51
|
Ho YJ, Huang CC, Fan CH, Liu HL, Yeh CK. Ultrasonic technologies in imaging and drug delivery. Cell Mol Life Sci 2021; 78:6119-6141. [PMID: 34297166 PMCID: PMC11072106 DOI: 10.1007/s00018-021-03904-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Ultrasonic technologies show great promise for diagnostic imaging and drug delivery in theranostic applications. The development of functional and molecular ultrasound imaging is based on the technical breakthrough of high frame-rate ultrasound. The evolution of shear wave elastography, high-frequency ultrasound imaging, ultrasound contrast imaging, and super-resolution blood flow imaging are described in this review. Recently, the therapeutic potential of the interaction of ultrasound with microbubble cavitation or droplet vaporization has become recognized. Microbubbles and phase-change droplets not only provide effective contrast media, but also show great therapeutic potential. Interaction with ultrasound induces unique and distinguishable biophysical features in microbubbles and droplets that promote drug loading and delivery. In particular, this approach demonstrates potential for central nervous system applications. Here, we systemically review the technological developments of theranostic ultrasound including novel ultrasound imaging techniques, the synergetic use of ultrasound with microbubbles and droplets, and microbubble/droplet drug-loading strategies for anticancer applications and disease modulation. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theranostic tool.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
52
|
Tretbar SH, Fournelle M, Speicher D, Becker FJ, Anastasiadis P, Landgraf L, Roy U, Melzer A. A novel matrix-array-based MR-conditional ultrasound system for local hyperthermia of small animals. IEEE Trans Biomed Eng 2021; 69:758-770. [PMID: 34398748 DOI: 10.1109/tbme.2021.3104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The goal of this work was to develop a novel modular focused ultrasound hyperthermia (FUS-HT) system for preclinical applications with the following characteristics: MR-compatible, compact probe for integration into a PET/MR small animal scanner, 3D-beam steering capabilities, high resolution focusing for generation of spatially confined FUS-HT effects. METHODS For 3D-beam steering capabilities, a matrix array approach with 11 11 elements was chosen. For reaching the required level of integration, the array was mounted with a conductive backing directly on the interconnection PCB. The array is driven by a modified version of our 128 channel ultrasound research platform DiPhAS. The system was characterized using sound field measurements and validated using tissue-mimicking phantoms. Preliminary MR-compatibility tests were performed using a 7T Bruker MRI scanner. RESULTS Four 11 11 arrays between 0.5 and 2 MHz were developed and characterized with respect to sound field properties and HT generation. Focus sizes between 1 and 4 mm were reached depending on depth and frequency. We showed heating by 4C within 60 s in phantoms. The integration concept allows a probe thickness of less than 12 mm. CONCLUSION We demonstrated FUS-HT capabilities of our modular system based on matrix arrays and a 128 channel electronics system within a 3D-steering range of up to 30. The suitability for integration into a small animal MR could be demonstrated in basic MR-compatibility tests. SIGNIFICANCE The developed system presents a new generation of FUS-HT for preclinical and translational work providing safe, reversible, localized, and controlled HT.
Collapse
|
53
|
Chen KT, Wei KC, Liu HL. Focused Ultrasound Combined with Microbubbles in Central Nervous System Applications. Pharmaceutics 2021; 13:pharmaceutics13071084. [PMID: 34371774 PMCID: PMC8308978 DOI: 10.3390/pharmaceutics13071084] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
The blood–brain barrier (BBB) protects the central nervous system (CNS) from invasive pathogens and maintains the homeostasis of the brain. Penetrating the BBB has been a major challenge in the delivery of therapeutic agents for treating CNS diseases. Through a physical acoustic cavitation effect, focused ultrasound (FUS) combined with microbubbles achieves the local detachment of tight junctions of capillary endothelial cells without inducing neuronal damage. The bioavailability of therapeutic agents is increased only in the area targeted by FUS energy. FUS with circulating microbubbles is currently the only method for inducing precise, transient, reversible, and noninvasive BBB opening (BBBO). Over the past decade, FUS-induced BBBO (FUS-BBBO) has been preclinically confirmed to not only enhance the penetration of therapeutic agents in the CNS, but also modulate focal immunity and neuronal activity. Several recent clinical human trials have demonstrated both the feasibility and potential advantages of using FUS-BBBO in diseased patients. The promising results support adding FUS-BBBO as a multimodal therapeutic strategy in modern CNS disease management. This review article explores this technology by describing its physical mechanisms and the preclinical findings, including biological effects, therapeutic concepts, and translational design of human medical devices, and summarizes completed and ongoing clinical trials.
Collapse
Affiliation(s)
- Ko-Ting Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan;
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Guishan, Taoyuan 333, Taiwan
- Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan;
- Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, TuCheng, New Taipei 236, Taiwan
- School of Medicine, Chang Gung University, Guishan, Taoyuan 333, Taiwan
- Correspondence: (K.-C.W.); (H.-L.L.)
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Da’an, Taipei 106, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Da’an, Taipei 106, Taiwan
- Correspondence: (K.-C.W.); (H.-L.L.)
| |
Collapse
|
54
|
McMahon D, O'Reilly MA, Hynynen K. Therapeutic Agent Delivery Across the Blood-Brain Barrier Using Focused Ultrasound. Annu Rev Biomed Eng 2021; 23:89-113. [PMID: 33752471 PMCID: PMC11979953 DOI: 10.1146/annurev-bioeng-062117-121238] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Specialized features of vasculature in the central nervous system greatly limit therapeutic treatment options for many neuropathologies. Focused ultrasound, in combination with circulating microbubbles, can be used to transiently and noninvasively increase cerebrovascular permeability with a high level of spatial precision. For minutes to hours following sonication, drugs can be administered systemically to extravasate in the targeted brain regions and exert a therapeutic effect, after which permeability returns to baseline levels. With the wide range of therapeutic agents that can be delivered using this approach and the growing clinical need, focused ultrasound and microbubble (FUS+MB) exposure in the brain has entered human testing to assess safety. This review outlines the use of FUS+MB-mediated cerebrovascular permeability enhancement as a drug delivery technique, details several technical and biological considerations of this approach, summarizes results from the clinical trials conducted to date, and discusses the future direction of the field.
Collapse
Affiliation(s)
- Dallan McMahon
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada;
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada;
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada;
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
55
|
Arsiwala TA, Sprowls SA, Blethen KE, Adkins CE, Saralkar PA, Fladeland RA, Pentz W, Gabriele A, Kielkowski B, Mehta RI, Wang P, Carpenter JS, Ranjan M, Najib U, Rezai AR, Lockman PR. Ultrasound-mediated disruption of the blood tumor barrier for improved therapeutic delivery. Neoplasia 2021; 23:676-691. [PMID: 34139452 PMCID: PMC8208897 DOI: 10.1016/j.neo.2021.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
The blood-brain barrier (BBB) is a major anatomical and physiological barrier limiting the passage of drugs into brain. Central nervous system tumors can impair the BBB by changing the tumor microenvironment leading to the formation of a leaky barrier, known as the blood-tumor barrier (BTB). Despite the change in integrity, the BTB remains effective in preventing delivery of chemotherapy into brain tumors. Focused ultrasound is a unique noninvasive technique that can transiently disrupt the BBB and increase accumulation of drugs within targeted areas of the brain. Herein, we summarize the current understanding of different types of targeted ultrasound mediated BBB/BTB disruption techniques. We also discuss influence of the tumor microenvironment on BBB opening, as well as the role of immunological response following disruption. Lastly, we highlight the gaps between evaluation of the parameters governing opening of the BBB/BTB. A deeper understanding of physical opening of the BBB/BTB and the biological effects following disruption can potentially enhance treatment strategies for patients with brain tumors.
Collapse
Affiliation(s)
- T A Arsiwala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV
| | - S A Sprowls
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV
| | - K E Blethen
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV
| | - C E Adkins
- School of Pharmacy, South University, Savannah, GA
| | - P A Saralkar
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV
| | - R A Fladeland
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV
| | - W Pentz
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV
| | - A Gabriele
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV
| | - B Kielkowski
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV
| | - R I Mehta
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV; Department of Neuroradiology, West Virginia University, Morgantown, WV; Department of Neuroscience, West Virginia University, Morgantown, WV
| | - P Wang
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV; Department of Neuroradiology, West Virginia University, Morgantown, WV
| | - J S Carpenter
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV; Department of Neuroradiology, West Virginia University, Morgantown, WV
| | - M Ranjan
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV; Departments of Neuroscience and Neurosurgery, West Virginia University, Morgantown, WV
| | - U Najib
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV; Department of Neurology, West Virginia University, Morgantown, WV
| | - A R Rezai
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV; Departments of Neuroscience and Neurosurgery, West Virginia University, Morgantown, WV
| | - P R Lockman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, WV.
| |
Collapse
|
56
|
Wang Y, Zhang F, Xiong N, Xu H, Chai S, Wang H, Wang J, Zhao H, Jiang X, Fu P, Xiang W. Remodelling and Treatment of the Blood-Brain Barrier in Glioma. Cancer Manag Res 2021; 13:4217-4232. [PMID: 34079374 PMCID: PMC8166259 DOI: 10.2147/cmar.s288720] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
The blood-brain barrier (BBB) is an essential structure of the central nervous system (CNS), and its existence makes the local internal environment of the CNS a relatively independent structure distinct from other internal environments of the human body to ensure normal physiological and high stability of activities of the CNS. Changes in BBB structure and function are fundamental to the pathophysiology of many diseases. The occurrence and development of glioma are often accompanied by a series of changes in the structure and function of the internal environment, the most significant of which is remodelling of the BBB. The remodelling of the BBB usually leads to changes in the permeability of local microvessels, which provide certain favourable conditions for the occurrence and development of glioma. Meanwhile, the newly generated abnormal blood vessels and the remaining intact regions of the BBB also hinder the effects of drug treatments. Changes in permeability and structural function often lead to the creation of abnormally functioning vascular regions, which pose further treatment challenges. At present, therapeutic methods for glioma have not achieved satisfactory effects in clinical practice, and emerging therapeutic methods have not yet been widely used in clinical practice. In this review, we summarize the knowledge of remodelling of the BBB in the glioma environment, the type of changes that occur, and current BBB treatment methods and prospects for the treatment of glioma.
