51
|
Pir P, Le Novère N. Mathematical Models of Pluripotent Stem Cells: At the Dawn of Predictive Regenerative Medicine. Methods Mol Biol 2016; 1386:331-50. [PMID: 26677190 DOI: 10.1007/978-1-4939-3283-2_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Regenerative medicine, ranging from stem cell therapy to organ regeneration, is promising to revolutionize treatments of diseases and aging. These approaches require a perfect understanding of cell reprogramming and differentiation. Predictive modeling of cellular systems has the potential to provide insights about the dynamics of cellular processes, and guide their control. Moreover in many cases, it provides alternative to experimental tests, difficult to perform for practical or ethical reasons. The variety and accuracy of biological processes represented in mathematical models grew in-line with the discovery of underlying molecular mechanisms. High-throughput data generation led to the development of models based on data analysis, as an alternative to more established modeling based on prior mechanistic knowledge. In this chapter, we give an overview of existing mathematical models of pluripotency and cell fate, to illustrate the variety of methods and questions. We conclude that current approaches are yet to overcome a number of limitations: Most of the computational models have so far focused solely on understanding the regulation of pluripotency, and the differentiation of selected cell lineages. In addition, models generally interrogate only a few biological processes. However, a better understanding of the reprogramming process leading to ESCs and iPSCs is required to improve stem-cell therapies. One also needs to understand the links between signaling, metabolism, regulation of gene expression, and the epigenetics machinery.
Collapse
Affiliation(s)
- Pınar Pir
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Nicolas Le Novère
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
52
|
Zhang X, Chen Y, Ye Y, Wang J, Wang H, Yuan G, Lin Z, Wu Y, Zhang Y, Lin X. Wnt signaling promotes hindgut fate commitment through regulating multi-lineage genes during hESC differentiation. Cell Signal 2016; 29:12-22. [PMID: 27693749 DOI: 10.1016/j.cellsig.2016.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
Wnt signaling plays essential roles in both embryonic pattern formation and postembryonic tissue homoestasis. High levels of Wnt activity repress foregut identity and facilitate hindgut fate through forming a gradient of Wnt signaling activity along the anterior-posterior axis. Here, we examined the mechanisms of Wnt signaling in hindgut development by differentiating human embryonic stem cells (hESCs) into the hindgut progenitors. We observed severe morphological changes when Wnt signaling was blocked by using Wnt antagonist Dkk1. We performed deep-transcriptome sequencing (RNA-seq) and identified 240 Wnt-activated genes and 2023 Wnt-repressed genes, respectively. Clusters of Wnt targets showed enrichment in specific biological functions, such as "gastrointestinal or skeletal development" in the Wnt-activated targets and "neural or immune system development" in the Wnt-repressed targets. Moreover, we adopted a high-throughput chromatin immunoprecipitation and deep sequencing (ChIP-seq) approach to identify the genomic regions through which Wnt-activated transcription factor TCF7L2 regulated transcription. We identified 83 Wnt direct target candidates, including the hindgut marker CDX2 and the genes relevant to morphogenesis (MSX1, MSX2, LEF1, T, PDGFRB etc.) through combinatorial analysis of the RNA-seq and ChIP-seq data. Together, our study identified a series of direct and indirect Wnt targets in hindgut differentiation, and uncovered the diverse mechanisms of Wnt signaling in regulating multi-lineage differentiation.
Collapse
Affiliation(s)
- Xiujuan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ying Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Ye
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Wang
- Core Genomic Facility, CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hong Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guohong Yuan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yihui Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Lin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Division of Developmental Biology, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States; State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
53
|
Zimmerlin L, Park TS, Huo JS, Verma K, Pather SR, Talbot CC, Agarwal J, Steppan D, Zhang YW, Considine M, Guo H, Zhong X, Gutierrez C, Cope L, Canto-Soler MV, Friedman AD, Baylin SB, Zambidis ET. Tankyrase inhibition promotes a stable human naïve pluripotent state with improved functionality. Development 2016; 143:4368-4380. [PMID: 27660325 DOI: 10.1242/dev.138982] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/11/2016] [Indexed: 01/04/2023]
Abstract
The derivation and maintenance of human pluripotent stem cells (hPSCs) in stable naïve pluripotent states has a wide impact in human developmental biology. However, hPSCs are unstable in classical naïve mouse embryonic stem cell (ESC) WNT and MEK/ERK signal inhibition (2i) culture. We show that a broad repertoire of conventional hESC and transgene-independent human induced pluripotent stem cell (hiPSC) lines could be reverted to stable human preimplantation inner cell mass (ICM)-like naïve states with only WNT, MEK/ERK, and tankyrase inhibition (LIF-3i). LIF-3i-reverted hPSCs retained normal karyotypes and genomic imprints, and attained defining mouse ESC-like functional features, including high clonal self-renewal, independence from MEK/ERK signaling, dependence on JAK/STAT3 and BMP4 signaling, and naïve-specific transcriptional and epigenetic configurations. Tankyrase inhibition promoted a stable acquisition of a human preimplantation ICM-like ground state via modulation of WNT signaling, and was most efficacious in efficiently reprogrammed conventional hiPSCs. Importantly, naïve reversion of a broad repertoire of conventional hiPSCs reduced lineage-primed gene expression and significantly improved their multilineage differentiation capacities. Stable naïve hPSCs with reduced genetic variability and improved functional pluripotency will have great utility in regenerative medicine and human disease modeling.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Division of Pediatric Oncology, Baltimore, MD 21205, USA
| | - Tea Soon Park
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Division of Pediatric Oncology, Baltimore, MD 21205, USA
| | - Jeffrey S Huo
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Division of Pediatric Oncology, Baltimore, MD 21205, USA
| | - Karan Verma
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Division of Pediatric Oncology, Baltimore, MD 21205, USA
| | - Sarshan R Pather
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Division of Pediatric Oncology, Baltimore, MD 21205, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences at Johns Hopkins, Baltimore, MD 21205, USA
| | - Jasmin Agarwal
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Division of Pediatric Oncology, Baltimore, MD 21205, USA
| | - Diana Steppan
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Division of Pediatric Oncology, Baltimore, MD 21205, USA
| | - Yang W Zhang
- Division of Cancer Biology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Michael Considine
- Division of Cancer Biology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Hong Guo
- Division of Pediatric Oncology, Baltimore, MD 21205, USA
| | - Xiufeng Zhong
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christian Gutierrez
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Leslie Cope
- Division of Cancer Biology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - M Valeria Canto-Soler
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Stephen B Baylin
- Division of Cancer Biology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Elias T Zambidis
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Division of Pediatric Oncology, Baltimore, MD 21205, USA
| |
Collapse
|
54
|
Nallar SC, Kalvakolanu DV. GRIM-19: A master regulator of cytokine induced tumor suppression, metastasis and energy metabolism. Cytokine Growth Factor Rev 2016; 33:1-18. [PMID: 27659873 DOI: 10.1016/j.cytogfr.2016.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/14/2016] [Indexed: 12/31/2022]
Abstract
Cytokines induce cell proliferation or growth suppression depending on the context. It is increasingly becoming clear that success of standard radiotherapy and/or chemotherapeutics to eradicate solid tumors is dependent on IFN signaling. In this review we discuss the molecular mechanisms of tumor growth suppression by a gene product isolated in our laboratory using a genome-wide expression knock-down strategy. Gene associated with retinoid-IFN-induced mortality -19 (GRIM-19) functions as non-canonical tumor suppressor by antagonizing oncoproteins. As a component of mitochondrial respiratory chain, GRIM-19 influences the degree of "Warburg effect" in cancer cells as many advanced and/or aggressive tumors show severely down-regulated GRIM-19 levels. In addition, GRIM-19 appears to regulate innate and acquired immune responses in mouse models. Thus, GRIM-19 is positioned at nodes that favor cell protection and/or prevent aberrant cell growth.
