Changsha, 410013, People's Republic of China
| | - Yejun Tan
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhibao Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
55
|
Lund MC, Clausen BH, Brambilla R, Lambertsen KL. The Role of Tumor Necrosis Factor Following Spinal Cord Injury: A Systematic Review. Cell Mol Neurobiol 2023; 43:925-950. [PMID: 35604578 PMCID: PMC11414445 DOI: 10.1007/s10571-022-01229-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
Pre-clinical studies place tumor necrosis factor (TNF) as a central player in the inflammatory response after spinal cord injury (SCI), and blocking its production and/or activity has been proposed as a possible treatment option after SCI. This systematic review provides an overview of the literature on the temporal and cellular expression of TNF after SCI and clarifies the potential for its therapeutic manipulation in SCI. A systematic search was performed in EMBASE (Ovid), MEDLINE (Ovid), and Web of Science (Core Collection). The search terms were the MeSH forms of tumor necrosis factor and spinal cord injury in the different databases, and the last search was performed on February 3, 2021. We found twenty-four articles examining the expression of TNF, with most using a thoracic contusive SCI model in rodents. Two articles described the expression of TNF receptors in the acute phase after SCI. Twenty-one articles described the manipulation of TNF signaling using genetic knock-out, pharmaceutical inhibition, or gain-of-function approaches. Overall, TNF expression increased rapidly after SCI, within the first hours, in resident cells (neurons, astrocytes, oligodendrocytes, and microglia) and again in macrophages in the chronic phase after injury. The review underscores the complexity of TNF's role after SCI and indicates that TNF inhibition is a promising therapeutic option. This review concludes that TNF plays a significant role in the inflammatory response after SCI and suggests that targeting TNF signaling is a feasible therapeutic approach.
Collapse
Affiliation(s)
- Minna Christiansen Lund
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Bettina Hjelm Clausen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIGDE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Roberta Brambilla
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIGDE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Kate Lykke Lambertsen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- BRIGDE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Department of Neurology, Odense University Hospital, J.B. Winsløwsvej 21 st., 5000, Odense, Denmark.
| |
Collapse
|
56
|
Kim TW, Koo SY, Riessland M, Cho H, Chaudhry F, Kolisnyk B, Russo MV, Saurat N, Mehta S, Garippa R, Betel D, Studer L. TNF-NFkB-p53 axis restricts in vivo survival of hPSC-derived dopamine neuron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534819. [PMID: 37034664 PMCID: PMC10081262 DOI: 10.1101/2023.03.29.534819] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ongoing, first-in-human clinical trials illustrate the feasibility and translational potential of human pluripotent stem cell (hPSC)-based cell therapies in Parkinson's disease (PD). However, a major unresolved challenge in the field is the extensive cell death following transplantation with <10% of grafted dopamine neurons surviving. Here, we performed a pooled CRISPR/Cas9 screen to enhance survival of postmitotic dopamine neurons in vivo . We identified p53-mediated apoptotic cell death as major contributor to dopamine neuron loss and uncovered a causal link of TNFa-NFκB signaling in limiting cell survival. As a translationally applicable strategy to purify postmitotic dopamine neurons, we performed a cell surface marker screen that enabled purification without the need for genetic reporters. Combining cell sorting with adalimumab pretreatment, a clinically approved and widely used TNFa inhibitor, enabled efficient engraftment of postmitotic dopamine neurons leading to extensive re-innervation and functional recovery in a preclinical PD mouse model. Thus, transient TNFa inhibition presents a clinically relevant strategy to enhance survival and enable engraftment of postmitotic human PSC-derived dopamine neurons in PD. Highlights In vivo CRISPR-Cas9 screen identifies p53 limiting survival of grafted human dopamine neurons. TNFα-NFκB pathway mediates p53-dependent human dopamine neuron deathCell surface marker screen to enrich human dopamine neurons for translational use. FDA approved TNF-alpha inhibitor rescues in vivo dopamine neuron survival with in vivo function.
Collapse
|
57
|
Shiau S, Jacobson DL, Huo Y, Kacanek D, Yee LM, Williams DB, Haddad LB, Serghides L, Powis K, Sperling RS, Williams PL, Jao J. Unique Profile of Inflammation and Immune Activation in Pregnant People With HIV in the United States. J Infect Dis 2023; 227:720-730. [PMID: 36592383 PMCID: PMC10152501 DOI: 10.1093/infdis/jiac501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/16/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Little is known about inflammation/immune activation during pregnancy in people with HIV (PWH) and growth in their children who are HIV-exposed and uninfected (CHEU). METHODS Using data from the Pediatric HIV/AIDS Cohort Study and an HIV-seronegative comparison group, we assessed associations of (1) HIV status, mode of HIV acquisition (perinatally vs nonperinatally acquired), and type of antiretroviral therapy (ART) with inflammation/immune activation in pregnancy; and (2) inflammation/immune activation in pregnancy with growth of CHEU at 12 months. Interleukin 6 (IL-6), high-sensitivity C-reactive protein (hs-CRP), soluble(s) TNF-α receptor 1 and 2 (sTNFR1, sTNFR2), sCD14, and sCD163 were measured between 13 and 27 weeks' gestation. Linear regression models were fit to estimate differences between groups for each log-transformed biomarker, adjusted for confounders. RESULTS Pregnant PWH (188 total, 39 perinatally acquired, 149 nonperinatally acquired) and 76 HIV-seronegative persons were included. PWH had higher IL-6, sTNFR1, sCD14, and sCD163 and lower sTNFR2 compared to HIV-seronegative persons in adjusted models. Among PWH, sCD163 was higher in those with perinatally versus nonperinatally acquired HIV and on PI-based versus INSTI-based ART. Higher maternal concentrations of IL-6, sTNFR2, and hs-CRP were associated with poorer growth at 12 months. CONCLUSIONS Maternal HIV status is associated with a distinct profile of inflammation/immune activation during pregnancy, which may influence child growth.
Collapse
Affiliation(s)
- Stephanie Shiau
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Denise L Jacobson
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Yanling Huo
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Deborah Kacanek
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lynn M Yee
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David B Williams
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Lisa B Haddad
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Lena Serghides
- University Health Network and Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Kathleen Powis
- Departments of Internal Medicine and Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Rhoda S Sperling
- Department of Obstetrics, Gynecology, and Reproductive Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paige L Williams
- Departments of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jennifer Jao
- Department of Pediatrics, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
58
|
Shen H, Zhang T, Ji Y, Zhang Y, Wang Y, Jiang Y, Chen X, Liang Q, Wu K, Li Y, Lu X, Cui L, Zhao B, Wang Y. GRK5 Deficiency in the Hippocampus Leads to Cognitive Impairment via Abnormal Microglial Alterations. Mol Neurobiol 2023; 60:1547-1562. [PMID: 36525154 DOI: 10.1007/s12035-022-03151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
GRK5 is a member of the G protein-coupled receptor (GPCR) kinase family and is closely associated with heart and nervous system disease. It has been reported that GRK5 is closely related to cerebral nerve function and neurodegenerative diseases. However, the biological function of GRK5 in the brain and the influence of GRK5 deficiency on cognitive dysfunction associated with neurodegenerative diseases are unknown. Here, we reported that mice with reduced GRK5 in the hippocampus exhibit cognitive impairment and some Alzheimer's disease (AD)-related molecular pathologies, such as significant neuronal damage and loss, enhanced tau protein phosphorylation, and increased levels of Aβ peptides in the hippocampus. Mechanistically, we observed that GRK5 is located in microglia and plays an essential role in maintaining the morphology and function of microglia. GRK5 deficiency elicits microglial morphology changes and proinflammatory-associated gene increases. In addition, transcriptional analysis of hippocampal tissues revealed striking changes in neuroactive ligand‒receptor interactions and TNF signaling in GRK5-deficient mice. In conclusion, our results further confirm the vital role of GRK5 in maintaining normal cognitive function in mice. This finding suggests a possible mechanism by which GRK5 maintains microglial homeostasis, and its loss may induce microglial function deficits and cause some AD-related molecular pathogenesis.
Collapse
Affiliation(s)
- Hongtao Shen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tianzhen Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yao Ji
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yu Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongxiang Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuling Jiang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qiuhao Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kefeng Wu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yunfeng Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xingyu Lu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
59
|
Potter HG, Kowash HM, Woods RM, Revill G, Grime A, Deeney B, Burgess MA, Aarons T, Glazier JD, Neill JC, Hager R. Maternal behaviours and adult offspring behavioural deficits are predicted by maternal TNFα concentration in a rat model of neurodevelopmental disorders. Brain Behav Immun 2023; 108:162-175. [PMID: 36503051 DOI: 10.1016/j.bbi.2022.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Exposure to inflammatory stressors during fetal development is a major risk factor for neurodevelopmental disorders (NDDs) in adult offspring. Maternal immune activation (MIA), induced by infection, causes an acute increase in pro-inflammatory cytokines which can increase the risk for NDDs directly by inducing placental and fetal brain inflammation, or indirectly through affecting maternal care behaviours thereby affecting postnatal brain development. Which of these two potential mechanisms dominates in increasing offspring risk for NDDs remains unclear. Here, we show that acute systemic maternal inflammation induced by the viral mimetic polyinosinic:polycytidylic acid (poly I:C) on gestational day 15 of rat pregnancy affects offspring and maternal behaviour, offspring cognition, and expression of NDD-relevant genes in the offspring brain. Dams exposed to poly I:C elicited an acute increase in the pro-inflammatory cytokine tumour necrosis factor (TNF; referred to here as TNFα), which predicted disruption of key maternal care behaviours. Offspring of poly I:C-treated dams showed early behavioural and adult cognitive deficits correlated to the maternal TNFα response, but, importantly, not with altered maternal care. We also found interacting effects of sex and treatment on GABAergic gene expression and DNA methylation in these offspring in a brain region-specific manner, including increased parvalbumin expression in the female adolescent frontal cortex. We conclude that the MIA-induced elevation of TNFα in the maternal compartment affects fetal neurodevelopment leading to altered offspring behaviour and cognition. Our results suggest that a focus on prenatal pathways affecting fetal neurodevelopment would provide greater insights into the mechanisms underpinning the TNFα-mediated genesis of altered offspring behaviour and cognition following maternal inflammation.