Collapse
Affiliation(s)
- Yihao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Fangcheng Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Nanxiang Xiong
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Hao Xu
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Wuhan, 430022, People's Republic of China
| | - Songshan Chai
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Haofei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jiajing Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
57
|
Ogawa K, Kato N, Kawakami S. Recent Strategies for Targeted Brain Drug Delivery. Chem Pharm Bull (Tokyo) 2021; 68:567-582. [PMID: 32611994 DOI: 10.1248/cpb.c20-00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because the brain is the most important human organ, many brain disorders can cause severe symptoms. For example, glioma, one type of brain tumor, is progressive and lethal, while neurodegenerative diseases cause severe disability. Nevertheless, medical treatment for brain diseases remains unsatisfactory, and therefore innovative therapies are desired. However, the development of therapies to treat some cerebral diseases is difficult because the blood-brain barrier (BBB) or blood-brain tumor barrier prevents drugs from entering the brain. Hence, drug delivery system (DDS) strategies are required to deliver therapeutic agents to the brain. Recently, brain-targeted DDS have been developed, which increases the quality of therapy for cerebral disorders. This review gives an overview of recent brain-targeting DDS strategies. First, it describes strategies to cross the BBB. This includes BBB-crossing ligand modification or temporal BBB permeabilization. Strategies to avoid the BBB using local administration are also summarized. Intrabrain drug distribution is a crucial factor that directly determines the therapeutic effect, and thus it is important to evaluate drug distribution using optimal methods. We introduce some methods for evaluating drug distribution in the brain. Finally, applications of brain-targeted DDS for the treatment of brain tumors, Alzheimer's disease, Parkinson's disease, and stroke are explained.
Collapse
Affiliation(s)
- Koki Ogawa
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Naoya Kato
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
58
|
Chen KT, Chai WY, Lin YJ, Lin CJ, Chen PY, Tsai HC, Huang CY, Kuo JS, Liu HL, Wei KC. Neuronavigation-guided focused ultrasound for transcranial blood-brain barrier opening and immunostimulation in brain tumors. SCIENCE ADVANCES 2021; 7:7/6/eabd0772. [PMID: 33547073 PMCID: PMC7864566 DOI: 10.1126/sciadv.abd0772] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/18/2020] [Indexed: 05/06/2023]
Abstract
Focused ultrasound (FUS) in the presence of microbubbles can transiently open the blood-brain barrier (BBB) to increase therapeutic agent penetration at the targeted brain site to benefit recurrent glioblastoma (rGBM) treatment. This study is a dose-escalating pilot trial using a device combining neuronavigation and a manually operated frameless FUS system to treat rGBM patients. The safety and feasibility were established, while a dose-dependent BBB-opening effect was observed, which reverted to baseline within 24 hours after treatment. No immunological response was observed clinically under the applied FUS level in humans; however, selecting a higher level in animals resulted in prolonged immunostimulation, as confirmed preclinically by the recruitment of lymphocytes into the tumor microenvironment (TME) in a rat glioma model. Our findings provide preliminary evidence of FUS-induced immune modulation as an additional therapeutic benefit by converting the immunosuppressive TME into an immunostimulatory TME via a higher but safe FUS dosage.
Collapse
Affiliation(s)
- Ko-Ting Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Yen Chai
- Department of Diagnostic Radiology and Intervention, Chang Gung Memorial Hospital at LinKou, Taoyuan, Taiwan
| | - Ya-Jui Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- The Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Lin
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hong-Chieh Tsai
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei, Taiwan
| | - John S Kuo
- Department of Neurosurgery and Mulva Clinic for the Neurosciences, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei, Taiwan
| |
Collapse
|
59
|
Bao Y, Chen J, Huang P, Tong W. Synergistic Effects of Acoustics-based Therapy and Immunotherapy in Cancer Treatment. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2021-0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Cancer is an intractable disease and has ability to escape immunological recognition. Cancer immunotherapy to enhance the autogenous immune response to cancer tissue is reported to be the most promising method for cancer treatment. After the release of damage-associated molecular patterns, dendritic cells come mature and then recruit activated T cells to induce immune response. To trigger the release of cancer associated antigens, cancer acoustics-based therapy has various prominent advantages and has been reported in various research. In this review, we classified the acoustics-based therapy into sonopyrolysis-, sonoporation-, and sonoluminescence-based therapy. Then, detailed mechanisms of these therapies are discussed to show the status of cancer immunotherapy induced by acoustics-based therapy in quo. Finally, we express some future prospects in this research field and make some predictions of its development direction
Collapse
Affiliation(s)
- Yuheng Bao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jifan Chen
- Department of Ultrasound in Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
60
|
Wu SK, Tsai CL, Huang Y, Hynynen K. Focused Ultrasound and Microbubbles-Mediated Drug Delivery to Brain Tumor. Pharmaceutics 2020; 13:pharmaceutics13010015. [PMID: 33374205 PMCID: PMC7823947 DOI: 10.3390/pharmaceutics13010015] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
The presence of blood–brain barrier (BBB) and/or blood–brain–tumor barriers (BBTB) is one of the main obstacles to effectively deliver therapeutics to our central nervous system (CNS); hence, the outcomes following treatment of malignant brain tumors remain unsatisfactory. Although some approaches regarding BBB disruption or drug modifications have been explored, none of them reach the criteria of success. Convention-enhanced delivery (CED) directly infuses drugs to the brain tumor and surrounding tumor infiltrating area over a long period of time using special catheters. Focused ultrasound (FUS) now provides a non-invasive method to achieve this goal via combining with systemically circulating microbubbles to locally enhance the vascular permeability. In this review, different approaches of delivering therapeutic agents to the brain tumors will be discussed as well as the characterization of BBB and BBTB. We also highlight the mechanism of FUS-induced BBB modulation and the current progress of this technology in both pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Sheng-Kai Wu
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (S.-K.W.); (C.-L.T.); (Y.H.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Chia-Lin Tsai
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (S.-K.W.); (C.-L.T.); (Y.H.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yuexi Huang
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (S.-K.W.); (C.-L.T.); (Y.H.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (S.-K.W.); (C.-L.T.); (Y.H.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Correspondence:
| |
Collapse
|
61
|
Ullrich KAM, Schulze LL, Paap EM, Müller TM, Neurath MF, Zundler S. Immunology of IL-12: An update on functional activities and implications for disease. EXCLI JOURNAL 2020; 19:1563-1589. [PMID: 33408595 PMCID: PMC7783470 DOI: 10.17179/excli2020-3104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
As its first identified member, Interleukin-12 (IL-12) named a whole family of cytokines. In response to pathogens, the heterodimeric protein, consisting of the two subunits p35 and p40, is secreted by phagocytic cells. Binding of IL-12 to the IL-12 receptor (IL-12R) on T and natural killer (NK) cells leads to signaling via signal transducer and activator of transcription 4 (STAT4) and subsequent interferon gamma (IFN-γ) production and secretion. Signaling downstream of IFN-γ includes activation of T-box transcription factor TBX21 (Tbet) and induces pro-inflammatory functions of T helper 1 (TH1) cells, thereby linking innate and adaptive immune responses. Initial views on the role of IL-12 and clinical efforts to translate them into therapeutic approaches had to be re-interpreted following the discovery of other members of the IL-12 family, such as IL-23, sharing a subunit with IL-12. However, the importance of IL-12 with regard to immune processes in the context of infection and (auto-) inflammation is still beyond doubt. In this review, we will provide an update on functional activities of IL-12 and their implications for disease. We will begin with a summary on structure and function of the cytokine itself as well as its receptor and outline the signal transduction and the transcriptional regulation of IL-12 secretion. In the second part of the review, we will depict the involvement of IL-12 in immune-mediated diseases and relevant experimental disease models, while also providing an outlook on potential translational approaches.
Collapse
Affiliation(s)
- Karen A.-M. Ullrich
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Lisa Lou Schulze
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Eva-Maria Paap
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Tanja M. Müller
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Markus F. Neurath
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Sebastian Zundler
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| |
Collapse
|
62
|
Meng Y, Hynynen K, Lipsman N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nat Rev Neurol 2020; 17:7-22. [PMID: 33106619 DOI: 10.1038/s41582-020-00418-z] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Focused ultrasound (FUS) is a disruptive medical technology, and its implementation in the clinic represents the culmination of decades of research. Lying at the convergence of physics, engineering, imaging, biology and neuroscience, FUS offers the ability to non-invasively and precisely intervene in key circuits that drive common and challenging brain conditions. The actions of FUS in the brain take many forms, ranging from transient blood-brain barrier opening and neuromodulation to permanent thermoablation. Over the past 5 years, we have seen a dramatic expansion of indications for and experience with FUS in humans, with a resultant exponential increase in academic and public interest in the technology. Applications now span the clinical spectrum in neurological and psychiatric diseases, with insights still emerging from preclinical models and human trials. In this Review, we provide a comprehensive overview of therapeutic ultrasound and its current and emerging indications in the brain. We examine the potential impact of FUS on the landscape of brain therapies as well as the challenges facing further advancement and broader adoption of this promising minimally invasive therapeutic alternative.