Collapse
Affiliation(s)
- Shreeram C Nallar
- Department of Microbiology and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dhan V Kalvakolanu
- Department of Microbiology and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
55
|
Asuthkar S, Guda MR, Martin SE, Antony R, Fernandez K, Lin J, Tsung AJ, Velpula KK. Hand1 overexpression inhibits medulloblastoma metastasis. Biochem Biophys Res Commun 2016; 477:215-21. [PMID: 27297109 DOI: 10.1016/j.bbrc.2016.06.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/09/2016] [Indexed: 11/18/2022]
Abstract
Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Among the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis.
Collapse
Affiliation(s)
- Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA
| | - Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA
| | - Sarah E Martin
- Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA
| | - Reuben Antony
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA
| | - Karen Fernandez
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA
| | - Julian Lin
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA; Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA; Illinois Neurological Institute, Peoria, IL 61656, USA
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA; Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA.
| |
Collapse
|
56
|
Nathubhai A, Haikarainen T, Hayward PC, Muñoz-Descalzo S, Thompson AS, Lloyd MD, Lehtiö L, Threadgill MD. Structure-activity relationships of 2-arylquinazolin-4-ones as highly selective and potent inhibitors of the tankyrases. Eur J Med Chem 2016; 118:316-27. [PMID: 27163581 DOI: 10.1016/j.ejmech.2016.04.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 01/03/2023]
Abstract
Tankyrases (TNKSs), members of the PARP (Poly(ADP-ribose)polymerases) superfamily of enzymes, have gained interest as therapeutic drug targets, especially as they are involved in the regulation of Wnt signalling. A series of 2-arylquinazolin-4-ones with varying substituents at the 8-position was synthesised. An 8-methyl group (compared to 8-H, 8-OMe, 8-OH), together with a 4'-hydrophobic or electron-withdrawing group, provided the most potency and selectivity towards TNKSs. Co-crystal structures of selected compounds with TNKS-2 revealed that the protein around the 8-position is more hydrophobic in TNKS-2 compared to PARP-1/2, rationalising the selectivity. The NAD(+)-binding site contains a hydrophobic cavity which accommodates the 2-aryl group; in TNKS-2, this has a tunnel to the exterior but the cavity is closed in PARP-1. 8-Methyl-2-(4-trifluoromethylphenyl)quinazolin-4-one was identified as a potent and selective inhibitor of TNKSs and Wnt signalling. This compound and analogues could serve as molecular probes to study proliferative signalling and for development of inhibitors of TNKSs as drugs.
Collapse
Affiliation(s)
- Amit Nathubhai
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Teemu Haikarainen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Penelope C Hayward
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Silvia Muñoz-Descalzo
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Andrew S Thompson
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Matthew D Lloyd
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Lari Lehtiö
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Michael D Threadgill
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
57
|
PTF1a Activity in Enriched Posterior Foregut Endoderm, but Not Definitive Endoderm, Leads to Enhanced Pancreatic Differentiation in an In Vitro Mouse ESC-Based Model. Stem Cells Int 2016; 2016:6939438. [PMID: 27066080 PMCID: PMC4811216 DOI: 10.1155/2016/6939438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/07/2015] [Accepted: 11/26/2015] [Indexed: 01/22/2023] Open
Abstract
Transcription factors are tools repetitively used by the embryo to generate a variety of lineages. Hence, their context of activation is an important determinant of their ability to specifically trigger certain cell fates, but not others. The context is also consequential when considering directing differentiation of embryonic stem cells (ESCs). In this study, we sought to assess the context of pancreatic transcription factor 1a (PTF1a) activation in reference to its propancreatic effects in mouse ESCs (mESCs). We hypothesized that an enriched endodermal population would respond to PTF1a and trigger the pancreatic program more effectively than a spontaneously differentiated population. Using an in vitro model of pancreas development that we recently established, we found that inducing PTF1a in highly enriched definitive endoderm did not promote pancreatic differentiation but induction in more differentiated endoderm, specifically posterior foregut endoderm, did form pancreatic progenitors. These progenitors never underwent terminal differentiation to endocrine or acinar phenotype. However, a short 3D culture period, prior to PTF1a induction, led to the generation of monohormonal insulin(+) cells and amylase-expressing cells. Our findings suggest that enriched posterior foregut endoderm is competent to respond to PTF1a's propancreatic activity; but a 3D culture environment is essential for terminal differentiation of pancreatic progenitors.
Collapse
|
58
|
White DE, Sylvester JB, Levario TJ, Lu H, Streelman JT, McDevitt TC, Kemp ML. Quantitative multivariate analysis of dynamic multicellular morphogenic trajectories. Integr Biol (Camb) 2016; 7:825-33. [PMID: 26095427 DOI: 10.1039/c5ib00072f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interrogating fundamental cell biology principles that govern tissue morphogenesis is critical to better understanding of developmental biology and engineering novel multicellular systems. Recently, functional micro-tissues derived from pluripotent embryonic stem cell (ESC) aggregates have provided novel platforms for experimental investigation; however elucidating the factors directing emergent spatial phenotypic patterns remains a significant challenge. Computational modelling techniques offer a unique complementary approach to probe mechanisms regulating morphogenic processes and provide a wealth of spatio-temporal data, but quantitative analysis of simulations and comparison to experimental data is extremely difficult. Quantitative descriptions of spatial phenomena across multiple systems and scales would enable unprecedented comparisons of computational simulations with experimental systems, thereby leveraging the inherent power of computational methods to interrogate the mechanisms governing emergent properties of multicellular biology. To address these challenges, we developed a portable pattern recognition pipeline consisting of: the conversion of cellular images into networks, extraction of novel features via network analysis, and generation of morphogenic trajectories. This novel methodology enabled the quantitative description of morphogenic pattern trajectories that could be compared across diverse systems: computational modelling of multicellular structures, differentiation of stem cell aggregates, and gastrulation of cichlid fish. Moreover, this method identified novel spatio-temporal features associated with different stages of embryo gastrulation, and elucidated a complex paracrine mechanism capable of explaining spatiotemporal pattern kinetic differences in ESC aggregates of different sizes.
Collapse
Affiliation(s)
- Douglas E White
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | | | | | | | | | | | | |
Collapse
|
59
|
Huang TS, Li L, Moalim-Nour L, Jia D, Bai J, Yao Z, Bennett SAL, Figeys D, Wang L. A Regulatory Network Involving β-Catenin, e-Cadherin, PI3k/Akt, and Slug Balances Self-Renewal and Differentiation of Human Pluripotent Stem Cells In Response to Wnt Signaling. Stem Cells 2016; 33:1419-33. [PMID: 25538040 PMCID: PMC5297972 DOI: 10.1002/stem.1944] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
The mechanisms underlying disparate roles of the canonical Wnt signaling pathway in maintaining self‐renewal or inducing differentiation and lineage specification in embryonic stem cells (ESCs) are not clear. In this study, we provide the first demonstration that self‐renewal versus differentiation of human ESCs (hESCs) in response to Wnt signaling is predominantly determined by a two‐layer regulatory circuit involving β‐catenin, E‐cadherin, PI3K/Akt, and Slug in a time‐dependent manner. Short‐term upregulation of β‐catenin does not lead to the activation of T‐cell factor (TCF)‐eGFP Wnt reporter in hESCs. Instead, it enhances E‐cadherin expression on the cell membrane, thereby enhancing hESC self‐renewal through E‐cadherin‐associated PI3K/Akt signaling. Conversely, long‐term Wnt activation or loss of E‐cadherin intracellular β‐catenin binding domain induces TCF‐eGFP activity and promotes hESC differentiation through β‐catenin‐induced upregulation of Slug. Enhanced expression of Slug leads to a further reduction of E‐cadherin that serves as a β‐catenin “sink” sequestering free cytoplasmic β‐catenin. The formation of such a framework reinforces hESCs to switch from a state of temporal self‐renewal associated with short‐term Wnt/β‐catenin activation to definitive differentiation. Stem Cells2015;33:1419–1433
Collapse
Affiliation(s)
- Tyng-Shyan Huang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 2016; 17:155-69. [PMID: 26860365 DOI: 10.1038/nrm.2015.28] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular mechanisms and signalling pathways that regulate the in vitro preservation of distinct pluripotent stem cell configurations, and their induction in somatic cells by direct reprogramming, constitute a highly exciting area of research. In this Review, we integrate recent discoveries related to isolating unique naive and primed pluripotent stem cell states with altered functional and molecular characteristics, and from different species. We provide an overview of the pathways underlying pluripotent state transitions and interconversion in vitro and in vivo. We conclude by highlighting unresolved key questions, future directions and potential novel applications of such dynamic pluripotent cell states.
