51
|
Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol 2020; 318:G554-G573. [PMID: 31984784 PMCID: PMC7099488 DOI: 10.1152/ajpgi.00223.2019] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bile acid synthesis is the most significant pathway for catabolism of cholesterol and for maintenance of whole body cholesterol homeostasis. Bile acids are physiological detergents that absorb, distribute, metabolize, and excrete nutrients, drugs, and xenobiotics. Bile acids also are signal molecules and metabolic integrators that activate nuclear farnesoid X receptor (FXR) and membrane Takeda G protein-coupled receptor 5 (TGR5; i.e., G protein-coupled bile acid receptor 1) to regulate glucose, lipid, and energy metabolism. The gut-to-liver axis plays a critical role in the transformation of primary bile acids to secondary bile acids, in the regulation of bile acid synthesis to maintain composition within the bile acid pool, and in the regulation of metabolic homeostasis to prevent hyperglycemia, dyslipidemia, obesity, and diabetes. High-fat and high-calorie diets, dysbiosis, alcohol, drugs, and disruption of sleep and circadian rhythms cause metabolic diseases, including alcoholic and nonalcoholic fatty liver diseases, obesity, diabetes, and cardiovascular disease. Bile acid-based drugs that target bile acid receptors are being developed for the treatment of metabolic diseases of the liver.
Collapse
Affiliation(s)
- John Y. L. Chiang
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jessica M. Ferrell
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
52
|
Donkers JM, Roscam Abbing RLP, van Weeghel M, Levels JHM, Boelen A, Schinkel AH, Oude Elferink RPJ, van de Graaf SFJ. Inhibition of Hepatic Bile Acid Uptake by Myrcludex B Promotes Glucagon-Like Peptide-1 Release and Reduces Obesity. Cell Mol Gastroenterol Hepatol 2020; 10:451-466. [PMID: 32330730 PMCID: PMC7363705 DOI: 10.1016/j.jcmgh.2020.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Bile acids are important metabolic signaling molecules. Bile acid receptor activation promotes body weight loss and improves glycemic control. The incretin hormone GLP-1 and thyroid hormone activation of T4 to T3 have been suggested as important contributors. Here, we identify the hepatic bile acid uptake transporter Na+ taurocholate co-transporting polypeptide (NTCP) as target to prolong postprandial bile acid signaling. METHODS Organic anion transporting polypeptide (OATP)1a/1b KO mice with or without reconstitution with human OATP1B1 in the liver were treated with the NTCP inhibitor Myrcludex B for 3.5 weeks after the onset of obesity induced by high fat diet-feeding. Furthermore, radiolabeled T4 was injected to determine the role of NTCP and OATPs in thyroid hormone clearance from plasma. RESULTS Inhibition of NTCP by Myrcludex B in obese Oatp1a/1b KO mice inhibited hepatic clearance of bile acids from portal and systemic blood, stimulated GLP-1 secretion, reduced body weight, and decreased (hepatic) adiposity. NTCP inhibition did not affect hepatic T4 uptake nor lead to increased thyroid hormone activation. Myrcludex B treatment increased fecal energy output, explaining body weight reductions amongst unaltered food intake and energy expenditure. CONCLUSIONS Pharmacologically targeting hepatic bile acid uptake to increase bile acid signaling is a novel approach to treat obesity and induce GLP1- secretion.
Collapse
Affiliation(s)
- Joanne M Donkers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Reinout L P Roscam Abbing
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes H M Levels
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Anita Boelen
- Endocrinology Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
53
|
Jayakumar S, Loomba R. Review article: emerging role of the gut microbiome in the progression of nonalcoholic fatty liver disease and potential therapeutic implications. Aliment Pharmacol Ther 2019; 50:144-158. [PMID: 31149745 PMCID: PMC6771496 DOI: 10.1111/apt.15314] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/24/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a prevalent disorder associated with obesity and diabetes. Few treatment options are effective for patients with NAFLD, but connections between the gut microbiome and NAFLD and NAFLD-associated conditions suggest that modulation of the gut microbiota could be a novel therapeutic option. AIM To examine the effect of the gut microbiota on pathophysiologic causes of NAFLD and assess the potential of microbiota-targeting therapies for NAFLD. METHODS A PubMed search of the literature was performed; relevant articles were included. RESULTS The composition of bacteria in the gastrointestinal tract can enhance fat deposition, modulate energy metabolism and alter inflammatory processes. Emerging evidence suggests a role for the gut microbiome in obesity and metabolic syndrome. NAFLD is often considered the hepatic manifestation of metabolic syndrome, and there has been tremendous progress in understanding the association of gut microbiome composition with NAFLD disease severity. We discuss the role of the gut microbiome in NAFLD pathophysiology and whether the microbiome composition can differentiate the two categories of NAFLD: nonalcoholic fatty liver (NAFL, the non-progressive form) vs nonalcoholic steatohepatitis (NASH, the progressive form). The association between gut microbiome and fibrosis progression in NAFLD is also discussed. Finally, we review whether modulation of the gut microbiome plays a role in improving treatment outcomes for patients with NAFLD. CONCLUSIONS Multiple pathophysiologic pathways connect the gut microbiome with the pathophysiology of NAFLD. Therefore, therapeutics that effectively target the gut microbiome may be beneficial for the treatment of patients with NAFLD.
Collapse
Affiliation(s)
- Saumya Jayakumar
- Division of Gastroenterology and Hepatology, Department of MedicineNAFLD Research Center, University of California at San DiegoLa JollaCalifornia
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of MedicineNAFLD Research Center, University of California at San DiegoLa JollaCalifornia,Division of Epidemiology, Department of Family Medicine and Public HealthUniversity of California at San DiegoLa JollaCalifornia
| |
Collapse
|
54
|
Li R, Zeng L, Xie S, Chen J, Yu Y, Zhong L. Targeted metabolomics study of serum bile acid profile in patients with end-stage renal disease undergoing hemodialysis. PeerJ 2019; 7:e7145. [PMID: 31245185 PMCID: PMC6585905 DOI: 10.7717/peerj.7145] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/18/2019] [Indexed: 12/12/2022] Open
Abstract
Background Bile acids are important metabolites of intestinal microbiota, which have profound effects on host health. However, whether metabolism of bile acids is involved in the metabolic complications of end-stage renal disease (ESRD), and the effects of bile acids on the prognosis of ESRD remain obscure. Therefore, this study investigated the relationship between altered bile acid profile and the prognosis of ESRD patients. Methods A targeted metabolomics approach based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine the changes in serum bile acids between ESRD patients (n = 77) and healthy controls (n = 30). Univariate and multivariate statistical analyses were performed to screen the differential proportions of bile acids between the two groups. Results Six differentially expressed bile acids were identified as potential biomarkers for differentiating ESRD patients from healthy subjects. The decreased concentrations of chenodeoxycholic acid, deoxycholic acid and cholic acid were significantly associated with dyslipidemia in ESRD patients. Subgroup analyses revealed that the significantly increased concentrations of taurocholic acid, taurochenodeoxycholic acid, taurohyocholic acid and tauro α-muricholic acid were correlated to the poor prognosis of ESRD patients. Conclusions The serum bile acid profile of ESRD patients differed significantly from that of healthy controls. In addition, the altered serum bile acid profile might contribute to the poor prognosis and metabolic complications of ESRD patients.
Collapse
Affiliation(s)
- Rong Li
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zeng
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuqin Xie
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianwei Chen
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Yu
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Zhong
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
55
|
Ding Y, Yanagi K, Cheng C, Alaniz RC, Lee K, Jayaraman A. Interactions between gut microbiota and non-alcoholic liver disease: The role of microbiota-derived metabolites. Pharmacol Res 2019; 141:521-529. [PMID: 30660825 PMCID: PMC6392453 DOI: 10.1016/j.phrs.2019.01.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
There is increasing evidence that the intestinal microbiota plays a mechanistic role in the etiology of non-alcoholic fatty liver disease (NAFLD). Animal and human studies have linked small molecule metabolites produced by commensal bacteria in the gut contribute to not only intestinal inflammation, but also to hepatic inflammation. These immunomodulatory metabolites are capable of engaging host cellular receptors, and may mediate the observed association between gut dysbiosis and NAFLD. This review focuses on the effects and potential mechanisms of three specific classes of metabolites that synthesized or modified by gut bacteria: short chain fatty acids, amino acid catabolites, and bile acids. In particular, we discuss their role as ligands for cell surface and nuclear receptors regulating metabolic and inflammatory pathways in the intestine and liver. Studies reveal that the metabolites can both agonize and antagonize their cognate receptors to reduce or exacerbate liver steatosis and inflammation, and that the effects are metabolite- and context-specific. Further studies are warranted to more comprehensively understand bacterial metabolite-mediated gut-liver in NAFLD. This understanding could help identify novel therapeutics and therapeutic targets to intervene in the disease through the gut microbiota.
Collapse
Affiliation(s)
- Yufang Ding
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Karin Yanagi
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA
| | - Clint Cheng
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA.
| | - Arul Jayaraman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA; Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, 77843, USA.
| |
Collapse
|
56
|
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors that are involved in various biological processes including metabolism, reproduction, and development. Upon activation by their ligands, NRs bind to their specific DNA elements, exerting their biological functions by regulating their target gene expression. Bile acids are detergent-like molecules that are synthesized in the liver. They not only function as a facilitator for the digestion of lipids and fat-soluble vitamins but also serve as signaling molecules for several nuclear receptors to regulate diverse biological processes including lipid, glucose, and energy metabolism, detoxification and drug metabolism, liver regeneration, and cancer. The nuclear receptors including farnesoid X receptor (FXR), pregnane X receptor (PXR), constitutive androstane receptor (CAR), vitamin D receptor (VDR), and small heterodimer partner (SHP) constitute an integral part of the bile acid signaling. This chapter reviews the role of the NRs in bile acid homeostasis, highlighting the regulatory functions of the NRs in lipid and glucose metabolism in addition to bile acid metabolism.