Collapse
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Sunnybrook Research Institute, Hurvitz Brain Sciences Program, Harquail Centre for Neuromodulation, Toronto, ON, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics and Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada. .,Sunnybrook Research Institute, Hurvitz Brain Sciences Program, Harquail Centre for Neuromodulation, Toronto, ON, Canada. .,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
63
|
Scheetz L, Kadiyala P, Sun X, Son S, Hassani Najafabadi A, Aikins M, Lowenstein PR, Schwendeman A, Castro MG, Moon JJ. Synthetic High-density Lipoprotein Nanodiscs for Personalized Immunotherapy Against Gliomas. Clin Cancer Res 2020; 26:4369-4380. [PMID: 32439701 PMCID: PMC7442596 DOI: 10.1158/1078-0432.ccr-20-0341] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Gliomas are brain tumors with dismal prognoses. The standard-of-care treatments for gliomas include surgical resection, radiation, and temozolomide administration; however, they have been ineffective in providing significant increases in median survival. Antigen-specific cancer vaccines and immune checkpoint blockade may provide promising immunotherapeutic approaches for gliomas. EXPERIMENTAL DESIGN We have developed immunotherapy delivery vehicles based on synthetic high-density lipoprotein (sHDL) loaded with CpG, a Toll-like receptor-9 agonist, and tumor-specific neoantigens to target gliomas and elicit immune-mediated tumor regression. RESULTS We demonstrate that vaccination with neoantigen peptide-sHDL/CpG cocktail in combination with anti-PD-L1 immune checkpoint blocker elicits robust neoantigen-specific T-cell responses against GL261 cells and eliminated established orthotopic GL261 glioma in 33% of mice. Mice remained tumor free upon tumor cell rechallenge in the contralateral hemisphere, indicating the development of immunologic memory. Moreover, in a genetically engineered murine model of orthotopic mutant IDH1 (mIDH1) glioma, sHDL vaccination with mIDH1 neoantigen eliminated glioma in 30% of animals and significantly extended the animal survival, demonstrating the versatility of our approach in multiple glioma models. CONCLUSIONS Overall, our strategy provides a general roadmap for combination immunotherapy against gliomas and other cancer types.
Collapse
Affiliation(s)
- Lindsay Scheetz
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Sejin Son
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Alireza Hassani Najafabadi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Marisa Aikins
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan.
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan.
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
64
|
Abstract
Shock waves are gaining interests in biological and medical applications. In this work, we investigated the mechanical characteristics of shock waves that affect cell viability. In vitro testing was conducted using the metastatic breast epithelial cell line MDA-MB-231. Shock waves were generated using a high-power pulse laser. Two different coating materials and different laser energy levels were used to vary the peak pressure, decay time, and the strength of subsequent peaks of the shock waves. Within the testing capability of the current study, it is shown that shock waves with a higher impulse led to lower cell viability, a higher detached cell ratio, and a higher cell death ratio, while shock waves with the same peak pressure could lead to different levels of cell damage. The results also showed that the detached cells had a higher cell death ratio compared to the attached cells. Moreover, a critical shock impulse of 5 Pa·s was found to cause the cell death ratio of the detached cells to exceed 50%. This work has demonstrated that, within the testing range shown here, the impulse, rather than the peak pressure, is the governing shock wave parameter for the damage of MDA-MB-231 breast cancer cells. The result suggests that a lower-pressure shock wave with a longer duration, or multiple sequential low amplitude shock waves can be applied over a duration shorter than the fundamental response period of the cells to achieve the same impact as shock waves with a high peak pressure but a short duration. The finding that cell viability is better correlated with shock impulse rather than peak pressure has potential significant implications on how shock waves should be tailored for cancer treatments, enhanced drug delivery, and diagnostic techniques to maximize efficacy while minimizing potential side effects.
Collapse
|
65
|
Rich MC, Sherwood J, Bartley AF, Whitsitt QA, Lee M, Willoughby WR, Dobrunz LE, Bao Y, Lubin FD, Bolding M. Focused ultrasound blood brain barrier opening mediated delivery of MRI-visible albumin nanoclusters to the rat brain for localized drug delivery with temporal control. J Control Release 2020; 324:172-180. [PMID: 32376461 DOI: 10.1016/j.jconrel.2020.04.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
There is an ongoing need for noninvasive tools to manipulate brain activity with molecular, spatial and temporal specificity. Here we have investigated the use of MRI-visible, albumin-based nanoclusters for noninvasive, localized and temporally specific drug delivery to the rat brain. We demonstrated that IV injected nanoclusters could be deposited into target brain regions via focused ultrasound facilitated blood brain barrier opening. We showed that nanocluster location could be confirmed in vivo with MRI. Additionally, following confirmation of nanocluster delivery, release of the nanocluster payload into brain tissue can be triggered by a second focused ultrasound treatment performed without circulating microbubbles. Release of glutamate from nanoclusters in vivo caused enhanced c-Fos expression, indicating that the loading capacity of the nanoclusters is sufficient to induce neuronal activation. This novel technique for noninvasive stereotactic drug delivery to the brain with temporal specificity could provide a new way to study brain circuits in vivo preclinically with high relevance for clinical translation.
Collapse
Affiliation(s)
- Megan C Rich
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jennifer Sherwood
- Department of Chemical and Biological Engineering, University of Alabama at Tuscaloosa, Tuscaloosa, AL 35487, USA
| | - Aundrea F Bartley
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Quentin A Whitsitt
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Magdelene Lee
- Department of Chemical and Biological Engineering, University of Alabama at Tuscaloosa, Tuscaloosa, AL 35487, USA
| | - W R Willoughby
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Lynn E Dobrunz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Yuping Bao
- Department of Chemical and Biological Engineering, University of Alabama at Tuscaloosa, Tuscaloosa, AL 35487, USA.
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Mark Bolding
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
66
|
Ho YJ, Li JP, Fan CH, Liu HL, Yeh CK. Ultrasound in tumor immunotherapy: Current status and future developments. J Control Release 2020; 323:12-23. [PMID: 32302759 DOI: 10.1016/j.jconrel.2020.04.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022]
Abstract
Immunotherapy has considerable potential in eliminating cancers by activating the host's own immune system, while the thermal and mechanical effects of ultrasound have various applications in tumor therapy. Hyperthermia, ablation, histotripsy, and microbubble stable/inertial cavitation can alter the tumor microenvironment to enhance immunoactivation to inhibit tumor growth. Microbubble cavitation can increase vessel permeability and thereby improve the delivery of immune cells, cytokines, antigens, and antibodies to tumors. Violent microbubble cavitation can disrupt tumor cells and efficiently expose them to numerous antigens so as to promote the maturity of antigen-presenting cells and subsequent adaptive immune-cell activation. This review provides an overview and compares the mechanisms of ultrasound-induced immune modulation for peripheral and brain tumor therapy, even degenerative brain diseases therapy. The possibility of reversing tumors to an immunoactive microenvironment by utilizing the cavitation of microbubbles loaded with therapeutic gases is also proposed as another potential pathway for immunotherapy. Finally, we disuss the challenges and opportunities of ultrasound in immunotherapy for future development.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ju-Pi Li
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang-Gung University, Taoyuan 333, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
67
|
Gorick CM, Mathew AS, Garrison WJ, Thim EA, Fisher DG, Copeland CA, Song J, Klibanov AL, Miller GW, Price RJ. Sonoselective transfection of cerebral vasculature without blood-brain barrier disruption. Proc Natl Acad Sci U S A 2020; 117:5644-5654. [PMID: 32123081 PMCID: PMC7084076 DOI: 10.1073/pnas.1914595117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Treatment of many pathologies of the brain could be improved markedly by the development of noninvasive therapeutic approaches that elicit robust, endothelial cell-selective gene expression in specific brain regions that are targeted under MR image guidance. While focused ultrasound (FUS) in conjunction with gas-filled microbubbles (MBs) has emerged as a noninvasive modality for MR image-guided gene delivery to the brain, it has been used exclusively to transiently disrupt the blood-brain barrier (BBB), which may induce a sterile inflammation response. Here, we introduce an MR image-guided FUS method that elicits endothelial-selective transfection of the cerebral vasculature (i.e., "sonoselective" transfection), without opening the BBB. We first determined that activating circulating, cationic plasmid-bearing MBs with pulsed low-pressure (0.1 MPa) 1.1-MHz FUS facilitates sonoselective gene delivery to the endothelium without MRI-detectable disruption of the BBB. The degree of endothelial selectivity varied inversely with the FUS pressure, with higher pressures (i.e., 0.3-MPa and 0.4-MPa FUS) consistently inducing BBB opening and extravascular transfection. Bulk RNA sequencing analyses revealed that the sonoselective low-pressure regimen does not up-regulate inflammatory or immune responses. Single-cell RNA sequencing indicated that the transcriptome of sonoselectively transfected brain endothelium was unaffected by the treatment. The approach developed here permits targeted gene delivery to blood vessels and could be used to promote angiogenesis, release endothelial cell-secreted factors to stimulate nerve regrowth, or recruit neural stem cells.
Collapse
Affiliation(s)
- Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Alexander S Mathew
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - William J Garrison
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - E Andrew Thim
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Delaney G Fisher
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Caitleen A Copeland
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Ji Song
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Alexander L Klibanov
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
- Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - G Wilson Miller
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908;
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
68
|
Brighi C, Reid L, White AL, Genovesi LA, Kojic M, Millar A, Bruce Z, Day BW, Rose S, Whittaker AK, Puttick S. MR-guided focused ultrasound increases antibody delivery to nonenhancing high-grade glioma. Neurooncol Adv 2020; 2:vdaa030. [PMID: 32642689 PMCID: PMC7212871 DOI: 10.1093/noajnl/vdaa030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background High-grade glioma (HGG) remains a recalcitrant clinical problem despite many decades of research. A major challenge in improving prognosis is the inability of current therapeutic strategies to address a clinically significant burden of infiltrating tumor cells that extend beyond the margins of the primary tumor mass. Such cells cannot be surgically excised nor efficiently targeted by radiation therapy. Therapeutic targeting of this tumor cell population is significantly hampered by the presence of an intact blood–brain barrier (BBB). In this study, we performed a preclinical investigation of the efficiency of MR-guided Focused Ultrasound (FUS) to temporarily disrupt the BBB to allow selective delivery of a tumor-targeting antibody to infiltrating tumor. Methods Structural MRI, dynamic-contrast enhancement MRI, and histology were used to fully characterize the MR-enhancing properties of a patient-derived xenograft (PDX) orthotopic mouse model of HGG and to develop a reproducible, robust model of nonenhancing HGG. PET–CT imaging techniques were then used to evaluate the efficacy of FUS to increase 89Zr-radiolabeled antibody concentration in nonenhancing HGG regions and adjacent non-targeted tumor tissue. Results The PDX mouse model of HGG has a significant tumor burden lying behind an intact BBB. Increased antibody uptake in nonenhancing tumor regions is directly proportional to the FUS-targeted volume. FUS locally increased antibody uptake in FUS-targeted regions of the tumor with an intact BBB, while leaving untargeted regions unaffected. Conclusions FUS exposure successfully allowed temporary BBB disruption, localized to specifically targeted, nonenhancing, infiltrating tumor regions and delivery of a systemically administered antibody was significantly increased.