Collapse
Affiliation(s)
- Harry G Potter
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom; School of Medicine, University of Central Lancashire, Burnley BB11 1RA, United Kingdom.
| | - Hager M Kowash
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, St Mary's Hospital, Manchester M13 9WL, United Kingdom
| | - Rebecca M Woods
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Grace Revill
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Amy Grime
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Brendan Deeney
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Matthew A Burgess
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Toby Aarons
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jocelyn D Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Joanna C Neill
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom; Chair of Medical Psychedelics Working Group, Drug Science, United Kingdom
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
60
|
Ballaz S, Bourin M. Anti-Inflammatory Therapy as a Promising Target in Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:459-486. [PMID: 36949322 DOI: 10.1007/978-981-19-7376-5_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
This chapter analyzes the therapeutic potential of current anti-inflammatory drugs in treating psychiatric diseases from a neuro-immunological perspective. Based on the bidirectional brain-immune system relationship, the rationale is that a dysregulated inflammation contributes to the pathogenesis of psychiatric and neurological disorders, while the immunology function is associated with psychological variables like stress, affective disorders, and psychosis. Under certain social, psychological, and environmental conditions and biological factors, a healthy inflammatory response and the associated "sickness behavior," which are aimed to resolve a physical injury and microbial threat, become harmful to the central nervous system. The features and mechanisms of the inflammatory response are described across the main mental illnesses with a special emphasis on the profile of cytokines and the function of the HPA axis. Next, it is reviewed the potential clinical utility of immunotherapy (cytokine agonists and antagonists), glucocorticoids, unconventional anti-inflammatory agents (statins, minocycline, statins, and polyunsaturated fatty acids (PUFAs)), the nonsteroidal anti-inflammatory drugs (NSAIDs), and particularly celecoxib, a selective cyclooxygenase-2 (Cox-2) inhibitor, as adjuvants of conventional psychiatric medications. The implementation of anti-inflammatory therapies holds great promise in psychiatry. Because the inflammatory background may account for the etiology and/or progression of psychiatric disorders only in a subset of patients, there is a need to elucidate the immune underpinnings of the mental illness progression, relapse, and remission. The identification of immune-related bio-signatures will ideally assist in the stratification of the psychiatric patient to predict the risk of mental disease, the prognosis, and the response to anti-inflammatory therapy.
Collapse
Affiliation(s)
- Santiago Ballaz
- School of Biological Science and Engineering, Yachay Tech University, Urcuquí, Ecuador
- Medical School, Universidad Espíritu Santo, Samborondón, Ecuador
| | - Michel Bourin
- Neurobiology of Anxiety and Mood Disorders, University of Nantes, Nantes, France.
| |
Collapse
|
61
|
Nainu F, Mamada SS, Harapan H, Emran TB. Inflammation-Mediated Responses in the Development of Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:39-70. [PMID: 36949305 DOI: 10.1007/978-981-19-7376-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Since its first description over a century ago, neurodegenerative diseases (NDDs) have impaired the lives of millions of people worldwide. As one of the major threats to human health, NDDs are characterized by progressive loss of neuronal structure and function, leading to the impaired function of the CNS. While the precise mechanisms underlying the emergence of NDDs remains elusive, association of neuroinflammation with the emergence of NDDs has been suggested. The immune system is tightly controlled to maintain homeostatic milieu and failure in doing so has been shown catastrophic. Here, we review current concepts on the cellular and molecular drivers responsible in the induction of neuroinflammation and how such event further promotes neuronal damage leading to neurodegeneration. Experimental data generated from cell culture and animal studies, gross and molecular pathologies of human CNS samples, and genome-wide association study are discussed to provide deeper insights into the mechanistic details of neuroinflammation and its roles in the emergence of NDDs.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Sukamto S Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Harapan Harapan
- School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| |
Collapse
|
62
|
Liu H, Tian X, Gong X, Han D, Ren L, Cui Y, Jiang F, Zhao J, Chen J, Jiang L, Xu Y, Li H. Analyzing toxicological effects of AsIII and AsV to Chlamys farreri by integrating transcriptomic and metabolomic approaches. MARINE POLLUTION BULLETIN 2023; 186:114385. [PMID: 36459772 DOI: 10.1016/j.marpolbul.2022.114385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Inorganic arsenic (iAs) is a widespread contaminant in marine environments, which is present in two different oxidation states (arsenate (AsV) and arsenite (AsIII)) that have complex toxic effects on marine organisms. The scallop Chlamys farreri (C. farreri) accumulates high levels of As and is a suitable bioindicator of As. In this report, we integrated transcriptomics and metabolomics to investigate genetic and metabolite changes and functional physiological disturbances in C. farreri exposured to inorganic arsenic. Physiological indicators antioxidant factors and cell apoptosis analysis macroscopically corroborated the toxic effects of inorganic arsenic revealed by omics results. Toxic effects of inorganic arsenic on C. farreri were signaling-mediated, causing interference with a variety of cell growth and small molecule metabolism. The results provide evidence that inorganic arsenic disrupts the physiological functions of bivalves, highlighting the correlations between different metabolic pathways and providing new insights into the toxic effects of environmental pollutants on marine organisms.
Collapse
Affiliation(s)
- Huan Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China; College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Xiuhui Tian
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Xianghong Gong
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Dianfeng Han
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Lihua Ren
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Yanmei Cui
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Fang Jiang
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Junqiang Zhao
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China; College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Jianqiang Chen
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Lisheng Jiang
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Yingjiang Xu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
| | - Huanjun Li
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
| |
Collapse
|
63
|
The complex role of inflammation and gliotransmitters in Parkinson's disease. Neurobiol Dis 2023; 176:105940. [PMID: 36470499 PMCID: PMC10372760 DOI: 10.1016/j.nbd.2022.105940] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Our understanding of the role of innate and adaptive immune cell function in brain health and how it goes awry during aging and neurodegenerative diseases is still in its infancy. Inflammation and immunological dysfunction are common components of Parkinson's disease (PD), both in terms of motor and non-motor components of PD. In recent decades, the antiquated notion that the central nervous system (CNS) in disease states is an immune-privileged organ, has been debunked. The immune landscape in the CNS influences peripheral systems, and peripheral immunological changes can alter the CNS in health and disease. Identifying immune and inflammatory pathways that compromise neuronal health and survival is critical in designing innovative and effective strategies to limit their untoward effects on neuronal health.
Collapse
|
64
|
Onufriev MV, Stepanichev MY, Moiseeva YV, Zhanina MY, Nedogreeva OA, Kostryukov PA, Lazareva NA, Gulyaeva NV. A Comparative Study of Two Models of Intraluminal Filament Middle Cerebral Artery Occlusion in Rats: Long-Lasting Accumulation of Corticosterone and Interleukins in the Hippocampus and Frontal Cortex in Koizumi Model. Biomedicines 2022; 10:biomedicines10123119. [PMID: 36551875 PMCID: PMC9775077 DOI: 10.3390/biomedicines10123119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/10/2022] Open
Abstract
Recently, we have shown the differences in the early response of corticosterone and inflammatory cytokines in the hippocampus and frontal cortex (FC) of rats with middle cerebral artery occlusion (MCAO), according to the methods of Longa et al. (LM) and Koizumi et al. (KM) which were used as alternatives in preclinical studies to induce stroke in rodents. In the present study, corticosterone and proinflammatory cytokines were assessed 3 months after MCAO. The most relevant changes detected during the first days after MCAO became even more obvious after 3 months. In particular, the MCAO-KM (but not the MCAO-LM) group showed significant accumulation of corticosterone and IL1β in both the ipsilateral and contralateral hippocampus and FC. An accumulation of TNFα was detected in the ipsilateral hippocampus and FC in the MCAO-KM group. Thus, unlike the MCAO-LM, the MCAO-KM may predispose the hippocampus and FC of rats to long-lasting bilateral corticosterone-dependent distant neuroinflammatory damage. Unexpectedly, only the MCAO-LM rats demonstrated some memory deficit in a one-trial step-through passive avoidance test. The differences between the two MCAO models, particularly associated with the long-lasting increase in glucocorticoid and proinflammatory cytokine accumulation in the limbic structures in the MCAO-KM, should be considered in the planning of preclinical experiments, and the interpretation and translation of received results.
Collapse
Affiliation(s)
- Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Mikhail Y. Stepanichev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Marina Y. Zhanina
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Olga A. Nedogreeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Pavel A. Kostryukov
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Natalia A. Lazareva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-952-4007
| |
Collapse
|
65
|
Wei W, Wang S, Xu C, Zhou X, Lian X, He L, Li K. Gut microbiota, pathogenic proteins and neurodegenerative diseases. Front Microbiol 2022; 13:959856. [PMID: 36466655 PMCID: PMC9715766 DOI: 10.3389/fmicb.2022.959856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 12/20/2023] Open
Abstract
As the world's population ages, neurodegenerative diseases (NDs) have brought a great burden to the world. However, effective treatment measures have not been found to alleviate the occurrence and development of NDs. Abnormal accumulation of pathogenic proteins is an important cause of NDs. Therefore, effective inhibition of the accumulation of pathogenic proteins has become a priority. As the second brain of human, the gut plays an important role in regulate emotion and cognition functions. Recent studies have reported that the disturbance of gut microbiota (GM) is closely related to accumulation of pathogenic proteins in NDs. On the one hand, pathogenic proteins directly produced by GM are transmitted from the gut to the central center via vagus nerve. On the other hand, The harmful substances produced by GM enter the peripheral circulation through intestinal barrier and cause inflammation, or cross the blood-brain barrier into the central center to cause inflammation, and cytokines produced by the central center cause the production of pathogenic proteins. These pathogenic proteins can produced by the above two aspects can cause the activation of central microglia and further lead to NDs development. In addition, certain GM and metabolites have been shown to have neuroprotective effects. Therefore, modulating GM may be a potential clinical therapeutic approach for NDs. In this review, we summarized the possible mechanism of NDs caused by abnormal accumulation of pathogenic proteins mediated by GM to induce the activation of central microglia, cause central inflammation and explore the therapeutic potential of dietary therapy and fecal microbiota transplantation (FMT) in NDs.
Collapse
Affiliation(s)
- Wei Wei
- The Mental Hospital of Yunnan Province, Mental Health Center Affiliated to Kunming Medical University, Kunming, China
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shixu Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chongchong Xu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xuemei Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xinqing Lian
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Lin He
- The Mental Hospital of Yunnan Province, Mental Health Center Affiliated to Kunming Medical University, Kunming, China
| | - Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
66
|
Kinoshita PF, Orellana AM, Andreotti DZ, de Souza GA, de Mello NP, de Sá Lima L, Kawamoto EM, Scavone C. Consequences of the Lack of TNFR1 in Ouabain Response in the Hippocampus of C57BL/6J Mice. Biomedicines 2022; 10:biomedicines10112937. [PMID: 36428505 PMCID: PMC9688030 DOI: 10.3390/biomedicines10112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ouabain is a cardiac glycoside that has a protective effect against neuroinflammation at low doses through Na+/K+-ATPase signaling and that can activate tumor necrosis factor (TNF) in the brain. TNF plays an essential role in neuroinflammation and regulates glutamate receptors by acting on two different receptors (tumor necrosis factor receptor 1 [TNFR1] and TNFR2) that have distinct functions and expression. The activation of constitutively and ubiquitously expressed TNFR1 leads to the expression of pro-inflammatory cytokines. Thus, this study aimed to elucidate the effects of ouabain in a TNFR1 knockout (KO) mouse model. Interestingly, the hippocampus of TNFR1 KO mice showed a basal increase in both TNFR2 membrane expression and brain-derived neurotrophic factor (BDNF) release, suggesting a compensatory mechanism. Moreover, ouabain activated TNF-α-converting enzyme/a disintegrin and metalloprotease 17 (TACE/ADAM17), decreased N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A) expression, and induced anxiety-like behavior in both genotype animals, independent of the presence of TNFR1. However, ouabain induced an increase in interleukin (IL)-1β in the hippocampus, a decrease in IL-6 in serum, and an increase in NMDA receptor subunit 1 (NR1) only in wild-type (WT) mice, indicating that TNFR1 or TNFR2 expression may be important for some effects of ouabain. Collectively, our results indicate a connection between ouabain signaling and TNFR1, with the effect of ouabain partially dependent on TNFR1.