Collapse
|
57
|
Gege C, Hambruch E, Hambruch N, Kinzel O, Kremoser C. Nonsteroidal FXR Ligands: Current Status and Clinical Applications. Handb Exp Pharmacol 2019; 256:167-205. [PMID: 31197565 DOI: 10.1007/164_2019_232] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
FXR agonists have demonstrated very promising clinical results in the treatment of liver disorders such as primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), and nonalcoholic steatohepatitis (NASH). NASH, in particular, is one of the last uncharted white territories in the pharma landscape, and there is a huge medical need and a large potential pharmaceutical market for a NASH pharmacotherapy. Clinical efficacy superior to most other treatment options was shown by FXR agonists such as obeticholic acid (OCA) as they improved various metabolic features including liver steatosis as well as liver inflammation and fibrosis. But OCA's clinical success comes with some major liabilities such as pruritus, high-density lipoprotein cholesterol (HDLc) lowering, low-density lipoprotein cholesterol (LDLc) increase, and a potential for drug-induced liver toxicity. Some of these effects can be attributed to on-target effects exerted by FXR, but with others it is not clear whether it is FXR- or OCA-related. Therefore a quest for novel, proprietary FXR agonists is ongoing with the aim to increase FXR potency and selectivity over other proteins and to overcome at least some of the OCA-associated clinical side effects through an improved pharmacology. In this chapter we will discuss the historical and ongoing efforts in the identification and development of nonsteroidal, which largely means non-bile acid-type, FXR agonists for clinical use.
Collapse
Affiliation(s)
- Christian Gege
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany
| | - Eva Hambruch
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany
| | - Nina Hambruch
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany
| | - Olaf Kinzel
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany
| | - Claus Kremoser
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany.
| |
Collapse
|
58
|
Masaoutis C, Theocharis S. The farnesoid X receptor: a potential target for expanding the therapeutic arsenal against kidney disease. Expert Opin Ther Targets 2018; 23:107-116. [PMID: 30577722 DOI: 10.1080/14728222.2019.1559825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Farnesoid X receptor (FXR) is a nuclear bile acid (BA) receptor widely distributed among tissues, a major sensor of BA levels, primary suppressor of hepatic BA synthesis and secondary regulator of lipid metabolism and inflammation. Chronic kidney disease is a common, multifactorial condition with metabolic and inflammatory causes and implications. An array of natural and synthetic FXR agonists has been developed, but not yet studied clinically in kidney disease. Areas covered: Following a summary of FXR's physiological functions in the kidney, we discuss its effects in renal disease with emphasis on chronic and acute kidney disease, chemotherapy-induced nephrotoxicity, and renal neoplasia. Most information is derived from animal models; no relevant clinical study has been conducted to date. Expert opinion: Most available preclinical data indicates a promising outlook for clinical research in this direction. We believe FXR agonism to be an auspicious approach to treating renal disease, considering that multifactorial diseases call for ideally wide-reaching therapies.
Collapse
Affiliation(s)
- Christos Masaoutis
- a First Department of Pathology, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Stamatios Theocharis
- a First Department of Pathology, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
59
|
Ðanić M, Stanimirov B, Pavlović N, Goločorbin-Kon S, Al-Salami H, Stankov K, Mikov M. Pharmacological Applications of Bile Acids and Their Derivatives in the Treatment of Metabolic Syndrome. Front Pharmacol 2018; 9:1382. [PMID: 30559664 PMCID: PMC6287190 DOI: 10.3389/fphar.2018.01382] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Apart from well-known functions of bile acids in digestion and solubilization of lipophilic nutrients and drugs in the small intestine, the emerging evidence from the past two decades identified the role of bile acids as signaling, endocrine molecules that regulate the glucose, lipid, and energy metabolism through complex and intertwined pathways that are largely mediated by activation of nuclear receptor farnesoid X receptor (FXR) and cell surface G protein-coupled receptor 1, TGR5 (also known as GPBAR1). Interactions of bile acids with the gut microbiota that result in the altered composition of circulating and intestinal bile acids pool, gut microbiota composition and modified signaling pathways, are further extending the complexity of biological functions of these steroid derivatives. Thus, bile acids signaling pathways have become attractive targets for the treatment of various metabolic diseases and metabolic syndrome opening the new potential avenue in their treatment. In addition, there is a significant effort to unveil some specific properties of bile acids relevant to their intrinsic potency and selectivity for particular receptors and to design novel modulators of these receptors with improved pharmacokinetic and pharmacodynamic profiles. This resulted in synthesis of few semi-synthetic bile acids derivatives such as 6α-ethyl-chenodeoxycholic acid (obeticholic acid, OCA), norursodeoxycholic acid (norUDCA), and 12-monoketocholic acid (12-MKC) that are proven to have positive effect in metabolic and hepato-biliary disorders. This review presents an overview of the current knowledge related to bile acids implications in glucose, lipid and energy metabolism, as well as a potential application of bile acids in metabolic syndrome treatment with future perspectives.
Collapse
Affiliation(s)
- Maja Ðanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Biosciences Research Precinct, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
60
|
The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis. J Hepatol 2018; 69:1099-1109. [PMID: 29981427 DOI: 10.1016/j.jhep.2018.06.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/14/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Embedded into a complex signaling network that coordinates glucose uptake, usage and production, the nuclear bile acid receptor FXR is expressed in several glucose-processing organs including the liver. Hepatic gluconeogenesis is controlled through allosteric regulation of gluconeogenic enzymes and by glucagon/cAMP-dependent transcriptional regulatory pathways. We aimed to elucidate the role of FXR in the regulation of fasting hepatic gluconeogenesis. METHODS The role of FXR in hepatic gluconeogenesis was assessed in vivo and in mouse primary hepatocytes. Gene expression patterns in response to glucagon and FXR agonists were characterized by quantitative reverse transcription PCR and microarray analysis. FXR phosphorylation by protein kinase A was determined by mass spectrometry. The interaction of FOXA2 with FXR was identified by cistromic approaches and in vitro protein-protein interaction assays. The functional impact of the crosstalk between FXR, the PKA and FOXA2 signaling pathways was assessed by site-directed mutagenesis, transactivation assays and restoration of FXR expression in FXR-deficient hepatocytes in which gene expression and glucose production were assessed. RESULTS FXR positively regulates hepatic glucose production through two regulatory arms, the first one involving protein kinase A-mediated phosphorylation of FXR, which allowed for the synergistic activation of gluconeogenic genes by glucagon, agonist-activated FXR and CREB. The second arm involves the inhibition of FXR's ability to induce the anti-gluconeogenic nuclear receptor SHP by the glucagon-activated FOXA2 transcription factor, which physically interacts with FXR. Additionally, knockdown of Foxa2 did not alter glucagon-induced and FXR agonist enhanced expression of gluconeogenic genes, suggesting that the PKA and FOXA2 pathways regulate distinct subsets of FXR responsive genes. CONCLUSIONS Thus, hepatic glucose production is regulated during physiological fasting by FXR, which integrates the glucagon/cAMP signal and the FOXA2 signal, by being post-translationally modified, and by engaging in protein-protein interactions, respectively. LAY SUMMARY Activation of the nuclear bile acid receptor FXR regulates gene expression networks, controlling lipid, cholesterol and glucose metabolism, which are mostly effective after eating. Whether FXR exerts critical functions during fasting is unknown. The results of this study show that FXR transcriptional activity is regulated by the glucagon/protein kinase A and the FOXA2 signaling pathways, which act on FXR through phosphorylation and protein-protein interactions, respectively, to increase hepatic glucose synthesis.
Collapse
|
61
|
Xu X, Shi X, Chen Y, Zhou T, Wang J, Xu X, Chen L, Hu L, Shen X. HS218 as an FXR antagonist suppresses gluconeogenesis by inhibiting FXR binding to PGC-1α promoter. Metabolism 2018; 85:126-138. [PMID: 29577938 DOI: 10.1016/j.metabol.2018.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/05/2018] [Accepted: 03/17/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Farnesoid X receptor (FXR) as a member of nuclear receptor is tightly associated with glucose metabolism. Accumulated evidence has addressed the potential of FXR antagonist in the treatment of type 2 diabetes mellitus (T2DM), although the related mechanisms remain unclear. Here, we determined a specific FXR antagonist HS218 (N-benzyl-N-(3-(tert-butyl)-4-hydroxyphenyl)-2,4-dichlorobenzamide), which exhibited high activities in suppressing gluconeogenesis and ameliorating glucose homeostasis in db/db and HFD/STZ-induced T2DM mice. We would like to investigate the mechanisms underlying FXR antagonism in the regulation of gluconeogenesis by using HS218 as a probe. METHODS HS218 was evaluated by glucose output assay. Binding affinity of HS218 to the ligand binding domain of FXR (FXR-LBD) was detected by Surface Plasmon Resonance (SPR) technology-based Biacore and fluorescence quenching assays. Mammalian one-hybrid and transactivation assays were carried out to detect the antagonistic effect of HS218 on FXR. Real-time PCR assay was performed to measure the expressions of FXR-target and gluconeogenic genes. Anti-diabetic efficiencies of HS218 were determined in db/db and HFD/STZ-induced T2DM mice. Assays by promoter 5'-deletion analysis and Chromatin immunoprecipitation (ChIP) were performed to detect the binding of FXR to peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) promoter. Western blot assay was used to determine the protein level in either cells or the liver tissues of mice. RESULTS We determined that HS218 as a new FXR specific antagonist could FXR-dependently suppress gluconeogenesis in mouse primary hepatocytes, and effectively improve glucose homeostasis in db/db and HFD/STZ-induced T2DM mice. HS218 decreased gluconeogenesis by inhibiting the FXR-induced increase in the promoter activity of the key gluconeogenic gene PGC-1α, leading to the repression of PGC-1α and its target gene peroxisome proliferator-activated receptor α (PPARα). CONCLUSIONS To our knowledge, our work might be the first report on the mechanism underlying FXR antagonist in the regulation of gluconeogenesis, and all results have also highlighted the potential of HS218 in the treatment of T2DM.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xiaofan Shi
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yidi Chen
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Tingting Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jiaying Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Xing Xu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Lili Chen
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Lihong Hu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Xu Shen
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
62
|
Xu J, Wang Y, Yin J, Yin M, Wang M, Liu J. MAFB mediates the therapeutic effect of sleeve gastrectomy for obese diabetes mellitus by activation of FXR expression. ACTA ACUST UNITED AC 2018; 51:e7312. [PMID: 29846411 PMCID: PMC5995038 DOI: 10.1590/1414-431x20187312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022]
Abstract
Farnesoid X receptor (FXR) and related pathways are involved in the therapeutic effect of sleeve gastrectomy for overweight or obese patients with diabetes mellitus. This study aimed to investigate the mechanism of FXR expression regulation during the surgical treatment of obese diabetes mellitus by sleeve gastrectomy. Diabetic rats were established by combined streptozotocin and high-fat diet induction. Data collection included body weight, chemical indexes of glucose and lipid metabolism, liver function, and the expression levels of musculoaponeurotic fibrosarcoma oncogene family B (MAFB), FXR, and related genes induced by sleeve gastrectomy. Chang liver cells overexpressing MAFB gene were established to confirm the expression of related genes. The binding and activation of FXR gene by MAFB were tested by Chip and luciferase reporter gene assays. Vertical sleeve gastrectomy induced significant weight loss and decreased blood glucose and lipids in diabetic rat livers, as well as decreased lipid deposition and recovered lipid function. The expression of MAFB, FXR, and FXR-regulated genes in diabetic rat livers were also restored by sleeve gastrectomy. Overexpression of MAFB in Chang liver cells led to FXR gene expression activation and the alteration of multiple FXR-regulated genes. Chip assay showed that MAFB could directly bind with FXR promoter, and the activation of FXR expression was confirmed by luciferase reporter gene analysis. The therapeutic effect of sleeve gastrectomy for overweight or obese patients with diabetes mellitus was mediated by activation of FXR expression through the binding of MAFB transcription factor.
