51
|
Wakao S, Kushida Y, Dezawa M. Basic Characteristics of Muse Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1103:13-41. [PMID: 30484222 DOI: 10.1007/978-4-431-56847-6_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multilineage-differentiating stress-enduring (Muse) cells exhibit the core characteristics of pluripotent stem cells, namely, the expression of pluripotency markers and the capacity for trilineage differentiation both in vitro and in vivo and self-renewability. In addition, Muse cells have unique characteristics not observed in other pluripotent stem cells such as embryonic stem cells, control of pluripotency by environmental switch of adherent suspension, symmetric and asymmetric cell division, expression of factors relevant to stress tolerance, and distinctive tissue distribution. Pluripotent stem cells were recently classified into two discrete states, naïve and primed. These two states have multiple functional differences, including their proliferation rate, molecular properties, and growth factor dependency. The properties exhibited by Muse cells are similar to those of primed pluripotent stem cells while with some uniqueness. In this chapter, we provide a comprehensive description of the basic characteristics of Muse cells.
Collapse
Affiliation(s)
- Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
52
|
Trusler O, Huang Z, Goodwin J, Laslett AL. Cell surface markers for the identification and study of human naive pluripotent stem cells. Stem Cell Res 2018; 26:36-43. [DOI: 10.1016/j.scr.2017.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022] Open
|
53
|
A molecular roadmap for the emergence of early-embryonic-like cells in culture. Nat Genet 2017; 50:106-119. [PMID: 29255263 PMCID: PMC5755687 DOI: 10.1038/s41588-017-0016-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/13/2017] [Indexed: 12/24/2022]
Abstract
Unlike pluripotent cells, which generate only embryonic tissues, totipotent cells can generate a full organism, including extraembryonic annexes. A rare population of cells resembling 2-cell stage embryos arises in pluripotent embryonic stem (ES) cell cultures. These 2-cell-like-cells display molecular features of totipotency and broader developmental plasticity. However, their specific nature and the process through which they arise remain outstanding questions. Here, we identify intermediate cellular states and molecular determinants during the emergence of 2-cell-like-cells. By deploying a quantitative single cell expression approach, we identified an intermediate population characterised by the expression of the transcription factor ZSCAN4 as precursor of 2-cell-like-cells. Using an siRNA screening, we uncovered novel epigenetic regulators of 2-cell-like-cell emergence, including the non-canonical PRC1 complex PRC1.6 and Ep400/Tip60. Our data shed light on the mechanisms underlying the exit from the ES cell state towards the formation of early-embryonic-like cells in culture and identify key epigenetic pathways that promote this transition.
Collapse
|
54
|
Cota-Coronado JA, Sandoval-Ávila S, Gaytan-Dávila YP, Diaz NF, Vega-Ruiz B, Padilla-Camberos E, Díaz-Martínez NE. New transgenic models of Parkinson's disease using genome editing technology. Neurologia 2017; 35:486-499. [PMID: 29196142 DOI: 10.1016/j.nrl.2017.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 07/13/2017] [Accepted: 08/15/2017] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is characterised by selective loss of dopaminergic neurons in the substantia nigra pars compacta, which results in dopamine depletion, leading to a number of motor and non-motor symptoms. DEVELOPMENT In recent years, the development of new animal models using nuclease-based genome-editing technology (ZFN, TALEN, and CRISPR/Cas9 nucleases) has enabled the introduction of custom-made modifications into the genome to replicate key features of PD, leading to significant advances in our understanding of the pathophysiology of the disease. CONCLUSIONS We review the most recent studies on this new generation of in vitro and in vivo PD models, which replicate the most relevant symptoms of the disease and enable better understanding of the aetiology and mechanisms of PD. This may be helpful in the future development of effective treatments to halt or slow disease progression.
Collapse
Affiliation(s)
- J A Cota-Coronado
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - S Sandoval-Ávila
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Y P Gaytan-Dávila
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - N F Diaz
- Departamento de Biología Celular, Instituto Nacional de Perinatología, Ciudad de México, México
| | - B Vega-Ruiz
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - E Padilla-Camberos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - N E Díaz-Martínez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México.
| |
Collapse
|
55
|
CRISPR/Cas9-mediated genome editing in naïve human embryonic stem cells. Sci Rep 2017; 7:16650. [PMID: 29192200 PMCID: PMC5709416 DOI: 10.1038/s41598-017-16932-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
The combination of genome-edited human embryonic stem cells (hESCs) and subsequent neural differentiation is a powerful tool to study neurodevelopmental disorders. Since the naïve state of pluripotency has favourable characteristics for efficient genome-editing, we optimized a workflow for the CRISPR/Cas9 system in these naïve stem cells. Editing efficiencies of respectively 1.3–8.4% and 3.8–19% were generated with the Cas9 nuclease and the D10A Cas9 nickase mutant. Next to this, wildtype and genome-edited naïve hESCs were successfully differentiated to neural progenitor cells. As a proof-of-principle of our workflow, two monoclonal genome-edited naïve hESCs colonies were obtained for TUNA, a long non-coding RNA involved in pluripotency and neural differentiation. In these genome-edited hESCs, an effect was seen on expression of TUNA, although not on neural differentiation potential. In conclusion, we optimized a genome-editing workflow in naïve hESCs that can be used to study candidate genes involved in neural differentiation and/or functioning.
Collapse
|
56
|
Fu X, He F, Li Y, Shahveranov A, Hutchins AP. Genomic and molecular control of cell type and cell type conversions. CELL REGENERATION 2017; 6:1-7. [PMID: 29348912 PMCID: PMC5769489 DOI: 10.1016/j.cr.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
Organisms are made of a limited number of cell types that combine to form higher order tissues and organs. Cell types have traditionally been defined by their morphologies or biological activity, yet the underlying molecular controls of cell type remain unclear. The onset of single cell technologies, and more recently genomics (particularly single cell genomics), has substantially increased the understanding of the concept of cell type, but has also increased the complexity of this understanding. These new technologies have added a new genome wide molecular dimension to the description of cell type, with genome-wide expression and epigenetic data acting as a cell type ‘fingerprint’ to describe the cell state. Using these genomic fingerprints cell types are being increasingly defined based on specific genomic and molecular criteria, without necessarily a distinct biological function. In this review, we will discuss the molecular definitions of cell types and cell type control, and particularly how endogenous and exogenous transcription factors can control cell types and cell type conversions.
Collapse
|
57
|
Williams EO, Taylor AK, Bell EL, Lim R, Kim DM, Guarente L. Sirtuin 1 Promotes Deacetylation of Oct4 and Maintenance of Naive Pluripotency. Cell Rep 2017; 17:809-820. [PMID: 27732856 DOI: 10.1016/j.celrep.2016.09.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/14/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023] Open
Abstract
The enhancer landscape is dramatically restructured as naive preimplantation epiblasts transition to the post-implantation state of primed pluripotency. A key factor in this process is Otx2, which is upregulated during the early stages of this transition and ultimately recruits Oct4 to a different set of enhancers. In this study, we discover that the acetylation status of Oct4 regulates the induction of the primed pluripotency gene network. Maintenance of the naive state requires the NAD-dependent deacetylase, SirT1, which deacetylates Oct4. The activity of SirT1 is reduced during the naive-to-primed transition; Oct4 becomes hyper-acetylated and binds to an Otx2 enhancer to induce Otx2 expression. Induction of Otx2 causes the reorganization of acetylated Oct4 and results in the induction of the primed pluripotency gene network. Regulation of Oct4 by SirT1 may link stem cell development to environmental conditions, and it may provide strategies to manipulate epiblast cell state.
Collapse
Affiliation(s)
- Eric O Williams
- Glenn Laboratory for the Science of Aging and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amy K Taylor
- Glenn Laboratory for the Science of Aging and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric L Bell
- Glenn Laboratory for the Science of Aging and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rachelle Lim
- Glenn Laboratory for the Science of Aging and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel M Kim
- Glenn Laboratory for the Science of Aging and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leonard Guarente
- Glenn Laboratory for the Science of Aging and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
58
|
Takata N, Sakakura E, Eiraku M, Kasukawa T, Sasai Y. Self-patterning of rostral-caudal neuroectoderm requires dual role of Fgf signaling for localized Wnt antagonism. Nat Commun 2017; 8:1339. [PMID: 29109536 PMCID: PMC5673904 DOI: 10.1038/s41467-017-01105-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 08/17/2017] [Indexed: 01/05/2023] Open
Abstract
The neuroectoderm is patterned along a rostral-caudal axis in response to localized factors in the embryo, but exactly how these factors act as positional information for this patterning is not yet fully understood. Here, using the self-organizing properties of mouse embryonic stem cell (ESC), we report that ESC-derived neuroectoderm self-generates a Six3+ rostral and a Irx3+ caudal bipolarized patterning. In this instance, localized Fgf signaling performs dual roles, as it regulates Six3+ rostral polarization at an earlier stage and promotes Wnt signaling at a later stage. The Wnt signaling components are differentially expressed in the polarized tissues, leading to genome-wide Irx3+ caudal-polarization signals. Surprisingly, differentially expressed Wnt agonists and antagonists have essential roles in orchestrating the formation of a balanced rostral-caudal neuroectoderm pattern. Together, our findings provide key processes for dynamic self-patterning and evidence that a temporally and locally regulated interaction between Fgf and Wnt signaling controls self-patterning in ESC-derived neuroectoderm.