Collapse
Affiliation(s)
- Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Diana Zukas Andreotti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Giovanna Araujo de Souza
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Natalia Prudente de Mello
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Correspondence:
| |
Collapse
|
67
|
Astrocytes in Chronic Pain: Cellular and Molecular Mechanisms. Neurosci Bull 2022; 39:425-439. [PMID: 36376699 PMCID: PMC10043112 DOI: 10.1007/s12264-022-00961-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/17/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractChronic pain is challenging to treat due to the limited therapeutic options and adverse side-effects of therapies. Astrocytes are the most abundant glial cells in the central nervous system and play important roles in different pathological conditions, including chronic pain. Astrocytes regulate nociceptive synaptic transmission and network function via neuron–glia and glia–glia interactions to exaggerate pain signals under chronic pain conditions. It is also becoming clear that astrocytes play active roles in brain regions important for the emotional and memory-related aspects of chronic pain. Therefore, this review presents our current understanding of the roles of astrocytes in chronic pain, how they regulate nociceptive responses, and their cellular and molecular mechanisms of action.
Collapse
|
68
|
Zhao Y, Zhu Q, Bi C, Yuan J, Chen Y, Hu X. Bibliometric analysis of tumor necrosis factor in post-stroke neuroinflammation from 2003 to 2021. Front Immunol 2022; 13:1040686. [PMID: 36389810 PMCID: PMC9661963 DOI: 10.3389/fimmu.2022.1040686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Tumor necrosis factor (TNF), a crucial cytokine, has important research value in post-stroke neuroinflammation (PSN). We analyzed the studies that have been conducted in this area and used bibliometric methods to predict research hotspots and identify trends regarding TNF in PSN. Methods Publications were accessed at the Science Citation Index Expanded 1975-2021 (SCI expanded), Web of Science Core Collection (WoSCC), on May 1, 2022. Additionally, software such as CiteSpace and VOSviewer were utilized for bibliometric analyses. Results In total, 1391 original articles and reviews on TNF in PSN published from 2003 to 2021 were identified. An upward trend was observed in the number of publications on TNF in PSN. These publications were primarily from 57 countries and 1446 institutions, led by China and the United States with China leading the number of publications (NP) and the US with the number of citations (NC). The League of European Research Universities (LERU) and Journal of Neuroinflammation, respectively were the most prolific branches and journals. Zhang, John H. published the most papers and Finsen, Bente had the most cited papers. One paper by Kettenmann, H. published in 2011 reached the highest level of Global Citation Score (GCS). The keyword co-occurrence and reference co-citation analyses suggest that poststroke therapy and potential mechanistic pathways are important topics related to PSN in recent years. Reference burst detection suggests new burst hotspots after 2015, focusing on pathway modulation and discovery of therapeutic targets, suggesting a substantial development in the study of TNF in PSN research. Conclusion The present bibliometric analysis shows a continuous trend of increasing literature related to TNF in PSN, and shows that TNF plays an important role in PSN involves multiple immune mechanisms and may contribute as a potential target for neuroprotective therapeutics after stroke. Prior to 2011, most of the research was focused on discovering the specific role of TNF in PSN, and in recent years studies have mainly targeted the exploration of the signaling pathways. Future research prospects may lie in finding key therapeutic targets in pathway of TNF in PSN.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Basic Medicine, Third Military Medical University, Army Medical University, Chongqing, China
| | - Qihan Zhu
- Department of Basic Medicine, Third Military Medical University, Army Medical University, Chongqing, China
| | - Chen Bi
- Department of Graduate, China People’s Police University, Langfang, China
| | - Jichao Yuan
- Department of Neurology, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- *Correspondence: Jichao Yuan, ; Yujie Chen, ; ; Xiaofei Hu, ;
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- *Correspondence: Jichao Yuan, ; Yujie Chen, ; ; Xiaofei Hu, ;
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- *Correspondence: Jichao Yuan, ; Yujie Chen, ; ; Xiaofei Hu, ;
| |
Collapse
|
69
|
Yang J, Ran M, Li H, Lin Y, Ma K, Yang Y, Fu X, Yang S. New insight into neurological degeneration: Inflammatory cytokines and blood–brain barrier. Front Mol Neurosci 2022; 15:1013933. [PMID: 36353359 PMCID: PMC9637688 DOI: 10.3389/fnmol.2022.1013933] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Neurological degeneration after neuroinflammation, such as that resulting from Alzheimer’s disease (AD), stroke, multiple sclerosis (MS), and post-traumatic brain injury (TBI), is typically associated with high mortality and morbidity and with permanent cognitive dysfunction, which places a heavy economic burden on families and society. Diagnosing and curing these diseases in their early stages remains a challenge for clinical investigation and treatment. Recent insight into the onset and progression of these diseases highlights the permeability of the blood–brain barrier (BBB). The primary factor that influences BBB structure and function is inflammation, especially the main cytokines including IL-1β, TNFα, and IL-6, the mechanism on the disruption of which are critical component of the aforementioned diseases. Surprisingly, the main cytokines from systematic inflammation can also induce as much worse as from neurological diseases or injuries do. In this review, we will therefore discuss the physiological structure of BBB, the main cytokines including IL-1β, TNFα, IL-6, and their mechanism on the disruption of BBB and recent research about the main cytokines from systematic inflammation inducing the disruption of BBB and cognitive impairment, and we will eventually discuss the need to prevent the disruption of BBB.
Collapse
Affiliation(s)
- Jie Yang
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Mingzi Ran
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Department of Anaesthesiology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Hongyu Li
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Ye Lin
- Department of Neurology, The First Medical Centre, PLA General Hospital, Beijing, China
| | - Kui Ma
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
| | - Yuguang Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Xiaobing Fu,
| | - Siming Yang
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
- *Correspondence: Siming Yang,
| |
Collapse
|
70
|
García-Revilla J, Herrera AJ, de Pablos RM, Venero JL. Inflammatory Animal Models of Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S165-S182. [PMID: 35662128 PMCID: PMC9535574 DOI: 10.3233/jpd-213138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Accumulating evidence suggests that microglia and peripheral immune cells may play determinant roles in the pathogenesis of Parkinson’s disease (PD). Consequently, there is a need to take advantage of immune-related models of PD to study the potential contribution of microglia and peripheral immune cells to the degeneration of the nigrostriatal system and help develop potential therapies for PD. In this review, we have summarised the main PD immune models. From a historical perspective, we highlight first the main features of intranigral injections of different pro-inflammogens, including lipopolysaccharide (LPS), thrombin, neuromelanin, etc. The use of adenoviral vectors to promote microglia-specific overexpression of different molecules in the ventral mesencephalon, including α-synuclein, IL-1β, and TNF, are also presented and briefly discussed. Finally, we summarise different models associated with peripheral inflammation whose contribution to the pathogenesis of neurodegenerative diseases is now an outstanding question. Illustrative examples included systemic LPS administration and dextran sulfate sodium-induced colitis in rodents.
Collapse
Affiliation(s)
- Juan García-Revilla
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio J. Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luis Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
71
|
Lu H, Li S, Zhong X, Huang S, Jiao X, He G, Jiang B, Liu Y, Gao Z, Wei J, Lin Y, Chen Z, Li Y. Immediate outcome prognostic value of plasma factors in patients with acute ischemic stroke after intravenous thrombolytic treatment. BMC Neurol 2022; 22:359. [PMID: 36127663 PMCID: PMC9487126 DOI: 10.1186/s12883-022-02898-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/09/2022] [Indexed: 12/04/2022] Open
Abstract
In the present study, we explored multiple plasma factors to predict the outcomes of patients with AIS after IVT. Fifty AIS patients who received IVT with alteplase were recruited and divided into two groups according to their NIHSS scores. Serum from all subjects was collected to quantitatively analyze the levels of different plasma factors, IL-6, MMP-9, ADAMTS13, TNC, GSN and TRX, using Luminex assays or ELISA measurements. Compared with the levels assessed at the onset of AIS, the levels of MMP-9 (P < 0.001), ADAMTS13 (P < 0.001), and TRX (P < 0.001) significantly decreased after IVT. The level of IL-6 was significantly increased in the NIHSS > 5 group at admission (P < 0.001) compared to the NIHSS ≤ 5 group. AIS patients with a poor prognosis had lower levels of ADAMTS13 at 72 h post-IVT compared with patients with a good prognosis (P = 0.021). IL-6 also was notably higher in the poor outcome group (P = 0.012). After adjusting for confounders, ADAMTS13 at 72 h post-IVT was an independent protective factor for prognosis in AIS patients with an adjusted OR of 0.07 (P = 0.049), whereas IL-6 was an independent predictor of risk for AIS patients with an adjusted OR of 1.152 (P = 0.028). IVT decreased MMP-9, ADAMTS13, and TRX levels in the plasma of AIS patients. Patients with a NIHSS score of less than 5 exhibited lower IL-6 levels, indicating that increased levels of IL-6 correlated with AIS severity after IVT. Therefore, IL-6 and ADAMTS13 might be useful plasma markers to predict the prognosis in AIS patients at 90-days after IVT.
Collapse
Affiliation(s)
- Huanhuan Lu
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Brain and Mental Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Siyi Li
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Brain and Mental Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Xin Zhong
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Brain and Mental Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Shuxuan Huang
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Brain and Mental Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Xue Jiao
- Youjiang Medical University For Nationalities, NO.98 ChengXiang Road, Baise, 533000, China
| | - Guoyong He
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Brain and Mental Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Bingjian Jiang
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Brain and Mental Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Yuping Liu
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Brain and Mental Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Zhili Gao
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Brain and Mental Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Jinhong Wei
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Brain and Mental Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Yushen Lin
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Brain and Mental Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Zhi Chen
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Brain and Mental Diseases, Guangxi Academy of Medical Sciences, Nanning, China.
| | - Yanhua Li
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Brain and Mental Diseases, Guangxi Academy of Medical Sciences, Nanning, China.
| |
Collapse
|
72
|
Huang MH, Chan YLE, Chen MH, Hsu JW, Huang KL, Li CT, Tsai SJ, Bai YM, Su TP. Pro-inflammatory cytokines and cognitive dysfunction among patients with bipolar disorder and major depression. Psychiatry Clin Neurosci 2022; 76:450-458. [PMID: 35674415 DOI: 10.1111/pcn.13433] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 11/27/2022]
Abstract
AIM Bipolar disorder and major depressive disorder (MDD) have been demonstrated to be associated with proinflammatory states and cognitive function deficits. We aimed to investigate the differences of cognitive function and proinflammatory cytokines between patients with bipolar I disorder (BDI), bipolar II disorder (BDII), and MDD. METHODS Thirty-seven patients with BDI, 33 with BDII, 25 with MDD, and 54 age-, sex-matched controls were enrolled. All patients had a clinical global impression-severity scale ≤2. Serum levels of proinflammatory markers, including soluble interleukin-6 receptor, C-reactive protein, and soluble tumor necrosis factor receptor 1 (sTNF-αR1) were measured. Performance in the Word List Memory Task (WLMT), Wisconsin Card Sorting Task (WCST), 2-back task, Go/No-Go task, and divided attention task was assessed. RESULTS Patients with BDI had higher levels of sTNF-αR1 than patients with MDD and controls (P < 0.001). Patients with BDI performed worse on WLMT, WCST, 2-back task, divided attention_visual and divided attention_auditory tasks than the other three groups (all P < 0.05). Furthermore, sTNF-αR1 levels were negatively correlated with cognitive function measured using the WLMT and divided attention_auditory (all P < 0.05). CONCLUSIONS Patients with BDI had higher levels of sTNF-αR1 and cognitive function impairments than the remaining groups. Future studies are needed to explore the pathophysiology of sTNF-αR1 in the contribution of cognitive alterations.