Collapse
|
61
|
Chatterjee SS, Saj A, Gocha T, Murphy M, Gonsalves FC, Zhang X, Hayward P, Akgöl Oksuz B, Shen SS, Madar A, Martinez Arias A, DasGupta R. Inhibition of β-catenin-TCF1 interaction delays differentiation of mouse embryonic stem cells. J Cell Biol 2016; 211:39-51. [PMID: 26459597 PMCID: PMC4602028 DOI: 10.1083/jcb.201503017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Blocking β-catenin/TCF1–mediated transcriptional activation with a specific small molecule or by TCF1 knockdown delays the mouse embryonic stem cell differentiation program and enhances pluripotency. The ability of mouse embryonic stem cells (mESCs) to self-renew or differentiate into various cell lineages is regulated by signaling pathways and a core pluripotency transcriptional network (PTN) comprising Nanog, Oct4, and Sox2. The Wnt/β-catenin pathway promotes pluripotency by alleviating T cell factor TCF3-mediated repression of the PTN. However, it has remained unclear how β-catenin’s function as a transcriptional activator with TCF1 influences mESC fate. Here, we show that TCF1-mediated transcription is up-regulated in differentiating mESCs and that chemical inhibition of β-catenin/TCF1 interaction improves long-term self-renewal and enhances functional pluripotency. Genetic loss of TCF1 inhibited differentiation by delaying exit from pluripotency and conferred a transcriptional profile strikingly reminiscent of self-renewing mESCs with high Nanog expression. Together, our data suggest that β-catenin’s function in regulating mESCs is highly context specific and that its interaction with TCF1 promotes differentiation, further highlighting the need for understanding how its individual protein–protein interactions drive stem cell fate.
Collapse
Affiliation(s)
- Sujash S Chatterjee
- Department of Biochemistry and Molecular Pharmacology, New York University Cancer Institute, New York University Langone Medical Center, New York, NY 10016
| | - Abil Saj
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672
| | - Tenzin Gocha
- Department of Biochemistry and Molecular Pharmacology, New York University Cancer Institute, New York University Langone Medical Center, New York, NY 10016
| | - Matthew Murphy
- Department of Biochemistry and Molecular Pharmacology, New York University Cancer Institute, New York University Langone Medical Center, New York, NY 10016
| | - Foster C Gonsalves
- Department of Biochemistry and Molecular Pharmacology, New York University Cancer Institute, New York University Langone Medical Center, New York, NY 10016
| | - Xiaoqian Zhang
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672
| | - Penelope Hayward
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, England, UK
| | - Betül Akgöl Oksuz
- Bioinformatics Core, New York University Langone Medical Center, New York, NY 10016
| | - Steven S Shen
- Bioinformatics Core, New York University Langone Medical Center, New York, NY 10016
| | - Aviv Madar
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853
| | | | - Ramanuj DasGupta
- Department of Biochemistry and Molecular Pharmacology, New York University Cancer Institute, New York University Langone Medical Center, New York, NY 10016 Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672
| |
Collapse
|
62
|
Christoforou A, Mulvey CM, Breckels LM, Geladaki A, Hurrell T, Hayward PC, Naake T, Gatto L, Viner R, Martinez Arias A, Lilley KS. A draft map of the mouse pluripotent stem cell spatial proteome. Nat Commun 2016; 7:8992. [PMID: 26754106 PMCID: PMC4729960 DOI: 10.1038/ncomms9992] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 10/22/2015] [Indexed: 12/18/2022] Open
Abstract
Knowledge of the subcellular distribution of proteins is vital for understanding cellular mechanisms. Capturing the subcellular proteome in a single experiment has proven challenging, with studies focusing on specific compartments or assigning proteins to subcellular niches with low resolution and/or accuracy. Here we introduce hyperLOPIT, a method that couples extensive fractionation, quantitative high-resolution accurate mass spectrometry with multivariate data analysis. We apply hyperLOPIT to a pluripotent stem cell population whose subcellular proteome has not been extensively studied. We provide localization data on over 5,000 proteins with unprecedented spatial resolution to reveal the organization of organelles, sub-organellar compartments, protein complexes, functional networks and steady-state dynamics of proteins and unexpected subcellular locations. The method paves the way for characterizing the impact of post-transcriptional and post-translational modification on protein location and studies involving proteome-level locational changes on cellular perturbation. An interactive open-source resource is presented that enables exploration of these data.
Collapse
Affiliation(s)
- Andy Christoforou
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Claire M Mulvey
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Lisa M Breckels
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Aikaterini Geladaki
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Tracey Hurrell
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Pharmacology, University of Pretoria, Arcadia 0007, Republic of South Africa
| | - Penelope C Hayward
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Thomas Naake
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Laurent Gatto
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Rosa Viner
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95314, USA
| | | | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
63
|
Baillie-Johnson P, van den Brink SC, Balayo T, Turner DA, Martinez Arias A. Generation of Aggregates of Mouse Embryonic Stem Cells that Show Symmetry Breaking, Polarization and Emergent Collective Behaviour In Vitro. J Vis Exp 2015. [PMID: 26650833 PMCID: PMC4692741 DOI: 10.3791/53252] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have developed a protocol improving current Embryoid Body (EB) culture which allows the study of self-organization, symmetry breaking, axial elongation and cell fate specification using aggregates of mouse embryonic stem cells (mESCs) in suspension culture. Small numbers of mESCs are aggregated in basal medium for 48 hr in non-tissue-culture-treated, U-bottomed 96-well plates, after which they are competent to respond to experimental signals. Following treatment, these aggregates begin to show signs of polarized gene expression and gradually alter their morphology from a spherical mass of cells to an elongated, well organized structure in the absence of external asymmetry cues. These structures are not only able to display markers of the three germ layers, but actively display gastrulation-like movements, evidenced by a directional dislodgement of individual cells from the aggregate, which crucially occurs at one region of the elongated structure. This protocol provides a detailed method for the reproducible formation of these aggregates, their stimulation with signals such as Wnt/β-Catenin activation and BMP inhibition and their analysis by single time-point or time-lapse fluorescent microscopy. In addition, we describe modifications to current whole-mount mouse embryo staining procedures for immunocytochemical analysis of specific markers within fixed aggregates. The changes in morphology, gene expression and length of the aggregates can be quantitatively measured, providing information on how signals can alter axial fates. It is envisaged that this system can be applied both to the study of early developmental events such as axial development and organization, and more broadly, the processes of self-organization and cellular decision-making. It may also provide a suitable niche for the generation of cell types present in the embryo that are unobtainable from conventional adherent culture such as spinal cord and motor neurones.
Collapse
Affiliation(s)
| | - Susanne Carina van den Brink
- Department of Genetics, University of Cambridge; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences
| | - Tina Balayo
- Department of Genetics, University of Cambridge
| | | | | |
Collapse
|
64
|
Snail1-dependent control of embryonic stem cell pluripotency and lineage commitment. Nat Commun 2015; 5:3070. [PMID: 24401905 DOI: 10.1038/ncomms4070] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 12/05/2013] [Indexed: 12/21/2022] Open
Abstract
Embryonic stem cells (ESCs) exhibit the dual properties of self-renewal and pluripotency as well as the ability to undergo differentiation that gives rise to all three germ layers. Wnt family members can both promote ESC maintenance and trigger differentiation while also controlling the expression of Snail1, a zinc-finger transcriptional repressor. Snail1 has been linked to events ranging from cell cycle regulation and cell survival to epithelial-mesenchymal transition (EMT) and gastrulation, but its role in self-renewal, pluripotency or lineage commitment in ESCs remains undefined. Here we demonstrate using isogenic pairs of conditional knockout mouse ESCs, that Snail1 exerts Wnt- and EMT independent control over the stem cell transcriptome without affecting self-renewal or pluripotency-associated functions. By contrast, during ESC differentiation, an endogenous Wnt-mediated burst in Snail1 expression regulates neuroectodermal fate while playing a required role in epiblast stem cell exit and the consequent lineage fate decisions that define mesoderm commitment.