Collapse
Affiliation(s)
- Caterina Brighi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Australia
| | - Lee Reid
- Commonwealth Scientific and Industrial Research Organization, Australian e-Health Research Centre, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Alison L White
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Australia
| | - Laura A Genovesi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Marija Kojic
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Amanda Millar
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Zara Bruce
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bryan W Day
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Stephen Rose
- Commonwealth Scientific and Industrial Research Organization, Australian e-Health Research Centre, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Australia
| | - Simon Puttick
- Commonwealth Scientific and Industrial Research Organization, Australian e-Health Research Centre, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
69
|
Beccaria K, Sabbagh A, de Groot J, Canney M, Carpentier A, Heimberger AB. Blood-brain barrier opening with low intensity pulsed ultrasound for immune modulation and immune therapeutic delivery to CNS tumors. J Neurooncol 2020; 151:65-73. [PMID: 32112296 DOI: 10.1007/s11060-020-03425-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/05/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Opening of the blood-brain barrier (BBB) by pulsed low intensity ultrasound has been developed during the last decade and is now recognized as a safe technique to transiently and repeatedly open the BBB. This non- or minimally invasive technique allows for a targeted and uniform dispersal of a wide range of therapeutic substances throughout the brain, including immune cells and antibodies. METHODS In this review article, we summarize pre-clinical studies that have used BBB-opening by pulsed low intensity ultrasound to enhance the delivery of immune therapeutics and effector cell populations, as well as several recent clinical studies that have been initiated. Based on this analysis, we propose immune therapeutic strategies that are most likely to benefit from this strategy. The literature review and trial data research were performed using Medline/Pubmed databases and clinical trial registry www.clinicaltrials.gov . The reference lists of all included articles were searched for additional studies. RESULTS A wide range of immune therapeutic agents, including small molecular weight drugs, antibodies or NK cells, have been safely and efficiently delivered to the brain with pulsed low intensity ultrasound in preclinical models, and both tumor control and increased survival have been demonstrated in different types of brain tumor models in rodents. Ultrasound-induced BBB disruption may also stimulate innate and cellular immune responses. CONCLUSIONS Ultrasound BBB opening has just recently entered clinical trials with encouraging results, and the association of this strategy with immune therapeutics creates a new field of brain tumor treatment.
Collapse
Affiliation(s)
- Kevin Beccaria
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aria Sabbagh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John de Groot
- Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael Canney
- CarThera, Institut du Cerveau Et de La Moelle épinière (ICM), 75013, Paris, France
| | - Alexandre Carpentier
- Department of Neurosurgery, Sorbonne Université, UPMC Univ Paris 06, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires La Pitié-Salpêtrière, Paris, France
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Unit 422, P.O. Box 301402, Houston, TX, 77230-1402, USA.
| |
Collapse
|
70
|
Beccaria K, Canney M, Bouchoux G, Desseaux C, Grill J, Heimberger AB, Carpentier A. Ultrasound-induced blood-brain barrier disruption for the treatment of gliomas and other primary CNS tumors. Cancer Lett 2020; 479:13-22. [PMID: 32112904 DOI: 10.1016/j.canlet.2020.02.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 01/08/2023]
Abstract
The treatment of primary brain tumors, especially malignant gliomas, remains challenging. The failure of most treatments for this disease is partially explained by the blood-brain barrier (BBB), which prevents circulating molecules from entering the brain parenchyma. Ultrasound-induced BBB disruption (US-BBBD) has recently emerged as a promising strategy to improve the delivery of therapeutic agents to brain tumors. A large body of preclinical studies has demonstrated that the association of low-intensity pulsed ultrasound with intravenous microbubbles can transiently open the BBB in a localized manner. The safety of this technique has been assessed in numerous preclinical studies in both small and large animal models. A large panel of therapeutic agents have been delivered to the brain in preclinical models, demonstrating both tumor control and increased survival. This technique has recently entered clinical trials with encouraging preliminary data. In this review, we describe the mechanisms and histological effects of US-BBBD and summarize the preclinical studies published to date. We furthermore provide an overview of the current clinical development and future potential of this promising technology.
Collapse
Affiliation(s)
- Kévin Beccaria
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, APHP, Paris 5 University, Paris, France.
| | - Michael Canney
- CarThera, Institut Du Cerveau et de La Moelle épinière (ICM), Paris, F-75013, France
| | - Guillaume Bouchoux
- CarThera, Institut Du Cerveau et de La Moelle épinière (ICM), Paris, F-75013, France
| | - Carole Desseaux
- CarThera, Institut Du Cerveau et de La Moelle épinière (ICM), Paris, F-75013, France
| | - Jacques Grill
- Department of Pediatric Oncology, Gustave-Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France; UMR8203 "Vectorologie et Thérapeutiques Anticancéreuses," CNRS, Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Alexandre Carpentier
- Department of Neurosurgery, Sorbonne Université, UPMC Univ Paris 06, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires La Pitié-Salpêtrière, Paris, France
| |
Collapse
|
71
|
Wang J, Shen F, Yao Y, Wang LL, Zhu Y, Hu J. Adoptive Cell Therapy: A Novel and Potential Immunotherapy for Glioblastoma. Front Oncol 2020; 10:59. [PMID: 32083009 PMCID: PMC7005203 DOI: 10.3389/fonc.2020.00059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults with very poor prognosis and few advances in its treatment. Recently, fast-growing cancer immunotherapy provides a glimmer of hope for GBM treatment. Adoptive cell therapy (ACT) aims at infusing immune cells with direct anti-tumor activity, including tumor-infiltrating lymphocyte (TIL) transfer and genetically engineered T cells transfer. For example, complete regressions in patients with melanoma and refractory lymphoma have been shown by using naturally tumor-reactive T cells and genetically engineered T cells expressing the chimeric anti-CD19 receptor, respectively. Recently, the administration of ACT showed therapeutic potentials for GBM treatment as well. In this review, we summarize the success of ACT in the treatment of cancer and provide approaches to overcome some challenges of ACT to allow its adoption for GBM treatment.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Shen
- Department of Orthopaedic Surgery's Spine Division, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Ying Yao
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjian Zhu
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jue Hu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
72
|
Tian Y, Liu Z, Tan H, Hou J, Wen X, Yang F, Cheng W. New Aspects of Ultrasound-Mediated Targeted Delivery and Therapy for Cancer. Int J Nanomedicine 2020; 15:401-418. [PMID: 32021187 PMCID: PMC6982438 DOI: 10.2147/ijn.s201208] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Ultrasound-mediated targeted delivery (UMTD), a novel delivery modality of therapeutic materials based on ultrasound, shows great potential in biomedical applications. By coupling ultrasound contrast agents with therapeutic materials, UMTD combines the advantages of ultrasound imaging and carrier, which benefit deep tissue penetration and high concentration aggregation. In this paper we introduced recent advances in ultrasound contrast agents and applications in tumor therapy. Ultrasound contrast agents were categorized by their functions, mainly including thermosensitive, pH-sensitive and photosensitive ultrasound contrast agents. The various applications of UMTD in tumor treatment were summarized as follows: drug therapy, transfection of anti-oncogene, RNA interference, vaccine immunotherapy, monoclonal antibody immunotherapy, adoptive cellular immunotherapy, cytokine immunotherapy, and so on. In the end, we elaborated on the current challenges and provided perspectives of UMTD for clinical applications.
Collapse
Affiliation(s)
- Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Zhao Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Haoyan Tan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Jiahui Hou
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Xin Wen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Fan Yang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| |
Collapse
|
73
|
Ultrasound-Induced Blood-Brain-Barrier Opening Enhances Anticancer Efficacy in the Treatment of Glioblastoma: Current Status and Future Prospects. JOURNAL OF ONCOLOGY 2019; 2019:2345203. [PMID: 31781213 PMCID: PMC6875288 DOI: 10.1155/2019/2345203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/26/2019] [Accepted: 09/19/2019] [Indexed: 01/18/2023]
Abstract
Glioblastoma multiforme (GBM) diffusely infiltrates normal brain tissue. The presence of the blood-brain barrier (BBB) poses difficulties for targeted delivery of currently available antitumor drugs. Novel brain drug delivery strategies are far from satisfactory for glioma treatment. Recently, focused ultrasound (FUS) combined with microbubbles presents a transient, reversible, and noninvasive approach for local induction of BBB opening. This strategy demonstrated its potential to increase local concentrations of both diagnostic and therapeutic agents in glioma therapy. Current status and related physic mechanisms of this drug delivery technique are discussed in this review. Delivery efficiency enhancement in many preclinical glioma models was obtained by FUS-BBB opening combined with various nanoparticles. And, the clinical translational status of FUS-BBB will be discussed.