Collapse
Affiliation(s)
- Jian Xu
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, P.R., China
| | - Yong Wang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, P.R., China
| | - Jiajun Yin
- Department of General Surgery, Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province, P.R., China
| | - Min Yin
- Department of General Surgery, Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province, P.R., China
| | - Mofei Wang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, P.R., China
| | - Jingang Liu
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, P.R., China
| |
Collapse
|
63
|
Harsch IA, Konturek PC. The Role of Gut Microbiota in Obesity and Type 2 and Type 1 Diabetes Mellitus: New Insights into "Old" Diseases. Med Sci (Basel) 2018; 6:E32. [PMID: 29673211 PMCID: PMC6024804 DOI: 10.3390/medsci6020032] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
The investigation of the human microbiome is the most rapidly expanding field in biomedicine. Early studies were undertaken to better understand the role of microbiota in carbohydrate digestion and utilization. These processes include polysaccharide degradation, glycan transport, glycolysis, and short-chain fatty acid production. Recent research has demonstrated that the intricate axis between gut microbiota and the host metabolism is much more complex. Gut microbiota—depending on their composition—have disease-promoting effects but can also possess protective properties. This review focuses on disorders of metabolic syndrome, with special regard to obesity as a prequel to type 2 diabetes, type 2 diabetes itself, and type 1 diabetes. In all these conditions, differences in the composition of the gut microbiota in comparison to healthy people have been reported. Mechanisms of the interaction between microbiota and host that have been characterized thus far include an increase in energy harvest, modulation of free fatty acids—especially butyrate—of bile acids, lipopolysaccharides, gamma-aminobutyric acid (GABA), an impact on toll-like receptors, the endocannabinoid system and “metabolic endotoxinemia” as well as “metabolic infection.” This review will also address the influence of already established therapies for metabolic syndrome and diabetes on the microbiota and the present state of attempts to alter the gut microbiota as a therapeutic strategy.
Collapse
Affiliation(s)
- Igor Alexander Harsch
- Division of Endocrinology and Metabolism, Thuringia Clinic Saalfeld "Georgius Agricola", Department of Internal Medicine II, Teaching Hospital of the University of Jena, Rainweg 68, D-07318 Saalfeld/Saale, Germany.
| | - Peter Christopher Konturek
- Division of Gastroenterology, Thuringia Clinic Saalfeld "Georgius Agricola", Department of Internal Medicine II, Teaching Hospital of the University of Jena, Rainweg 68, D-07318 Saalfeld/Saale, Germany.
| |
Collapse
|
64
|
Sepe V, Distrutti E, Fiorucci S, Zampella A. Farnesoid X receptor modulators 2014-present: a patent review. Expert Opin Ther Pat 2018; 28:351-364. [DOI: 10.1080/13543776.2018.1459569] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Valentina Sepe
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | | | - Stefano Fiorucci
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
65
|
Hiebl V, Ladurner A, Latkolik S, Dirsch VM. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol Adv 2018; 36:1657-1698. [PMID: 29548878 DOI: 10.1016/j.biotechadv.2018.03.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 01/25/2023]
Abstract
Nuclear receptors (NRs) represent attractive targets for the treatment of metabolic syndrome-related diseases. In addition, natural products are an interesting pool of potential ligands since they have been refined under evolutionary pressure to interact with proteins or other biological targets. This review aims to briefly summarize current basic knowledge regarding the liver X (LXR) and farnesoid X receptors (FXR) that form permissive heterodimers with retinoid X receptors (RXR). Natural product-based ligands for these receptors are summarized and the potential of LXR, FXR and RXR as targets in precision medicine is discussed.
Collapse
Affiliation(s)
- Verena Hiebl
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Angela Ladurner
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| | - Simone Latkolik
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M Dirsch
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
66
|
Du J, Xiang X, Li Y, Ji R, Xu H, Mai K, Ai Q. Molecular cloning and characterization of farnesoid X receptor from large yellow croaker ( Larimichthys crocea ) and the effect of dietary CDCA on the expression of inflammatory genes in intestine and spleen. Comp Biochem Physiol B Biochem Mol Biol 2018; 216:10-17. [DOI: 10.1016/j.cbpb.2017.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022]
|
67
|
Comeglio P, Morelli A, Adorini L, Maggi M, Vignozzi L. Beneficial effects of bile acid receptor agonists in pulmonary disease models. Expert Opin Investig Drugs 2017; 26:1215-1228. [PMID: 28949776 DOI: 10.1080/13543784.2017.1385760] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Bile acids act as steroid hormones, controlling lipid, glucose and energy metabolism, as well as inflammation and fibrosis. Their actions are implemented through activation of nuclear (FXR, VDR, PXR) and membrane G protein-coupled (TGR5, S1PR2) receptors. Areas covered: This review discusses the potential of FXR and TGR5 as therapeutic targets in the treatment of pulmonary disorders linked to metabolism and/or inflammation. Obeticholic acid (OCA) is the most clinically advanced bile acid-derived agonist for FXR-mediated anti-inflammatory and anti-fibrotic effects. It therefore represents an attractive pharmacological approach for the treatment of lung conditions characterized by vascular and endothelial dysfunctions. Expert opinion: Inflammation, vascular remodeling and fibrotic processes characterize the progression of pulmonary arterial hypertension (PAH) and idiopathic pulmonary fibrosis (IPF). These processes are only partially targeted by the available therapeutic options and still represent a relevant medical need. The results hereby summarized demonstrate OCA efficacy in preventing experimental lung disorders, i.e. monocrotaline-induced PAH and bleomycin-induced fibrosis, by abating proinflammatory and vascular remodeling progression. TGR5 is also expressed in the lung, and targeting the TGR5 pathway, using the TGR5 agonist INT-777 or the dual FXR/TGR5 agonist INT-767, could also contribute to the treatment of pulmonary disorders mediated by inflammation and fibrosis.