Collapse
|
65
|
Sellerio AL, Ciusani E, Ben-Moshe NB, Coco S, Piccinini A, Myers CR, Sethna JP, Giampietro C, Zapperi S, La Porta CAM. Overshoot during phenotypic switching of cancer cell populations. Sci Rep 2015; 5:15464. [PMID: 26494317 PMCID: PMC4616026 DOI: 10.1038/srep15464] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022] Open
Abstract
The dynamics of tumor cell populations is hotly debated: do populations derive hierarchically from a subpopulation of cancer stem cells (CSCs), or are stochastic transitions that mutate differentiated cancer cells to CSCs important? Here we argue that regulation must also be important. We sort human melanoma cells using three distinct cancer stem cell (CSC) markers - CXCR6, CD271 and ABCG2 - and observe that the fraction of non-CSC-marked cells first overshoots to a higher level and then returns to the level of unsorted cells. This clearly indicates that the CSC population is homeostatically regulated. Combining experimental measurements with theoretical modeling and numerical simulations, we show that the population dynamics of cancer cells is associated with a complex miRNA network regulating the Wnt and PI3K pathways. Hence phenotypic switching is not stochastic, but is tightly regulated by the balance between positive and negative cells in the population. Reducing the fraction of CSCs below a threshold triggers massive phenotypic switching, suggesting that a therapeutic strategy based on CSC eradication is unlikely to succeed.
Collapse
Affiliation(s)
- Alessandro L Sellerio
- Center for Complexity and Biosystems, Department of Physics, University of Milano, via Celoria 16, 20133 Milano, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto per l'Energetica e le Interfasi, Via R. Cozzi 53, 20125 Milano, Italy
| | | | - Noa Bossel Ben-Moshe
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Stefania Coco
- Dipartimento di Scienze Bomediche per la Salute, University of Milano, Milano, Italy
| | - Andrea Piccinini
- Dipartimento di Scienze Bomediche per la Salute, University of Milano, Milano, Italy
| | - Christopher R Myers
- Laboratory of Atomic and Solid State Physics, Physics Department, Cornell University, Ithaca, NY.,Institute of Biotechnology, Cornell University, Ithaca, NY
| | - James P Sethna
- Laboratory of Atomic and Solid State Physics, Physics Department, Cornell University, Ithaca, NY
| | - Costanza Giampietro
- Center for Complexity and Biosystems, Department of Bioscience, University of Milano, via Celoria 26, 20133 Milano, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milano, via Celoria 16, 20133 Milano, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto per l'Energetica e le Interfasi, Via R. Cozzi 53, 20125 Milano, Italy.,ISI Foundation, Via Alassio 11C, Torino, Italy.,Department of Applied Physics, Aalto University, P.O. Box 14100, FIN-00076, Aalto, Finland
| | - Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Bioscience, University of Milano, via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
66
|
Kajabadi NS, Ghoochani A, Peymani M, Ghaedi K, Kiani-Esfahani A, Hashemi MS, Nasr-Esfahani MH, Baharvand H. The Synergistic Enhancement of Cloning Efficiency in Individualized Human Pluripotent Stem Cells by Peroxisome Proliferative-activated Receptor-γ (PPARγ) Activation and Rho-associated Kinase (ROCK) Inhibition. J Biol Chem 2015; 290:26303-26313. [PMID: 26336103 PMCID: PMC4646278 DOI: 10.1074/jbc.m114.624841] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 08/25/2015] [Indexed: 01/26/2023] Open
Abstract
Although human pluripotent stem cells (hPSCs) provide valuable sources for regenerative medicine, their applicability is dependent on obtaining both suitable up-scaled and cost effective cultures. The Rho-associated kinase (ROCK) inhibitor Y-27632 permits hPSC survival upon dissociation; however, cloning efficiency is often still low. Here we have shown that pioglitazone, a selective peroxisome proliferative-activated receptor-γ agonist, along with Y-27632 synergistically diminished dissociation-induced apoptosis and increased cloning efficiency (2-3-fold versus Y-27632) without affecting pluripotency of hPSCs. Pioglitazone exerted its positive effect by inhibition of glycogen synthase kinase (GSK3) activity and enhancement of membranous β-catenin and E-cadherin proteins. These effects were reversed by GW-9662, an irreversible peroxisome proliferative-activated receptor-γ antagonist. This novel setting provided a step toward hPSC manipulation and its biomedical applications.
Collapse
Affiliation(s)
- Nasim-Sadat Kajabadi
- From the Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan 8174673441, Iran
| | - Ali Ghoochani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8165131378, Iran
| | - Maryam Peymani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8165131378, Iran
| | - Kamran Ghaedi
- From the Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan 8174673441, Iran, Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8165131378, Iran,
| | - Abbas Kiani-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8165131378, Iran
| | - Motahareh-Sadat Hashemi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8165131378, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8165131378, Iran,
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran, and
| |
Collapse
|
67
|
Muñoz-Descalzo S, Hadjantonakis AK, Arias AM. Wnt/ß-catenin signalling and the dynamics of fate decisions in early mouse embryos and embryonic stem (ES) cells. Semin Cell Dev Biol 2015; 47-48:101-9. [PMID: 26321498 DOI: 10.1016/j.semcdb.2015.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/22/2022]
Abstract
Wnt/ß-catenin signalling is a widespread cell signalling pathway with multiple roles during vertebrate development. In mouse embryonic stem (mES) cells, there is a dual role for ß-catenin: it promotes differentiation when activated as part of the Wnt/ß-catenin signalling pathway, and promotes stable pluripotency independently of signalling. Although mES cells resemble the preimplantation epiblast progenitors, the first requirement for Wnt/ß-catenin signalling during mouse development has been reported at implantation [1,2]. The relationship between ß-catenin and pluripotency and that of mES cells with epiblast progenitors suggests that ß-catenin might have a functional role during preimplantation development. Here we summarize the expression and function of Wnt/ß-catenin signalling elements during the early stages of mouse development and consider the reasons why the requirement in ES cells do not reflect the embryo.
Collapse
Affiliation(s)
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
68
|
Bahnassawy L, Perumal TM, Gonzalez-Cano L, Hillje AL, Taher L, Makalowski W, Suzuki Y, Fuellen G, del Sol A, Schwamborn JC. TRIM32 modulates pluripotency entry and exit by directly regulating Oct4 stability. Sci Rep 2015; 5:13456. [PMID: 26307407 PMCID: PMC4642535 DOI: 10.1038/srep13456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 07/17/2015] [Indexed: 12/27/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have revolutionized the world of regenerative medicine; nevertheless, the exact molecular mechanisms underlying their generation and differentiation remain elusive. Here, we investigated the role of the cell fate determinant TRIM32 in modulating such processes. TRIM32 is essential for the induction of neuronal differentiation of neural stem cells by poly-ubiquitinating cMyc to target it for degradation resulting in inhibition of cell proliferation. To elucidate the role of TRIM32 in regulating somatic cell reprogramming we analysed the capacity of TRIM32-knock-out mouse embryonic fibroblasts (MEFs) in generating iPSC colonies. TRIM32 knock-out MEFs produced a higher number of iPSC colonies indicating a role for TRIM32 in inhibiting this cellular transition. Further characterization of the generated iPSCs indicated that the TRIM32 knock-out iPSCs show perturbed differentiation kinetics. Additionally, mathematical modelling of global gene expression data revealed that during differentiation an Oct4 centred network in the wild-type cells is replaced by an E2F1 centred network in the TRIM32 deficient cells. We show here that this might be caused by a TRIM32-dependent downregulation of Oct4. In summary, the data presented here reveal that TRIM32 directly regulates at least two of the four Yamanaka Factors (cMyc and Oct4), to modulate cell fate transitions.