Collapse
Affiliation(s)
- Nozomu Takata
- Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA.
| | - Eriko Sakakura
- Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Mototsugu Eiraku
- Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan.
| | - Takeya Kasukawa
- Large Scale Data Managing Unit, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshiki Sasai
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
59
|
Shirouzu Y, Yanai G, Yang KC, Sumi S. Effects of Activin in Embryoid Bodies Expressing Fibroblast Growth Factor 5. Cell Reprogram 2017; 18:171-86. [PMID: 27253628 DOI: 10.1089/cell.2015.0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nodal/activin signaling is indispensable for embryonic development. We examined what activin does to the embryoid bodies (EBs) produced from mouse embryonic stem cells (mESCs) expressing an epiblast marker. The EBs were produced by culturing mESCs by the hanging drop method for 24 hours. The resulting EBs were transferred onto gelatin-coated dishes and allowed to further differentiate. The 24-hour EBs showed a stronger expression of fibroblast growth factor (FGF)5 and Brachyury (specific to the epiblast) in comparison with mESCs. Treating the transferred EBs with activin A maintained transcript levels of FGF5 and Oct4, while inhibiting definitive endoderm differentiation. The activin A treatment reversed the endoderm differentiation induced by retinoic acid (RA), while the inhibition of nodal/activin signaling promoted RA-induced endoderm differentiation. Inhibition of nodal/activin signaling in EBs, including epiblast-like cells, promotes differentiation into the endoderm, facilitating the transition from the pluripotent state to specification of the endoderm.
Collapse
Affiliation(s)
- Yasumasa Shirouzu
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University , Kyoto, Japan
| | - Goichi Yanai
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University , Kyoto, Japan
| | - Kai-Chiang Yang
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University , Kyoto, Japan
| | - Shoichiro Sumi
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University , Kyoto, Japan
| |
Collapse
|
60
|
Acampora D, Di Giovannantonio LG, Garofalo A, Nigro V, Omodei D, Lombardi A, Zhang J, Chambers I, Simeone A. Functional Antagonism between OTX2 and NANOG Specifies a Spectrum of Heterogeneous Identities in Embryonic Stem Cells. Stem Cell Reports 2017; 9:1642-1659. [PMID: 29056334 PMCID: PMC5935799 DOI: 10.1016/j.stemcr.2017.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023] Open
Abstract
Embryonic stem cells (ESCs) cultured in leukemia inhibitory factor (LIF) plus fetal bovine serum (FBS) exhibit heterogeneity in the expression of naive and primed transcription factors. This heterogeneity reflects the dynamic condition of ESCs and their versatility to promptly respond to signaling effectors promoting naive or primed pluripotency. Here, we report that ESCs lacking Nanog or overexpressing Otx2 exhibit an early primed identity in LIF + FBS and fail to convert into 2i-induced naive state. Conversely, Otx2-null ESCs possess naive identity features in LIF + FBS similar to Nanog-overexpressing ESCs and convert poorly into FGF-induced early primed state. When both Nanog and Otx2 are inactivated, ESCs cultured in LIF + FBS exhibit primed identity and weakened ability to convert into naive state. These data suggest that, through mutual antagonism, NANOG and OTX2 specify the heterogeneous identity of ESCs cultured in LIF + FBS and individually predispose them for optimal response to naive or primed inducing factors.
Collapse
Affiliation(s)
- Dario Acampora
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino,111, 80131 Naples, Italy; IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | | | - Arcomaria Garofalo
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università della Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138 Naples, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80087 Pozzuoli, NA, Italy
| | - Vincenzo Nigro
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università della Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138 Naples, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80087 Pozzuoli, NA, Italy
| | - Daniela Omodei
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino,111, 80131 Naples, Italy
| | | | - Jingchao Zhang
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Antonio Simeone
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino,111, 80131 Naples, Italy; IRCCS Neuromed, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
61
|
Totonchi M, Hassani SN, Sharifi-Zarchi A, Tapia N, Adachi K, Arand J, Greber B, Sabour D, Araúzo-Bravo MJ, Walter J, Pakzad M, Gourabi H, Schöler HR, Baharvand H. Blockage of the Epithelial-to-Mesenchymal Transition Is Required for Embryonic Stem Cell Derivation. Stem Cell Reports 2017; 9:1275-1290. [PMID: 28919260 PMCID: PMC5639184 DOI: 10.1016/j.stemcr.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022] Open
Abstract
Pluripotent cells emanate from the inner cell mass (ICM) of the blastocyst and when cultivated under optimal conditions immortalize as embryonic stem cells (ESCs). The fundamental mechanism underlying ESC derivation has, however, remained elusive. Recently, we have devised a highly efficient approach for establishing ESCs, through inhibition of the MEK and TGF-β pathways. This regimen provides a platform for dissecting the molecular mechanism of ESC derivation. Via temporal gene expression analysis, we reveal key genes involved in the ICM to ESC transition. We found that DNA methyltransferases play a pivotal role in efficient ESC generation. We further observed a tight correlation between ESCs and preimplantation epiblast cell-related genes and noticed that fundamental events such as epithelial-to-mesenchymal transition blockage play a key role in launching the ESC self-renewal program. Our study provides a time course transcriptional resource highlighting the dynamics of the gene regulatory network during the ICM to ESC transition.
Collapse
Affiliation(s)
- Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Ali Sharifi-Zarchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Chitsaz Lab, Department of Computer Science, Colorado State University, Fort Collins 80523, CO, USA
| | - Natalia Tapia
- Institute of Biomedicine of Valencia, Spanish National Research Council, Jaime Roig 11, 46010 Valencia, Spain
| | - Kenjiro Adachi
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Julia Arand
- University of Saarland, FR 8.3, Biological Sciences, Genetics/Epigenetics, Campus A2.4, 66123 Saarbrücken, Germany
| | - Boris Greber
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany; Chemical Genomics Centre of the Max Planck Society, Dortmung, Germany
| | - Davood Sabour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
| | - Jörn Walter
- University of Saarland, FR 8.3, Biological Sciences, Genetics/Epigenetics, Campus A2.4, 66123 Saarbrücken, Germany
| | - Mohammad Pakzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
62
|
Kumar P, Tan Y, Cahan P. Understanding development and stem cells using single cell-based analyses of gene expression. Development 2017; 144:17-32. [PMID: 28049689 DOI: 10.1242/dev.133058] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, genome-wide profiling approaches have begun to uncover the molecular programs that drive developmental processes. In particular, technical advances that enable genome-wide profiling of thousands of individual cells have provided the tantalizing prospect of cataloging cell type diversity and developmental dynamics in a quantitative and comprehensive manner. Here, we review how single-cell RNA sequencing has provided key insights into mammalian developmental and stem cell biology, emphasizing the analytical approaches that are specific to studying gene expression in single cells.
Collapse
Affiliation(s)
- Pavithra Kumar
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yuqi Tan
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
63
|
Yu SE, Kim MS, Park SH, Yoo BC, Kim KH, Jang YK. SET domain-containing protein 5 is required for expression of primordial germ cell specification-associated genes in murine embryonic stem cells. Cell Biochem Funct 2017; 35:247-253. [DOI: 10.1002/cbf.3269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/15/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Seung Eun Yu
- Department of Systems Biology, College of Life Science and Biotechnology; Yonsei University; Seoul Korea
- Initiative for Biological Function and Systems; Yonsei University; Seoul Korea
| | - Min Seong Kim
- Department of Systems Biology, College of Life Science and Biotechnology; Yonsei University; Seoul Korea
- Initiative for Biological Function and Systems; Yonsei University; Seoul Korea
| | - Su Hyung Park
- Department of Systems Biology, College of Life Science and Biotechnology; Yonsei University; Seoul Korea
- Initiative for Biological Function and Systems; Yonsei University; Seoul Korea
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Research Institute; National Cancer Center; Goyang Korea
| | - Kyung Hee Kim
- Colorectal Cancer Branch, Research Institute; National Cancer Center; Goyang Korea
- Omics Core Laboratory, Research Institute; National Cancer Center; Goyang Korea
| | - Yeun Kyu Jang
- Department of Systems Biology, College of Life Science and Biotechnology; Yonsei University; Seoul Korea
- Initiative for Biological Function and Systems; Yonsei University; Seoul Korea
| |
Collapse
|
64
|
Sun H, Cao J, Zhao L, Zhu S, Chen S, Li Y, Zhao B, Zhao T. PIM2 regulates stemness through phosphorylation of 4E-BP1. Sci Bull (Beijing) 2017; 62:679-685. [PMID: 36659438 DOI: 10.1016/j.scib.2017.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 01/21/2023]
Abstract
Embryonic stem cells (ESCs) can undergo unlimited self-renewal and maintain pluripotency to differentiate into any cell type of the three germ layers. Extensive studies have shown ESC identity is regulated by transcription factors, epigenetic regulators and multiple signal transduction pathways. However, the kinase regulation of pluripotency is not well understood. Here we show that the serine/threonine kinase PIM2, which is highly expressed in ESCs but not in somatic cells, functions as a crucial stemness regulator in ESCs. Knockout of Pim2 inhibits the self-renewal and differentiation capability of ESCs. Mechanistic studies identified that PIM2 can directly phosphorylate 4E-BP1, leading to release of eIF4E which facilitates the translation of pluripotent genes in ESCs. Our study highlights a novel kinase cascade pathway for ESC identity maintenance.