Collapse
Affiliation(s)
- Paolo Comeglio
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| | - Annamaria Morelli
- b Department of Experimental and Clinical Medicine , University of Florence , Florence , Italy
| | | | - Mario Maggi
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| | - Linda Vignozzi
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| |
Collapse
|
68
|
Massafra V, van Mil SWC. Farnesoid X receptor: A "homeostat" for hepatic nutrient metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1864:45-59. [PMID: 28986309 DOI: 10.1016/j.bbadis.2017.10.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
The Farnesoid X receptor (FXR) is a nuclear receptor activated by bile acids (BAs). BAs are amphipathic molecules that serve as fat solubilizers in the intestine under postprandial conditions. In the post-absorptive state, BAs bind FXR in the hepatocytes, which in turn provides feedback signals on BA synthesis and transport and regulates lipid, glucose and amino acid metabolism. Therefore, FXR acts as a homeostat of all three classes of nutrients, fats, sugars and proteins. Here we re-analyze the function of FXR in the perspective of nutritional metabolism, and discuss the role of FXR in liver energy homeostasis in postprandial, post-absorptive and fasting/starvation states. FXR, by regulating nutritional metabolism, represses autophagy in conditions of nutrient abundance, and controls the metabolic needs of proliferative cells. In addition, FXR regulates inflammation via direct effects and via its impact on nutrient metabolism. These functions indicate that FXR is an attractive therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Vittoria Massafra
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
69
|
Yang J, Sun L, Wang L, Hassan HM, Wang X, Hylemon PB, Wang T, Zhou H, Zhang L, Jiang Z. Activation of Sirt1/FXR Signaling Pathway Attenuates Triptolide-Induced Hepatotoxicity in Rats. Front Pharmacol 2017; 8:260. [PMID: 28536529 PMCID: PMC5422577 DOI: 10.3389/fphar.2017.00260] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/25/2017] [Indexed: 01/14/2023] Open
Abstract
Triptolide (TP), a diterpenoid isolated from Tripterygium wilfordii Hook F, has an excellent pharmacological profile of immunosuppression and anti-tumor activities, but its clinical applications are severely restricted due to its severe and cumulative toxicities. The farnesoid X receptor (FXR) is the master bile acid nuclear receptor and plays an important role in maintaining hepatic metabolism homeostasis. Hepatic Sirtuin (Sirt1) is a key regulator of the FXR signaling pathway and hepatic metabolism homeostasis. The aims of this study were to determine whether Sirt1/FXR signaling pathway plays a critical role in TP-induced hepatotoxicity. Our study revealed that the intragastric administration of TP (400 μg/kg body weight) for 28 consecutive days increased bile acid accumulation, suppressed hepatic gluconeogenesis in rats. The expression of bile acid transporter BSEP was significantly reduced and cholesterol 7α-hydroxylase (CYP7A1) was markedly increased in the TP-treated group, whereas the genes responsible for hepatic gluconeogenesis were suppressed in the TP-treated group. TP also modulated the FXR and Sirt1 by decreasing its expression both in vitro and in vivo. The Sirt1 agonist SRT1720 and the FXR agonist obeticholic acid (OCA) were used both in vivo and in vitro. The remarkable liver damage induced by TP was attenuated by treatment with either SRT1720 or OCA, as reflected by decreased levels of serum total bile acids and alkaline phosphatase and increased glucose levels. Meanwhile, SRT1720 significantly alleviated TP-induced FXR suppression and FXR-targets involved in hepatic lipid and glucose metabolism. Based on these results, we conclude that Sirt1/FXR inactivation plays a critical role in TP-induced hepatotoxicity. Moreover, Sirt1/FXR axis represents a novel therapeutic target that could potentially ameliorate TP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jing Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China.,Department of Microbiology and Immunology, Virginia Commonwealth University, RichmondVA, USA
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Lu Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Hozeifa M Hassan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Xuan Wang
- Department of Microbiology and Immunology, Virginia Commonwealth University, RichmondVA, USA
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, RichmondVA, USA.,McGuire Veterans Affairs Medical Center, RichmondVA, USA
| | - Tao Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, RichmondVA, USA.,McGuire Veterans Affairs Medical Center, RichmondVA, USA
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of EducationNanjing, China.,Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical UniversityNanjing, China
| |
Collapse
|
70
|
Chow MD, Lee YH, Guo GL. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mol Aspects Med 2017; 56:34-44. [PMID: 28442273 DOI: 10.1016/j.mam.2017.04.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/11/2017] [Accepted: 04/20/2017] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease is growing in prevalence worldwide. It is marked by the presence of macrosteatosis on liver histology but is often clinically asymptomatic. However, it can progress into nonalcoholic steatohepatitis which is a more severe form of liver disease characterized by inflammation and fibrosis. Further progression leads to cirrhosis, which predisposes patients to hepatocellular carcinoma or liver failure. The mechanism by which simple steatosis progresses to steatohepatitis is not entirely clear. However, multiple pathways have been proposed. A common link amongst many of these pathways is disruption of the homeostasis of bile acids. Other than aiding in the absorption of lipids and lipid-soluble vitamins, bile acids act as ligands. For example, they bind to farnesoid X receptor, which is critically involved in many of the pathways responsible for maintaining bile acid, glucose, and lipid homeostasis. Alterations to these pathways can lead to dysregulation of energy balance and increased inflammation and fibrosis. Repeated insults over time may be the key to development of steatohepatitis. For this reason, current drug therapies target aspects of these pathways to try to reduce and halt inflammation and fibrosis. This review will focus on the role of bile acids in these various pathways and how changes in these pathways may result in steatohepatitis. While there is no approved pharmaceutical treatment for either hepatic steatosis or steatohepatitis, this review will also touch upon the multitude of potential therapies.
Collapse
Affiliation(s)
- Monica D Chow
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yi-Horng Lee
- Division of Pediatric Surgery, Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Grace L Guo
- Department of Pharmacy and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
71
|
Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology 2017; 152:1679-1694.e3. [PMID: 28214524 DOI: 10.1053/j.gastro.2017.01.055] [Citation(s) in RCA: 661] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 02/06/2023]
Abstract
Bile acids are signaling molecules that coordinately regulate metabolism and inflammation via the nuclear farnesoid X receptor (FXR) and the Takeda G protein-coupled receptor 5 (TGR5). These receptors activate transcriptional networks and signaling cascades controlling the expression and activity of genes involved in bile acid, lipid and carbohydrate metabolism, energy expenditure, and inflammation by acting predominantly in enterohepatic tissues, but also in peripheral organs. In this review, we discuss the most recent findings on the inter-organ signaling and interplay with the gut microbiota of bile acids and their receptors in meta-inflammation, with a focus on their pathophysiologic roles in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic steatohepatitis, and their potential therapeutic applications.
Collapse
Affiliation(s)
- Oscar Chávez-Talavera
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France.
| |
Collapse
|
72
|
Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 2017; 57:1-24. [PMID: 28393285 PMCID: PMC5847071 DOI: 10.1007/s00394-017-1445-8] [Citation(s) in RCA: 1571] [Impact Index Per Article: 196.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays.
Collapse
|
73
|
Duparc T, Plovier H, Marrachelli VG, Van Hul M, Essaghir A, Ståhlman M, Matamoros S, Geurts L, Pardo-Tendero MM, Druart C, Delzenne NM, Demoulin JB, van der Merwe SW, van Pelt J, Bäckhed F, Monleon D, Everard A, Cani PD. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut 2017; 66:620-632. [PMID: 27196572 PMCID: PMC5529962 DOI: 10.1136/gutjnl-2015-310904] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To examine the role of hepatocyte myeloid differentiation primary-response gene 88 (MyD88) on glucose and lipid metabolism. DESIGN To study the impact of the innate immune system at the level of the hepatocyte and metabolism, we generated mice harbouring hepatocyte-specific deletion of MyD88. We investigated the impact of the deletion on metabolism by feeding mice with a normal control diet or a high-fat diet for 8 weeks. We evaluated body weight, fat mass gain (using time-domain nuclear magnetic resonance), glucose metabolism and energy homeostasis (using metabolic chambers). We performed microarrays and quantitative PCRs in the liver. In addition, we investigated the gut microbiota composition, bile acid profile and both liver and plasma metabolome. We analysed the expression pattern of genes in the liver of obese humans developing non-alcoholic steatohepatitis (NASH). RESULTS Hepatocyte-specific deletion of MyD88 predisposes to glucose intolerance, inflammation and hepatic insulin resistance independently of body weight and adiposity. These phenotypic differences were partially attributed to differences in gene expression, transcriptional factor activity (ie, peroxisome proliferator activator receptor-α, farnesoid X receptor (FXR), liver X receptors and STAT3) and bile acid profiles involved in glucose, lipid metabolism and inflammation. In addition to these alterations, the genetic deletion of MyD88 in hepatocytes changes the gut microbiota composition and their metabolomes, resembling those observed during diet-induced obesity. Finally, obese humans with NASH displayed a decreased expression of different cytochromes P450 involved in bioactive lipid synthesis. CONCLUSIONS Our study identifies a new link between innate immunity and hepatic synthesis of bile acids and bioactive lipids. This dialogue appears to be involved in the susceptibility to alterations associated with obesity such as type 2 diabetes and NASH, both in mice and humans.
Collapse
Affiliation(s)
- Thibaut Duparc
- WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium,Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Hubert Plovier
- WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium,Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Vannina G Marrachelli
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, Valencia, Spain
| | - Matthias Van Hul
- WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium,Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Ahmed Essaghir
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Marcus Ståhlman
- Wallenberg Laboratory/Sahlgrenska Center for Cardiovascular and Metabolic Research, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sébastien Matamoros
- WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium,Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Lucie Geurts
- WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium,Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Mercedes M Pardo-Tendero
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, Valencia, Spain
| | - Céline Druart
- WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium,Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | | | - Schalk W van der Merwe
- Laboratory of Hepatology, University of Leuven (KUL), Belgium,Department of Gastroenterology and Hepatology, Division of Liver and Biliopancreatic Disorders, KUL, Leuven, Belgium
| | - Jos van Pelt
- Laboratory of Hepatology, University of Leuven (KUL), Belgium
| | - Fredrik Bäckhed
- Wallenberg Laboratory/Sahlgrenska Center for Cardiovascular and Metabolic Research, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden,Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Monleon
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, Valencia, Spain
| | - Amandine Everard
- WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium,Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium,Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
74
|
Preidis GA, Kim KH, Moore DD. Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance. J Clin Invest 2017; 127:1193-1201. [PMID: 28287408 DOI: 10.1172/jci88893] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nuclear receptors PPARα (encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are activated in the liver in the fasted and fed state, respectively. PPARα activation induces fatty acid oxidation, while FXR controls bile acid homeostasis, but both nuclear receptors also regulate numerous other metabolic pathways relevant to liver energy balance. Here we review evidence that they function coordinately to control key nutrient pathways, including fatty acid oxidation and gluconeogenesis in the fasted state and lipogenesis and glycolysis in the fed state. We have also recently reported that these receptors have mutually antagonistic impacts on autophagy, which is induced by PPARα but suppressed by FXR. Secretion of multiple blood proteins is a major drain on liver energy and nutrient resources, and we present preliminary evidence that the liver secretome may be directly suppressed by PPARα, but induced by FXR. Finally, previous studies demonstrated a striking deficiency in bile acid levels in malnourished mice that is consistent with results in malnourished children. We present evidence that hepatic targets of PPARα and FXR are dysregulated in chronic undernutrition. We conclude that PPARα and FXR function coordinately to integrate liver energy balance.
Collapse
|
75
|
Abstract
The human microbiome is a new frontier in biology and one that is helping to define what it is to be human. Recently, we have begun to understand that the "communication" between the host and its microbiome is via a metabolic superhighway. By interrogating and understanding the molecules involved we may start to know who the main players are, and how we can modulate them and the mechanisms of health and disease.