Collapse
Affiliation(s)
- Mao-Hsuan Huang
- Department of Psychiatry, Taipei Veterans General Hospital, Ilan, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yee-Lam E Chan
- Department of Psychiatry, General Cheng Hsin Hospital, Taipei, Taiwan
| | - Mu-Hong Chen
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ju-Wei Hsu
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kai-Lin Huang
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Ta Li
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Jen Tsai
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ya-Mei Bai
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tung-Ping Su
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Psychiatry, General Cheng Hsin Hospital, Taipei, Taiwan
| |
Collapse
|
73
|
Oh E, Kang JH, Jo KW, Shin WS, Jeong YH, Kang B, Rho TY, Jeon SY, Lee J, Song IS, Kim KT. Synthetic PPAR Agonist DTMB Alleviates Alzheimer's Disease Pathology by Inhibition of Chronic Microglial Inflammation in 5xFAD Mice. Neurotherapeutics 2022; 19:1546-1565. [PMID: 35917087 PMCID: PMC9606171 DOI: 10.1007/s13311-022-01275-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 12/05/2022] Open
Abstract
Abnormal productions of amyloid beta (Aβ) plaque and chronic neuroinflammation are commonly observed in the brain of patients with Alzheimer's disease, and both of which induce neuronal cell death, loss of memory, and cognitive dysfunction. However, many of the drugs targeting the production of Aβ peptides have been unsuccessful in treating Alzheimer's disease. In this study, we identified synthetic novel peroxisome proliferator-activating receptor (PPAR) agonist, DTMB, which can ameliorate the chronic inflammation and Aβ pathological progression of Alzheimer's disease. We discovered that DTMB attenuated the proinflammatory cytokine production of microglia by reducing the protein level of NF-κB. DTMB also improved the learning and memory defects and reduced the amount of Aβ plaque in the brain of 5xFAD mice. This reduction in Aβ pathology was attributed to the changes in gliosis and chronic inflammation level. Additionally, bulk RNA-sequencing showed that genes related to inflammation and cognitive function were changed in the hippocampus and cortex of DTMB-treated mice. Our findings demonstrate that DTMB has the potential to be a novel therapeutic agent for Alzheimer's disease.
Collapse
Affiliation(s)
- Eunji Oh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, 790-784 Republic of Korea
| | - Jeong-Hwa Kang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, 790-784 Republic of Korea
| | - Kyung Won Jo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, 790-784 Republic of Korea
| | - Won-Sik Shin
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, 790-784 Republic of Korea
| | - Young-Hun Jeong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, 790-784 Republic of Korea
| | - Byunghee Kang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, 790-784 Republic of Korea
| | - Tae-Young Rho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, 790-784 Republic of Korea
| | - So Yeon Jeon
- College of Pharmacy, Dankook University, Cheonan, 31116 Republic of Korea
| | - Jihoon Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Im-Sook Song
- College of Pharmacy, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, 790-784 Republic of Korea
| |
Collapse
|
74
|
Jiang H, Zhang Y, Yue J, Shi Y, Xiao B, Xiao W, Luo Z. Non-coding RNAs: The Neuroinflammatory Regulators in Neurodegenerative Diseases. Front Neurol 2022; 13:929290. [PMID: 36034298 PMCID: PMC9414873 DOI: 10.3389/fneur.2022.929290] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2022] [Indexed: 01/09/2023] Open
Abstract
As a common indication of nervous system diseases, neuroinflammation has attracted more and more attention, especially in the process of a variety of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Two types of non-coding RNAs (ncRNAs) are widely involved in the process of neuroinflammation in neurodegenerative diseases, namely long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). However, no research has systematically summarized that lncRNAs and miRNAs regulate neurodegenerative diseases through neuroinflammatory mechanisms. In this study, we summarize four main mechanisms of lncRNAs and miRNAs involved in neuroinflammation in neurodegenerative diseases, including the imbalance between proinflammatory and neuroprotective cells in microglia and astrocytes, NLRP3 inflammasome, oxidative stress, and mitochondrial dysfunction, and inflammatory mediators. We hope to clarify the regulatory mechanism of lncRNAs and miRNAs in neurodegenerative diseases and provide new insights into the etiological treatment of neurodegenerative diseases from the perspective of neuroinflammation.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Juan Yue
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuchen Shi
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Wenbiao Xiao
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Wenbiao Xiao
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
- Zhaohui Luo
| |
Collapse
|
75
|
Hedley KE, Callister RJ, Callister R, Horvat JC, Tadros MA. Alterations in brainstem respiratory centers following peripheral inflammation: A systematic review. J Neuroimmunol 2022; 369:577903. [DOI: 10.1016/j.jneuroim.2022.577903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/02/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022]
|
76
|
Ullah A, Al Kury LT, Althobaiti YS, Ali T, Shah FAL. Benzimidazole Derivatives as New Potential NLRP3 Inflammasome Inhibitors That Provide Neuroprotection in a Rodent Model of Neurodegeneration and Memory Impairment. J Inflamm Res 2022; 15:3873-3890. [PMID: 35845091 PMCID: PMC9286489 DOI: 10.2147/jir.s351913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The study investigated the effect of newly synthesized benzimidazole derivatives against ethanol-induced neurodegeneration. According to evidence, ethanol consumption may cause a severe insult to the central nervous system (CNS), resulting in mental retardation, neuronal degeneration, and oxidative stress. Targeting neuroinflammation and oxidative stress may be a useful strategy for preventing ethanol-induced neurodegeneration. Methodology Firstly, the newly synthesized compounds were subjected to molecular simulation and docking in order to predict ligand binding status. Later, for in vivo observations, adult male Sprague Dawley rats were used for studying behavioral and oxidative stress markers. ELIZA kits were used to analyse tumour necrosis factor-alpha (TNF-), nuclear factor-B (NF-B), interleukin (IL-18), and pyrin domain-containing protein 3 (NLRP3) expression, while Western blotting was used to measure IL-1 and Caspase-1 expression. Results Our findings suggested that altered levels of antioxidant enzymes were associated with elevated levels of TNF-α, NF-B, IL-1, IL-18, Caspase-1, and NLRP3 in the ethanol-treated group. Furthermore, ethanol also caused memory impairment in rats, as measured by behavioural tests. Pretreatment using selected benzimidazole significantly increased the combat of the brain against ethanol-induced oxidative stress. The neuroprotective effects of benzimidazole derivatives were promoted by their free radical scavenging activity, augmentation of endogenous antioxidant proteins (GST, GSH), and amelioration of lipid peroxide (LPO) and other pro-inflammatory mediators. Molecular docking and molecular simulation studies further supported our hypothesis that the synthetic compounds Ca and Cb had an excellent binding affinity with proper bond formation with their targets (TNF-α and NLRP3). Conclusion It is revealed that these benzimidazole derivatives can reduce ethanol-induced neuronal toxicity by regulating the expression of cytokines, antioxidant enzymes, and the inflammatory cascade.
Collapse
Affiliation(s)
- Aman Ullah
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Lina Tariq Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia.,Addiction and Neuroscience Research Unit, Taif University, Taif, 21944, Saudi Arabia
| | - Tahir Ali
- University of Calgary, Calgary, AB, Canada
| | - Fawad ALi Shah
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
77
|
A multiomics and network pharmacological study reveals the neuroprotective efficacy of Fu-Fang-Dan-Zhi tablets against glutamate-induced oxidative cell death. Comput Biol Med 2022; 148:105873. [PMID: 35868043 DOI: 10.1016/j.compbiomed.2022.105873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/20/2022]
Abstract
Neuroprotective therapy after ischemic stroke remains a significant need, but current measures are still insufficient. The Fu-Fang-Dan-Zhi tablet (FFDZT) is a proprietary Chinese medicine clinically employed to treat ischemic stroke in the recovery period. This work aims to systematically investigate the neuroprotective mechanism of FFDZT. A systems strategy that integrated metabolomics, transcriptomics, network pharmacology, and in vivo and in vitro experiments was used. First, middle cerebral artery occlusion (MCAO) model rats were treated with FFDZT. FFDZT treatment significantly reduced the infarct volume in the brains of middle cerebral artery occlusion (MCAO) model rats. Then, samples of serum and brain tissue were taken for metabolomics and transcriptomics studies, respectively; gene expression profiles of MCF7 cells treated with FFDZT and its 4 active compounds (senkyunolide I, formononetin, drilodefensin, and tanshinone IIA) were produced for CMAP analysis. Computational analysis of metabolomics and transcriptomics results suggested that FFDZT regulated glutamate and oxidative stress-related metabolites (2-hydroxybutanoic acid and 2-hydroxyglutaric acid), glutamate receptors (NMDAR, KA, and AMPA), glutamate involved pathways (glutamatergic synapse pathway; d-glutamine and d-glutamate metabolism; alanine, aspartate and glutamate metabolism), as well as the reactive oxygen species metabolic process. CMAP analysis indicated that two active ingredients of FFDZT (tanshinone ⅡA and senkyunolide I) could act as glutamate receptor antagonists. Next, putative therapeutic targets of FFDZT's active ingredients identified in the brain were collected from multiple resources and filtered by statistical criteria and tissue expression information. Network pharmacological analysis revealed extensive interactions between FFDZT's putative targets, anti-IS drug targets, and glutamate-related enzymes, while the resulting PPI network exhibited modular topology. The targets in two of the modules were significantly enriched in the glutamatergic synapse pathway. The interactions between FFDZT's ingredients and important targets were verified by molecular docking. Finally, in vitro experiments validated the effects of FFDZT and its ingredients in suppressing glutamate-induced PC12 cell injury and reducing the generation of reactive oxygen species. All of our findings indicated that FFDZT's efficacy for treating ischemic stroke could be due to its neuroprotection against glutamate-induced oxidative cell death.