Collapse
Affiliation(s)
- Hongyan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Chinese Medicine Hospital in Linyi City, Linyi 276600, China
| | - Shaohua Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shenghui Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqiong Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhao
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
65
|
Direct comparison of distinct naive pluripotent states in human embryonic stem cells. Nat Commun 2017; 8:15055. [PMID: 28429706 PMCID: PMC5413953 DOI: 10.1038/ncomms15055] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 02/23/2017] [Indexed: 11/17/2022] Open
Abstract
Until recently, human embryonic stem cells (hESCs) were shown to exist in a state of primed pluripotency, while mouse embryonic stem cells (mESCs) display a naive or primed pluripotent state. Here we show the rapid conversion of in-house-derived primed hESCs on mouse embryonic feeder layer (MEF) to a naive state within 5–6 days in naive conversion media (NCM-MEF), 6–10 days in naive human stem cell media (NHSM-MEF) and 14–20 days using the reverse-toggle protocol (RT-MEF). We further observe enhanced unbiased lineage-specific differentiation potential of naive hESCs converted in NCM-MEF, however, all naive hESCs fail to differentiate towards functional cell types. RNA-seq analysis reveals a divergent role of PI3K/AKT/mTORC signalling, specifically of the mTORC2 subunit, in the different naive hESCs. Overall, we demonstrate a direct evaluation of several naive culture conditions performed in the same laboratory, thereby contributing to an unbiased, more in-depth understanding of different naive hESCs. Human embryonic stem cells (hESCs) in culture display a state of primed pluripotency, but recent protocols have been developed that enable hESCs to adopt a naive-like pluripotent state. Here the authors perform a side-by-side comparison of methods used to culture naive hESCs and confirm the role of PI3K/AKT/mTORC signalling in facilitating the induction of naive pluripotency.
Collapse
|
66
|
Zhao H, Han Z, Liu X, Gu J, Tang F, Wei G, Jin Y. The chromatin remodeler Chd4 maintains embryonic stem cell identity by controlling pluripotency- and differentiation-associated genes. J Biol Chem 2017; 292:8507-8519. [PMID: 28298436 DOI: 10.1074/jbc.m116.770248] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/13/2017] [Indexed: 12/23/2022] Open
Abstract
The unique properties of embryonic stem cells (ESCs), including unlimited self-renewal and pluripotent differentiation potential, are sustained by integrated genetic and epigenetic networks composed of transcriptional factors and epigenetic modulators. However, the molecular mechanisms underlying the function of these regulators are not fully elucidated. Chromodomain helicase DNA-binding protein 4 (Chd4), an ATPase subunit of the nucleosome remodeling and deacetylase (NuRD) complex, is highly expressed in ESCs. However, its function in ESC regulation remains elusive. Here we report that Chd4 is required for the maintenance of ESC self-renewal. RNAi-mediated silencing of Chd4 disrupted self-renewal and up-regulated lineage commitment-associated genes under self-renewal culture conditions. During ESC differentiation in embryoid body formation, we observed significantly stronger induction of differentiation-associated genes in Chd4-deficient cells. The phenotype was different from that caused by the deletion of Mbd3, another subunit of the NuRD complex. Transcriptomic analyses revealed that Chd4 secured ESC identity by controlling the expression of subsets of pluripotency- and differentiation-associated genes. Importantly, Chd4 repressed the transcription of T box protein 3 (Tbx3), a transcription factor with important functions in ESC fate determination. Tbx3 knockdown partially rescued aberrant activation of differentiation-associated genes, especially of endoderm-associated genes, induced by Chd4 depletion. Moreover, we identified an interaction of Chd4 with the histone variant H2A.Z. This variant stabilized Chd4 by inhibiting Chd4 protein degradation through the ubiquitin-proteasome pathway. Collectively, this study identifies the Chd4-Tbx3 axis in controlling ESC fate and a role of H2A.Z in maintaining the stability of Chd4 proteins.
Collapse
Affiliation(s)
- Haixin Zhao
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China; University of the Chinese Academy of Sciences
| | - Zhijun Han
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyuan Liu
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Junjie Gu
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Fan Tang
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Gang Wei
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Jin
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China; Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
67
|
Choi HW, Joo JY, Hong YJ, Kim JS, Song H, Lee JW, Wu G, Schöler HR, Do JT. Distinct Enhancer Activity of Oct4 in Naive and Primed Mouse Pluripotency. Stem Cell Reports 2016; 7:911-926. [PMID: 28157483 PMCID: PMC5106531 DOI: 10.1016/j.stemcr.2016.09.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 02/02/2023] Open
Abstract
Naive and primed pluripotent stem cells (PSCs) and germ cells express the Oct4 gene. The Oct4 gene contains two cis-regulatory elements, the distal enhancer (DE) and proximal enhancer (PE), which differentially control Oct4 expression in a cell-type-specific and stage-specific manner. Here, we generated double transgenic mice carrying both Oct4-ΔPE-GFP and Oct4-ΔDE-tdTomato (RFP), enabling us to simultaneously monitor the activity of DE and PE. Oct4 expression is stage-specifically regulated by DE and PE during embryonic and germ cell development. Using this dual reporter system, we successfully cultured pure populations of naive (GFP+RFP−) and primed (GFP−RFP+) PSCs. We found that GFP+RFP− cells were metastable (not naive) in serum-containing medium; stable naive pluripotent cells were observed in medium containing two inhibitors (Meki and GSKi) but lacked serum. Finally, we suggest that the activity of Oct4 DE and PE is regulated by the repressive histone marks and DNA methylation in a cell-type-specific manner. A defined model for Oct4 enhancer activity in the totipotent cycle Culturing pure populations of naive and primed PSCs by a double reporter system Altering Oct4 enhancer activity in PSCs by changing culture conditions Histone modification and DNA methylation regulate Oct4 enhancer activity
Collapse
Affiliation(s)
- Hyun Woo Choi
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea; Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Jin Young Joo
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea; Dream-i Infertility Clinic, 45-17 Huimang-ro, 46 Beon-gil Baebang-eup, Asan-si 31470, Chungcheongnam-do, Republic of Korea
| | - Yean Ju Hong
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jong Soo Kim
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jeong Woong Lee
- Research Center of Integrative Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
68
|
Krishnakumar R, Chen AF, Pantovich MG, Danial M, Parchem RJ, Labosky PA, Blelloch R. FOXD3 Regulates Pluripotent Stem Cell Potential by Simultaneously Initiating and Repressing Enhancer Activity. Cell Stem Cell 2016; 18:104-17. [PMID: 26748757 DOI: 10.1016/j.stem.2015.10.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/22/2015] [Accepted: 10/10/2015] [Indexed: 12/18/2022]
Abstract
Early development is governed by the ability of pluripotent cells to retain the full range of developmental potential and respond accurately to developmental cues. This property is achieved in large part by the temporal and contextual regulation of gene expression by enhancers. Here, we evaluated regulation of enhancer activity during differentiation of embryonic stem to epiblast cells and uncovered the forkhead transcription factor FOXD3 as a major regulator of the developmental potential of both pluripotent states. FOXD3 bound to distinct sites in the two cell types priming enhancers through a dual-functional mechanism. It recruited the SWI/SNF chromatin remodeling complex ATPase BRG1 to promote nucleosome removal while concurrently inhibiting maximal activation of the same enhancers by recruiting histone deacetylases1/2. Thus, FOXD3 prepares cognate genes for future maximal expression by establishing and simultaneously repressing enhancer activity. Through switching of target sites, FOXD3 modulates the developmental potential of pluripotent cells as they differentiate.
Collapse
Affiliation(s)
- Raga Krishnakumar
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amy F Chen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marisol G Pantovich
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Muhammad Danial
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ronald J Parchem
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patricia A Labosky
- Office of Strategic Coordination, Division of Program Coordination, Planning, and Strategic Initiatives, and Office of Director, National Institute of Health, Bethesda, MD 20892, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
69
|
Petropoulos S, Panula SP, Schell JP, Lanner F. Single-cell RNA sequencing: revealing human pre-implantation development, pluripotency and germline development. J Intern Med 2016; 280:252-64. [PMID: 27046137 DOI: 10.1111/joim.12493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Early human development is a dynamic, heterogeneous, complex and multidimensional process. During the first week, the single-cell zygote undergoes eight to nine rounds of cell division generating the multicellular blastocyst, which consists of hundreds of cells forming spatially organized embryonic and extra-embryonic tissues. At the level of transcription, degradation of maternal RNA commences at around the two-cell stage, coinciding with embryonic genome activation. Although numerous efforts have recently focused on delineating this process in humans, many questions still remain as thorough investigation has been limited by ethical issues, scarce availability of human embryos and the presence of minute amounts of DNA and RNA. In vitro cultures of embryonic stem cells provide some insight into early human development, but such studies have been confounded by analysis on a population level failing to appreciate cellular heterogeneity. Recent technical developments in single-cell RNA sequencing have provided a novel and powerful tool to explore the early human embryo in a systematic manner. In this review, we will discuss the advantages and disadvantages of the techniques utilized to specifically investigate human development and consider how the technology has yielded new insights into pre-implantation development, embryonic stem cells and the establishment of the germ line.