Collapse
Affiliation(s)
- Jia V Li
- Section of Biomolecular Medicine, Division of Computational & Systems Medicine, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Jonathan Swann
- Section of Biomolecular Medicine, Division of Computational & Systems Medicine, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Julian R Marchesi
- Section of Biomolecular Medicine, Division of Computational & Systems Medicine, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK; Divison of Digestive Diseases, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, 10th Floor QEQM Building, St Mary's Hospital Campus, South Wharf Road, London W2 1NY, UK; Department of Surgery & Cancer, Centre for Digestive and Gut Health, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK; School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3XQ, UK.
| |
Collapse
|
76
|
Martinot E, Sèdes L, Baptissart M, Lobaccaro JM, Caira F, Beaudoin C, Volle DH. Bile acids and their receptors. Mol Aspects Med 2017; 56:2-9. [PMID: 28153453 DOI: 10.1016/j.mam.2017.01.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
Primary bile acids are synthetized from cholesterol within the liver and then transformed by the bacteria in the intestine to secondary bile acids. In addition to their involvement in digestion and fat solubilization, bile acids also act as signaling molecules. Several receptors are sensors of bile acids. Among these receptors, this review focuses on the nuclear receptor FXRα and the G-protein-coupled receptor TGR5. This review briefly presents the potential links between bile acids and cancers that are discussed in more details in the other articles of this special issue of Molecular Aspects of Medicine focused on "Bile acids, roles in integrative physiology and pathophysiology".
Collapse
Affiliation(s)
- Emmanuelle Martinot
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Lauriane Sèdes
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Marine Baptissart
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Jean-Marc Lobaccaro
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Françoise Caira
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - David H Volle
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
77
|
Fang S. Bile Acid Receptor Farnesoid X Receptor: A Novel Therapeutic Target for Metabolic Diseases. J Lipid Atheroscler 2017. [DOI: 10.12997/jla.2017.6.1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sungsoon Fang
- Severance Biomedical Science Institute, BK21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
78
|
Arab JP, Karpen SJ, Dawson PA, Arrese M, Trauner M. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology 2017; 65:350-362. [PMID: 27358174 PMCID: PMC5191969 DOI: 10.1002/hep.28709] [Citation(s) in RCA: 448] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/09/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a burgeoning health problem worldwide and an important risk factor for both hepatic and cardiometabolic mortality. The rapidly increasing prevalence of this disease and of its aggressive form nonalcoholic steatohepatitis (NASH) will require novel therapeutic approaches to prevent disease progression to advanced fibrosis or cirrhosis and cancer. In recent years, bile acids have emerged as relevant signaling molecules that act at both hepatic and extrahepatic tissues to regulate lipid and carbohydrate metabolic pathways as well as energy homeostasis. Activation or modulation of bile acid receptors, such as the farnesoid X receptor and TGR5, and transporters, such as the ileal apical sodium-dependent bile acid transporter, appear to affect both insulin sensitivity and NAFLD/NASH pathogenesis at multiple levels, and these approaches hold promise as novel therapies. In the present review, we summarize current available data on the relationships of bile acids to NAFLD and the potential for therapeutically targeting bile-acid-related pathways to address this growing world-wide disease. (Hepatology 2017;65:350-362).
Collapse
Affiliation(s)
- Juan P. Arab
- Department of Gastroenterology, School of MedicinePontificia Universidad Católica de ChileSantiagoChile
| | - Saul J. Karpen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of PediatricsEmory University School of MedicineAtlantaGAUSA
| | - Paul A. Dawson
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of PediatricsEmory University School of MedicineAtlantaGAUSA
| | - Marco Arrese
- Department of Gastroenterology, School of MedicinePontificia Universidad Católica de ChileSantiagoChile
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
79
|
Kim SG, Kim BK, Kim K, Fang S. Bile Acid Nuclear Receptor Farnesoid X Receptor: Therapeutic Target for Nonalcoholic Fatty Liver Disease. Endocrinol Metab (Seoul) 2016; 31:500-504. [PMID: 28029021 PMCID: PMC5195824 DOI: 10.3803/enm.2016.31.4.500] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the causes of fatty liver, occurring when fat is accumulated in the liver without alcohol consumption. NAFLD is the most common liver disorder in advanced countries. NAFLD is a spectrum of pathology involving hepatic steatosis with/without inflammation and nonalcoholic steatohepatitis with accumulation of hepatocyte damage and hepatic fibrosis. Recent studies have revealed that NAFLD results in the progression of cryptogenic cirrhosis that leads to hepatocarcinoma and cardiovascular diseases such as heart failure. The main causes of NAFLD have not been revealed yet, metabolic syndromes including obesity and insulin resistance are widely accepted for the critical risk factors for the pathogenesis of NAFLD. Nuclear receptors (NRs) are transcriptional factors that sense environmental or hormonal signals and regulate expression of genes, involved in cellular growth, development, and metabolism. Several NRs have been reported to regulate genes involved in energy and xenobiotic metabolism and inflammation. Among various NRs, farnesoid X receptor (FXR) is abundantly expressed in the liver and a key regulator to control various metabolic processes in the liver. Recent studies have shown that NAFLD is associated with inappropriate function of FXR. The impact of FXR transcriptional activity in NAFLD is likely to be potential therapeutic strategy, but still requires to elucidate underlying potent therapeutic mechanisms of FXR for the treatment of NAFLD. This article will focus the physiological roles of FXR and establish the correlation between FXR transcriptional activity and the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Sun Gi Kim
- Department of Integrative Biosciences and Biotechnology, College of Life Sciences, Sejong University, Seoul, Korea
| | - Byung Kwon Kim
- Department of Integrative Biosciences and Biotechnology, College of Life Sciences, Sejong University, Seoul, Korea
| | - Kyumin Kim
- Department of Integrative Biosciences and Biotechnology, College of Life Sciences, Sejong University, Seoul, Korea
| | - Sungsoon Fang
- Department of Integrative Biosciences and Biotechnology, College of Life Sciences, Sejong University, Seoul, Korea.
| |
Collapse
|
80
|
Rudraiah S, Zhang X, Wang L. Nuclear Receptors as Therapeutic Targets in Liver Disease: Are We There Yet? Annu Rev Pharmacol Toxicol 2016; 56:605-626. [PMID: 26738480 DOI: 10.1146/annurev-pharmtox-010715-103209] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NR) are ligand-modulated transcription factors that play diverse roles in cell differentiation, development, proliferation, and metabolism and are associated with numerous liver pathologies such as cancer, steatosis, inflammation, fibrosis, cholestasis, and xenobiotic/drug-induced liver injury. The network of target proteins associated with NRs is extremely complex, comprising coregulators, small noncoding microRNAs, and long noncoding RNAs. The importance of NRs as targets of liver disease is exemplified by the number of NR ligands that are currently used in the clinics or in clinical trials with promising results. Understanding the regulation by NR during pathophysiological conditions, and identifying ligands for orphan NR, points to a potential therapeutic approach for patients with liver diseases. An overview of complex NR metabolic networks and their pharmacological implications in liver disease is presented here.
Collapse
Affiliation(s)
- Swetha Rudraiah
- Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| | - Xi Zhang
- Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| | - Li Wang
- Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516.,Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
81
|
Han CY, Kim TH, Koo JH, Kim SG. Farnesoid X receptor as a regulator of fuel consumption and mitochondrial function. Arch Pharm Res 2016; 39:1062-74. [PMID: 27515052 DOI: 10.1007/s12272-016-0812-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/04/2016] [Indexed: 12/24/2022]
Abstract
Maintenance of energy homeostasis is crucial for survival of organism. There exists a close link between energy metabolism and cell survival, which are coordinately regulated by common signaling pathways. Farnesoid X receptor (FXR) serves as a ligand-mediated transcription factor to regulate diverse genes involved in bile acid, lipid, and glucose metabolism, controlling cellular and systemic energy metabolism. Another important aspect on FXR biology is related to its beneficial effect on cell survival. FXR exerts antioxidative and cytoprotective effect, which is closely associated with the ability of FXR to regulate mitochondrial function. To maintain complex biological processes under homeostasis, FXR activity needs to be dynamically and tightly controlled by different signaling pathways and modifications. In this review, we discuss the role of FXR in the regulation of energy metabolism and cell survival, with the goal of understanding molecular basis for FXR regulation in physiological and pathological conditions. This information may be of assistance in understanding recent advancements of FXR research and strategies for the prevention and treatment of metabolic disorders.
Collapse
Affiliation(s)
- Chang Yeob Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Tae Hyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Ja Hyun Koo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
82
|
Taoka H, Yokoyama Y, Morimoto K, Kitamura N, Tanigaki T, Takashina Y, Tsubota K, Watanabe M. Role of bile acids in the regulation of the metabolic pathways. World J Diabetes 2016; 7:260-270. [PMID: 27433295 PMCID: PMC4937164 DOI: 10.4239/wjd.v7.i13.260] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/24/2015] [Accepted: 05/27/2016] [Indexed: 02/05/2023] Open
Abstract
Recent studies have revealed that bile acids (BAs) are not only facilitators of dietary lipid absorption but also important signaling molecules exerting multiple physiological functions. Some major signaling pathways involving the nuclear BAs receptor farnesoid X receptor and the G protein-coupled BAs receptor TGR5/M-BAR have been identified to be the targets of BAs. BAs regulate their own homeostasis via signaling pathways. BAs also affect diverse metabolic pathways including glucose metabolism, lipid metabolism and energy expenditure. This paper suggests the mechanism of controlling metabolism via BA signaling and demonstrates that BA signaling is an attractive therapeutic target of the metabolic syndrome.