Collapse
|
74
|
Scheetz L, Park KS, Li Q, Lowenstein PR, Castro MG, Schwendeman A, Moon JJ. Engineering patient-specific cancer immunotherapies. Nat Biomed Eng 2019; 3:768-782. [PMID: 31406259 PMCID: PMC6783331 DOI: 10.1038/s41551-019-0436-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
Research into the immunological processes implicated in cancer has yielded a basis for the range of immunotherapies that are now considered the fourth pillar of cancer treatment (alongside surgery, radiotherapy and chemotherapy). For some aggressive cancers, such as advanced non-small-cell lung carcinoma, combination immunotherapies have resulted in unprecedented treatment efficacy for responding patients, and have become frontline therapies. Individualized immunotherapy, enabled by the identification of patient-specific mutations, neoantigens and biomarkers, and facilitated by advances in genomics and proteomics, promises to broaden the responder patient population. In this Perspective, we give an overview of immunotherapies leveraging engineering approaches, including the design of biomaterials, delivery strategies and nanotechnology solutions, for the realization of individualized cancer treatments such as nanoparticle vaccines customized with neoantigens, cell therapies based on patient-derived dendritic cells and T cells, and combinations of theranostic strategies. Developments in precision cancer immunotherapy will increasingly rely on the adoption of engineering principles.
Collapse
Affiliation(s)
- Lindsay Scheetz
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Kyung Soo Park
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Qiao Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
75
|
Escoffre JM, Bouakaz A. Minireview: Biophysical Mechanisms of Cell Membrane Sonopermeabilization. Knowns and Unknowns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10151-10165. [PMID: 30525655 DOI: 10.1021/acs.langmuir.8b03538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microbubble-assisted ultrasound has emerged as a promising method for the delivery of low-molecular-weight chemotherapeutic molecules, nucleic acids, therapeutic peptides, and antibodies in vitro and in vivo. Its clinical applications are under investigation for local delivery drug in oncology and neurology. However, the biophysical mechanisms supporting the acoustically mediated membrane permeabilization are not fully established. This review describes the present state of the investigations concerning the acoustically mediated stimuli (i.e., mechanical, chemical, and thermal stimuli) as well as the molecular and cellular actors (i.e., membrane pores and endocytosis) involved in the reversible membrane permeabilization process. The different hypotheses, which were proposed to give a biophysical description of the membrane permeabilization, are critically discussed.
Collapse
Affiliation(s)
- Jean-Michel Escoffre
- UMR 1253, iBrain, Université de Tours, Inserm , 10 bd Tonnellé , 37032 Tours Cedex 1, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm , 10 bd Tonnellé , 37032 Tours Cedex 1, France
| |
Collapse
|
76
|
Meng Y, Pople CB, Lea-Banks H, Abrahao A, Davidson B, Suppiah S, Vecchio LM, Samuel N, Mahmud F, Hynynen K, Hamani C, Lipsman N. Safety and efficacy of focused ultrasound induced blood-brain barrier opening, an integrative review of animal and human studies. J Control Release 2019; 309:25-36. [PMID: 31326464 DOI: 10.1016/j.jconrel.2019.07.023] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
The blood-brain barrier, while fundamental in maintaining homeostasis in the central nervous system, is a bottleneck to achieving efficacy for numerous therapeutics. Improved brain penetration is also desirable for reduced dose, cost, and systemic side effects. Transient disruption of the blood-brain barrier with focused ultrasound (FUS) can facilitate drug delivery noninvasively with precise spatial and temporal specificity. FUS technology is transcranial and effective without further drug modifications, key advantages that will accelerate adoption and translation of existing therapeutic pipelines. In this review, we performed a comprehensive literature search to build a database and provide a synthesis of ultrasound parameters and drug characteristics that influence the safety and efficacy profile of FUS to enhance drug delivery.
Collapse
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Christopher B Pople
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Harriet Lea-Banks
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Agessandro Abrahao
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| | - Benjamin Davidson
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Suganth Suppiah
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Laura M Vecchio
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Faiza Mahmud
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Hurvitz Brain Sciences Research Program, Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Hurvitz Brain Sciences Research Program, Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
77
|
Jung NY, Rachmilevitch I, Sibiger O, Amar T, Zadicario E, Chang JW. Factors Related to Successful Energy Transmission of Focused Ultrasound through a Skull : A Study in Human Cadavers and Its Comparison with Clinical Experiences. J Korean Neurosurg Soc 2019; 62:712-722. [PMID: 31142101 PMCID: PMC6835146 DOI: 10.3340/jkns.2018.0226] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/09/2019] [Indexed: 11/27/2022] Open
Abstract
Objective Although magnetic resonance guided focused ultrasound (MRgFUS) has been used as minimally invasive and effective neurosurgical treatment, it exhibits some limitations, mainly related to acoustic properties of the skull barrier. This study was undertaken to identify skull characteristics that contribute to optimal ultrasonic energy transmission for MRgFUS procedures.
Methods For ex vivo skull experiments, various acoustic fields were measured under different conditions, using five non-embalmed cadaver skulls. For clinical skull analyses, brain computed tomography data of 46 patients who underwent MRgFUS ablations (18 unilateral thalamotomy, nine unilateral pallidotomy, and 19 bilateral capsulotomy) were retrospectively reviewed. Patients' skull factors and sonication parameters were comparatively analyzed with respect to the cadaveric skulls.
Results Skull experiments identified three important factors related skull penetration of ultrasound, including skull density ratio (SDR), skull volume, and incidence angle of the acoustic rays against the skull surface. In clinical results, SDR and skull volume correlated with maximal temperature (Tmax) and energy requirement to achieve Tmax (p<0.05). In addition, considering the incidence angle determined by brain target location, less energy was required to reach Tmax in the central, rather than lateral targets particularly when compared between thalamotomy and capsulotomy (p<0.05).
Conclusion This study reconfirmed previously identified skull factors, including SDR and skull volume, for successful MRgFUS; it identified an additional factor, incidence angle of acoustic rays against the skull surface. To guarantee successful transcranial MRgFUS treatment without suffering these various skull issues, further technical improvements are required.
Collapse
Affiliation(s)
- Na Young Jung
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
78
|
Bai L, Liu Y, Guo K, Zhang K, Liu Q, Wang P, Wang X. Ultrasound Facilitates Naturally Equipped Exosomes Derived from Macrophages and Blood Serum for Orthotopic Glioma Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14576-14587. [PMID: 30900870 DOI: 10.1021/acsami.9b00893] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exosomes (Exos) are endogenous nanocarriers that have utility as novel delivery systems for the treatment of brain cancers. However, in general, natural Exos show limited BBB-crossing capacity and lack specific targeting. Further modifications including targeting peptides and genetic engineering approaches can circumvent these issues, but the process is time-consuming. Focused ultrasound (FUS) has been approved by the Food and Drug Administration for the diagnosis and treatment of brain diseases due to its noninvasive nature, reversibility, and instantaneous local opening of the BBB. In this study, we developed a natural and safe transportation system using FUS to increase the targeted delivery of Exos for glioma therapy. We also compared the advantages of macrophage-derived Exos (R-Exos) and blood serum-derived Exos (B-Exos) to screen for an improved platform with scope for clinical transformation. In vitro, both R-Exos and B-Exos were transported through BBB models and accumulated in glioma cells with the assistance of ultrasound exposure. R-Exos and B-Exos displayed no obvious differences in physical characteristics, drug release, tumor targeting, and cytotoxicity when combined with FUS. In vivo animal imaging studies suggested that the fluorescence intensity of B-Exos plus single FUS in brains was 4.45-fold higher than that of B-Exos alone. Furthermore, B-Exos plus twice FUS treatment efficiently suppressed glioma growth with no obvious side effects. We therefore demonstrate that the combination of FUS and naturally abundant B-Exos is a potent strategy for brain cancer therapeutics.
Collapse
Affiliation(s)
- Lianmei Bai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Yichen Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Kaili Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Quanhong Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences , Shaanxi Normal University , Xi'an , Shaanxi 710119 , China
| |
Collapse
|
79
|
Chen KT, Wei KC, Liu HL. Theranostic Strategy of Focused Ultrasound Induced Blood-Brain Barrier Opening for CNS Disease Treatment. Front Pharmacol 2019; 10:86. [PMID: 30792657 PMCID: PMC6374338 DOI: 10.3389/fphar.2019.00086] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/21/2019] [Indexed: 12/22/2022] Open
Abstract
Focused Ultrasound (FUS) in combination with gaseous microbubbles has emerged as a potential new means of effective drug delivery to the brain. Recent research has shown that, under burst-type energy exposure with the presence of microbubbles, this modality can transiently permeate the blood-brain barrier (BBB). The bioavailability of therapeutic agents is site-specifically augmented only in the zone where the FUS energy is targeted. The non-invasiveness of this approach makes FUS-induced BBB opening a novel and attractive means to perform localized CNS therapeutic agent delivery. Over the past decade, FUS-BBB opening has been preclinically confirmed to successfully enhance CNS penetration of therapeutic agents including chemotherapeutic agents, therapeutic peptides, monoclonal antibodies, and nanoparticles. Recently, a number of clinical human trials have begun to explore clinical utility. This review article, explores this technology through its physical mechanisms, summarizes the existing preclinical findings (including current medical device designs and technical approaches), and summarizes current ongoing clinical trials.
Collapse
Affiliation(s)
- Ko-Ting Chen
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hao-Li Liu
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Electrical Engineering, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
80
|
Chuntova P, Downey KM, Hegde B, Almeida ND, Okada H. Genetically Engineered T-Cells for Malignant Glioma: Overcoming the Barriers to Effective Immunotherapy. Front Immunol 2019; 9:3062. [PMID: 30740109 PMCID: PMC6357938 DOI: 10.3389/fimmu.2018.03062] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Malignant gliomas carry a dismal prognosis. Conventional treatment using chemo- and radiotherapy has limited efficacy with adverse events. Therapy with genetically engineered T-cells, such as chimeric antigen receptor (CAR) T-cells, may represent a promising approach to improve patient outcomes owing to their potential ability to attack highly infiltrative tumors in a tumor-specific manner and possible persistence of the adaptive immune response. However, the unique anatomical features of the brain and susceptibility of this organ to irreversible tissue damage have made immunotherapy especially challenging in the setting of glioma. With safety concerns in mind, multiple teams have initiated clinical trials using CAR T-cells in glioma patients. The valuable lessons learnt from those trials highlight critical areas for further improvement: tackling the issues of the antigen presentation and T-cell homing in the brain, immunosuppression in the glioma microenvironment, antigen heterogeneity and off-tumor toxicity, and the adaptation of existing clinical therapies to reflect the intricacies of immune response in the brain. This review summarizes the up-to-date clinical outcomes of CAR T-cell clinical trials in glioma patients and examines the most pressing hurdles limiting the efficacy of these therapies. Furthermore, this review uses these hurdles as a framework upon which to evaluate cutting-edge pre-clinical strategies aiming to overcome those barriers.