Collapse
Affiliation(s)
- Lamia'a Bahnassawy
- Westfälische Wilhelms-Universität Münster, ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, Von-Esmarch-Str. 56, 48149 Münster, Germany.,Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 7 avenue des Hauts-Fourneaux, 4362 Esch-Belval, Luxembourg
| | - Thanneer M Perumal
- Luxembourg Centre for Systems Biomedicine (LCSB), Computational Biology, University of Luxembourg, 7 avenue des Hauts-Fourneaux, 4362 Esch-Belval, Luxembourg
| | - Laura Gonzalez-Cano
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 7 avenue des Hauts-Fourneaux, 4362 Esch-Belval, Luxembourg
| | - Anna-Lena Hillje
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 7 avenue des Hauts-Fourneaux, 4362 Esch-Belval, Luxembourg
| | - Leila Taher
- Institute for Biostatistics and Informatics in Medicine und Ageing Research, Rostock University Medical Centre, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Wojciech Makalowski
- Westfälische Wilhelms-Universität Münster, Institute of Bioinformatics, Niels-Stensen-Straße 14, 48149 Münster, Germany
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba-ken 227-8561, Japan
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine und Ageing Research, Rostock University Medical Centre, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Antonio del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), Computational Biology, University of Luxembourg, 7 avenue des Hauts-Fourneaux, 4362 Esch-Belval, Luxembourg
| | - Jens Christian Schwamborn
- Westfälische Wilhelms-Universität Münster, ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, Von-Esmarch-Str. 56, 48149 Münster, Germany.,Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 7 avenue des Hauts-Fourneaux, 4362 Esch-Belval, Luxembourg
| |
Collapse
|
69
|
Wu Y, Zhu R, Zhou Y, Zhang J, Wang W, Sun X, Wu X, Cheng L, Zhang J, Wang S. Layered double hydroxide nanoparticles promote self-renewal of mouse embryonic stem cells through the PI3K signaling pathway. NANOSCALE 2015; 7:11102-11114. [PMID: 26060037 DOI: 10.1039/c5nr02339d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Embryonic stem cells (ESCs) hold great potential for regenerative medicine due to their two unique characteristics: self-renewal and pluripotency. Several groups of nanoparticles have shown promising applications in directing the stem cell fate. Herein, we investigated the cellular effects of layered double hydroxide nanoparticles (LDH NPs) on mouse ESCs (mESCs) and the associated molecular mechanisms. Mg-Al-LDH NPs with an average diameter of ∼100 nm were prepared by hydrothermal methods. To determine the influences of LDH NPs on mESCs, cellular cytotoxicity, self-renewal, differentiation potential, and the possible signaling pathways were explored. Evaluation of cell viability, lactate dehydrogenase release, ROS generation and apoptosis demonstrated the low cytotoxicity of LDH NPs. The alkaline phosphatase activity and the expression of pluripotency genes in mESCs were examined, which indicated that exposure to LDH NPs could support self-renewal and inhibit spontaneous differentiation of mESCs under feeder-free culture conditions. The self-renewal promotion was further proved to be independent of the leukemia inhibitory factor (LIF). Furthermore, cells treated with LDH NPs maintained the potential to differentiate into all three germ layers both in vitro and in vivo through formation of embryoid bodies and teratomas. In addition, we observed that LDH NPs initiated the activation of the PI3K/Akt pathway, while treatment with the PI3K inhibitor LY294002 could block the effects of LDH NPs on mESCs. The results confirmed that the promotion of self-renewal by LDH NPs was associated with activation of the PI3K/Akt signaling pathway. Altogether, our studies identified a new role of LDH NPs in maintaining self-renewal of mouse ES cells which could potentially be applied in stem cell research.
Collapse
Affiliation(s)
- Youjun Wu
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Valverde A, Peñarando J, Cañas A, López-Sánchez LM, Conde F, Hernández V, Peralbo E, López-Pedrera C, de la Haba-Rodríguez J, Aranda E, Rodríguez-Ariza A. Simultaneous inhibition of EGFR/VEGFR and cyclooxygenase-2 targets stemness-related pathways in colorectal cancer cells. PLoS One 2015; 10:e0131363. [PMID: 26107817 PMCID: PMC4479446 DOI: 10.1371/journal.pone.0131363] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/01/2015] [Indexed: 02/06/2023] Open
Abstract
Despite the demonstrated benefits of anti-EGFR/VEGF targeted therapies in metastatic colorectal cancer (mCRC), many patients initially respond, but then show evidence of disease progression. New therapeutic strategies are needed to make the action of available drugs more efficient. Our study aimed to explore whether simultaneous targeting of EGFR/VEGF and cyclooxygenase-2 (COX-2) may aid the treatment and management of mCRC patients. The dual tyrosine kinase inhibitor AEE788 and celecoxib were used to inhibit EGFR/VEGFR and COX-2, respectively, in colorectal cancer cells. COX-2 inhibition with celecoxib augmented the antitumoral and antiangiogenic efficacy of AEE788, as indicated by the inhibition of cell proliferation, induction of apoptosis and G1 cell cycle arrest, down-regulation of VEGF production by cancer cells and reduction of cell migration. These effects were related with a blockade in the EGFR/VEGFR signaling axis. Notably, the combined AEE788/celecoxib treatment prevented β-catenin nuclear accumulation in tumor cells. This effect was associated with a significant downregulation of FOXM1 protein levels and an impairment in the interaction of this transcription factor with β-catenin, which is required for its nuclear localization. Furthermore, the combined treatment also reduced the expression of the stem cell markers Oct 3/4, Nanog, Sox-2 and Snail in cancer cells, and contributed to the diminution of the CSC subpopulation, as indicated by colonosphere formation assays. In conclusion, the combined treatment of AEE788 and celecoxib not only demonstrated enhanced anti-tumoral efficacy in colorectal cancer cells, but also reduced colon CSCs subpopulation by targeting stemness-related pathways. Therefore, the simultaneous targeting of EGFR/VEGF and COX-2 may aid in blocking mCRC progression and improve the efficacy of existing therapies in colorectal cancer.
Collapse
Affiliation(s)
- Araceli Valverde
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jon Peñarando
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Amanda Cañas
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M. López-Sánchez
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Conde
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Hernández
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Peralbo
- Research Unit, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
| | - Chary López-Pedrera
- Research Unit, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
| | - Juan de la Haba-Rodríguez
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Aranda
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Rodríguez-Ariza
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
71
|
Abstract
Pluripotency is the remarkable capacity of a single cell to engender all the specialized cell types of an adult organism. This property can be captured indefinitely through derivation of self-renewing embryonic stem cells (ESCs), which represent an invaluable platform to investigate cell fate decisions and disease. Recent advances have revealed that manipulation of distinct signaling cues can render ESCs in a uniform "ground state" of pluripotency, which more closely recapitulates the pluripotent naive epiblast. Here we discuss the extrinsic and intrinsic regulatory principles that underpin the nature of pluripotency and consider the emerging spectrum of pluripotent states.
Collapse
Affiliation(s)
- Jamie A Hackett
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 1QN, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 1QN, UK.
| |
Collapse
|
72
|
β-Catenin Regulates Primitive Streak Induction through Collaborative Interactions with SMAD2/SMAD3 and OCT4. Cell Stem Cell 2015; 16:639-52. [PMID: 25921273 DOI: 10.1016/j.stem.2015.03.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 02/03/2015] [Accepted: 03/17/2015] [Indexed: 12/31/2022]
Abstract
Canonical Wnt and Nodal signaling are both required for induction of the primitive streak (PS), which guides organization of the early embryo. The Wnt effector β-catenin is thought to function in these early lineage specification decisions via transcriptional activation of Nodal signaling. Here, we demonstrate a broader role for β-catenin in PS formation by analyzing its genome-wide binding in a human embryonic stem cell model of PS induction. β-catenin occupies regulatory regions in numerous PS and neural crest genes, and direct interactions between β-catenin and the Nodal effectors SMAD2/SMAD3 are required at these regions for PS gene activation. Furthermore, OCT4 binding in proximity to these sites is likewise required for PS induction, suggesting a collaborative interaction between β-catenin and OCT4. Induction of neural crest genes by β-catenin is repressed by SMAD2/SMAD3, ensuring proper lineage specification. This study provides mechanistic insight into how Wnt signaling controls early cell lineage decisions.