Collapse
|
83
|
Ceulemans LJ, Canovai E, Verbeke L, Pirenne J, Farré R. The expanding role of the bile acid receptor farnesoid X in the intestine and its potential clinical implications. Acta Chir Belg 2016; 116:156-163. [PMID: 27684270 DOI: 10.1080/00015458.2016.1215953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Knowledge about the role of farnesoid X receptor (FXR) in the intestine is rapidly expanding. In pre-clinical animal models of inflammatory bowel disease and bile duct ligation, FXR activation has proven to directly target the three pillars of intestinal homeostasis: intestinal permeability, inflammation and bacterial translocation. The protective role of FXR-ligands on this homeostasis has implications for many intestinal pathologies like inflammatory bowel disease, ischemia reperfusion injury, the metabolic syndrome, colon cancer and even diarrhea. In this review, we summarize the mechanisms by which FXR-activation exerts these protective effects and we discuss its potential clinical applications.
Collapse
|
84
|
Abstract
BACKGROUND Farnesoid X receptor (FXR) plays important roles in regulation of lipid, glucose and energy metabolism. The aim of the study was to observe expression level of FXR in obese rat models with insulin (INS) resistance. METHODS A total of 100 Wistar male rats were randomly assigned to either standard diet (n = 20) or high-fat diet (HFD, n = 80) for 6 weeks. Oral glucose tolerance tests were administrated, and the extent of INS resistance was assessed at the end of the 6th weeks. In addition, the expression of FXR in the liver was tested by techniques of reverse transcription-polymerase chain reaction and immunohistochemistry. RESULTS Obese rats in HFD group showed elevated body weight, area under blood glucose curve, fasting INS, total cholesterol, low-density lipoproteins and serum bile acid levels compared with rats in standard diet group (P < 0.05). The level of INS remained high at all time points after the INS injection in oral glucose tolerance tests. As for FXR expression levels, a nearly 50% reduction was calculated in the liver of HFD rats compared with rats fed normal diet. CONCLUSIONS FXR is decreased in obese animal models associated with INS resistance. Regulation of bile acids and FXR in the stage of obesity may prevent more metabolism disorders.
Collapse
|
85
|
Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, Sidey J, Shi H, Aqel BA, McClain CJ, Prough RA. Nuclear receptors and nonalcoholic fatty liver disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1083-1099. [PMID: 26962021 DOI: 10.1016/j.bbagrm.2016.03.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA.
| | - Heather B Clair
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jennifer Sidey
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bashar A Aqel
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Scottsdale, AZ 85054, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
86
|
Carr RM, Reid AE. FXR agonists as therapeutic agents for non-alcoholic fatty liver disease. Curr Atheroscler Rep 2015; 17:500. [PMID: 25690590 DOI: 10.1007/s11883-015-0500-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome and a risk factor for both cardiovascular and hepatic related morbidity and mortality. The increasing prevalence of this disease requires novel therapeutic approaches to prevent disease progression. Farnesoid X receptors are bile acid receptors with roles in lipid, glucose, and energy homeostasis. Synthetic farnesoid X receptor (FXR) agonists have been developed to specifically target these receptors for therapeutic use in NAFLD patients. Here, we present a review of bile acid physiology and how agonism of FXR receptors has been examined in pre-clinical and clinical NAFLD. Early evidence suggests a potential role for synthetic FXR agonists in the management of NAFLD; however, additional studies are needed to clarify their effects on lipid and glucose parameters in humans.
Collapse
Affiliation(s)
- Rotonya M Carr
- Division of Gastroenterology, University of Pennsylvania, 421 Curie Boulevard, 907 Biomedical Research Building, Philadelphia, PA, 19104, USA,
| | | |
Collapse
|
87
|
Szalowska E, Pronk TE, Peijnenburg AA. Cyclosporin A induced toxicity in mouse liver slices is only slightly aggravated by Fxr-deficiency and co-occurs with upregulation of pro-inflammatory genes and downregulation of genes involved in mitochondrial functions. BMC Genomics 2015; 16:822. [PMID: 26482353 PMCID: PMC4617705 DOI: 10.1186/s12864-015-2054-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 10/12/2015] [Indexed: 12/27/2022] Open
Abstract
Background The transcription factor farnesoid X receptor (FXR) governs bile acid and energy homeostasis, is involved in inflammation, and has protective functions in the liver. In the present study we investigated the effect of Fxr deficiency in mouse precision cut liver slices (PCLS) exposed to a model hepatotoxicant cyclosporin A (CsA). It was anticipated that Fxr deficiency could aggravate toxicity of CsA in PCLS and pinpoint to novel genes/processes regulated by FXR. Methods To test this hypothesis, PCLS obtained from livers of wild type mice (WT-PCLS) and Fxr-knockout mice (FXRKO-PCLS) were treated with 40 μM CsA for 24 h and 48 h. ATP and histological assays were applied to assess the viability of PCLS. DNA microarrays combined with bioinformatics analysis were used to identify genes and processes that were affected by CsA in WT-PCLS and/or FXRKO-PCLS. In addition, WT-PCLS and FXRKO-PCLS were exposed to the endogenous FXR ligand chenodeoxycholic acid (CDCA) and subjected to q-PCR to determine whether subsets of known FXR-targets and the identified genes were regulated upon FXR activation in an FXR-dependent manner. Results No difference in viability was observed between WT-PCLS and FXRKO-PCLS upon CsA treatment. Transcriptomics data analysis revealed that CsA significantly upregulated stress-response and inflammation and significantly downregulated processes involved in lipid and glucose metabolism in WT-PCLS and FXRKO-PCLS. However, only in FXRKO-PCLS, CsA upregulated additional pro-inflammatory genes and downregulated genes related to mitochondrial functions. Furthermore, only in WT-PCLS, CDCA upregulated a subset of known FXR-target genes as well as the regulator of inflammation and mitochondrial functions peroxisome proliferator- activated receptor delta (Ppar delta). Conclusions Although FXR governs energy metabolism, no major differences in response to CsA could be observed between WT-PCLS and FXRKO-PCLS in regulation of processes involved in lipid and glucose metabolism. This finding indicates that CsA does not directly affect FXR functions in relation to the above mentioned processes. However, the more pronounced induction of pro-inflammatory genes and the downregulation of genes involved in mitochondrial functions only in FXRKO-PCLS suggest that FXR deficiency aggravates CsA-induced inflammation and impairs mitochondrial functions. Therefore, FXR can exert its hepatoprotective functions by controlling inflammation and mitochondrial functions, possibly involving an FXR-PPAR delta cross-talk. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2054-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ewa Szalowska
- RIKILT - Institute of Food Safety/Wageningen UR, Akkermaalsbos 2, P.O. Box 230, 6700 AE, Wageningen, The Netherlands. .,RIKILT-Institute of Food Safety/Wageningen UR, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.
| | - Tessa E Pronk
- Centre for Health Protection, National Institute for Public Health and the Environment (GZB, RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands.
| | - Ad Acm Peijnenburg
- RIKILT - Institute of Food Safety/Wageningen UR, Akkermaalsbos 2, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
| |
Collapse
|
88
|
Discovery and SAR study of 3-(tert-butyl)-4-hydroxyphenyl benzoate and benzamide derivatives as novel farnesoid X receptor (FXR) antagonists. Bioorg Med Chem 2015; 23:6427-36. [PMID: 26337021 DOI: 10.1016/j.bmc.2015.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/12/2022]
Abstract
3-(tert-Butyl)-4-hydroxyphenyl 2,4-dichlorobenzoate (1) was discovered in our in-house high throughput screening as a moderate FXR antagonist. To improve the potency and the stability of the hit 1, forty derivatives were synthesized and SAR was systematically explored. The results turn out that replacing the 2,4-dichlorophenyl with 2,6-dichloro-4-amidophenyl shows great improvement in potency, replacing the benzoate with benzamide shows improvement in stability and slight declining of potency and 3-(tert-butyl)-4-hydroxyphenyl unit is essential in obtaining the FXR antagonistic activity.
Collapse
|
89
|
Ding L, Yang L, Wang Z, Huang W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm Sin B 2015; 5:135-44. [PMID: 26579439 PMCID: PMC4629217 DOI: 10.1016/j.apsb.2015.01.004] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/31/2014] [Accepted: 01/05/2015] [Indexed: 12/14/2022] Open
Abstract
Bile acids (BAs) are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases.