Collapse
Affiliation(s)
- S Petropoulos
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet and, Division of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden.,Ludwig Institute for Cancer Research, Stockholm, Sweden
| | - S P Panula
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet and, Division of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden
| | - J P Schell
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet and, Division of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden
| | - F Lanner
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet and, Division of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
70
|
Chen G, Schell JP, Benitez JA, Petropoulos S, Yilmaz M, Reinius B, Alekseenko Z, Shi L, Hedlund E, Lanner F, Sandberg R, Deng Q. Single-cell analyses of X Chromosome inactivation dynamics and pluripotency during differentiation. Genome Res 2016; 26:1342-1354. [PMID: 27486082 PMCID: PMC5052059 DOI: 10.1101/gr.201954.115] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/29/2016] [Indexed: 12/18/2022]
Abstract
Pluripotency, differentiation, and X Chromosome inactivation (XCI) are key aspects of embryonic development. However, the underlying relationship and mechanisms among these processes remain unclear. Here, we systematically dissected these features along developmental progression using mouse embryonic stem cells (mESCs) and single-cell RNA sequencing with allelic resolution. We found that mESCs grown in a ground state 2i condition displayed transcriptomic profiles diffused from preimplantation mouse embryonic cells, whereas EpiStem cells closely resembled the post-implantation epiblast. Sex-related gene expression varied greatly across distinct developmental states. We also identified novel markers that were highly enriched in each developmental state. Moreover, we revealed that several novel pathways, including PluriNetWork and Focal Adhesion, were responsible for the delayed progression of female EpiStem cells. Importantly, we "digitalized" XCI progression using allelic expression of active and inactive X Chromosomes and surprisingly found that XCI states exhibited profound variability in each developmental state, including the 2i condition. XCI progression was not tightly synchronized with loss of pluripotency and increase of differentiation at the single-cell level, although these processes were globally correlated. In addition, highly expressed genes, including core pluripotency factors, were in general biallelically expressed. Taken together, our study sheds light on the dynamics of XCI progression and the asynchronicity between pluripotency, differentiation, and XCI.
Collapse
Affiliation(s)
- Geng Chen
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - John Paul Schell
- Department of Clinical Science, Intervention and Technology and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden
| | - Julio Aguila Benitez
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sophie Petropoulos
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Clinical Science, Intervention and Technology and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden
| | - Marlene Yilmaz
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Björn Reinius
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Zhanna Alekseenko
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Leming Shi
- School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Ludwig Institute for Cancer Research, 171 77 Stockholm, Sweden
| | - Qiaolin Deng
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
71
|
Shiue YL, Yang JR, Liao YJ, Kuo TY, Liao CH, Kang CH, Tai C, Anderson GB, Chen LR. Derivation of porcine pluripotent stem cells for biomedical research. Theriogenology 2016; 86:176-81. [DOI: 10.1016/j.theriogenology.2016.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/15/2015] [Accepted: 03/14/2016] [Indexed: 01/25/2023]
|
72
|
Loss of the Otx2-Binding Site in the Nanog Promoter Affects the Integrity of Embryonic Stem Cell Subtypes and Specification of Inner Cell Mass-Derived Epiblast. Cell Rep 2016; 15:2651-64. [PMID: 27292645 DOI: 10.1016/j.celrep.2016.05.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/12/2016] [Accepted: 05/09/2016] [Indexed: 02/03/2023] Open
Abstract
Mouse embryonic stem cells (ESCs) and the inner cell mass (ICM)-derived epiblast exhibit naive pluripotency. ESC-derived epiblast stem cells (EpiSCs) and the postimplantation epiblast exhibit primed pluripotency. Although core pluripotency factors are well-characterized, additional regulators, including Otx2, recently have been shown to function during the transition from naive to primed pluripotency. Here we uncover a role for Otx2 in the control of the naive pluripotent state. We analyzed Otx2-binding activity in ESCs and EpiSCs and identified Nanog, Oct4, and Sox2 as direct targets. To unravel the Otx2 transcriptional network, we targeted the strongest Otx2-binding site in the Nanog promoter, finding that this site modulates the size of specific ESC-subtype compartments in cultured cells and promotes Nanog expression in vivo, predisposing ICM differentiation to epiblast. Otx2-mediated Nanog regulation thus contributes to the integrity of the ESC state and cell lineage specification in preimplantation development.
Collapse
|
73
|
Derivation of Porcine Embryonic Stem-Like Cells from In Vitro-Produced Blastocyst-Stage Embryos. Sci Rep 2016; 6:25838. [PMID: 27173828 PMCID: PMC4865852 DOI: 10.1038/srep25838] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 04/22/2016] [Indexed: 01/12/2023] Open
Abstract
Efficient isolation of embryonic stem (ES) cells from pre-implantation porcine embryos has remained a challenge. Here, we describe the derivation of porcine embryonic stem-like cells (pESLCs) by seeding the isolated inner cell mass (ICM) from in vitro-produced porcine blastocyst into α-MEM with basic fibroblast growth factor (bFGF). The pESL cells kept the normal karyotype and displayed flatten clones, similar in phenotype to human embryonic stem cells (hES cells) and rodent epiblast stem cells. These cells exhibited alkaline phosphatase (AP) activity and expressed pluripotency markers such as OCT4, NANOG, SOX2, SSEA-4, TRA-1-60, and TRA-1-81 as determined by both immunofluorescence and RT-PCR. Additionally, these cells formed embryoid body (EB), teratomas and also differentiated into 3 germ layers in vitro and in vivo. Microarray analysis showed the expression of the pluripotency markers, PODXL, REX1, SOX2, KLF5 and NR6A1, was significantly higher compared with porcine embryonic fibroblasts (PEF), but expression of OCT4, TBX3, REX1, LIN28A and DPPA5, was lower compared to the whole blastocysts or ICM of blastocyst. Our results showed that porcine embryonic stem-like cells can be established from in vitro-produced blastocyst-stage embryos, which promote porcine naive ES cells to be established.
Collapse
|
74
|
Van der Jeught M, Taelman J, Duggal G, Ghimire S, Lierman S, Chuva de Sousa Lopes SM, Deforce D, Deroo T, De Sutter P, Heindryckx B. Application Of Small Molecules Favoring Naïve Pluripotency during Human Embryonic Stem Cell Derivation. Cell Reprogram 2016; 17:170-80. [PMID: 26053517 DOI: 10.1089/cell.2014.0085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In mice, inhibition of both the fibroblast growth factor (FGF) mitogen-activated protein kinase kinase/extracellular-signal regulated kinase (MEK/Erk) and the Wnt signaling inhibitor glycogen synthase-3β (GSK3β) enables the derivation of mouse embryonic stem cells (mESCs) from nonpermissive strains in the presence of leukemia inhibitory factor (LIF). Whereas mESCs are in an uncommitted naïve state, human embryonic stem cells (hESCs) represent a more advanced state, denoted as primed pluripotency. This burdens hESCs with a series of characteristics, which, in contrast to naïve ESCs, makes them not ideal for key applications such as cell-based clinical therapies and human disease modeling. In this study, different small molecule combinations were applied during human ESC derivation. Hereby, we aimed to sustain the naïve pluripotent state, by interfering with various key signaling pathways. First, we tested several combinations on existing, 2i (PD0325901 and CHIR99021)-derived mESCs. All combinations were shown to be equally adequate to sustain the expression of naïve pluripotency markers. Second, these conditions were tested during hESC derivation. Overall, the best results were observed in the presence of medium supplemented with 2i, LIF, and the noncanonical Wnt signaling agonist Wnt5A, alone and combined with epinephrine. In these conditions, outgrowths repeatedly showed an ESC progenitor-like morphology, starting from day 3. Culturing these "progenitor cells" did not result in stable, naïve hESC lines in the current conditions. Although Wnt5A could not promote naïve hESC derivation, we found that it was sustaining the conversion of established hESCs toward a more naïve state. Future work should aim to distinct the effects of the various culture formulations, including our Wnt5A-supplemented medium, reported to promote stable naïve pluripotency in hESCs.
Collapse
Affiliation(s)
- Margot Van der Jeught
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium .,4 These authors contributed equally to this work
| | - Jasin Taelman
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium .,4 These authors contributed equally to this work
| | - Galbha Duggal
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| | - Sabitri Ghimire
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| | - Sylvie Lierman
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| | - Susana M Chuva de Sousa Lopes
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium .,2 Department of Anatomy and Embryology, Leiden University Medical Center , 2300 Leiden, The Netherlands
| | - Dieter Deforce
- 3 Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University , 9000 Ghent, Belgium
| | - Tom Deroo
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| | - Petra De Sutter
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| | - Björn Heindryckx
- 1 Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital , 9000 Ghent, Belgium
| |
Collapse
|
75
|
Billard B, Chang CN, Singh AJ, Gross MK, Allen R, Kioussi C. Phenotypic Screening of Drug Library in Actively Differentiating Mouse Embryonic Stem Cells. ACTA ACUST UNITED AC 2016; 21:399-407. [PMID: 26746584 DOI: 10.1177/1087057115624093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/04/2015] [Indexed: 11/17/2022]
Abstract
Phenotypic screening enables the discovery of new drug leads with novel targets. ES cells differentiate into different lineages by successively making use of different subsets of the genome's possible macromolecular interactions. If a compound effectively targets just one of these interactions, it derails the developmental pathway to produce a phenotypical change. The OTRADI microsource spectrum library of 2000 approved drug components, natural products, and bioactive components was screened for compounds that can induce phenotypic changes in ES cell cultures at 10 µM after 3 days. Twenty-one compounds that induced specific morphologies also induced unique changes to an expression profile of a dozen markers of early embryonic development, indicating that each compound has derailed the molecular developmental process in a characteristic way. Phenotypic screens conducted with ES cultures differentiating along different lineages can be used to efficiently prescreen compounds able to regulate cell differentiation lineage.
Collapse
Affiliation(s)
- Bénédicte Billard
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Chih-Ning Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Arun J Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Michael K Gross
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Robert Allen
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA OTRADI, Portland, OR, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
76
|
Abstract
In the mouse, naïve pluripotent stem cells (PSCs) are thought to represent the cell culture equivalent of the late epiblast in the pre-implantation embryo, with which they share a unique defining set of features. Recent studies have focused on the identification and propagation of a similar cell state in human. Although the capture of an exact human equivalent of the mouse naïve PSC remains an elusive goal, comparative studies spurred on by this quest are lighting the path to a deeper understanding of pluripotent state regulation in early mammalian development.