Collapse
|
73
|
Abstract
Wnt signaling plays an important role in development and disease. In this review we focus on the role of the canonical Wnt signaling pathway in somatic stem cell biology and its critical role in tissue homeostasis. We present current knowledge how Wnt/β-catenin signaling affects tissue stem cell behavior in various organ systems, including the gut, mammary gland, the hematopoietic and nervous system. We discuss evidence that canonical Wnt signaling can both maintain potency and an undifferentiated state as well as cause differentiation in somatic stem cells, depending on the cellular and environmental context. Based on studies by our lab and others, we will attempt to explain the dichotomous behavior of this signaling pathway in determining cell fate decisions and put special emphasis on the interaction of β-catenin with two highly homologous co-activator proteins, CBP and p300, to shed light on the their differential role in the outcome of Wnt/β-catenin signaling. Furthermore, we review current knowledge regarding the aberrant regulation of Wnt/β-catenin signaling in cancer biology, particularly its pivotal role in the context of cancer stem cells. Finally, we discuss data demonstrating that small molecule modulators of the β-catenin/co-activator interaction can be used to shift the balance between undifferentiated proliferation and differentiation, which potentially presents a promising therapeutic approach to stem cell based disease mechanisms.
Collapse
|
74
|
van den Brink SC, Baillie-Johnson P, Balayo T, Hadjantonakis AK, Nowotschin S, Turner DA, Martinez Arias A. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 2015; 141:4231-42. [PMID: 25371360 PMCID: PMC4302915 DOI: 10.1242/dev.113001] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call ‘gastruloids’.
Collapse
Affiliation(s)
| | | | - Tina Balayo
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - David A Turner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
75
|
Turner DA, Hayward PC, Baillie-Johnson P, Rué P, Broome R, Faunes F, Martinez Arias A. Wnt/β-catenin and FGF signalling direct the specification and maintenance of a neuromesodermal axial progenitor in ensembles of mouse embryonic stem cells. Development 2015; 141:4243-53. [PMID: 25371361 PMCID: PMC4302903 DOI: 10.1242/dev.112979] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of the central nervous system is known to result from two sequential events. First, an inductive event of the mesoderm on the overlying ectoderm that generates a neural plate that, after rolling into a neural tube, acts as the main source of neural progenitors. Second, the axial regionalization of the neural plate that will result in the specification of neurons with different anteroposterior identities. Although this description of the process applies with ease to amphibians and fish, it is more difficult to confirm in amniote embryos. Here, a specialized population of cells emerges at the end of gastrulation that, under the influence of Wnt and FGF signalling, expands and generates the spinal cord and the paraxial mesoderm. This population is known as the long-term neuromesodermal precursor (NMp). Here, we show that controlled increases of Wnt/β-catenin and FGF signalling during adherent culture differentiation of mouse embryonic stem cells (mESCs) generates a population with many of the properties of the NMp. A single-cell analysis of gene expression within this population reveals signatures that are characteristic of stem cell populations. Furthermore, when this activation is triggered in three-dimensional aggregates of mESCs, the population self-organizes macroscopically and undergoes growth and axial elongation that mimics some of the features of the embryonic spinal cord and paraxial mesoderm. We use both adherent and three-dimensional cultures of mESCs to probe the establishment and maintenance of NMps and their differentiation.
Collapse
Affiliation(s)
- David A Turner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | | | - Pau Rué
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Rebecca Broome
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Fernando Faunes
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
76
|
Ordóñez R, Gallo-Oller G, Martínez-Soto S, Legarra S, Pata-Merci N, Guegan J, Danglot G, Bernheim A, Meléndez B, Rey JA, Castresana JS. Genome-wide microarray expression and genomic alterations by array-CGH analysis in neuroblastoma stem-like cells. PLoS One 2014; 9:e113105. [PMID: 25392930 PMCID: PMC4231109 DOI: 10.1371/journal.pone.0113105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma has a very diverse clinical behaviour: from spontaneous regression to a very aggressive malignant progression and resistance to chemotherapy. This heterogeneous clinical behaviour might be due to the existence of Cancer Stem Cells (CSC), a subpopulation within the tumor with stem-like cell properties: a significant proliferation capacity, a unique self-renewal capacity, and therefore, a higher ability to form new tumors. We enriched the CSC-like cell population content of two commercial neuroblastoma cell lines by the use of conditioned cell culture media for neurospheres, and compared genomic gains and losses and genome expression by array-CGH and microarray analysis, respectively (in CSC-like versus standard tumor cells culture). Despite the array-CGH did not show significant differences between standard and CSC-like in both analyzed cell lines, the microarray expression analysis highlighted some of the most relevant biological processes and molecular functions that might be responsible for the CSC-like phenotype. Some signalling pathways detected seem to be involved in self-renewal of normal tissues (Wnt, Notch, Hh and TGF-β) and contribute to CSC phenotype. We focused on the aberrant activation of TGF-β and Hh signalling pathways, confirming the inhibition of repressors of TGF-β pathway, as SMAD6 and SMAD7 by RT-qPCR. The analysis of the Sonic Hedgehog pathway showed overexpression of PTCH1, GLI1 and SMO. We found overexpression of CD133 and CD15 in SIMA neurospheres, confirming that this cell line was particularly enriched in stem-like cells. This work shows a cross-talk among different pathways in neuroblastoma and its importance in CSC-like cells.
Collapse
Affiliation(s)
- Raquel Ordóñez
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Gabriel Gallo-Oller
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Soledad Martínez-Soto
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Sheila Legarra
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | | | | | | | | | - Bárbara Meléndez
- Molecular Pathology Research Unit, Department of Pathology, Virgen de la Salud Hospital, Toledo, Spain
| | - Juan A. Rey
- IdiPaz Research Unit, La Paz University Hospital, Madrid, Spain
| | - Javier S. Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| |
Collapse
|
77
|
Marucci L, Pedone E, Di Vicino U, Sanuy-Escribano B, Isalan M, Cosma MP. β-catenin fluctuates in mouse ESCs and is essential for Nanog-mediated reprogramming of somatic cells to pluripotency. Cell Rep 2014; 8:1686-1696. [PMID: 25199832 DOI: 10.1016/j.celrep.2014.08.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 07/07/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022] Open
Abstract
The Wnt/β-catenin pathway and Nanog are key regulators of embryonic stem cell (ESC) pluripotency and the reprogramming of somatic cells. Here, we demonstrate that the repression of Dkk1 by Nanog, which leads indirectly to β-catenin activation, is essential for reprogramming after fusion of ESCs overexpressing Nanog. In addition, β-catenin is necessary in Nanog-dependent conversion of preinduced pluripotent stem cells (pre-iPSCs) into iPSCs. The activation of β-catenin by Nanog causes fluctuations of β-catenin in ESCs cultured in serum plus leukemia inhibitory factor (serum+LIF) medium, in which protein levels of key pluripotency factors are heterogeneous. In 2i+LIF medium, which favors propagation of ESCs in a ground state of pluripotency with many pluripotency genes losing mosaic expression, we show Nanog-independent β-catenin fluctuations. Overall, we demonstrate Nanog and β-catenin cooperation in establishing naive pluripotency during the reprogramming process and their correlated heterogeneity in ESCs primed toward differentiation.