Collapse
|
78
|
Korf JM, Honarpisheh P, Mohan EC, Banerjee A, Blasco-Conesa MP, Honarpisheh P, Guzman GU, Khan R, Ganesh BP, Hazen AL, Lee J, Kumar A, McCullough LD, Chauhan A. CD11b high B Cells Increase after Stroke and Regulate Microglia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:288-300. [PMID: 35732342 PMCID: PMC9446461 DOI: 10.4049/jimmunol.2100884] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/22/2022] [Indexed: 06/02/2023]
Abstract
Recent studies have highlighted the deleterious contributions of B cells to post-stroke recovery and cognitive decline. Different B cell subsets have been proposed on the basis of expression levels of transcription factors (e.g., T-bet) as well as specific surface proteins. CD11b (α-chain of integrin) is expressed by several immune cell types and is involved in regulation of cell motility, phagocytosis, and other essential functions of host immunity. Although B cells express CD11b, the CD11bhigh subset of B cells has not been well characterized, especially in immune dysregulation seen with aging and after stroke. Here, we investigate the role of CD11bhigh B cells in immune responses after stroke in young and aged mice. We evaluated the ability of CD11bhigh B cells to influence pro- and anti-inflammatory phenotypes of young and aged microglia (MG). We hypothesized that CD11bhigh B cells accumulate in the brain and contribute to neuroinflammation in aging and after stroke. We found that CD11bhigh B cells are a heterogeneous subpopulation of B cells predominantly present in naive aged mice. Their frequency increases in the brain after stroke in young and aged mice. Importantly, CD11bhigh B cells regulate MG phenotype and increase MG phagocytosis in both ex vivo and in vivo settings, likely by production of regulatory cytokines (e.g., TNF-α). As both APCs and adaptive immune cells with long-term memory function, B cells are uniquely positioned to regulate acute and chronic phases of the post-stroke immune response, and their influence is subset specific.
Collapse
Affiliation(s)
- Janelle M Korf
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Eric C Mohan
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Anik Banerjee
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | | | - Parisa Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Gary U Guzman
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Romeesa Khan
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Bhanu P Ganesh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Amy L Hazen
- University of Texas McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, TX
| | - Juneyoung Lee
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Aditya Kumar
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Louise D McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Anjali Chauhan
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX;
| |
Collapse
|
79
|
Rani T, Behl T, Sharma N, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bhatia S, Bungau SG. Exploring the role of biologics in depression. Cell Signal 2022; 98:110409. [PMID: 35843573 DOI: 10.1016/j.cellsig.2022.110409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/03/2022]
Abstract
Depression is a chronic and prevalent neuropsychiatric disorder; clinical symptoms include excessive sad mood, anhedonia, increased anxiety, disturbed sleep, and cognitive deficits. The exact etiopathogenesis of depression is not well understood. Studies have suggested that tumor necrosis factor-alpha (TNF-α) and interleukins (ILs) perform vital roles in the pathogenesis and treatment of depression. Increasing evidence suggests the upregulation of TNF-α and ILs expression in patients with depression. Therefore, biologics like TNF inhibitors (etanercept, infliximab, adalimumab) and IL inhibitors (ustekinumab) have become key compounds in the treatment of depression. Interestingly, treatment with an antidepressant has been found to decrease the TNF-α level and improve depression-like behaviors in several preclinical and clinical studies. In the current article, we have reviewed the recent findings linking TNF-α and the pathogenesis of depression proving TNF-α inhibitors as potential new therapeutic agents. Animal models and clinical studies further support that TNF-α inhibitors are effective in ameliorating depression-like behaviors. Moreover, studies showed that peripheral injection of TNF-α exhibits depressive symptoms. These symptoms have been improved by treatment with TNF-α inhibitors. Hence suggesting TNF-α inhibitors as potential new antidepressants for the management of depressive disorder.
Collapse
Affiliation(s)
- Tarapati Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Parctice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
80
|
Li C, Liu J, Lin J, Shang H. COVID-19 and risk of neurodegenerative disorders: A Mendelian randomization study. Transl Psychiatry 2022; 12:283. [PMID: 35835752 PMCID: PMC9281279 DOI: 10.1038/s41398-022-02052-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence has suggested a close correlation between COVID-19 and neurodegenerative disorders. However, whether there exists a causal association and the effect direction remains unknown. To examine the causative role of COVID-19 in the risk of neurodegenerative disorders, we estimated their genetic correlation, and then conducted a two-sample Mendelian randomization analysis using summary statistics from genome-wide association studies of susceptibility, hospitalization, and severity of COVID-19, as well as six major neurodegenerative disorders including Alzheimer's disease (AD), amyotrophic lateral sclerosis, frontotemporal dementia, Lewy body dementia, multiple sclerosis, and Parkinson's disease. We identified a significant and positive genetic correlation between hospitalization of COVID-19 and AD (genetic correlation: 0.23, P = 8.36E-07). Meanwhile, hospitalization of COVID-19 was significantly associated with a higher risk of AD (OR: 1.02, 95% CI: 1.01-1.03, P: 1.19E-03). Consistently, susceptibility (OR: 1.05, 95% CI: 1.01-1.09, P: 9.30E-03) and severity (OR: 1.01, 95% CI: 1.00-1.02, P: 0.012) of COVID-19 were nominally associated with higher risk of AD. The results were robust under all sensitivity analyses. These results demonstrated that COVID-19 could increase the risk of AD. Future development of preventive or therapeutic interventions could attach importance to this to alleviate the complications of COVID-19.
Collapse
Affiliation(s)
- Chunyu Li
- grid.412901.f0000 0004 1770 1022Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Jiayan Liu
- grid.412901.f0000 0004 1770 1022Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Junyu Lin
- grid.412901.f0000 0004 1770 1022Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
81
|
Jensen BK, McAvoy KJ, Heinsinger NM, Lepore AC, Ilieva H, Haeusler AR, Trotti D, Pasinelli P. Targeting TNFα produced by astrocytes expressing amyotrophic lateral sclerosis-linked mutant fused in sarcoma prevents neurodegeneration and motor dysfunction in mice. Glia 2022; 70:1426-1449. [PMID: 35474517 PMCID: PMC9540310 DOI: 10.1002/glia.24183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 12/13/2022]
Abstract
Genetic mutations that cause amyotrophic lateral sclerosis (ALS), a progressively lethal motor neuron disease, are commonly found in ubiquitously expressed genes. In addition to direct defects within motor neurons, growing evidence suggests that dysfunction of non-neuronal cells is also an important driver of disease. Previously, we demonstrated that mutations in DNA/RNA binding protein fused in sarcoma (FUS) induce neurotoxic phenotypes in astrocytes in vitro, via activation of the NF-κB pathway and release of pro-inflammatory cytokine TNFα. Here, we developed an intraspinal cord injection model to test whether astrocyte-specific expression of ALS-causative FUSR521G variant (mtFUS) causes neuronal damage in vivo. We show that restricted expression of mtFUS in astrocytes is sufficient to induce death of spinal motor neurons leading to motor deficits through upregulation of TNFα. We further demonstrate that TNFα is a key toxic molecule as expression of mtFUS in TNFα knockout animals does not induce pathogenic changes. Accordingly, in mtFUS-transduced animals, administration of TNFα neutralizing antibodies prevents neurodegeneration and motor dysfunction. Together, these studies strengthen evidence that astrocytes contribute to disease in ALS and establish, for the first time, that FUS-ALS astrocytes induce pathogenic changes to motor neurons in vivo. Our work identifies TNFα as the critical driver of mtFUS-astrocytic toxicity and demonstrates therapeutic success of targeting TNFα to attenuate motor neuron dysfunction and death. Ultimately, through defining and subsequently targeting this toxic mechanism, we provide a viable FUS-ALS specific therapeutic strategy, which may also be applicable to sporadic ALS where FUS activity and cellular localization are frequently perturbed.
Collapse
Affiliation(s)
- Brigid K. Jensen
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Kevin J. McAvoy
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Present address:
Manfredi LaboratoryWeill Cornell Medicine, Cornell UniversityNew YorkNYUSA
| | - Nicolette M. Heinsinger
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Angelo C. Lepore
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Hristelina Ilieva
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Aaron R. Haeusler
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
82
|
The Inflammatory Response after Moderate Contusion Spinal Cord Injury: A Time Study. BIOLOGY 2022; 11:biology11060939. [PMID: 35741460 PMCID: PMC9220050 DOI: 10.3390/biology11060939] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/30/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary The neuroinflammatory response is a rather complex event in spinal cord injury (SCI) and has the capacity to exacerbate cell damage but also to contribute to the repair of the injury. This complexity is thought to depend on a variety of inflammatory mediators, of which tumor necrosis factor (TNF) plays a key role. Evidence indicates that TNF can be both protective and detrimental in SCI. In the present study, we studied the temporal and cellular expression of TNF and its receptors after SCI in mice. We found TNF to be significantly increased in both the acute and the delayed phases after SCI, alongside a robust neuroinflammatory response. As we could verify some of our results in human postmortem tissue, our results imply that diminishing the detrimental immune signaling after SCI could also enhance recovery in humans. Abstract Spinal cord injury (SCI) initiates detrimental cellular and molecular events that lead to acute and delayed neuroinflammation. Understanding the role of the inflammatory response in SCI requires insight into the temporal and cellular synthesis of inflammatory mediators. We subjected C57BL/6J mice to SCI and investigated inflammatory reactions. We examined activation, recruitment, and polarization of microglia and infiltrating immune cells, focusing specifically on tumor necrosis factor (TNF) and its receptors TNFR1 and TNFR2. In the acute phase, TNF expression increased in glial cells and neuron-like cells, followed by infiltrating immune cells. TNFR1 and TNFR2 levels increased in the delayed phase and were found preferentially on neurons and glial cells, respectively. The acute phase was dominated by the infiltration of granulocytes and macrophages. Microglial/macrophage expression of Arg1 increased from 1–7 days after SCI, followed by an increase in Itgam, Cx3cr1, and P2ry12, which remained elevated throughout the study. By 21 and 28 days after SCI, the lesion core was populated by galectin-3+, CD68+, and CD11b+ microglia/macrophages, surrounded by a glial scar consisting of GFAP+ astrocytes. Findings were verified in postmortem tissue from individuals with SCI. Our findings support the consensus that future neuroprotective immunotherapies should aim to selectively neutralize detrimental immune signaling while sustaining pro-regenerative processes.
Collapse
|
83
|
Gopinath A, Mackie P, Hashimi B, Buchanan AM, Smith AR, Bouchard R, Shaw G, Badov M, Saadatpour L, Gittis A, Ramirez-Zamora A, Okun MS, Streit WJ, Hashemi P, Khoshbouei H. DAT and TH expression marks human Parkinson's disease in peripheral immune cells. NPJ Parkinsons Dis 2022; 8:72. [PMID: 35672374 PMCID: PMC9174333 DOI: 10.1038/s41531-022-00333-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/11/2022] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is marked by a loss of dopamine neurons, decreased dopamine transporter (DAT) and tyrosine hydroxylase (TH) expression. However, this validation approach cannot be used for diagnostic, drug effectiveness or investigational purposes in human patients because midbrain tissue is accessible postmortem. PD pathology affects both the central nervous and peripheral immune systems. Therefore, we immunophenotyped blood samples of PD patients for the presence of myeloid derived suppressor cells (MDSCs) and discovered that DAT+/TH+ monocytic MDSCs, but not granulocytic MDSCs are increased, suggesting a targeted immune response to PD. Because in peripheral immune cells DAT activity underlies an immune suppressive mechanism, we investigated whether expression levels of DAT and TH in the peripheral immune cells marks PD. We found drug naïve PD patients exhibit differential DAT+/TH+ expression in peripheral blood mononuclear cells (PBMCs) compared to aged/sex matched healthy subjects. While total PBMCs are not different between the groups, the percentage of DAT+/TH+ PBMCs was significantly higher in drug naïve PD patients compared to healthy controls irrespective of age, gender, disease duration, disease severity or treatment type. Importantly, treatment for PD negatively modulates DAT+/TH+ expressing PBMCs. Neither total nor the percentage of DAT+/TH+ PBMCs were altered in the Alzheimer's disease cohort. The mechanistic underpinning of this discovery in human PD was revealed when these findings were recapitulated in animal models of PD. The reverse translational experimental strategy revealed that alterations in dopaminergic markers in peripheral immune cells are due to the disease associated changes in the CNS. Our study demonstrates that the dopaminergic machinery on peripheral immune cells displays an association with human PD, with exciting implications in facilitating diagnosis and investigation of human PD pathophysiology.