Collapse
Key Words
- 6-ECDCA, 6α-ethyl-chenodeoxycholic acid
- AF2, activation domain
- ANGTPL3, angiopoietin-like protein 3
- AOM, azoxymethane
- AP-1, activator protein-1
- ASBT, apical sodium-dependent bile salt transporter
- Apo, apolipoprotein
- BAAT, bile acid-CoA amino acid N-acetyltransferase
- BACS, bile acid-CoA synthetase
- BAs, bile acids
- BMI, body mass index
- BSEP, bile salt export pump
- Bile acids
- CA, cholic acid
- CD, Crohn׳s disease
- CDCA, chenodeoxycholic acid
- CREB, cAMP regulatory element-binding protein
- CYP7A1, cholesterol 7α-hydroxylase
- Colorectal cancer
- DBD, DNA binding domain
- DCA, deoxycholic acid
- DSS, dextrane sodium sulfate
- ERK, extracellular signal-regulated kinase
- FABP6, fatty acid-binding protein subclass 6
- FFAs, free fatty acids
- FGF19, fibroblast growth factor 19
- FGFR4, fibroblast growth factor receptor 4
- FXR, farnesoid X receptor
- FXRE, farnesoid X receptor response element
- Farnesoid X receptor
- G6Pase, glucose-6-phosphatase
- GLP-1, glucagon-like peptide 1
- GLUT2, glucose transporter type 2
- GPBAR, G protein-coupled BA receptor
- GPCRs, G protein-coupled receptors
- GSK3, glycogen synthase kinase 3
- Gastrointestinal tract
- HDL-C, high density lipoprotein cholesterol
- HNF4α, hepatic nuclear factor 4α
- I-BABP, intestinal bile acid-binding protein
- IBD, inflammatory bowel disease
- IL-1, interleukin 1
- Inflammatory bowel disease
- KLF11, Krüppel-like factor 11
- KRAS, Kirsten rat sarcoma viral oncogene homolog
- LBD, ligand binding domain
- LCA, lithocholic acid
- LPL, lipoprotein lipase
- LRH-1, liver receptor homolog-1
- MCA, muricholicacid
- MRP2, multidrug resistance-associated protein 2
- NF-κB, nuclear factor-kappa B
- NOD, non-obese diabetic
- NRs, nuclear receptors
- OSTα, organic solute transporter alpha
- OSTβ, organic solute transporter beta
- PEPCK, phosphoenol pyruvate carboxykinase
- PGC-1α, peroxisome proliferators-activated receptor γ coactivator protein-1α
- SHP, small heterodimer partner
- SREBP-1c, sterol regulatory element-binding protein 1c
- STAT3, signal transducers and activators of transcription 3
- T2D, type 2 diabetes
- TLCA, taurolithocholic acid
- TNBS, trinitrobenzensulfonic acid
- TNFα, tumor necrosis factors α
- Type 2 diabetes
- UC, ulcerative colitis
- UDCA, ursodeoxycholic acid
- VSG, vertical sleeve gastrectomy
- db/db, diabetic mice
Collapse
|
90
|
Cheng Q, Inaba Y, Lu P, Xu M, He J, Zhao Y, Guo GL, Kuruba R, de la Vega R, Evans RW, Li S, Xie W. Chronic activation of FXR in transgenic mice caused perinatal toxicity and sensitized mice to cholesterol toxicity. Mol Endocrinol 2015; 29:571-82. [PMID: 25719402 DOI: 10.1210/me.2014-1337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The nuclear receptor farnesoid X receptor (FXR) (nuclear receptor subfamily 1, group H, member 4, or NR1H4) is highly expressed in the liver and intestine. Previous reports have suggested beneficial functions of FXR in the homeostasis of bile acids, lipids, and glucose, as well as in promoting liver regeneration and inhibiting carcinogenesis. To investigate the effect of chronic FXR activation in vivo, we generated transgenic mice that conditionally and tissue specifically express the activated form of FXR in the liver and intestine. Unexpectedly, the transgenic mice showed several intriguing phenotypes, including partial neonatal lethality, growth retardation, and spontaneous liver toxicity. The transgenic mice also displayed heightened sensitivity to a high-cholesterol diet-induced hepatotoxicity but resistance to the gallstone formation. The phenotypes were transgene specific, because they were abolished upon treatment with doxycycline to silence the transgene expression. The perinatal toxicity, which can be rescued by a maternal vitamin supplement, may have resulted from vitamin deficiency due to low biliary bile acid output as a consequence of inhibition of bile acid formation. Our results also suggested that the fibroblast growth factor-inducible immediate-early response protein 14 (Fn14), a member of the proinflammatory TNF family, is a FXR-responsive gene. However, the contribution of Fn14 induction in the perinatal toxic phenotype of the transgenic mice remains to be defined. Because FXR is being explored as a therapeutic target, our results suggested that a chronic activation of this nuclear receptor may have an unintended side effect especially during the perinatal stage.
Collapse
Affiliation(s)
- Qiuqiong Cheng
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Q.C., Y.I., P.L., M.X., J.H., Y.Z., R.K., S.L., W.X.), and Departments of Epidemiology (R.D.L.V., R.W.E.) and Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261; and Department of Pharmacology and Toxicology (G.L.G.), Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Jiao Y, Lu Y, Li XY. Farnesoid X receptor: a master regulator of hepatic triglyceride and glucose homeostasis. Acta Pharmacol Sin 2015; 36:44-50. [PMID: 25500875 DOI: 10.1038/aps.2014.116] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by the aberrant accumulation of triglycerides in hepatocytes in the absence of significant alcohol consumption, viral infection or other specific causes of liver disease. NAFLD has become a burgeoning health problem both worldwide and in China, but its pathogenesis remains poorly understood. Farnesoid X receptor (FXR), a member of the nuclear receptor (NR) superfamily, has been demonstrated to be the primary sensor for endogenous bile acids, and play a crucial role in hepatic triglyceride homeostasis. Deciphering the synergistic contributions of FXR to triglyceride metabolism is critical for discovering therapeutic agents in the treatment of NAFLD and hypertriglyceridemia.
Collapse
|
92
|
Jacinto S, Fang S. Essential roles of bile acid receptors FXR and TGR5 as metabolic regulators. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.987318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
93
|
Shaik FB, Prasad DVR, Narala VR. Role of farnesoid X receptor in inflammation and resolution. Inflamm Res 2014; 64:9-20. [PMID: 25376338 DOI: 10.1007/s00011-014-0780-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 10/10/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The aim of this paper is to review the developments of farnesoid X receptor (FXR) biology, its ligands, and various functions, in particular we discuss the anti-inflammatory and anti-fibrotic role in chronic inflammatory diseases. INTRODUCTION FXR is a ligand-dependent transcription factor belonging to the nuclear hormone receptor superfamily. The accrued data have shown that the FXR plays important roles not only in bile acid, lipid metabolism, and carbohydrate homeostasis, but also in inflammatory responses. The anti-inflammatory and anti-fibrotic effects of FXR on chronic inflammatory diseases are not well documented. METHODS A literature survey was performed using PubMed database search to gather complete information regarding FXR and its role in inflammation. RESULTS AND DISCUSSION FXR is highly expressed in liver, intestine, kidney and adrenals, but with lower expression in fat tissue, heart and recently it has been found to express in lungs too. Primary bile acids, cholic acid and chenodeoxycholic acid are the natural endogenous ligands for FXR. GW4064 and 6α-ethyl-chenodeoxycholic acid are the synthetic high-affinity agonists. An exhaustive literature survey revealed that FXR acts as a key metabolic regulator and potential drug target for many metabolic syndromes that include chronic inflammatory diseases.
Collapse
|
94
|
Lin HR. Lepidozenolide from the liverwort Lepidozia fauriana acts as a farnesoid X receptor agonist. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2014; 17:149-158. [PMID: 25315435 DOI: 10.1080/10286020.2014.964689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/08/2014] [Indexed: 06/04/2023]
Abstract
Lepidozenolide is a sesquiterpenoid isolated from the liverwort Lepidozia fauriana and its possible bioactivity is unclear. The farnesoid X receptor (FXR) is a member of nuclear receptor superfamily that has been widely targeted for developing treatments for chronic liver disease and hyperglycemia. In this study, whether lepidozenolide may act as a FXR agonist was determined. Indeed, in mammalian one-hybrid and transient transfection reporter assays, lepidozenolide transactivated FXR to modulate promoter action including GAL4, CYP7A1, and PLTP promoters in a dose-dependent manner, while it exhibited slightly less agonistic activity than chenodeoxycholic acid, an endogenous FXR agonist. Through the molecular modeling docking studies lepidozenolide was shown to bind to FXR ligand binding pocket fairly well. All these results indicate that lepidozenolide acts as a FXR agonist.
Collapse
Affiliation(s)
- Hsiang-Ru Lin
- a Department of Chemistry , College of Science, National Kaohsiung Normal University , Kaohsiung 82446 , Taiwan
| |
Collapse
|
95
|
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid-activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein-coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
96
|
Cryptochinones from Cryptocarya chinensis act as farnesoid X receptor agonists. Bioorg Med Chem Lett 2014; 24:4181-6. [DOI: 10.1016/j.bmcl.2014.07.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/11/2014] [Accepted: 07/16/2014] [Indexed: 11/20/2022]
|
97
|
Sonne DP, Hansen M, Knop FK. Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion. Eur J Endocrinol 2014; 171:R47-65. [PMID: 24760535 DOI: 10.1530/eje-14-0154] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bile acid sequestrants have been used for decades for the treatment of hypercholesterolaemia. Sequestering of bile acids in the intestinal lumen interrupts enterohepatic recirculation of bile acids, which initiate feedback mechanisms on the conversion of cholesterol into bile acids in the liver, thereby lowering cholesterol concentrations in the circulation. In the early 1990s, it was observed that bile acid sequestrants improved glycaemic control in patients with type 2 diabetes. Subsequently, several studies confirmed the finding and recently - despite elusive mechanisms of action - bile acid sequestrants have been approved in the USA for the treatment of type 2 diabetes. Nowadays, bile acids are no longer labelled as simple detergents necessary for lipid digestion and absorption, but are increasingly recognised as metabolic regulators. They are potent hormones, work as signalling molecules on nuclear receptors and G protein-coupled receptors and trigger a myriad of signalling pathways in many target organs. The most described and well-known receptors activated by bile acids are the farnesoid X receptor (nuclear receptor) and the G protein-coupled cell membrane receptor TGR5. Besides controlling bile acid metabolism, these receptors are implicated in lipid, glucose and energy metabolism. Interestingly, activation of TGR5 on enteroendocrine L cells has been suggested to affect secretion of incretin hormones, particularly glucagon-like peptide 1 (GLP1 (GCG)). This review discusses the role of bile acid sequestrants in the treatment of type 2 diabetes, the possible mechanism of action and the role of bile acid-induced secretion of GLP1 via activation of TGR5.