Collapse
Affiliation(s)
- Lucia Marucci
- Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain; Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Elisa Pedone
- Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | | | | | - Mark Isalan
- Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
78
|
Serio RN. Wnt of the Two Horizons: Putting Stem Cell Self-Renewal and Cell Fate Determination into Context. Stem Cells Dev 2014; 23:1975-90. [DOI: 10.1089/scd.2014.0055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Ryan N. Serio
- Graduate School of Pharmacology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
79
|
Artus J, Chazaud C. A close look at the mammalian blastocyst: epiblast and primitive endoderm formation. Cell Mol Life Sci 2014; 71:3327-38. [PMID: 24794628 PMCID: PMC11113690 DOI: 10.1007/s00018-014-1630-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
During early development, the mammalian embryo undergoes a series of profound changes that lead to the formation of two extraembryonic tissues--the trophectoderm and the primitive endoderm. These tissues encapsulate the pluripotent epiblast at the time of implantation. The current model proposes that the formation of these lineages results from two consecutive binary cell fate decisions. The first controls the formation of the trophectoderm and the inner cell mass, and the second controls the formation of the primitive endoderm and the epiblast within the inner cell mass. While early mammalian embryos develop with extensive plasticity, the embryonic pattern prior to implantation is remarkably reproducible. Here, we review the molecular mechanisms driving the cell fate decision between primitive endoderm and epiblast in the mouse embryo and integrate data from recent studies into the current model of the molecular network regulating the segregation between these lineages and their subsequent differentiation.
Collapse
Affiliation(s)
- Jérôme Artus
- Institut Pasteur, Mouse Functional Genetics, CNRS URA2578, 75015 Paris, France
| | - Claire Chazaud
- Clermont Université, Laboratoire GReD, Université d’Auvergne, BP 10448, 63000 Clermont-Ferrand, France
- Inserm, UMR1103, 63001 Clermont-Ferrand, France
- CNRS, UMR6293, 63001 Clermont-Ferrand, France
| |
Collapse
|
80
|
Brachyury cooperates with Wnt/β-catenin signalling to elicit primitive-streak-like behaviour in differentiating mouse embryonic stem cells. BMC Biol 2014; 12:63. [PMID: 25115237 PMCID: PMC4171571 DOI: 10.1186/s12915-014-0063-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022] Open
Abstract
Background The formation of the primitive streak is the first visible sign of gastrulation, the process by which the three germ layers are formed from a single epithelium during early development. Embryonic stem cells (ESCs) provide a good system for understanding the molecular and cellular events associated with these processes. Previous work, both in embryos and in culture, has shown how converging signals from both nodal/TGFβR and Wnt/β-catenin signalling pathways specify cells to adopt a primitive-streak-like fate and direct them to undertake an epithelial-to-mesenchymal transition (EMT). However, many of these approaches have relied on genetic analyses without taking into account the temporal progression of events within single cells. In addition, it is still unclear to what extent events in the embryo are able to be reproduced in culture. Results Here, we combine flow cytometry and a quantitative live single-cell imaging approach to demonstrate how the controlled differentiation of mouse ESCs towards a primitive streak fate in culture results in cells displaying many of the characteristics observed during early mouse development including transient brachyury expression, EMT and increased motility. We also find that the EMT initiates the process, and this is both fuelled and terminated by the action of brachyury, whose expression is dependent on the EMT and β-catenin activity. Conclusions As a consequence of our analysis, we propose that a major output of brachyury expression is in controlling the velocity of the cells that are transiting out of the primitive streak. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0063-7) contains supplementary material, which is available to authorized users.
Collapse
|
81
|
Abstract
WNT-β-catenin signalling is involved in a multitude of developmental processes and the maintenance of adult tissue homeostasis by regulating cell proliferation, differentiation, migration, genetic stability and apoptosis, as well as by maintaining adult stem cells in a pluripotent state. Not surprisingly, aberrant regulation of this pathway is therefore associated with a variety of diseases, including cancer, fibrosis and neurodegeneration. Despite this knowledge, therapeutic agents specifically targeting the WNT pathway have only recently entered clinical trials and none has yet been approved. This Review examines the problems and potential solutions to this vexing situation and attempts to bring them into perspective.
Collapse
Affiliation(s)
- Michael Kahn
- USC Norris Comprehensive Cancer Center, USC Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
82
|
Turner DA, Trott J, Hayward P, Rué P, Martinez Arias A. An interplay between extracellular signalling and the dynamics of the exit from pluripotency drives cell fate decisions in mouse ES cells. Biol Open 2014; 3:614-26. [PMID: 24950969 PMCID: PMC4154298 DOI: 10.1242/bio.20148409] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Embryonic Stem cells derived from the epiblast tissue of the mammalian blastocyst retain the capability to differentiate into any adult cell type and are able to self-renew indefinitely under appropriate culture conditions. Despite the large amount of knowledge that we have accumulated to date about the regulation and control of self-renewal, efficient directed differentiation into specific tissues remains elusive. In this work, we have analysed in a systematic manner the interaction between the dynamics of loss of pluripotency and Activin/Nodal, BMP4 and Wnt signalling in fate assignment during the early stages of differentiation of mouse ES cells in culture. During the initial period of differentiation, cells exit from pluripotency and enter an Epi-like state. Following this transient stage, and under the influence of Activin/Nodal and BMP signalling, cells face a fate choice between differentiating into neuroectoderm and contributing to Primitive Streak fates. We find that Wnt signalling does not suppress neural development as previously thought and that it aids both fates in a context dependent manner. Our results suggest that as cells exit pluripotency they are endowed with a primary neuroectodermal fate and that the potency to become endomesodermal rises with time. We suggest that this situation translates into a “race for fates” in which the neuroectodermal fate has an advantage.
Collapse
Affiliation(s)
- David A Turner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Jamie Trott
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge CB2 1QR, UK
| | - Penelope Hayward
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Pau Rué
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
83
|
Aulicino F, Theka I, Ombrato L, Lluis F, Cosma MP. Temporal perturbation of the Wnt signaling pathway in the control of cell reprogramming is modulated by TCF1. Stem Cell Reports 2014; 2:707-20. [PMID: 24936456 PMCID: PMC4050487 DOI: 10.1016/j.stemcr.2014.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/01/2023] Open
Abstract
Cyclic activation of the Wnt/β-catenin signaling pathway controls cell fusion-mediated somatic cell reprogramming. TCFs belong to a family of transcription factors that, in complex with β-catenin, bind and transcriptionally regulate Wnt target genes. Here, we show that Wnt/β-catenin signaling needs to be off during the early reprogramming phases of mouse embryonic fibroblasts (MEFs) into iPSCs. In MEFs undergoing reprogramming, senescence genes are repressed and mesenchymal-to-epithelial transition is favored. This is correlated with a repressive activity of TCF1, which contributes to the silencing of Wnt/β-catenin signaling at the onset of reprogramming. In contrast, the Wnt pathway needs to be active in the late reprogramming phases to achieve successful reprogramming. In conclusion, continued activation or inhibition of the Wnt/β-catenin signaling pathway is detrimental to the reprogramming of MEFs; instead, temporal perturbation of the pathway is essential for efficient reprogramming, and the “Wnt-off” state can be considered an early reprogramming marker. Time-dependent perturbation of Wnt pathway enhances reprogramming TCF1 acts as repressor in cells undergoing reprogramming TCF1 represses senescence genes and promotes MET “Wnt-off” state is an early reprogramming marker
Collapse
Affiliation(s)
- Francesco Aulicino
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain ; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Ilda Theka
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain ; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Luigi Ombrato
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain ; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Frederic Lluis
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain ; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain ; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain ; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
84
|
Tsakiridis A, Huang Y, Blin G, Skylaki S, Wymeersch F, Osorno R, Economou C, Karagianni E, Zhao S, Lowell S, Wilson V. Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors. Development 2014; 141:1209-21. [PMID: 24595287 PMCID: PMC3943179 DOI: 10.1242/dev.101014] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During gastrulation, epiblast cells are pluripotent and their fate is thought to be constrained principally by their position. Cell fate is progressively restricted by localised signalling cues from areas including the primitive streak. However, it is unknown whether this restriction accompanies, at the individual cell level, a reduction in potency. Investigation of these early transition events in vitro is possible via the use of epiblast stem cells (EpiSCs), self-renewing pluripotent cell lines equivalent to the postimplantation epiblast. Strikingly, mouse EpiSCs express gastrulation stage regional markers in self-renewing conditions. Here, we examined the differentiation potential of cells expressing such lineage markers. We show that undifferentiated EpiSC cultures contain a major subfraction of cells with reversible early primitive streak characteristics, which is mutually exclusive to a neural-like fraction. Using in vitro differentiation assays and embryo grafting we demonstrate that primitive streak-like EpiSCs are biased towards mesoderm and endoderm fates while retaining pluripotency. The acquisition of primitive streak characteristics by self-renewing EpiSCs is mediated by endogenous Wnt signalling. Elevation of Wnt activity promotes restriction towards primitive streak-associated lineages with mesendodermal and neuromesodermal characteristics. Collectively, our data suggest that EpiSC pluripotency encompasses a range of reversible lineage-biased states reflecting the birth of pioneer lineage precursors from a pool of uncommitted EpiSCs similar to the earliest cell fate restriction events taking place in the gastrula stage epiblast.