Collapse
Affiliation(s)
- Adithya Gopinath
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| | - Phillip Mackie
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Basil Hashimi
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Aidan R Smith
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Gerry Shaw
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- EnCor Biotechnology, Inc, Gainesville, FL, USA
| | - Martin Badov
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Leila Saadatpour
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aryn Gittis
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, UF Health, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, UF Health, Gainesville, FL, USA
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Parastoo Hashemi
- University of South Carolina, Columbia, SC, USA
- Department of Bioengineering, Imperial College, London, UK
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
84
|
Lupeol Treatment Attenuates Activation of Glial Cells and Oxidative-Stress-Mediated Neuropathology in Mouse Model of Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms23116086. [PMID: 35682768 PMCID: PMC9181489 DOI: 10.3390/ijms23116086] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) signifies a major cause of death and disability. TBI causes central nervous system (CNS) damage under a variety of mechanisms, including protein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Astrocytes and microglia, cells of the CNS, are considered the key players in initiating an inflammatory response after injury. Several evidence suggests that activation of astrocytes/microglia and ROS/LPO have the potential to cause more harmful effects in the pathological processes following traumatic brain injury (TBI). Previous studies have established that lupeol provides neuroprotection through modulation of inflammation, oxidative stress, and apoptosis in Aβ and LPS model and neurodegenerative disease. However, the effects of lupeol on apoptosis caused by inflammation and oxidative stress in TBI have not yet been investigated. Therefore, we explored the role of Lupeol on antiapoptosis, anti-inflammatory, and antioxidative stress and its potential mechanism following TBI. In these experiments, adult male mice were randomly divided into four groups: control, TBI, TBI+ Lupeol, and Sham group. Western blotting, immunofluorescence staining, and ROS/LPO assays were performed to investigate the role of lupeol against neuroinflammation, oxidative stress, and apoptosis. Lupeol treatment reversed TBI-induced behavioral and memory disturbances. Lupeol attenuated TBI-induced generation of reactive oxygen species/lipid per oxidation (ROS/LPO) and improved the antioxidant protein level, such as nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1 (HO-1) in the mouse brain. Similarly, our results indicated that lupeol treatment inhibited glial cell activation, p-NF-κB, and downstream signaling molecules, such as TNF-α, COX-2, and IL-1β, in the mouse cortex and hippocampus. Moreover, lupeol treatment also inhibited mitochondrial apoptotic signaling molecules, such as caspase-3, Bax, cytochrome-C, and reversed deregulated Bcl2 in TBI-treated mice. Overall, our study demonstrated that lupeol inhibits the activation of astrocytes/microglia and ROS/LPO that lead to oxidative stress, neuroinflammation, and apoptosis followed by TBI.
Collapse
|
85
|
Mohseni Afshar Z, Barary M, Babazadeh A, Tavakoli Pirzaman A, Hosseinzadeh R, Alijanpour A, Allahgholipour A, Miri SR, Sio TT, Sullman MJM, Carson‐Chahhoud K, Ebrahimpour S. The role of cytokines and their antagonists in the treatment of COVID-19 patients. Rev Med Virol 2022; 33:e2372. [PMID: 35621229 PMCID: PMC9347599 DOI: 10.1002/rmv.2372] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 01/28/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has various presentations, of which immune dysregulation or the so-called cytokine storm syndrome (COVID-CSS) is prominent. Even though cytokines are vital regulators of body immunoinflammatory responses, their exaggerated release can be harmful. This hyperinflammatory response is more commonly observed during severe COVID-19 infections, caused by the excessive release of pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-6, IL-8, tumour necrosis factor, granulocyte-macrophage colony-stimulating factor, and interferon-gamma, making their blockers and antagonists of great interest as therapeutic options in this condition. Thus, the pathophysiology of excessive cytokine secretion is outlined, and their most important blockers and antagonists are discussed, mainly focussing on tocilizumab, an interleukin-6 receptor blocker approved to treat severe COVID-19 infections.
Collapse
Affiliation(s)
- Zeinab Mohseni Afshar
- Clinical Research Development CenterImam Reza HospitalKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Barary
- Student Research CommitteeVirtual School of Medical Education and ManagementShahid Beheshti University of Medical SciencesTehranIran,Students' Scientific Research Center (SSRC)Tehran University of Medical SciencesTehranIran
| | - Arefeh Babazadeh
- Infectious Diseases and Tropical Medicine Research CenterHealth Research InstituteBabol University of Medical SciencesBabolIran
| | | | | | | | - Amirreza Allahgholipour
- Student Research CommitteeSchool of Nursing and MidwiferyShahid Beheshti University of Medical SciencesTehranIran
| | - Seyed Rouhollah Miri
- Cancer Research CenterCancer Institute of IranTehran University of Medical ScienceTehranIran
| | - Terence T. Sio
- Department of Radiation OncologyMayo ClinicPhoenixArizonaUSA
| | - Mark J. M. Sullman
- Department of Social SciencesUniversity of NicosiaNicosiaCyprus,Department of Life and Health SciencesUniversity of NicosiaNicosiaCyprus
| | | | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research CenterHealth Research InstituteBabol University of Medical SciencesBabolIran
| |
Collapse
|
86
|
Löscher W, Howe CL. Molecular Mechanisms in the Genesis of Seizures and Epilepsy Associated With Viral Infection. Front Mol Neurosci 2022; 15:870868. [PMID: 35615063 PMCID: PMC9125338 DOI: 10.3389/fnmol.2022.870868] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
Seizures are a common presenting symptom during viral infections of the central nervous system (CNS) and can occur during the initial phase of infection ("early" or acute symptomatic seizures), after recovery ("late" or spontaneous seizures, indicating the development of acquired epilepsy), or both. The development of acute and delayed seizures may have shared as well as unique pathogenic mechanisms and prognostic implications. Based on an extensive review of the literature, we present an overview of viruses that are associated with early and late seizures in humans. We then describe potential pathophysiologic mechanisms underlying ictogenesis and epileptogenesis, including routes of neuroinvasion, viral control and clearance, systemic inflammation, alterations of the blood-brain barrier, neuroinflammation, and inflammation-induced molecular reorganization of synapses and neural circuits. We provide clinical and animal model findings to highlight commonalities and differences in these processes across various neurotropic or neuropathogenic viruses, including herpesviruses, SARS-CoV-2, flaviviruses, and picornaviruses. In addition, we extensively review the literature regarding Theiler's murine encephalomyelitis virus (TMEV). This picornavirus, although not pathogenic for humans, is possibly the best-characterized model for understanding the molecular mechanisms that drive seizures, epilepsy, and hippocampal damage during viral infection. An enhanced understanding of these mechanisms derived from the TMEV model may lead to novel therapeutic interventions that interfere with ictogenesis and epileptogenesis, even within non-infectious contexts.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Charles L. Howe
- Division of Experimental Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
87
|
I SP, I GD, L B, M S, J GR, A M EO, I M AB, C LM, E M PV, J A A, E B, J L V, R M DP, R R. The Absence of Caspase-8 in the Dopaminergic System Leads to Mild Autism-like Behavior. Front Cell Dev Biol 2022; 10:839715. [PMID: 35493109 PMCID: PMC9045412 DOI: 10.3389/fcell.2022.839715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
In the last decade, new non-apoptotic roles have been ascribed to apoptotic caspases. This family of proteins plays an important role in the sculpting of the brain in the early stages of development by eliminating excessive and nonfunctional synapses and extra cells. Consequently, impairments in this process can underlie many neurological and mental illnesses. This view is particularly relevant to dopamine because it plays a pleiotropic role in motor control, motivation, and reward processing. In this study, we analyze the effects of the elimination of caspase-8 (CASP8) on the development of catecholaminergic neurons using neurochemical, ultrastructural, and behavioral tests. To do this, we selectively delete the CASP8 gene in cells that express tyrosine hydroxylase with the help of recombination through the Cre-loxP system. Our results show that the number of dopaminergic neurons increases in the substantia nigra. In the striatum, the basal extracellular level of dopamine and potassium-evoked dopamine release decreased significantly in mice lacking CASP8, clearly showing the low dopamine functioning in tissues innervated by this neurotransmitter. This view is supported by electron microscopy analysis of striatal synapses. Interestingly, behavioral analysis demonstrates that mice lacking CASP8 show changes reminiscent of autism spectrum disorders (ASD). Our research reactivates the possible role of dopamine transmission in the pathogenesis of ASD and provides a mild model of autism.
Collapse
Affiliation(s)
- Suárez-Pereira I
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Sevilla, Spain.,Neuropsychopharmacology and Psychobiology Research Group, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, University of Cádiz, Cádiz, Spain
| | - García-Domínguez I
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Bravo L
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Sevilla, Spain.,Neuropsychopharmacology and Psychobiology Research Group, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, University of Cádiz, Cádiz, Spain
| | - Santiago M
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - García-Revilla J
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Espinosa-Oliva A M
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Alonso-Bellido I M
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - López-Martín C
- Neuropsychopharmacology and Psychobiology Research Group, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, University of Cádiz, Cádiz, Spain
| | - Pérez-Villegas E M
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Armengol J A
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Berrocoso E
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Sevilla, Spain.,Neuropsychopharmacology and Psychobiology Research Group, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, University of Cádiz, Cádiz, Spain
| | - Venero J L
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - de Pablos R M
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ruiz R
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
88
|
Transcriptomic and cellular decoding of functional brain connectivity changes reveal regional brain vulnerability to pro- and anti-inflammatory therapies. Brain Behav Immun 2022; 102:312-323. [PMID: 35259429 DOI: 10.1016/j.bbi.2022.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Systemic inflammation induces acute changes in mood, motivation and cognition that closely resemble those observed in depressed individuals. However, the mechanistic pathways linking peripheral inflammation to depression-like psychopathology via intermediate effects on brain function remain incompletely understood. METHODS We combined data from 30 patients initiating interferon-α treatment for Hepatitis-C and 20 anti-tumour necrosis factor (TNF) therapy for inflammatory arthritis and used resting-state functional magnetic resonance imaging to investigate acute effects of each treatment on regional global brain connectivity (GBC). We leveraged transcriptomic data from the Allen Human Brain Atlas to uncover potential biological and cellular pathways underpinning regional vulnerability to GBC changes induced by each treatment. RESULTS Interferon-α and anti-TNF therapies both produced differential small-to-medium sized decreases in regional GBC. However, these were observed within distinct brain regions and the regional patterns of GBC changes induced by each treatment did not correlate suggesting independent underlying processes. Further, the spatial distribution of these differential GBC decreases could be captured by multivariate patterns of constitutive regional expression of genes respectively related to: i) neuroinflammation and glial cells; and ii) glutamatergic neurotransmission and neurons. The extent to which each participant expressed patterns of GBC changes aligning with these patterns of transcriptomic vulnerability also correlated with both acute treatment-induced changes in interleukin-6 (IL-6) and, for Interferon-α, longer-term treatment-associated changes in depressive symptoms. CONCLUSIONS Together, we present two transcriptomic models separately linking regional vulnerability to the acute effects of interferon-α and anti-TNF treatments on brain function to glial neuroinflammation and glutamatergic neurotransmission. These findings generate hypotheses about two potential brain mechanisms through which bidirectional changes in peripheral inflammation may contribute to the development/resolution of psychopathology.