Collapse
Affiliation(s)
- Kathryn C Davidson
- Centre for Eye Research Australia, University of Melbourne, and Royal Victorian Eye and Ear Hospital, Melbourne 3002, Victoria, Australia
| | - Elizabeth A Mason
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia Department of Anatomy and Neuroscience, University of Melbourne, Melbourne 3010, Victoria, Australia
| | - Martin F Pera
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne 3010, Victoria, Australia The Florey Institute of Neuroscience and Mental Health and Walter Elisa Hall Institute of Medical Research, Parkville 3052, Victoria, Australia
| |
Collapse
|
77
|
Harvey AJ, Rathjen J, Gardner DK. Metaboloepigenetic Regulation of Pluripotent Stem Cells. Stem Cells Int 2015; 2016:1816525. [PMID: 26839556 PMCID: PMC4709785 DOI: 10.1155/2016/1816525] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022] Open
Abstract
The differentiation of pluripotent stem cells is associated with extensive changes in metabolism, as well as widespread remodeling of the epigenetic landscape. Epigenetic regulation is essential for the modulation of differentiation, being responsible for cell type specific gene expression patterns through the modification of DNA and histones, thereby establishing cell identity. Each cell type has its own idiosyncratic pattern regarding the use of specific metabolic pathways. Rather than simply being perceived as a means of generating ATP and building blocks for cell growth and division, cellular metabolism can directly influence cellular regulation and the epigenome. Consequently, the significance of nutrients and metabolites as regulators of differentiation is central to understanding how cells interact with their immediate environment. This review serves to integrate studies on pluripotent stem cell metabolism, and the regulation of DNA methylation and acetylation and identifies areas in which current knowledge is limited.
Collapse
Affiliation(s)
- Alexandra J. Harvey
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joy Rathjen
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - David K. Gardner
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
78
|
Muñoz-Descalzo S, Hadjantonakis AK, Arias AM. Wnt/ß-catenin signalling and the dynamics of fate decisions in early mouse embryos and embryonic stem (ES) cells. Semin Cell Dev Biol 2015; 47-48:101-9. [PMID: 26321498 DOI: 10.1016/j.semcdb.2015.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/22/2022]
Abstract
Wnt/ß-catenin signalling is a widespread cell signalling pathway with multiple roles during vertebrate development. In mouse embryonic stem (mES) cells, there is a dual role for ß-catenin: it promotes differentiation when activated as part of the Wnt/ß-catenin signalling pathway, and promotes stable pluripotency independently of signalling. Although mES cells resemble the preimplantation epiblast progenitors, the first requirement for Wnt/ß-catenin signalling during mouse development has been reported at implantation [1,2]. The relationship between ß-catenin and pluripotency and that of mES cells with epiblast progenitors suggests that ß-catenin might have a functional role during preimplantation development. Here we summarize the expression and function of Wnt/ß-catenin signalling elements during the early stages of mouse development and consider the reasons why the requirement in ES cells do not reflect the embryo.
Collapse
Affiliation(s)
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
79
|
Generation of Cynomolgus Monkey Chimeric Fetuses using Embryonic Stem Cells. Cell Stem Cell 2015; 17:116-24. [PMID: 26119236 DOI: 10.1016/j.stem.2015.06.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 05/11/2015] [Accepted: 06/10/2015] [Indexed: 12/28/2022]
Abstract
Because of their similarity to humans, non-human primates are important models for studying human disease and developing therapeutic strategies. Establishment of chimeric animals using embryonic stem cells (ESCs) could help with these investigations, but has not so far been achieved. Here, we show that cynomolgus monkey ESCs (cESCs) grown in adjusted culture conditions are able to incorporate into host embryos and develop into chimeras with contribution in all three germ layers and in germ cell progenitors. Under the optimized culture conditions, which are based on an approach developed previously for naive human ESCs, the cESCs displayed altered growth properties, gene expression profiles, and self-renewal signaling pathways, suggestive of an altered naive-like cell state. Thus our findings show that it is feasible to generate chimeric monkeys using ESCs and open up new avenues for the use of non-human primate models to study both pluripotency and human disease.
Collapse
|
80
|
Duggal G, Warrier S, Ghimire S, Broekaert D, Van der Jeught M, Lierman S, Deroo T, Peelman L, Van Soom A, Cornelissen R, Menten B, Mestdagh P, Vandesompele J, Roost M, Slieker RC, Heijmans BT, Deforce D, De Sutter P, De Sousa Lopes SC, Heindryckx B. Alternative Routes to Induce Naïve Pluripotency in Human Embryonic Stem Cells. Stem Cells 2015; 33:2686-98. [PMID: 26108678 DOI: 10.1002/stem.2071] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/22/2015] [Indexed: 12/21/2022]
Abstract
Human embryonic stem cells (hESCs) closely resemble mouse epiblast stem cells exhibiting primed pluripotency unlike mouse ESCs (mESCs), which acquire a naïve pluripotent state. Efforts have been made to trigger naïve pluripotency in hESCs for subsequent unbiased lineage-specific differentiation, a common conundrum faced by primed pluripotent hESCs due to heterogeneity in gene expression existing within and between hESC lines. This required either ectopic expression of naïve genes such as NANOG and KLF2 or inclusion of multiple pluripotency-associated factors. We report here a novel combination of small molecules and growth factors in culture medium (2i/LIF/basic fibroblast growth factor + Ascorbic Acid + Forskolin) facilitating rapid induction of transgene-free naïve pluripotency in hESCs, as well as in mESCs, which has not been shown earlier. The converted naïve hESCs survived long-term single-cell passaging, maintained a normal karyotype, upregulated naïve pluripotency genes, and exhibited dependence on signaling pathways similar to naïve mESCs. Moreover, they undergo global DNA demethylation and show a distinctive long noncoding RNA profile. We propose that in our medium, the FGF signaling pathway via PI3K/AKT/mTORC induced the conversion of primed hESCs toward naïve pluripotency. Collectively, we demonstrate an alternate route to capture naïve pluripotency in hESCs that is fast, reproducible, supports naïve mESC derivation, and allows efficient differentiation.
Collapse
Affiliation(s)
- Galbha Duggal
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sharat Warrier
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sabitri Ghimire
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Dorien Broekaert
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation Vesalius Research Center (VIB3), Herestraat 49, 300, Leuven, Belgium
| | - Margot Van der Jeught
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sylvie Lierman
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Tom Deroo
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ria Cornelissen
- Department of Basic Medical Science, Ghent University, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Matthias Roost
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roderick C Slieker
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastiaan T Heijmans
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Petra De Sutter
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Susana Chuva De Sousa Lopes
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Björn Heindryckx
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
81
|
Van der Jeught M, O'Leary T, Duggal G, De Sutter P, Chuva de Sousa Lopes S, Heindryckx B. The post-inner cell mass intermediate: implications for stem cell biology and assisted reproductive technology. Hum Reprod Update 2015; 21:616-26. [PMID: 26089403 DOI: 10.1093/humupd/dmv028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/01/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Until recently, the temporal events that precede the generation of pluripotent embryonic stem cells (ESCs) and their equivalence with specific developmental stages in vivo was poorly understood. Our group has discovered the existence of a transient epiblast-like structure, coined the post-inner cell mass (ICM) intermediate or PICMI, that emerges before human ESC (hESCs) are established, which supports their primed nature (i.e. already showing some predispositions towards certain cell types) of pluripotency. METHODS The PICMI results from the progressive epithelialization of the ICM and it expresses a mixture of early and late epiblast markers, as well as some primordial germ cell markers. The PICMI is a closer progenitor of hESCs than the ICM and it can be seen as the first proof of why all existing hESCs, until recently, display a primed state of pluripotency. RESULTS Even though the pluripotent characteristics of ESCs differ from mouse (naïve) to human (primed), it has recently been shown in mice that a similar process of self-organization at the transition from ICM to (naïve) mouse ESCs (mESCs) transforms the amorphous ICM into a rosette of polarized epiblast cells, a mouse PICMI. The transient PICMI stage is therefore at the origin of both mESCs and hESCs. In addition, several groups have now reported the conversion from primed to the naïve (mESCs-like) hESCs, broadening the pluripotency spectrum and opening new opportunities for the use of pluripotent stem cells. CONCLUSIONS In this review, we discuss the recent discoveries of mouse and human transient states from ICM to ESCs and their relation towards the state of pluripotency in the eventual stem cells, being naïve or primed. We will now further investigate how these intermediate and/or different pluripotent stages may impact the use of human stem cells in regenerative medicine and assisted reproductive technology.
Collapse
Affiliation(s)
- Margot Van der Jeught
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| | - Thomas O'Leary
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Present address: Coastal Fertility Specialists, 1375 Hospital Drive, Mt Pleasant, SC 29464, USA
| | - Galbha Duggal
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Present address: Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Petra De Sutter
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| | - Susana Chuva de Sousa Lopes
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Björn Heindryckx
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| |
Collapse
|
82
|
Abstract
Mouse embryonic stem (ES) cells perpetuate in vitro the broad developmental potential of naïve founder cells in the preimplantation embryo. ES cells self-renew relentlessly in culture but can reenter embryonic development seamlessly, differentiating on schedule to form all elements of the fetus. Here we review the properties of these remarkable cells. Arising from the stability, homogeneity, and equipotency of ES cells, we consider the concept of a pluripotent ground state. We evaluate the authenticity of ES cells in relation to cells in the embryo and examine their utility for dissecting mechanisms that confer pluripotency and that execute fate choice. We summarize current knowledge of the transcription factor circuitry that governs the ES cell state and discuss the opportunity to expose molecular logic further through iterative computational modeling and experimentation. Finally, we present a perspective on unresolved questions, including the challenge of deriving ground state pluripotent stem cells from non-rodent species.