Collapse
Affiliation(s)
- Pavlina Chuntova
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Kira M Downey
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Bindu Hegde
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Neil D Almeida
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.,George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.,The Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States.,Cancer Immunotherapy Program, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
81
|
Prada F, Kalani MYS, Yagmurlu K, Norat P, Del Bene M, DiMeco F, Kassell NF. Applications of Focused Ultrasound in Cerebrovascular Diseases and Brain Tumors. Neurotherapeutics 2019; 16:67-87. [PMID: 30406382 PMCID: PMC6361053 DOI: 10.1007/s13311-018-00683-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oncology and cerebrovascular disease constitute two of the most common diseases afflicting the central nervous system. Standard of treatment of these pathologies is based on multidisciplinary approaches encompassing combination of interventional procedures such as open and endovascular surgeries, drugs (chemotherapies, anti-coagulants, anti-platelet therapies, thrombolytics), and radiation therapies. In this context, therapeutic ultrasound could represent a novel diagnostic/therapeutic in the armamentarium of the surgeon to treat these diseases. Ultrasound relies on mechanical energy to induce numerous physical and biological effects. The application of this technology in neurology has been limited due to the challenges with penetrating the skull, thus limiting a prompt translation as has been seen in treating pathologies in other organs, such as breast and abdomen. Thanks to pivotal adjuncts such as multiconvergent transducers, magnetic resonance imaging (MRI) guidance, MRI thermometry, implantable transducers, and acoustic windows, focused ultrasound (FUS) is ready for prime-time applications in oncology and cerebrovascular neurology. In this review, we analyze the evolution of FUS from the beginning in 1950s to current state-of-the-art. We provide an overall picture of actual and future applications of FUS in oncology and cerebrovascular neurology reporting for each application the principal existing evidences.
Collapse
Affiliation(s)
- Francesco Prada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia, USA.
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA.
| | - M Yashar S Kalani
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia, USA
| | - Kaan Yagmurlu
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia, USA
| | - Pedro Norat
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia, USA
| | - Massimiliano Del Bene
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, Maryland, USA
| | - Neal F Kassell
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA
| |
Collapse
|
82
|
Snipstad S, Sulheim E, de Lange Davies C, Moonen C, Storm G, Kiessling F, Schmid R, Lammers T. Sonopermeation to improve drug delivery to tumors: from fundamental understanding to clinical translation. Expert Opin Drug Deliv 2018; 15:1249-1261. [PMID: 30415585 DOI: 10.1080/17425247.2018.1547279] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Ultrasound in combination with microbubbles can make cells and tissues more accessible for drugs, thereby achieving improved therapeutic outcomes. In this review, we introduce the term 'sonopermeation', covering mechanisms such as pore formation (traditional sonoporation), as well as the opening of intercellular junctions, stimulated endocytosis/transcytosis, improved blood vessel perfusion and changes in the (tumor) microenvironment. Sonopermeation has gained a lot of interest in recent years, especially for delivering drugs through the otherwise impermeable blood-brain barrier, but also to tumors. AREAS COVERED In this review, we summarize various in vitro assays and in vivo setups that have been employed to unravel the fundamental mechanisms involved in ultrasound-enhanced drug delivery, as well as clinical trials that are ongoing in patients with brain, pancreatic, liver and breast cancer. We summarize the basic principles of sonopermeation, describe recent findings obtained in (pre-) clinical trials, and discuss future directions. EXPERT OPINION We suggest that an improved mechanistic understanding, and microbubbles and ultrasound equipment specialized for drug delivery (and not for imaging) are key aspects to create more effective treatment regimens by sonopermeation. Real-time feedback and tools to predict therapeutic outcome and which tumors/patients will benefit from sonopermeation-based interventions will be important to promote clinical translation.
Collapse
Affiliation(s)
- Sofie Snipstad
- a Department of Physics , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway.,b Department of Biotechnology and Nanomedicine , SINTEF AS , Trondheim , Norway.,c Cancer Clinic , St. Olavs Hospital , Trondheim , Norway
| | - Einar Sulheim
- a Department of Physics , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway.,b Department of Biotechnology and Nanomedicine , SINTEF AS , Trondheim , Norway.,c Cancer Clinic , St. Olavs Hospital , Trondheim , Norway
| | - Catharina de Lange Davies
- a Department of Physics , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| | - Chrit Moonen
- d Imaging Division , University Medical Center , Utrecht , The Netherlands
| | - Gert Storm
- e Department of Pharmaceutics , Utrecht University , Utrecht , The Netherlands.,f Department of Targeted Therapeutics , University of Twente , Enschede , The Netherlands
| | - Fabian Kiessling
- g Institute for Experimental Molecular Imaging , RWTH Aachen University , Aachen , Germany
| | - Ruth Schmid
- b Department of Biotechnology and Nanomedicine , SINTEF AS , Trondheim , Norway
| | - Twan Lammers
- e Department of Pharmaceutics , Utrecht University , Utrecht , The Netherlands.,f Department of Targeted Therapeutics , University of Twente , Enschede , The Netherlands.,g Institute for Experimental Molecular Imaging , RWTH Aachen University , Aachen , Germany
| |
Collapse
|
83
|
Tu J, Zhang H, Yu J, Liufu C, Chen Z. Ultrasound-mediated microbubble destruction: a new method in cancer immunotherapy. Onco Targets Ther 2018; 11:5763-5775. [PMID: 30254469 PMCID: PMC6140758 DOI: 10.2147/ott.s171019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immunotherapy provides a new treatment option for cancer. However, it may be therapeutically insufficient if only using the self-immune system alone to attack the tumor without any aiding methods. To overcome this drawback and improve the efficiency of therapy, new treatment methods are emerging. In recent years, ultrasound-mediated microbubble destruction (UMMD) has shown great potential in cancer immunotherapy. Using the combination of ultrasound and targeted microbubbles, molecules such as antigens or genes encoding antigens can be efficiently and specifically delivered into the tumor tissue. This review focuses on the recent progress in the application of UMMD in cancer immunotherapy.
Collapse
Affiliation(s)
- Jiawei Tu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| | - Hui Zhang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| | - Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| | - Chun Liufu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| |
Collapse
|
84
|
Kovacs ZI, Tu TW, Sundby M, Qureshi F, Lewis BK, Jikaria N, Burks SR, Frank JA. MRI and histological evaluation of pulsed focused ultrasound and microbubbles treatment effects in the brain. Theranostics 2018; 8:4837-4855. [PMID: 30279741 PMCID: PMC6160777 DOI: 10.7150/thno.24512] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Magnetic resonance imaging (MRI)-guided pulsed focused ultrasound (pFUS) combined with microbubbles (MB) contrast agent infusion has been shown to transiently disrupt the blood-brain barrier (BBBD), increasing the delivery of neurotherapeutics to treat central nervous system (CNS) diseases. pFUS interaction with the intravascular MB results in acoustic cavitation forces passing through the neurovascular unit (NVU), inducing BBBD detected on contrast-enhanced MRI. Multiple pFUS+MB exposures in Alzheimer's disease (AD) models are being investigated as a method to clear amyloid plaques by activated microglia or infiltrating immune cells. Since it has been reported that pFUS+MB can induce a sterile inflammatory response (SIR) [1-5] in the rat, the goal of this study was to investigate the potential long-term effects of SIR in the brain following single and six weekly sonications by serial high-resolution MRI and pathology. Methods: Female Sprague Dawley rats weighing 217±16.6 g prior to sonication received bromo-deoxyuridine (BrdU) to tag proliferating cells in the brain. pFUS was performed at 548 kHz, ultrasound burst 10 ms and initial peak negative pressure of 0.3 MPa (in water) for 120 s coupled with a slow infusion of ~460 µL/kg (5-8×107 MB) that started 30 s before and 30 s during sonication. Nine 2 mm focal regions in the left cortex and four regions over the right hippocampus were treated with pFUS+MB. Serial high-resolution brain MRIs at 3 T and 9.4 T were obtained following a single or during the course of six weekly pFUS+MB resulting in BBBD in the left cortex and the right hippocampus. Animals were monitored over 7 to 13 weeks and imaging results were compared to histology. Results: Fewer than half of the rats receiving a single pFUS+MB exposure displayed hypointense voxels on T2*-weighted (w) MRI at week 7 or 13 in the cortex or hippocampus without differences compared to the contralateral side on histograms of T2* maps. Single sonicated rats had evidence of limited microglia activation on pathology compared to the contralateral hemisphere. Six weekly pFUS+MB treatments resulted in pathological changes on T2*w images with multiple hypointense regions, cortical atrophy, along with 50% of rats having persistent BBBD and astrogliosis by MRI. Pathologic analysis of the multiple sonicated animals demonstrated the presence of metallophagocytic Prussian blue-positive cells in the parenchyma with significantly (p<0.05) increased areas of activated astrocytes and microglia, and high numbers of systemic infiltrating CD68+ macrophages along with BrdU+ cells compared to contralateral brain. In addition, multiple treatments caused an increase in the number of hyperphosphorylated Tau (pTau)-positive neurons containing neurofibrillary tangles (NFT) in the sonicated cortex but not in the hippocampus when compared to contralateral brain, which was confirmed by Western blot (WB) (p<0.04). Conclusions: The repeated SIR following multiple pFUS+MB treatments could contribute to changes on MR imaging including persistent BBBD, cortical atrophy, and hypointense voxels on T2w and T2*w images consistent with pathological injury. Moreover, areas of astrogliosis, activated microglia, along with higher numbers of CD68+ infiltrating macrophages and BrdU+ cells were detected in multiple sonicated areas of the cortex and hippocampus. Elevations in pTau and NFT were detected in neurons of the multiple sonicated cortex. Minimal changes on MRI and histology were observed in single pFUS+MB-treated rats at 7 and 13 weeks post sonication. In comparison, animals that received 6 weekly sonications demonstrated evidence on MRI and histology of vascular damage, inflammation and neurodegeneration associated with the NVU commonly observed in trauma. Further investigation is recommended of the long-term effects of multiple pFUS+MB in clinical trials.