Collapse
|
89
|
Ramya V, Shyam KP, Kowsalya E, Balavigneswaran CK, Kadalmani B. Dual Roles of Coconut Oil and Its Major Component Lauric Acid on Redox Nexus: Focus on Cytoprotection and Cancer Cell Death. Front Neurosci 2022; 16:833630. [PMID: 35360165 PMCID: PMC8963114 DOI: 10.3389/fnins.2022.833630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
It has been reported that coconut oil supplementation can reduce neuroinflammation. However, coconut oils are available as virgin coconut oil (VCO), crude coconut oil (ECO), and refined coconut oil (RCO). The impact of coconut oil extraction process (and its major fatty acid component lauric acid) at cellular antioxidant level, redox homeostasis and inflammation in neural cells is hitherto unexplained. Herein, we have shown the antioxidant levels and cellular effect of coconut oil extracted by various processes in human neuroblastoma cells (SH-SY5Y) cultured in vitro. Results indicate VCO and ECO treated cells displayed better mitochondrial health when compared to RCO. Similar trend was observed for the release of reactive oxygen species (ROS), key oxidative stress response genes (GCLC, HO-1, and Nqo1) and inflammatory genes (IL6, TNFα, and iNOS) in SH-SY5Y cells. Our results signified that both VCO and ECO offer better neural health primarily by maintaining the cellular redox balance. Further, RCO prepared by solvent extraction and chemical refining process lacks appreciable beneficial effect. Then, we extended our study to find out the reasons behind maintaining the cellular redox balance in neuroblastoma cells by VCO and ECO. Our GC-MS results showed that lauric acid (C14:0) (LA) content was the major difference in the fatty acid composition extracted by various processes. Therefore, we evaluated the efficacy of LA in SH-SY5Y cells. The LA showed dose-dependent effect. At IC50 concentration (11.8 μM), LA down regulated the oxidative stress response genes and inflammatory genes. The results clearly indicate that the LA inhibited the neuroinflammation and provided an efficient cellular antioxidant activity, which protects the cells. The efficiency was also evaluated in normal cell line such as fibroblasts (L929) to cross-validate that the results were not false positive. Different concentration of LA on L929 cells showed high compatibility. From our observation, we conclude that VCO and ECO offers better cellular protection owing to their powerful antioxidant system. Therefore, we advocate the inclusion of either VCO and/or ECO in the diet for a healthy lifestyle.
Collapse
Affiliation(s)
- Venkatesan Ramya
- Reproductive Endocrinology and Cancer Biology Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | | | - Eshwaran Kowsalya
- Research and Development Division, V.V.D and Sons Private Limited, Thoothukudi, India
| | - Chelladurai Karthikeyan Balavigneswaran
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Balamuthu Kadalmani
- Reproductive Endocrinology and Cancer Biology Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
90
|
Xue Y, Zeng X, Tu WJ, Zhao J. Tumor Necrosis Factor- α: The Next Marker of Stroke. DISEASE MARKERS 2022; 2022:2395269. [PMID: 35265224 PMCID: PMC8898850 DOI: 10.1155/2022/2395269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/05/2022] [Accepted: 02/19/2022] [Indexed: 02/06/2023]
Abstract
Although there is no shortage of research on the markers for stroke, to our knowledge, there are no clear markers that can meet the needs of clinical prediction and treatment. The inflammatory cascade is a critical process that persists and functions throughout the stroke process, ultimately worsening stroke outcomes and increasing mortality. Numerous inflammatory factors, including tumor necrosis factor (TNF), are involved in this process. These inflammatory factors play a dual role during stroke, and their mechanisms are complex. As one of the representatives, TNF is the primary regulator of the immune system and plays an essential role in the spread of inflammation. In researches done over the last few years, tumor necrosis factor-alpha (TNF-α) has emerged as a potential marker for stroke because of its essential role in stroke. This review summarizes the latest research on TNF-α in stroke and explores its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yimeng Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xianwei Zeng
- Rehabilitation Hospital of the National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
91
|
Wang SK, Cepko CL. Targeting Microglia to Treat Degenerative Eye Diseases. Front Immunol 2022; 13:843558. [PMID: 35251042 PMCID: PMC8891158 DOI: 10.3389/fimmu.2022.843558] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
Microglia have been implicated in many degenerative eye disorders, including retinitis pigmentosa, age-related macular degeneration, glaucoma, diabetic retinopathy, uveitis, and retinal detachment. While the exact roles of microglia in these conditions are still being discovered, evidence from animal models suggests that they can modulate the course of disease. In this review, we highlight current strategies to target microglia in the eye and their potential as treatments for both rare and common ocular disorders. These approaches include depleting microglia with chemicals or radiation, reprogramming microglia using homeostatic signals or other small molecules, and inhibiting the downstream effects of microglia such as by blocking cytokine activity or phagocytosis. Finally, we describe areas of future research needed to fully exploit the therapeutic value of microglia in eye diseases.
Collapse
Affiliation(s)
- Sean K. Wang
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Constance L. Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
- *Correspondence: Constance L. Cepko,
| |
Collapse
|
92
|
The roles of Eph receptors, neuropilin-1, P2X7, and CD147 in COVID-19-associated neurodegenerative diseases: inflammasome and JaK inhibitors as potential promising therapies. Cell Mol Biol Lett 2022; 27:10. [PMID: 35109786 PMCID: PMC8809072 DOI: 10.1186/s11658-022-00311-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic has spread worldwide, and finding a safe therapeutic strategy and effective vaccine is critical to overcoming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, elucidation of pathogenesis mechanisms, especially entry routes of SARS-CoV-2 may help propose antiviral drugs and novel vaccines. Several receptors have been demonstrated for the interaction of spike (S) protein of SARS-CoV-2 with host cells, including angiotensin-converting enzyme (ACE2), ephrin ligands and Eph receptors, neuropilin 1 (NRP-1), P2X7, and CD147. The expression of these entry receptors in the central nervous system (CNS) may make the CNS prone to SARS-CoV-2 invasion, leading to neurodegenerative diseases. The present review provides potential pathological mechanisms of SARS-CoV-2 infection in the CNS, including entry receptors and cytokines involved in neuroinflammatory conditions. Moreover, it explains several neurodegenerative disorders associated with COVID-19. Finally, we suggest inflammasome and JaK inhibitors as potential therapeutic strategies for neurodegenerative diseases.
Collapse
|
93
|
Kang X, Jiao T, Wang H, Pernow J, Wirdefeldt K. Mendelian randomization study on the causal effects of tumor necrosis factor inhibition on coronary artery disease and ischemic stroke among the general population. EBioMedicine 2022; 76:103824. [PMID: 35074627 PMCID: PMC8792065 DOI: 10.1016/j.ebiom.2022.103824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumor necrosis factor (TNF) is a potent inflammatory cytokine that has been causally associated with coronary artery disease (CAD) and ischemic stroke (IS), implying opportunities for disease prevention by anti-TNF therapeutics. Methods Leveraging summary statistics of several genome-wide association studies (GWAS), we assessed the repurposing potential of TNF inhibitors for CAD and IS using drug-target Mendelian randomization (MR) design. Pharmacologic blockade of the pro-inflammatory TNF signalling mediated by TNF receptor 1 (TNFR1) was instrumented by four validated variants. Causal effects of TNF/TNFR1 blockade on CAD (Ncase/control upto 122,733/424,528) and IS (Ncase/control upto 60,341/454,450) were then estimated via various MR estimators using circulating C-reactive protein (CRP; NGWAS=204,402) as downstream biomarker to reflect treatment effect. Associations of a functional variant, rs1800693, with CRP, CAD and IS were also examined. Findings No protective effect of TNF/TNFR1 inhibition on CAD or IS was observed. For every 10% decrease of circulating CRP achieved by TNF/TNFR1 blockade, odds ratio was 0.98 (95% confidence interval [CI]: 0.60-1.60) for CAD and 0.77 (95% CI: 0.36-1.63) for IS. Findings remained null in all supplement analyses. Interpretation Our findings do not support TNFR1 as a promising target for CAD or IS prevention among the general population. Future research is warranted to investigate whether the detrimental effect of circulating TNF on CAD and IS might be counteracted by modulating other relevant drug targets. Funding No.
Collapse
Affiliation(s)
- Xiaoying Kang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Tong Jiao
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Haiyang Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - John Pernow
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Karin Wirdefeldt
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
94
|
Brain innate immune response via miRNA-TLR7 sensing in polymicrobial sepsis. Brain Behav Immun 2022; 100:10-24. [PMID: 34808293 PMCID: PMC8766937 DOI: 10.1016/j.bbi.2021.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/07/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) occurs in sepsis survivors and is associated with breakdown of the blood-brain barrier (BBB), brain inflammation, and neurological dysfunction. We have previously identified a group of extracellular microRNAs (ex-miRNAs), such as miR-146a-5p, that were upregulated in the plasma of septic mice and human, and capable of inducing potent pro-inflammatory cytokines and complements. Here, we established a clinically relevant mouse model of SAE and investigated the role of extracellular miRNAs and their sensor Toll-like receptor 7 (TLR7) in brain inflammation and neurological dysfunction. We observed BBB disruption and a profound neuroinflammatory responses in the brain for up to 14 days post-sepsis; these included increased pro-inflammatory cytokines production, microglial expansion, and peripheral leukocyte accumulation in the CNS. In a battery of neurobehavioral tests, septic mice displayed impairment of motor coordination and neurological function. Sepsis significantly increased plasma RNA and miRNA levels for up to 7 days, such as miR-146a-5p. Exogenously added miR-146a-5p induces innate immune responses in both cultured microglia/astrocytes and the intact brain via a TLR7-dependent manner. Moreover, mice genetically deficient of miR-146a showed reduced accumulation of monocytes and neutrophils in the brain compared to WT after sepsis. Finally, ablation of TLR7 in the TLR7-/- mice preserved BBB integrity, reduced microglial expansion and leukocyte accumulation, and attenuated GSK3β signaling in the brain, but did not improve neurobehavioral recovery following sepsis. Taken together, these data establish an important role of extracellular miRNA and TLR7 sensing in sepsis-induced brain inflammation.