Collapse
|
83
|
Robbez-Masson L, Rowe HM. Retrotransposons shape species-specific embryonic stem cell gene expression. Retrovirology 2015; 12:45. [PMID: 26021318 PMCID: PMC4448215 DOI: 10.1186/s12977-015-0173-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/07/2015] [Indexed: 01/20/2023] Open
Abstract
Over half of our genome is composed of retrotransposons, which are mobile elements that can readily amplify their copy number by replicating through an RNA intermediate. Most of these elements are no longer mobile but still contain regulatory sequences that can serve as promoters, enhancers or repressors for cellular genes. Despite dominating our genetic content, little is known about the precise functions of retrotransposons, which include both endogenous retroviruses (ERVs) and non-LTR elements like long interspersed nuclear element 1 (LINE-1). However, a few recent cutting-edge publications have illustrated how retrotransposons shape species-specific stem cell gene expression by two opposing mechanisms, involving their recruitment of stem cell-enriched transcription factors (TFs): firstly, they can activate expression of genes linked to naïve pluripotency, and secondly, they can induce repression of proximal genes. The paradox that different retrotransposons are active or silent in embryonic stem cells (ESCs) can be explained by differences between retrotransposon families, between individual copies within the same family, and between subpopulations of ESCs. Since they have coevolved with their host genomes, some of them have been co-opted to perform species-specific beneficial functions, while others have been implicated in genetic disease. In this review, we will discuss retrotransposon functions in ESCs, focusing on recent mechanistic advances of how HERV-H has been adopted to preserve human naïve pluripotency and how particular LINE-1, SVA and ERV family members recruit species-specific transcriptional repressors. This review highlights the fine balance between activation and repression of retrotransposons that exists to harness their ability to drive evolution, while minimizing the risk they pose to genome integrity.
Collapse
Affiliation(s)
- Luisa Robbez-Masson
- Division of Infection and Immunity, Medical Research Council Centre for Medical Molecular Virology, University College London, 90 Gower Street, London, WC1E 6BT, UK.
| | - Helen M Rowe
- Division of Infection and Immunity, Medical Research Council Centre for Medical Molecular Virology, University College London, 90 Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
84
|
Yeo JC, Jiang J, Tan ZY, Yim GR, Ng JH, Göke J, Kraus P, Liang H, Gonzales KAU, Chong HC, Tan CP, Lim YS, Tan NS, Lufkin T, Ng HH. Klf2 is an essential factor that sustains ground state pluripotency. Cell Stem Cell 2015; 14:864-72. [PMID: 24905170 DOI: 10.1016/j.stem.2014.04.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/14/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
The maintenance of mouse embryonic stem cells (mESCs) requires LIF and serum. However, a pluripotent "ground state," bearing resemblance to preimplantation mouse epiblasts, can be established through dual inhibition (2i) of both prodifferentiation Mek/Erk and Gsk3/Tcf3 pathways. While Gsk3 inhibition has been attributed to the transcriptional derepression of Esrrb, the molecular mechanism mediated by Mek inhibition remains unclear. In this study, we show that Krüppel-like factor 2 (Klf2) is phosphorylated by Erk2 and that phospho-Klf2 is proteosomally degraded. Mek inhibition hence prevents Klf2 protein phosphodegradation to sustain pluripotency. Indeed, while Klf2-null mESCs can survive under LIF/Serum, they are not viable under 2i, demonstrating that Klf2 is essential for ground state pluripotency. Importantly, we also show that ectopic Klf2 expression can replace Mek inhibition in mESCs, allowing the culture of Klf2-null mESCs under Gsk3 inhibition alone. Collectively, our study defines the Mek/Erk/Klf2 axis that cooperates with the Gsk3/Tcf3/Esrrb pathway in mediating ground state pluripotency.
Collapse
Affiliation(s)
- Jia-Chi Yeo
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jianming Jiang
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Zi-Ying Tan
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Guo-Rong Yim
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Jia-Hui Ng
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Jonathan Göke
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Petra Kraus
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | - Hongqing Liang
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Kevin Andrew Uy Gonzales
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Han-Chung Chong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Cheng-Peow Tan
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Yee-Siang Lim
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Nguan-Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, A(∗)STAR, Singapore 138673, Singapore
| | - Thomas Lufkin
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | - Huck-Hui Ng
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Block MD6, Centre for Translational Medicine, 14 Medical Drive #14-01T, Singapore 117599, Singapore.
| |
Collapse
|
85
|
Rué P, Martinez Arias A. Cell dynamics and gene expression control in tissue homeostasis and development. Mol Syst Biol 2015; 11:792. [PMID: 25716053 PMCID: PMC4358661 DOI: 10.15252/msb.20145549] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During tissue and organ development and maintenance, the dynamic regulation of cellular proliferation and differentiation allows cells to build highly elaborate structures. The development of the vertebrate retina or the maintenance of adult intestinal crypts, for instance, involves the arrangement of newly created cells with different phenotypes, the proportions of which need to be tightly controlled. While some of the basic principles underlying these processes developing and maintaining these organs are known, much remains to be learnt from how cells encode the necessary information and use it to attain those complex but reproducible arrangements. Here, we review the current knowledge on the principles underlying cell population dynamics during tissue development and homeostasis. In particular, we discuss how stochastic fate assignment, cell division, feedback control and cellular transition states interact during organ and tissue development and maintenance in multicellular organisms. We propose a framework, involving the existence of a transition state in which cells are more susceptible to signals that can affect their gene expression state and influence their cell fate decisions. This framework, which also applies to systems much more amenable to quantitative analysis like differentiating embryonic stem cells, links gene expression programmes with cell population dynamics.
Collapse
Affiliation(s)
- Pau Rué
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
86
|
Ghimire S, Heindryckx B, Van der Jeught M, Neupane J, O'Leary T, Lierman S, De Vos WH, Chuva de Sousa Lopes S, Deroo T, De Sutter P. Inhibition of transforming growth factor β signaling promotes epiblast formation in mouse embryos. Stem Cells Dev 2015; 24:497-506. [PMID: 25245024 DOI: 10.1089/scd.2014.0206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Early lineage segregation in preimplantation embryos and maintenance of pluripotency in embryonic stem cells (ESCs) are both regulated by specific signaling pathways. Small molecules have been shown to modulate these signaling pathways. We examined the influence of several small molecules and growth factors on second-lineage segregation of the inner cell mass toward hypoblast and epiblast lineage during mouse embryonic preimplantation development. We found that the second-lineage segregation is influenced by activation or inhibition of the transforming growth factor (TGF)β pathway. Inhibition of the TGFβ pathway from the two-cell, four-cell, and morula stages onward up to the blastocyst stage significantly increased the epiblast cell proliferation. The epiblast formed in the embryos in which TGFβ signaling was inhibited was fully functional as demonstrated by the potential of these epiblast cells to give rise to pluripotent ESCs. Conversely, activating the TGFβ pathway reduced epiblast formation. Inhibition of the glycogen synthase kinase (GSK)3 pathway and activation of bone morphogenetic protein 4 signaling reduced the formation of both epiblast and hypoblast cells. Activation of the protein kinase A pathway and of the Janus kinase/signal transducer and activator of transcription 3 pathway did not influence the second-lineage segregation in mouse embryos. The simultaneous inhibition of three pathways--TGFβ, GSK3β, and the fibroblast growth factor (FGF)/extracellular signal-regulated kinases (Erk)--significantly enhanced the proliferation of epiblast cells than that caused by inhibition of either TGFβ pathway alone or by combined inhibition of the GSK3β and FGF/Erk pathways only.
Collapse
Affiliation(s)
- Sabitri Ghimire
- 1 Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital , Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Mangani C, Lilienkampf A, Roy M, de Sousa PA, Bradley M. Thermoresponsive hydrogel maintains the mouse embryonic stem cell “naïve” pluripotency phenotype. Biomater Sci 2015; 3:1371-5. [DOI: 10.1039/c5bm00121h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A chemically defined hydrogel HG21, which allows enzyme-free passaging, is a substitute for gelatin allowing standardised and inexpensive mESC culture.
Collapse
Affiliation(s)
| | | | - Marcia Roy
- Centre for Neuroregeneration
- University of Edinburgh
- Edinburgh
- UK
| | - Paul A. de Sousa
- Scottish Centre for Regenerative Medicine
- University of Edinburgh
- Edinburgh
- UK
| | - Mark Bradley
- School of Chemistry
- EaStCHEM
- University of Edinburgh
- Edinburgh
- UK
| |
Collapse
|
88
|
Dowell KG, Simons AK, Bai H, Kell B, Wang ZZ, Yun K, Hibbs MA. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks. Stem Cells 2014; 32:1161-72. [PMID: 24307629 DOI: 10.1002/stem.1612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/11/2013] [Indexed: 12/25/2022]
Abstract
Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation.