Collapse
|
85
|
Toccaceli G, Delfini R, Colonnese C, Raco A, Peschillo S. Emerging Strategies and Future Perspective in Neuro-Oncology Using Transcranial Focused Ultrasonography Technology. World Neurosurg 2018; 117:84-91. [DOI: 10.1016/j.wneu.2018.05.239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/08/2023]
|
86
|
Meng Y, Suppiah S, Surendrakumar S, Bigioni L, Lipsman N. Low-Intensity MR-Guided Focused Ultrasound Mediated Disruption of the Blood-Brain Barrier for Intracranial Metastatic Diseases. Front Oncol 2018; 8:338. [PMID: 30211117 PMCID: PMC6121246 DOI: 10.3389/fonc.2018.00338] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022] Open
Abstract
Low-intensity MR-guided focused ultrasound in combination with intravenously injected microbubbles is a promising platform for drug delivery to the central nervous system past the blood-brain barrier. The blood-brain barrier is a key bottleneck for cancer therapeutics via limited inter- and intracellular transport. Further, drugs that cross the blood-brain barrier when delivered in a spatially nonspecific way, result in adverse effects on normal brain tissue, or at high concentrations, result in increasing risks to peripheral organs. As such, various anti-cancer drugs that have been developed or to be developed in the future would benefit from a noninvasive, temporary, and repeatable method of targeted opening of the blood-brain barrier to treat metastatic brain diseases. MR-guided focused ultrasound is a potential solution to these design requirements. The safety, feasibility and preliminary efficacy of MRgFUS aided delivery have been demonstrated in various animal models. In this review, we discuss this preclinical evidence, mechanisms of focused ultrasound mediated blood-brain barrier opening, and translational efforts to neuro-oncology patients.
Collapse
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Suganth Suppiah
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Shanan Surendrakumar
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Luca Bigioni
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
87
|
Affiliation(s)
- Chaopin Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Du
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
88
|
Lamsam L, Johnson E, Connolly ID, Wintermark M, Hayden Gephart M. A review of potential applications of MR-guided focused ultrasound for targeting brain tumor therapy. Neurosurg Focus 2018; 44:E10. [DOI: 10.3171/2017.11.focus17620] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Magnetic resonance–guided focused ultrasound (MRgFUS) has been used extensively to ablate brain tissue in movement disorders, such as essential tremor. At a lower energy, MRgFUS can disrupt the blood-brain barrier (BBB) to allow passage of drugs. This focal disruption of the BBB can target systemic medications to specific portions of the brain, such as for brain tumors. Current methods to bypass the BBB are invasive, as the BBB is relatively impermeable to systemically delivered antineoplastic agents. Multiple healthy and brain tumor animal models have suggested that MRgFUS disrupts the BBB and focally increases the concentration of systemically delivered antitumor chemotherapy, immunotherapy, and gene therapy. In animal tumor models, combining MRgFUS with systemic drug delivery increases median survival times and delays tumor progression. Liposomes, modified microbubbles, and magnetic nanoparticles, combined with MRgFUS, more effectively deliver chemotherapy to brain tumors. MRgFUS has great potential to enhance brain tumor drug delivery, while limiting treatment toxicity to the healthy brain.
Collapse
Affiliation(s)
| | | | | | - Max Wintermark
- 2Radiology, Stanford University Medical Center, Stanford, California
| | | |
Collapse
|
89
|
Askoxylakis V, Arvanitis CD, Wong CSF, Ferraro GB, Jain RK. Emerging strategies for delivering antiangiogenic therapies to primary and metastatic brain tumors. Adv Drug Deliv Rev 2017; 119:159-174. [PMID: 28648712 PMCID: PMC12051390 DOI: 10.1016/j.addr.2017.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/06/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022]
Abstract
Five-year survival rates have not increased appreciably for patients with primary and metastatic brain tumors. Nearly 17,000 patients die from primary brain tumors, whereas approximately 200,000 cases are diagnosed with brain metastasis every year in the US alone. At the same time, with improved control of systemic disease, the incidence of brain metastasis is increasing. Thus, novel approaches for improving the treatment outcome for these uniformly fatal diseases are needed urgently. In the review, we summarize the challenges in the treatment of these diseases using antiangiogenic therapies alone or in combination with radio-, chemo- and immuno-therapies. We also discuss the emerging strategies to improve the treatment outcome using both pharmacological approaches to normalize the tumor microenvironment and physical approaches (e.g., focused ultrasound) to modulate the blood-tumor-barrier, along with limitations of each approach. Finally, we offer some new avenues of future research.
Collapse
Affiliation(s)
- Vasileios Askoxylakis
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, 02114, USA
| | - Costas D Arvanitis
- School of Mechanical Engineering, Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Christina S F Wong
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, 02114, USA
| | - Gino B Ferraro
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, 02114, USA.
| |
Collapse
|
90
|
Curley CT, Sheybani ND, Bullock TN, Price RJ. Focused Ultrasound Immunotherapy for Central Nervous System Pathologies: Challenges and Opportunities. Theranostics 2017; 7:3608-3623. [PMID: 29109764 PMCID: PMC5667336 DOI: 10.7150/thno.21225] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/13/2017] [Indexed: 01/01/2023] Open
Abstract
Immunotherapy is rapidly emerging as the cornerstone for the treatment of several forms of metastatic cancer, as well as for a host of other pathologies. Meanwhile, several new high-profile studies have uncovered remarkable linkages between the central nervous and immune systems. With these recent developments, harnessing the immune system for the treatment of brain pathologies is a promising strategy. Here, we contend that MR image-guided focused ultrasound (FUS) represents a noninvasive approach that will allow for favorable therapeutic immunomodulation in the setting of the central nervous system. One obstacle to effective immunotherapeutic drug delivery to the brain is the blood brain barrier (BBB), which refers to the specialized structure of brain capillaries that prevents transport of most therapeutics from the blood into brain tissue. When applied in the presence of circulating microbubbles, FUS can safely and transiently open the BBB to facilitate the delivery of immunotherapeutic agents into the brain parenchyma. Furthermore, it has been demonstrated that physical perturbations of the tissue microenvironment via FUS can modulate immune response in both normal and diseased tissue. In this review article, we provide an overview of FUS energy regimens and corresponding tissue bioeffects, followed by a review of the literature pertaining to FUS for therapeutic antibody delivery in normal brain and preclinical models of brain disease. We provide an overview of studies that demonstrate FUS-mediated immune modulation in both the brain and peripheral settings. Finally, we provide remarks on challenges facing FUS immunotherapy and opportunities for future expansion in this area.
Collapse
Affiliation(s)
- Colleen T. Curley
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Natasha D. Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | | | - Richard J. Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| |
Collapse
|
91
|
Wu P, Jia Y, Qu F, Sun Y, Wang P, Zhang K, Xu C, Liu Q, Wang X. Ultrasound-Responsive Polymeric Micelles for Sonoporation-Assisted Site-Specific Therapeutic Action. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25706-25716. [PMID: 28741924 DOI: 10.1021/acsami.7b05469] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Targeting drug delivery remains a challenge in various disease treatment including cancer. The local drug deposit could be greatly enhanced by some external stimuli-responsive systems. Here we develop pluronic P123/F127 polymeric micelles (M) encapsulating curcumin (Cur) that are permeabilized directly by focused ultrasound, in which ultrasound triggers drug release. Tumor preferential accumulation and site-specific sonochemotherapy were then evaluated. Cur-loaded P123/F127 mixed micelles (Cur-M) exhibited longer circulating time and increased cellular uptake compared to free Cur. With the assistance of focused ultrasound treatment, Cur-M showed tumor-targeting deposition in a time-dependent manner following systemic administration. This was due to enhanced permeabilization of tumor regions and increased penetration of Cur-M in irradiated tumor cells by ultrasound sonoporation. Furthermore, Cur-M self-assembly could be regulated by ultrasound irradiation. In vitro Cur release from mixed micelles was greatly dependent on ultrasound intensity but not on duration, suggesting the cavitational threshold was necessary to initiate subsequent sonochemotherapy. In vivo site-specific drug release was demonstrated in dual-tumor models, which showed spatial-temporal release of entrapped drugs following intratumoral injection. The sonoporation-assisted site-specific chemotherapy significantly inhibited tumor growth and the decrease in tumor weight was approximately 6.5-fold more than without exposure to ultrasound irradiation. In conclusion, the established ultrasound-guided nanomedicine targeting deposit and local release may represent a new strategy to improve chemotherapy efficiency.