Collapse
|
95
|
Fighting fire with fire: the immune system might be key in our fight against Alzheimer's disease. Drug Discov Today 2022; 27:1261-1283. [PMID: 35032668 DOI: 10.1016/j.drudis.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The ultimate cause of Alzheimer's disease (AD) is still unknown and no disease-modifying treatment exists. Emerging evidence supports the concept that the immune system has a key role in AD pathogenesis. This awareness leads to the idea that specific parts of the immune system must be engaged to ward off the disease. Immunotherapy has dramatically improved the management of several previously untreatable cancers and could hold similar promise as a novel therapy for treating AD. However, before potent immunotherapies can be rationally designed as treatment against AD, we need to fully understand the dynamic interplay between AD and the different parts of our immune system. Accordingly, here we review the most important aspects of both the innate and adaptive immune system in relation to AD pathology. Teaser: Emerging results support the concept that Alzheimer's disease is affected by the inability of the immune system to contain the pathology of the brain. Here, we discuss how we can engage our immune system to fight this devastating disease.
Collapse
|
96
|
Piri H, Sharifi S, Nigjeh S, Haghdoost-Yazdi H. Dopaminergic neuronal death in the substantia nigra associates with change in serum levels of TNF-α and IL-1β; evidence from early experimental model of Parkinson's disease. Neurol Res 2022; 44:544-553. [PMID: 34986749 DOI: 10.1080/01616412.2021.2024726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Studies have shown that inflammation plays a key role in etiology of Parkinson's disease (PD). However, human studies which have evaluated association between PD and serum levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) have reported conflicting results. In this study, serum and striatum levels of these cytokines were evaluated in 6-hydroxydopamine (6-OHDA) animal model of PD. METHOD The neurotoxin of 6-OHDA was injected into medial forebrain bundle of right hemisphere and behavioral tests were carried out to eight weeks thereafter to evaluate severity of PD and its progress. Blood was collected before the toxin and in second and eight weeks after that. Survival of dopaminergic (DAergic) neurons in substantia nigra was assessed by immunohistochemistry. TNF-α and IL-1β levels were determined using ELISA kits. RESULT Severity of behavioral symptoms was gradually increased in 6-OHDA-treated rats. They showed a decrease in serum TNF-α level in the eight week and increase in IL-1β both in the second and eight weeks. They were divided into two subgroups, symptomatic and asymptomatic with severe and moderate degrees in DAergic neuronal death. Significant decrease in serum TNF-α was only observed in the symptomatic subgroup but IL-1β increased in both subgroups. Also, striatal levels of both cytokines were higher in the lesioned hemisphere. CONCLUSION Increase in serum IL-1β level can reflect moderate degree of lesion in substantia nigra and thereby is used for prognosis of PD before its clinical symptoms are appeared. On the other hand, an increase in serum TNF-α is appeared in advanced stage of PD.
Collapse
Affiliation(s)
- Hossein Piri
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sahar Sharifi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sepideh Nigjeh
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hashem Haghdoost-Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
97
|
Çalışkan G, French T, Enrile Lacalle S, Del Angel M, Steffen J, Heimesaat MM, Rita Dunay I, Stork O. Antibiotic-induced gut dysbiosis leads to activation of microglia and impairment of cholinergic gamma oscillations in the hippocampus. Brain Behav Immun 2022; 99:203-217. [PMID: 34673174 DOI: 10.1016/j.bbi.2021.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotics are widely applied for the treatment of bacterial infections, but their long-term use may lead to gut flora dysbiosis and detrimental effects on brain physiology, behavior as well as cognitive performance. Still, a striking lack of knowledge exists concerning electrophysiological correlates of antibiotic-induced changes in gut microbiota and behavior. Here, we investigated changes in the synaptic transmission and plasticity together with behaviorally-relevant network activities from the hippocampus of antibiotic-treated mice. Prolonged antibiotic treatment led to a reduction of myeloid cell pools in bone marrow, circulation and those surveilling the brain. Circulating Ly6Chi inflammatory monocytes adopted a proinflammatory phenotype with increased expression of CD40 and MHC II. In the central nervous system, microglia displayed a subtle activated phenotype with elevated CD40 and MHC II expression, increased IL-6 and TNF production as well as with an increased number of Iba1 + cells in the hippocampal CA3 and CA1 subregions. Concomitantly, we detected a substantial reduction in the synaptic transmission in the hippocampal CA1 after antibiotic treatment. In line, carbachol-induced cholinergic gamma oscillation were reduced upon antibiotic treatment while the incidence of hippocampal sharp waves was elevated. These alterations were associated with the global changes in the expression of neurotrophin nerve growth factor and inducible nitric oxide synthase, both of which have been shown to influence cholinergic system in the hippocampus. Overall, our study demonstrates that antibiotic-induced dysbiosis of the gut microbiome and subsequent alteration of the immune cell function are associated with reduced synaptic transmission and gamma oscillations in the hippocampus, a brain region that is critically involved in mediation of innate and cognitive behavior.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - Timothy French
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | | | - Miguel Del Angel
- Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Ildiko Rita Dunay
- Center for Behavioral Brain Sciences, Magdeburg, Germany; Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | - Oliver Stork
- Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
98
|
Gulyaeva NV, Onufriev MV, Moiseeva YV. Ischemic Stroke, Glucocorticoids, and Remote Hippocampal Damage: A Translational Outlook and Implications for Modeling. Front Neurosci 2021; 15:781964. [PMID: 34955730 PMCID: PMC8695719 DOI: 10.3389/fnins.2021.781964] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Progress in treating ischemic stroke (IS) and its delayed consequences has been frustratingly slow due to the insufficient knowledge on the mechanism. One important factor, the hypothalamic-pituitary-adrenocortical (HPA) axis is mostly neglected despite the fact that both clinical data and the results from rodent models of IS show that glucocorticoids, the hormones of this stress axis, are involved in IS-induced brain dysfunction. Though increased cortisol in IS is regarded as a biomarker of higher mortality and worse recovery prognosis, the detailed mechanisms of HPA axis dysfunction involvement in delayed post-stroke cognitive and emotional disorders remain obscure. In this review, we analyze IS-induced HPA axis alterations and supposed association of corticoid-dependent distant hippocampal damage to post-stroke brain disorders. A translationally important growing point in bridging the gap between IS pathogenesis and clinic is to investigate the involvement of the HPA axis disturbances and related hippocampal dysfunction at different stages of SI. Valid models that reproduce the state of the HPA axis in clinical cases of IS are needed, and this should be considered when planning pre-clinical research. In clinical studies of IS, it is useful to reinforce diagnostic and prognostic potential of cortisol and other HPA axis hormones. Finally, it is important to reveal IS patients with permanently disturbed HPA axis. Patients-at-risk with high cortisol prone to delayed remote hippocampal damage should be monitored since hippocampal dysfunction may be the basis for development of post-stroke cognitive and emotional disturbances, as well as epilepsy.
Collapse
Affiliation(s)
- Natalia V Gulyaeva
- Laboratory of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, Russia
| | - Mikhail V Onufriev
- Laboratory of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, Russia
| | - Yulia V Moiseeva
- Laboratory of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
99
|
Distinctive roles of tumor necrosis factor receptor type 1 and type 2 in a mouse disc degeneration model. J Orthop Translat 2021; 31:62-72. [PMID: 34934623 PMCID: PMC8648970 DOI: 10.1016/j.jot.2021.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 01/23/2023] Open
Abstract
Background Elevated tumor necrosis factor alpha (TNF-α) expression is correlated with the progression of intervertebral disc degeneration (IVDD). Progranulin binding to tumor necrosis factor receptor (TNFR) and its derivative Atsttrin are effective for treating inflammatory arthritis. We hypothesize that Atsttrin has a protective effect in IVDD through different roles of TNFR receptor type 1 (TNFR1) and TNFR receptor type 2 (TNFR2) in degenerated discs. Methods IVDD models were established in TNFR1−/−, TNFR2−/− mice and their control littermates. Nucleus Pulpous (NP) samples from human patients and IVDD murine models were evaluated by X-ray, micro-MRI, μCT, histological staining and immunofluorescence staining. NP cells isolated from wild-type (WT), TNFR1−/− and TNFR2−/− mice were treated with TNF-α or Atsttrin and then assayed by Western blotting, qRT–PCR, and ELISA. Results TNFR1 and TNFR2 expression was significantly elevated in the disc tissues of both human patients and IVDD murine models. TNFR1 knockout contributed to reduced disc degeneration. In contrast, TNFR2 knockout was associated with enhanced IVDD severity, including degraded cellular composition, increased cell apoptosis and elevated vertebral destruction. Atsttrin protected against IVDD in WT and TNFR1−/− mouse models but had no effect in TNFR2−/− IVDD models. Additionally, in vitro NP cell-based assays demonstrated that TNF-α-stimulated catabolism and Atsttrin-activated anabolism depended on TNFR1 and TNFR2, respectively. Conclusion TNFR1 is associated with the degenerative progression of IVDD, while TNFR2 contributes to the protective effect on the discs. Atsttrin protects against IVDD at least partially by inhibiting the TNFα/TNFR1 inflammatory/catabolic pathway and activating the TNFR2 protective/anabolic pathway. The translational potential of this article This study demonstrates that TNFR1 and TNFR2 have disparate roles in disc degeneration and hlights the potential use of Atsttrin as a therapeutic agent against IVDD in mice.
Collapse
|
100
|
Onufriev MV, Moiseeva YV, Zhanina MY, Lazareva NA, Gulyaeva NV. A Comparative Study of Koizumi and Longa Methods of Intraluminal Filament Middle Cerebral Artery Occlusion in Rats: Early Corticosterone and Inflammatory Response in the Hippocampus and Frontal Cortex. Int J Mol Sci 2021; 22:13544. [PMID: 34948340 PMCID: PMC8703333 DOI: 10.3390/ijms222413544] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
Two classical surgical approaches for intraluminal filament middle cerebral artery occlusion (MCAO), the Longa et al. (LM) and Koizumi et al. methods (KM), are used as alternatives in preclinical studies to induce stroke in rodents. Comparisons of these MCAO models in mice showed critical differences between them along with similarities (Smith et al. 2015; Morris et al. 2016). In this study, a direct comparison of MCAO-KM and MCAO-LM in rats was performed. Three days after MCAO, infarct volume, mortality rate, neurological deficit, and weight loss were similar in these models. MCAO-LM rats showed an increase in ACTH levels, while MCAO-KM rats demonstrated elevated corticosterone and interleukin-1β in blood serum. Corticosterone accumulation was detected in the frontal cortex (FC) and the hippocampus of the MCAO-KM group. IL1β beta increased in the ipsilateral hippocampus in the MCAO-KM group and decreased in the contralateral FC of MCAO-LM rats. Differences revealed between MCAO-KM and MCAO-LM suggest that corticosterone and interleukin-1β release as well as hippocampal accumulation is more expressed in MCAO-KM rats, predisposing them to corticosterone-dependent distant neuroinflammatory hippocampal damage. The differences between two models, particularly, malfunction of the hypothalamic-pituitary-adrenal axis, should be considered in the interpretation, comparison, and translation of pre-clinical experimental results.
Collapse
Affiliation(s)
- Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
| | - Marina Y. Zhanina
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| | - Natalia A. Lazareva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| |
Collapse
|