Collapse
Affiliation(s)
- Karen G Dowell
- The Jackson Laboratory, Bar Harbor, Maine, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Gonçalves NN, Ambrósio CE, Piedrahita JA. Stem Cells and Regenerative Medicine in Domestic and Companion Animals: A Multispecies Perspective. Reprod Domest Anim 2014; 49 Suppl 4:2-10. [DOI: 10.1111/rda.12392] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/14/2014] [Indexed: 12/18/2022]
Affiliation(s)
- NN Gonçalves
- Department of Veterinary Medicine; Faculty of Animal Science and Food Engineering; FZEA/USP; Pirassununga Sao Paulo Brazil
- Department of Surgery; Faculty of Veterinary Medicine and Animal Science; FMVZ/USP; Sao Paulo Brazil
| | - CE Ambrósio
- Department of Veterinary Medicine; Faculty of Animal Science and Food Engineering; FZEA/USP; Pirassununga Sao Paulo Brazil
- Department of Surgery; Faculty of Veterinary Medicine and Animal Science; FMVZ/USP; Sao Paulo Brazil
| | - JA Piedrahita
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine; North Carolina State University; Raleigh NC USA
- Center for Comparative Medicine and Translational Research; North Carolina State University; Raleigh NC USA
| |
Collapse
|
90
|
Piubelli C, Meraviglia V, Pompilio G, D'Alessandra Y, Colombo GI, Rossini A. microRNAs and Cardiac Cell Fate. Cells 2014; 3:802-23. [PMID: 25100020 PMCID: PMC4197636 DOI: 10.3390/cells3030802] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 12/11/2022] Open
Abstract
The role of small, non-coding microRNAs (miRNAs) has recently emerged as fundamental in the regulation of the physiology of the cardiovascular system. Several specific miRNAs were found to be expressed in embryonic, postnatal, and adult cardiac tissues. In the present review, we will provide an overview about their role in controlling the different pathways regulating cell identity and fate determination. In particular, we will focus on the involvement of miRNAs in pluripotency determination and reprogramming, and specifically on cardiac lineage commitment and cell direct transdifferentiation into cardiomyocytes. The identification of cardiac-specific miRNAs and their targets provide new promising insights into the mechanisms that regulate cardiac development, function and dysfunction. Furthermore, due to their contribution in reprogramming, they could offer new opportunities for developing safe and efficient cell-based therapies for cardiovascular disorders.
Collapse
Affiliation(s)
- Chiara Piubelli
- Center for Biomedicine, European Academy of Bolzano/Bozen, Via Galvani 31, I-39100 Bolzano, Italy.
| | - Viviana Meraviglia
- Center for Biomedicine, European Academy of Bolzano/Bozen, Via Galvani 31, I-39100 Bolzano, Italy.
| | - Giulio Pompilio
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, I-20138 Milano, Italy.
| | - Yuri D'Alessandra
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, I-20138 Milano, Italy.
| | | | - Alessandra Rossini
- Center for Biomedicine, European Academy of Bolzano/Bozen, Via Galvani 31, I-39100 Bolzano, Italy.
| |
Collapse
|
91
|
Jung SK, Kim HJ, Kim CL, Lee JH, You JY, Lee ES, Lim JM, Yun SJ, Song JY, Cha SH. Enhancing effects of serum-rich and cytokine-supplemented culture conditions on developing blastocysts and deriving porcine parthenogenetic embryonic stem cells. J Vet Sci 2014; 15:519-28. [PMID: 24962410 PMCID: PMC4269594 DOI: 10.4142/jvs.2014.15.4.519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/19/2014] [Indexed: 12/31/2022] Open
Abstract
The present study was conducted to develop an effective method for establishment of porcine parthenogenetic embryonic stem cells (ppESCs) from parthenogenetically activated oocyte-derived blastocysts. The addition of 10% fetal bovine serum (FBS) to the medium on the 3rd day of oocyte culturing improved the development of blastocysts, attachment of inner cell masses (ICMs) onto feeder cells, and formation of primitive ppESC colonies. ICM attachment was further enhanced by basic fibroblast growth factor, stem cell factor, and leukemia inhibitory factor. From these attached ICMs, seven ppESC lines were established. ppESC pluripotency was verified by strong enzymatic alkaline phosphatase activity and the expression of pluripotent markers OCT3/4, Nanog, and SSEA4. Moreover, the ppESCs were induced to form an embryoid body and teratoma. Differentiation into three germ layers (ectoderm, mesoderm, and endoderm) was confirmed by the expression of specific markers for the layers and histological analysis. In conclusion, data from the present study suggested that our modified culture conditions using FBS and cytokines are highly useful for improving the generation of pluripotent ppESCs.
Collapse
Affiliation(s)
- Soo-Kyung Jung
- Animal and Plant Quarantine Agency, Anyang 430-757, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Turner DA, Trott J, Hayward P, Rué P, Martinez Arias A. An interplay between extracellular signalling and the dynamics of the exit from pluripotency drives cell fate decisions in mouse ES cells. Biol Open 2014; 3:614-26. [PMID: 24950969 PMCID: PMC4154298 DOI: 10.1242/bio.20148409] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Embryonic Stem cells derived from the epiblast tissue of the mammalian blastocyst retain the capability to differentiate into any adult cell type and are able to self-renew indefinitely under appropriate culture conditions. Despite the large amount of knowledge that we have accumulated to date about the regulation and control of self-renewal, efficient directed differentiation into specific tissues remains elusive. In this work, we have analysed in a systematic manner the interaction between the dynamics of loss of pluripotency and Activin/Nodal, BMP4 and Wnt signalling in fate assignment during the early stages of differentiation of mouse ES cells in culture. During the initial period of differentiation, cells exit from pluripotency and enter an Epi-like state. Following this transient stage, and under the influence of Activin/Nodal and BMP signalling, cells face a fate choice between differentiating into neuroectoderm and contributing to Primitive Streak fates. We find that Wnt signalling does not suppress neural development as previously thought and that it aids both fates in a context dependent manner. Our results suggest that as cells exit pluripotency they are endowed with a primary neuroectodermal fate and that the potency to become endomesodermal rises with time. We suggest that this situation translates into a “race for fates” in which the neuroectodermal fate has an advantage.
Collapse
Affiliation(s)
- David A Turner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Jamie Trott
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge CB2 1QR, UK
| | - Penelope Hayward
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Pau Rué
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
93
|
Ueda J, Maehara K, Mashiko D, Ichinose T, Yao T, Hori M, Sato Y, Kimura H, Ohkawa Y, Yamagata K. Heterochromatin dynamics during the differentiation process revealed by the DNA methylation reporter mouse, MethylRO. Stem Cell Reports 2014; 2:910-24. [PMID: 24936475 PMCID: PMC4050349 DOI: 10.1016/j.stemcr.2014.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 12/21/2022] Open
Abstract
In mammals, DNA is methylated at CpG sites, which play pivotal roles in gene silencing and chromatin organization. Furthermore, DNA methylation undergoes dynamic changes during development, differentiation, and in pathological processes. The conventional methods represent snapshots; therefore, the dynamics of this marker within living organisms remains unclear. To track this dynamics, we made a knockin mouse that expresses a red fluorescent protein (RFP)-fused methyl-CpG-binding domain (MBD) protein from the ROSA26 locus ubiquitously; we named it MethylRO (methylation probe in ROSA26 locus). Using this mouse, we performed RFP-mediated methylated DNA immunoprecipitation sequencing (MeDIP-seq), whole-body section analysis, and live-cell imaging. We discovered that mobility and pattern of heterochromatin as well as DNA methylation signal intensity inside the nuclei can be markers for cellular differentiation status. Thus, the MethylRO mouse represents a powerful bioresource and technique for DNA methylation dynamics studies in developmental biology, stem cell biology, as well as in disease states. Changes in DNA methylation are tracked in living mice Heterochromatin structure changes dynamically during development and differentiation Heterochromatin of preimplantation embryonic cells is highly dynamic than ESCs Heterochromatin pattern in nucleus can be a marker for cell differentiation states
Collapse
Affiliation(s)
- Jun Ueda
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Kazumitsu Maehara
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Daisuke Mashiko
- Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Takako Ichinose
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Tatsuma Yao
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka 536-8523, Japan
| | - Mayuko Hori
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Yuko Sato
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuo Yamagata
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Corresponding author
| |
Collapse
|
94
|
Chatfield J, O'Reilly MA, Bachvarova RF, Ferjentsik Z, Redwood C, Walmsley M, Patient R, Loose M, Johnson AD. Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos. Development 2014; 141:2429-40. [PMID: 24917499 PMCID: PMC4050694 DOI: 10.1242/dev.105346] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/22/2014] [Indexed: 01/18/2023]
Abstract
A common feature of development in most vertebrate models is the early segregation of the germ line from the soma. For example, in Xenopus and zebrafish embryos primordial germ cells (PGCs) are specified by germ plasm that is inherited from the egg; in mice, Blimp1 expression in the epiblast mediates the commitment of cells to the germ line. How these disparate mechanisms of PGC specification evolved is unknown. Here, in order to identify the ancestral mechanism of PGC specification in vertebrates, we studied PGC specification in embryos from the axolotl (Mexican salamander), a model for the tetrapod ancestor. In the axolotl, PGCs develop within mesoderm, and classic studies have reported their induction from primitive ectoderm (animal cap). We used an axolotl animal cap system to demonstrate that signalling through FGF and BMP4 induces PGCs. The role of FGF was then confirmed in vivo. We also showed PGC induction by Brachyury, in the presence of BMP4. These conditions induced pluripotent mesodermal precursors that give rise to a variety of somatic cell types, in addition to PGCs. Irreversible restriction of the germ line did not occur until the mid-tailbud stage, days after the somatic germ layers are established. Before this, germline potential was maintained by MAP kinase signalling. We propose that this stochastic mechanism of PGC specification, from mesodermal precursors, is conserved in vertebrates.