Collapse
Affiliation(s)
- Pengying Wu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University , Xi'an, Shaanxi 710119, China
| | - Yali Jia
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University , Xi'an, Shaanxi 710119, China
| | - Fei Qu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University , Xi'an, Shaanxi 710119, China
| | - Yue Sun
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University , Xi'an, Shaanxi 710119, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University , Xi'an, Shaanxi 710119, China
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University , Xi'an, Shaanxi 710119, China
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong , Shatin, Hong Kong 999077, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University , Xi'an, Shaanxi 710119, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University , Xi'an, Shaanxi 710119, China
| |
Collapse
|
92
|
Lin CY, Hsieh HY, Chen CM, Wu SR, Tsai CH, Huang CY, Hua MY, Wei KC, Yeh CK, Liu HL. Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson's disease mouse model. J Control Release 2016; 235:72-81. [DOI: 10.1016/j.jconrel.2016.05.052] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 02/01/2023]
|
93
|
Carpentier A, Canney M, Vignot A, Reina V, Beccaria K, Horodyckid C, Karachi C, Leclercq D, Lafon C, Chapelon JY, Capelle L, Cornu P, Sanson M, Hoang-Xuan K, Delattre JY, Idbaih A. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci Transl Med 2016; 8:343re2. [DOI: 10.1126/scitranslmed.aaf6086] [Citation(s) in RCA: 420] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/20/2016] [Indexed: 12/23/2022]
|
94
|
Mortelmans K, Wang-Johanning F, Johanning GL. The role of human endogenous retroviruses in brain development and function. APMIS 2016; 124:105-15. [PMID: 26818265 DOI: 10.1111/apm.12495] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022]
Abstract
Endogenous retroviral sequences are spread throughout the genome of all humans, and make up about 8% of the genome. Despite their prevalence, the function of human endogenous retroviruses (HERVs) in humans is largely unknown. In this review we focus on the brain, and evaluate studies in animal models that address mechanisms of endogenous retrovirus activation in the brain and central nervous system (CNS). One such study in mice found that TRIM28, a protein critical for mouse early development, regulates transcription and silencing of endogenous retroviruses in neural progenitor cells. Another intriguing finding in human brain cells and mouse models was that endogenous retrovirus HERV-K appears to be protective against neurotoxins. We also report on studies that associate HERVs with human diseases of the brain and CNS. There is little doubt of an association between HERVs and a number of CNS diseases. However, a cause and effect relationship between HERVs and these diseases has not yet been established.
Collapse
Affiliation(s)
- Kristien Mortelmans
- Discovery Biology Section, Biosciences Division, SRI International, Menlo Park, CA, USA
| | - Feng Wang-Johanning
- Discovery Biology Section, Biosciences Division, SRI International, Menlo Park, CA, USA
| | - Gary L Johanning
- Discovery Biology Section, Biosciences Division, SRI International, Menlo Park, CA, USA
| |
Collapse
|
95
|
Cohen-Inbar O, Xu Z, Sheehan JP. Focused ultrasound-aided immunomodulation in glioblastoma multiforme: a therapeutic concept. J Ther Ultrasound 2016; 4:2. [PMID: 26807257 PMCID: PMC4722768 DOI: 10.1186/s40349-016-0046-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
Patients with glioblastoma multiforme (GBM) exhibit a deficient anti-tumor immune response. Both arms of the immune system were shown to be hampered in GBM, namely the local cellular immunity mediated by the Th1 subset of helper T cells and the systemic humoral immunity mediated by the Th2 subset of helper T cells. Immunotherapy is rapidly becoming one of the pillars of anti-cancer therapy. GBM has not received similar clinical successes as of yet, which may be attributed to its relative inaccessibility (the blood-brain barrier (BBB)), its poor immunogenicity, few characterized cancer antigens, or any of the many other immune mechanisms known to be hampered. Focused ultrasound (FUS) is emerging as a promising treatment approach. The effects of FUS on the tissue are not merely thermal. Mounting evidence suggests that in addition to thermal ablation, FUS induces mechanical acoustic cavitation and immunomodulation plays a key role in boosting the host anti-tumor immune responses. We separately discuss the different pertinent immunosuppressive mechanisms harnessed by GBM and the immunomodulatory effects of FUS. The effect of FUS and microbubbles in disrupting the BBB and introducing antigens and drugs to the tumor milieu is discussed. The FUS-induced pro-inflammatory cytokines secretion and stress response, the FUS-induced change in the intra-tumoral immune-cells populations, the FUS-induced augmentation of dendritic cells activity, and the FUS-induced increased cytotoxic cells potency are all discussed. We next attempt at offering a conceptual synopsis of the synergistic treatment of GBM utilizing FUS and immunotherapy. In conclusion, it is increasingly apparent that no single treatment modality will triumph on GBM. The reviewed FUS-induced immunomodulation effects can be harnessed to current and developing immunotherapy approaches. Together, these may overcome GBM-induced immune-evasion and generate a clinically relevant anti-tumor immune response.
Collapse
Affiliation(s)
- Or Cohen-Inbar
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA USA ; Molecular Immunology & Tumor Immunotherapy Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhiyuan Xu
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA USA
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
96
|
Hersh DS, Wadajkar AS, Roberts NB, Perez JG, Connolly NP, Frenkel V, Winkles JA, Woodworth GF, Kim AJ. Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Curr Pharm Des 2016; 22:1177-1193. [PMID: 26685681 PMCID: PMC4900538 DOI: 10.2174/1381612822666151221150733] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/18/2015] [Indexed: 01/10/2023]
Abstract
The blood-brain barrier (BBB) poses a unique challenge for drug delivery to the central nervous system (CNS). The BBB consists of a continuous layer of specialized endothelial cells linked together by tight junctions, pericytes, nonfenestrated basal lamina, and astrocytic foot processes. This complex barrier controls and limits the systemic delivery of therapeutics to the CNS. Several innovative strategies have been explored to enhance the transport of therapeutics across the BBB, each with individual advantages and disadvantages. Ongoing advances in delivery approaches that overcome the BBB are enabling more effective therapies for CNS diseases. In this review, we discuss: (1) the physiological properties of the BBB, (2) conventional strategies to enhance paracellular and transcellular transport through the BBB, (3) emerging concepts to overcome the BBB, and (4) alternative CNS drug delivery strategies that bypass the BBB entirely. Based on these exciting advances, we anticipate that in the near future, drug delivery research efforts will lead to more effective therapeutic interventions for diseases of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Graeme F. Woodworth
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| | - Anthony J. Kim
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| |
Collapse
|
97
|
Chen PY, Wei KC, Liu HL. Neural immune modulation and immunotherapy assisted by focused ultrasound induced blood-brain barrier opening. Hum Vaccin Immunother 2015; 11:2682-7. [PMID: 26378609 DOI: 10.1080/21645515.2015.1071749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The central nervous system (CNS) has long been regarded as an immune-privileged site, with the blood-brain barrier (BBB) limiting the entering of systemic immune cells and components. Exposure of low-energy focused ultrasound (FUS) with the presence of microbubbles has been found to provide a temporary and targeted opening of the BBB without inflicting brain damage or inflammation, and is thus an attractive means of delivering CNS therapeutic agents and raising the potential for targeted CNS immunotherapy. Based on our recent studies on enhancing brain-tumor immune-related therapy via this mechanism, (1) we summarize current approaches using FUS-induced BBB opening to promote immune regulation and project potential directions for FUS-induced CNS immunotherapy.
Collapse
Affiliation(s)
- Pin-Yuan Chen
- a Department of Neurosurgery ; Chang Gung Memorial Hospital; Linkou Medical Center and College of Medicine; Chang Gung University ; Taoyuan , Taiwan
| | - Kuo-Chen Wei
- a Department of Neurosurgery ; Chang Gung Memorial Hospital; Linkou Medical Center and College of Medicine; Chang Gung University ; Taoyuan , Taiwan
| | - Hao-Li Liu
- b Department of Electrical Engineering ; Chang Gung University ; Taoyuan , Taiwan.,c Medical Imaging Research Center; Institute for Radiological Research; Chang Gung University; Chang Gung Memorial Hospital ; Taoyuan , Taiwan
| |
Collapse
|
98
|
Timbie KF, Mead BP, Price RJ. Drug and gene delivery across the blood-brain barrier with focused ultrasound. J Control Release 2015; 219:61-75. [PMID: 26362698 DOI: 10.1016/j.jconrel.2015.08.059] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/26/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier (BBB) remains one of the most significant limitations to treatments of central nervous system (CNS) disorders including brain tumors, neurodegenerative diseases and psychiatric disorders. It is now well-established that focused ultrasound (FUS) in conjunction with contrast agent microbubbles may be used to non-invasively and temporarily disrupt the BBB, allowing localized delivery of systemically administered therapeutic agents as large as 100nm in size to the CNS. Importantly, recent technological advances now permit FUS application through the intact human skull, obviating the need for invasive and risky surgical procedures. When used in combination with magnetic resonance imaging, FUS may be applied precisely to pre-selected CNS targets. Indeed, FUS devices capable of sub-millimeter precision are currently in several clinical trials. FUS mediated BBB disruption has the potential to fundamentally change how CNS diseases are treated, unlocking potential for combinatorial treatments with nanotechnology, markedly increasing the efficacy of existing therapeutics that otherwise do not cross the BBB effectively, and permitting safe repeated treatments. This article comprehensively reviews recent studies on the targeted delivery of therapeutics into the CNS with FUS and offers perspectives on the future of this technology.
Collapse
Affiliation(s)
- Kelsie F Timbie
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Brian P Mead
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
99
|
Facilitation of Drug Transport across the Blood-Brain Barrier with Ultrasound and Microbubbles. Pharmaceutics 2015; 7:275-93. [PMID: 26404357 PMCID: PMC4588200 DOI: 10.3390/pharmaceutics7030275] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 11/09/2022] Open
Abstract
Medical treatment options for central nervous system (CNS) diseases are limited due to the inability of most therapeutic agents to penetrate the blood–brain barrier (BBB). Although a variety of approaches have been investigated to open the BBB for facilitation of drug delivery, none has achieved clinical applicability. Mounting evidence suggests that ultrasound in combination with microbubbles might be useful for delivery of drugs to the brain through transient opening of the BBB. This technique offers a unique non-invasive avenue to deliver a wide range of drugs to the brain and promises to provide treatments for CNS disorders with the advantage of being able to target specific brain regions without unnecessary drug exposure. If this method could be applied for a range of different drugs, new CNS therapeutic strategies could emerge at an accelerated pace that is not currently possible in the field of drug discovery and development. This article reviews both the merits and potential risks of this new approach. It assesses methods used to verify disruption of the BBB with MRI and examines the results of studies aimed at elucidating the mechanisms of opening the BBB with ultrasound and microbubbles. Possible interactions of this novel delivery method with brain disease, as well as safety aspects of BBB disruption with ultrasound and microbubbles are addressed. Initial translational research for treatment of brain tumors and Alzheimer’s disease is presented.
Collapse
|