Collapse
Affiliation(s)
- David P Sonne
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, Niels Andersens Vej 65, DK-2900 Hellerup, Denmark
| | - Morten Hansen
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, Niels Andersens Vej 65, DK-2900 Hellerup, Denmark
| | - Filip K Knop
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, Niels Andersens Vej 65, DK-2900 Hellerup, Denmark
| |
Collapse
|
98
|
Roda A, Pellicciari R, Gioiello A, Neri F, Camborata C, Passeri D, De Franco F, Spinozzi S, Colliva C, Adorini L, Montagnani M, Aldini R. Semisynthetic bile acid FXR and TGR5 agonists: physicochemical properties, pharmacokinetics, and metabolism in the rat. J Pharmacol Exp Ther 2014; 350:56-68. [PMID: 24784847 DOI: 10.1124/jpet.114.214650] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
We report on the relationship between the structure-pharmacokinetics, metabolism, and therapeutic activity of semisynthetic bile acid analogs, including 6α-ethyl-3α,7α-dihydroxy-5β-cholan-24-oic acid (a selective farnesoid X receptor [FXR] receptor agonist), 6α-ethyl-23(S)-methyl-3α,7α,12α-trihydroxy-5β-cholan-24-oic acid (a specific Takeda G protein-coupled receptor 5 [TGR5] receptor agonist), and 6α-ethyl-3α,7α-dihydroxy-24-nor-5β-cholan-23-sulfate (a dual FXR/TGR5 agonist). We measured the main physicochemical properties of these molecules, including ionization constants, water solubility, lipophilicity, detergency, and protein binding. Biliary secretion and metabolism and plasma and hepatic concentrations were evaluated by high-pressure liquid chromatography-electrospray-mass spectrometry/mass spectrometry in bile fistula rat and compared with natural analogs chenodeoxycholic, cholic acid, and taurochenodexycholic acid and intestinal bacteria metabolism was evaluated in terms of 7α-dehydroxylase substrate-specificity in anaerobic human stool culture. The semisynthetic derivatives detergency, measured in terms of their critical micellar concentration, was quite similar to the natural analogs. They were slightly more lipophilic than the corresponding natural analogs, evaluated by their 1-octanol water partition coefficient (log P), because of the ethyl group in 6 position, which makes these molecules very stable toward bacterial 7-dehydroxylation. The hepatic metabolism and biliary secretion were different: 6α-ethyl-3α,7α-dihydroxy-5β-cholan-24-oic acid, as chenodeoxycholic acid, was efficiently conjugated with taurine in the liver and, only in this form, promptly and efficiently secreted in bile. 6α-Ethyl-23(S)-methyl-3α,7α,12α-trihydroxy-5β-cholan-24-oic acid was poorly conjugated with taurine because of the steric hindrance of the methyl at C23(S) position metabolized to the C23(R) isomer and partly conjugated with taurine. Conversely, 6α-ethyl-3α,7α-dihydroxy-24-nor-5β-cholan-23-sulfate was secreted in bile unmodified and as 3-glucuronide. Therefore, minor structural modifications profoundly influence the metabolism and biodistribution in the target organs where these analogs exert therapeutic effects by interacting with FXR and/or TGR5 receptors.
Collapse
Affiliation(s)
- Aldo Roda
- Dipartimento di Chimica "G. Ciamician" Alma Mater Studiorum-University of Bologna, Italy (A.R., C:C:, S.S.); Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Italy (R.P., A.G.); Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum-University of Bologna, Italy (F.N., M.M.); TES Pharma S.r.l., Corciano, Italy (R.P., D.P., F.D.F., C.C.); Intercept Pharmaceuticals, Inc., New York, New York; and Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-University of Bologna, Bologna, Italy (R.A.)
| | - Roberto Pellicciari
- Dipartimento di Chimica "G. Ciamician" Alma Mater Studiorum-University of Bologna, Italy (A.R., C:C:, S.S.); Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Italy (R.P., A.G.); Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum-University of Bologna, Italy (F.N., M.M.); TES Pharma S.r.l., Corciano, Italy (R.P., D.P., F.D.F., C.C.); Intercept Pharmaceuticals, Inc., New York, New York; and Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-University of Bologna, Bologna, Italy (R.A.)
| | - Antimo Gioiello
- Dipartimento di Chimica "G. Ciamician" Alma Mater Studiorum-University of Bologna, Italy (A.R., C:C:, S.S.); Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Italy (R.P., A.G.); Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum-University of Bologna, Italy (F.N., M.M.); TES Pharma S.r.l., Corciano, Italy (R.P., D.P., F.D.F., C.C.); Intercept Pharmaceuticals, Inc., New York, New York; and Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-University of Bologna, Bologna, Italy (R.A.)
| | - Flavia Neri
- Dipartimento di Chimica "G. Ciamician" Alma Mater Studiorum-University of Bologna, Italy (A.R., C:C:, S.S.); Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Italy (R.P., A.G.); Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum-University of Bologna, Italy (F.N., M.M.); TES Pharma S.r.l., Corciano, Italy (R.P., D.P., F.D.F., C.C.); Intercept Pharmaceuticals, Inc., New York, New York; and Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-University of Bologna, Bologna, Italy (R.A.)
| | - Cecilia Camborata
- Dipartimento di Chimica "G. Ciamician" Alma Mater Studiorum-University of Bologna, Italy (A.R., C:C:, S.S.); Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Italy (R.P., A.G.); Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum-University of Bologna, Italy (F.N., M.M.); TES Pharma S.r.l., Corciano, Italy (R.P., D.P., F.D.F., C.C.); Intercept Pharmaceuticals, Inc., New York, New York; and Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-University of Bologna, Bologna, Italy (R.A.)
| | - Daniela Passeri
- Dipartimento di Chimica "G. Ciamician" Alma Mater Studiorum-University of Bologna, Italy (A.R., C:C:, S.S.); Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Italy (R.P., A.G.); Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum-University of Bologna, Italy (F.N., M.M.); TES Pharma S.r.l., Corciano, Italy (R.P., D.P., F.D.F., C.C.); Intercept Pharmaceuticals, Inc., New York, New York; and Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-University of Bologna, Bologna, Italy (R.A.)
| | - Francesca De Franco
- Dipartimento di Chimica "G. Ciamician" Alma Mater Studiorum-University of Bologna, Italy (A.R., C:C:, S.S.); Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Italy (R.P., A.G.); Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum-University of Bologna, Italy (F.N., M.M.); TES Pharma S.r.l., Corciano, Italy (R.P., D.P., F.D.F., C.C.); Intercept Pharmaceuticals, Inc., New York, New York; and Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-University of Bologna, Bologna, Italy (R.A.)
| | - Silvia Spinozzi
- Dipartimento di Chimica "G. Ciamician" Alma Mater Studiorum-University of Bologna, Italy (A.R., C:C:, S.S.); Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Italy (R.P., A.G.); Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum-University of Bologna, Italy (F.N., M.M.); TES Pharma S.r.l., Corciano, Italy (R.P., D.P., F.D.F., C.C.); Intercept Pharmaceuticals, Inc., New York, New York; and Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-University of Bologna, Bologna, Italy (R.A.)
| | - Carolina Colliva
- Dipartimento di Chimica "G. Ciamician" Alma Mater Studiorum-University of Bologna, Italy (A.R., C:C:, S.S.); Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Italy (R.P., A.G.); Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum-University of Bologna, Italy (F.N., M.M.); TES Pharma S.r.l., Corciano, Italy (R.P., D.P., F.D.F., C.C.); Intercept Pharmaceuticals, Inc., New York, New York; and Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-University of Bologna, Bologna, Italy (R.A.)
| | - Luciano Adorini
- Dipartimento di Chimica "G. Ciamician" Alma Mater Studiorum-University of Bologna, Italy (A.R., C:C:, S.S.); Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Italy (R.P., A.G.); Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum-University of Bologna, Italy (F.N., M.M.); TES Pharma S.r.l., Corciano, Italy (R.P., D.P., F.D.F., C.C.); Intercept Pharmaceuticals, Inc., New York, New York; and Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-University of Bologna, Bologna, Italy (R.A.)
| | - Marco Montagnani
- Dipartimento di Chimica "G. Ciamician" Alma Mater Studiorum-University of Bologna, Italy (A.R., C:C:, S.S.); Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Italy (R.P., A.G.); Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum-University of Bologna, Italy (F.N., M.M.); TES Pharma S.r.l., Corciano, Italy (R.P., D.P., F.D.F., C.C.); Intercept Pharmaceuticals, Inc., New York, New York; and Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-University of Bologna, Bologna, Italy (R.A.)
| | - Rita Aldini
- Dipartimento di Chimica "G. Ciamician" Alma Mater Studiorum-University of Bologna, Italy (A.R., C:C:, S.S.); Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Italy (R.P., A.G.); Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum-University of Bologna, Italy (F.N., M.M.); TES Pharma S.r.l., Corciano, Italy (R.P., D.P., F.D.F., C.C.); Intercept Pharmaceuticals, Inc., New York, New York; and Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-University of Bologna, Bologna, Italy (R.A.)
| |
Collapse
|
99
|
Bechmann LP, Canbay A. The hunt for treatment options of fatty liver continues: effects of retinoic acid on hepatic steatosis reveal novel transcriptional interactions of nuclear receptors. Hepatology 2014; 59:1662-4. [PMID: 24122898 DOI: 10.1002/hep.26896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/08/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Lars P Bechmann
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
100
|
Prawitt J, Caron S, Staels B. Glucose-lowering effects of intestinal bile acid sequestration through enhancement of splanchnic glucose utilization. Trends Endocrinol Metab 2014; 25:235-44. [PMID: 24731596 DOI: 10.1016/j.tem.2014.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
Intestinal bile acid (BA) sequestration efficiently lowers plasma glucose concentrations in type 2 diabetes (T2D) patients. Because BAs act as signaling molecules via receptors, including the G protein-coupled receptor TGR5 and the nuclear receptor FXR (farnesoid X receptor), to regulate glucose homeostasis, BA sequestration, which interrupts the entero-hepatic circulation of BAs, constitutes a plausible action mechanism of BA sequestrants. An increase of intestinal L-cell glucagon-like peptide-1 (GLP-1) secretion upon TGR5 activation is the most commonly proposed mechanism, but recent studies also argue for a direct entero-hepatic action to enhance glucose utilization. We discuss here recent findings on the mechanisms of sequestrant-mediated glucose lowering via an increase of splanchnic glucose utilization through entero-hepatic FXR signaling.
Collapse
Affiliation(s)
- Janne Prawitt
- European Genomic Institute for Diabetes (EGID), FR 3508, 59000 Lille, France; Université Lille 2, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1011, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Sandrine Caron
- European Genomic Institute for Diabetes (EGID), FR 3508, 59000 Lille, France; Université Lille 2, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1011, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), FR 3508, 59000 Lille, France; Université Lille 2, 59000 Lille, France; Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1011, 59000 Lille, France; Institut Pasteur de Lille, 59000 Lille, France.
| |
Collapse
|