Collapse
Affiliation(s)
- Jodie Chatfield
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Marie-Anne O'Reilly
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Rosemary F Bachvarova
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Zoltan Ferjentsik
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Catherine Redwood
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Maggie Walmsley
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Roger Patient
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Mathew Loose
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Andrew D Johnson
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
95
|
Boroviak T, Loos R, Bertone P, Smith A, Nichols J. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat Cell Biol 2014; 16:516-28. [PMID: 24859004 PMCID: PMC4878656 DOI: 10.1038/ncb2965] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/11/2014] [Indexed: 12/14/2022]
Abstract
The precise relationship of embryonic stem cells (ESCs) to cells in the mouse embryo remains controversial. We present transcriptional and functional data to identify the embryonic counterpart of ESCs. Marker profiling shows that ESCs are distinct from early inner cell mass (ICM) and closely resemble pre-implantation epiblast. A characteristic feature of mouse ESCs is propagation without ERK signalling. Single-cell culture reveals that cell-autonomous capacity to thrive when the ERK pathway is inhibited arises late during blastocyst development and is lost after implantation. The frequency of deriving clonal ESC lines suggests that all E4.5 epiblast cells can become ESCs. We further show that ICM cells from early blastocysts can progress to ERK independence if provided with a specific laminin substrate. These findings suggest that formation of the epiblast coincides with competence for ERK-independent self-renewal in vitro and consequent propagation as ESC lines.
Collapse
Affiliation(s)
- Thorsten Boroviak
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,
| | - Remco Loos
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK,
| | - Paul Bertone
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK,
- Genome Biology and Developmental Biology Units, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany,
| | - Austin Smith
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,
- Department of Biochemistry, University of Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK,
| |
Collapse
|
96
|
van Leeuwen J, Berg DK, Smith CS, Wells DN, Pfeffer PL. Specific epiblast loss and hypoblast impairment in cattle embryos sensitized to survival signalling by ubiquitous overexpression of the proapoptotic gene BAD. PLoS One 2014; 9:e96843. [PMID: 24806443 PMCID: PMC4013130 DOI: 10.1371/journal.pone.0096843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 04/11/2014] [Indexed: 01/16/2023] Open
Abstract
Early embryonic lethality is common, particularly in dairy cattle. We made cattle embryos more sensitive to environmental stressors by raising the threshold of embryo survival signaling required to overcome the deleterious effects of overexpressing the proapoptotic protein BAD. Two primary fibroblast cell lines expressing BAD and exhibiting increased sensitivity to stress-induced apoptosis were used to generate transgenic Day13/14 BAD embryos. Transgenic embryos were normal in terms of retrieval rates, average embryo length or expression levels of the trophectoderm marker ASCL2. However both lines of BAD-tg embryos lost the embryonic disc and thus the entire epiblast lineage at significantly greater frequencies than either co-transferrred IVP controls or LacZ-tg embryos. Embryos without epiblast still contained the second ICM-derived lineage, the hypopblast, albeit frequently in an impaired state, as shown by reduced expression of the hypoblast markers GATA4 and FIBRONECTIN. This indicates a gradient of sensitivity (epiblast > hypoblast > TE) to BAD overexpression. We postulate that the greater sensitivity of specifically the epiblast lineage that we have seen in our transgenic model, reflects an inherent greater susceptibility of this lineage to environmental stress and may underlie the epiblast-specific death seen in phantom pregnancies.
Collapse
Affiliation(s)
- Jessica van Leeuwen
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
- Department of Biological Sciences, University of Waikato, Hamilton, Waikato, New Zealand
| | - Debra K. Berg
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
| | - Craig S. Smith
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
- School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
| | - David N. Wells
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
| | - Peter L. Pfeffer
- Animal Productivity, AgResearch, Hamilton, Waikato, New Zealand
- * E-mail:
| |
Collapse
|
97
|
Zaninovic N, Zhan Q, Rosenwaks Z. Derivation of human embryonic stem cells (hESC). Methods Mol Biol 2014; 1154:121-44. [PMID: 24782008 DOI: 10.1007/978-1-4939-0659-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Stem cells are characterized by their absolute or relative lack of specialization their ability for self-renewal, as well as their ability to generate differentiated progeny through cellular lineages with one or more branches. The increased availability of embryonic tissue and greatly improved derivation methods have led to a large increase in the number of hESC lines.
Collapse
Affiliation(s)
- Nikica Zaninovic
- Center for Reproductive Medicine, Weill Cornell Medical College, 1305 York Avenue, New York, NY, 10021, USA,
| | | | | |
Collapse
|
98
|
Guan BX, Bhanu B, Talbot P, Lin S. Bio-Driven Cell Region Detection in Human Embryonic Stem Cell Assay. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:604-611. [PMID: 26356027 DOI: 10.1109/tcbb.2014.2306836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper proposes a bio-driven algorithm that detects cell regions automatically in the human embryonic stem cell (hESC) images obtained using a phase contrast microscope. The algorithm uses both statistical intensity distributions of foreground/hESCs and background/substrate as well as cell property for cell region detection. The intensity distributions of foreground/hESCs and background/substrate are modeled as a mixture of two Gaussians. The cell property is translated into local spatial information. The algorithm is optimized by parameters of the modeled distributions and cell regions evolve with the local cell property. The paper validates the method with various videos acquired using different microscope objectives. In comparison with the state-of-the-art methods, the proposed method is able to detect the entire cell region instead of fragmented cell regions. It also yields high marks on measures such as Jacard similarity, Dice coefficient, sensitivity and specificity. Automated detection by the proposed method has the potential to enable fast quantifiable analysis of hESCs using large data sets which are needed to understand dynamic cell behaviors.
Collapse
|
99
|
Seki M, Masaki H, Arauchi T, Nakauchi H, Sugano S, Suzuki Y. A comparison of the rest complex binding patterns in embryonic stem cells and epiblast stem cells. PLoS One 2014; 9:e95374. [PMID: 24752154 PMCID: PMC3994037 DOI: 10.1371/journal.pone.0095374] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/26/2014] [Indexed: 10/29/2022] Open
Abstract
We detected and characterized the binding sites of the representative Rest complex components Rest, Sin3A, and Lsd1. We compared their binding patterns in mouse embryonic stem (ES) cells and epiblast stem (EpiS) cells. We found few Rest sites unique to the EpiS cells. The ES-unique site features were distinct from those of the common sites, namely, the signal intensities were weaker, and the characteristic gene function categories differed. Our analyses showed that the Rest binding sites do not always overlap with the Sin3A and Lsd1 binding sites. The Sin3A binding pattern differed remarkably between the ES and EpiS cells and was accompanied by significant changes in acetylated-histone patterns in the surrounding regions. A series of transcriptome analyses in the same cell types unexpectedly showed that the putative target gene transcript levels were not dramatically different despite dynamic changes in the Rest complex binding patterns and chromatin statuses, which suggests that Rest is not the sole determinant of repression at its targets. Nevertheless, we identified putative Rest targets with explicitly enhanced transcription upon Rest knock-down in 143 and 60 common and ES-unique Rest target genes, respectively. Among such sites, several genes are involved in ES cell proliferation. In addition, we also found that long, intergenic non-coding RNAs were apparent Rest targets and shared similar features with the protein-coding target genes. Interestingly, such non-coding target genes showed less conservation through evolution than protein-coding targets. As a result of differences in the components and targets of the Rest complex, its functional roles may differ in ES and EpiS cells.
Collapse
Affiliation(s)
- Masahide Seki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Hideki Masaki
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, the University of Tokyo, Minato-ku, Tokyo, Japan
| | - Takako Arauchi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, the University of Tokyo, Minato-ku, Tokyo, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
- * E-mail:
| |
Collapse
|
100
|
Tan G, Cheng L, Chen T, Yu L, Tan Y. Foxm1 mediates LIF/Stat3-dependent self-renewal in mouse embryonic stem cells and is essential for the generation of induced pluripotent stem cells. PLoS One 2014; 9:e92304. [PMID: 24743237 PMCID: PMC3990529 DOI: 10.1371/journal.pone.0092304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/20/2014] [Indexed: 12/23/2022] Open
Abstract
Activation of signal transducer and activator of transcription 3 (Stat3) by leukemia inhibitory factor (LIF) is required for maintaining self-renewal and pluripotency of mouse embryonic stem cells (mESCs). Here, we have confirmed transcription factor Forkhead Box m1 (Foxm1) as a LIF/Stat3 downstream target that mediates LIF/Stat3-dependent mESC self-renewal. The expression of Foxm1 relies on LIF signaling and is stimulated by Stat3 directly in mESCs. The knockdown of Foxm1 results in the loss of mESC pluripotency in the presence of LIF, and the overexpression of Foxm1 alone maintains mESC pluripotency in the absence of LIF and feeder layers, indicating that Foxm1 is a mediator of LIF/Stat3-dependent maintenance of pluripotency in mESCs. Furthermore, the inhibition of Foxm1 expression prevents the reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells (iPSCs), suggesting that Foxm1 is essential for the reprogramming of somatic cells into iPSCs. Our results reveal an essential function of Foxm1 in the LIF/Stat3-mediated mESC self-renewal and the generation of iPSCs.
Collapse
Affiliation(s)
- Guixiang Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Department of Biomedical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan, China
| | - Liang Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Department of Biomedical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan, China
| | - Tuanhui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Department of Biomedical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan, China
| | - Li Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Department of Biomedical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan, China
- * E-mail: (YT); (LY)
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Department of Biomedical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan, China
- * E-mail: (YT); (LY)
| |
Collapse
|