Collapse
Affiliation(s)
- Anestis Tsakiridis
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Modulation of β-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nat Commun 2014; 4:2403. [PMID: 23985566 DOI: 10.1038/ncomms3403] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 08/05/2013] [Indexed: 12/18/2022] Open
Abstract
Wnt/β-catenin signalling has a variety of roles in regulating stem cell fates. Its specific role in mouse epiblast stem cell self-renewal, however, remains poorly understood. Here we show that Wnt/β-catenin functions in both self-renewal and differentiation in mouse epiblast stem cells. Stabilization and nuclear translocation of β-catenin and its subsequent binding to T-cell factors induces differentiation. Conversely, retention of stabilized β-catenin in the cytoplasm maintains self-renewal. Cytoplasmic retention of β-catenin is effected by stabilization of Axin2, a downstream target of β-catenin, or by genetic modifications to β-catenin that prevent its nuclear translocation. We also find that human embryonic stem cell and mouse epiblast stem cell fates are regulated by β-catenin through similar mechanisms. Our results elucidate a new role for β-catenin in stem cell self-renewal that is independent of its transcriptional activity and will have broad implications in understanding the molecular regulation of stem cell fate.
Collapse
|
86
|
The States of Pluripotency: Pluripotent Lineage Development in the Embryo and in the Dish. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/208067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pluripotent cell lineage of the embryo comprises a series of temporally and functionally distinct intermediary cell states, the epiblast precursor cell of the newly formed blastocyst, the epiblast population of the inner cell mass, and the early and late epiblast of the postimplantation embryo, referred to here as early and late primitive ectoderm. Pluripotent cell populations representative of the embryonic populations can be formed in culture. Although multiple pluripotent cell states are now recognised, little is known about the signals and pathways that progress cells from the epiblast precursor cell to the late primitive ectoderm in the embryo or in culture. The characterisation of cell states is most advanced in mouse where conditions for culturing distinct pluripotent cell states are well established and embryonic material is accessible. This review will focus on the pluripotent cell states present during embryonic development in the mouse and what is known of the mechanisms that regulate the progression of the lineage from the epiblast precursor cell and the ground state of pluripotency to the late primitive ectoderm present immediately prior to cell differentiation.
Collapse
|
87
|
Wilson JL, Najia MA, Saeed R, McDevitt TC. Alginate encapsulation parameters influence the differentiation of microencapsulated embryonic stem cell aggregates. Biotechnol Bioeng 2014; 111:618-31. [PMID: 24166004 PMCID: PMC4163549 DOI: 10.1002/bit.25121] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/26/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023]
Abstract
Pluripotent embryonic stem cells (ESCs) have tremendous potential as tools for regenerative medicine and drug discovery, yet the lack of processes to manufacture viable and homogenous cell populations of sufficient numbers limits the clinical translation of current and future cell therapies. Microencapsulation of ESCs within microbeads can shield cells from hydrodynamic shear forces found in bioreactor environments while allowing for sufficient diffusion of nutrients and oxygen through the encapsulation material. Despite initial studies examining alginate microbeads as a platform for stem cell expansion and directed differentiation, the impact of alginate encapsulation parameters on stem cell phenotype has not been thoroughly investigated. Therefore, the objective of this study was to systematically examine the effects of varying alginate compositions on microencapsulated ESC expansion and phenotype. Pre-formed aggregates of murine ESCs were encapsulated in alginate microbeads composed of a high or low ratio of guluronic to mannuronic acid residues (High G and High M, respectively), with and without a poly-L-lysine (PLL) coating, thereby providing four distinct alginate bead compositions for analysis. Encapsulation in all alginate compositions was found to delay differentiation, with encapsulation within High G alginate yielding the least differentiated cell population. The addition of a PLL coating to the High G alginate prevented cell escape from beads for up to 14 days. Furthermore, encapsulation within High M alginate promoted differentiation toward a primitive endoderm phenotype. Taken together, the findings of this study suggest that distinct ESC expansion capacities and differentiation trajectories emerge depending on the alginate composition employed, indicating that encapsulation material physical properties can be used to control stem cell fate.
Collapse
Affiliation(s)
- Jenna L Wilson
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | | | | | | |
Collapse
|
88
|
|
89
|
Zhao W, Ning B, Qian C. Regulatory factors of induced pluripotency: current status. Stem Cell Investig 2014; 1:15. [PMID: 27358861 DOI: 10.3978/j.issn.2306-9759.2014.07.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/08/2014] [Indexed: 11/14/2022]
Abstract
Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) through enforced expression of four transcription factors [Oct4, Sox2, Klf4, and c-Myc (OSKM)]; however, the reprogramming efficiency is extremely low. This finding raises fundamental questions about the regulators that influence the change in epigenetic stability and endowment of dedifferentiation potential during reprogramming. Identification of such regulators is critical to removing the roadblocks impeding the efficient generation of safe iPSCs and their successful translation into clinical therapies. In this review, we summarize the current progress that has been made in understanding cellular reprogramming, with an emphasis on the molecular mechanisms of epigenetic regulators in induced pluripotency.
Collapse
Affiliation(s)
- Wei Zhao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Bo Ning
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Chen Qian
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
90
|
|
91
|
Radzisheuskaya A, Silva JCR. Do all roads lead to Oct4? the emerging concepts of induced pluripotency. Trends Cell Biol 2013; 24:275-84. [PMID: 24370212 PMCID: PMC3976965 DOI: 10.1016/j.tcb.2013.11.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/18/2022]
Abstract
Oct4 has unique and diverse functions in reprogramming. Oct4 is essential for lineage specification. Oct4 regulates multiple contrasting processes of cell identity change. Oct4 function may be regulated by cellular context and environment.
Pluripotent cells have the potential to differentiate into all of the cell types of an animal. This unique cell state is governed by an interconnected network of transcription factors. Among these, Oct4 plays an essential role both in the development of pluripotent cells in the embryo and in the self-renewal of its in vitro counterpart, embryonic stem (ES) cells. Furthermore, Oct4 is one of the four Yamanaka factors and its overexpression alone can generate induced pluripotent stem (iPS) cells. Recent reports underscore Oct4 as an essential regulator of opposing cell state transitions, such as pluripotency establishment and differentiation into embryonic germ lineages. Here we discuss these recent studies and the potential mechanisms underlying these contrasting functions of Oct4.
Collapse
Affiliation(s)
- Aliaksandra Radzisheuskaya
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - José C R Silva
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
92
|
Abstract
The expression of E-Cadherin, a protein best known for its role in cell adhesion, regulates the onset of embryonic differentiation.
Collapse
Affiliation(s)
- Margarida Sancho
- Margarida Sancho is in the British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College, London, United Kingdom
| | | |
Collapse
|
93
|
Malaguti M, Nistor PA, Blin G, Pegg A, Zhou X, Lowell S. Bone morphogenic protein signalling suppresses differentiation of pluripotent cells by maintaining expression of E-Cadherin. eLife 2013; 2:e01197. [PMID: 24347544 PMCID: PMC3865744 DOI: 10.7554/elife.01197] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenic protein (BMP) signalling contributes towards maintenance of pluripotency and favours mesodermal over neural fates upon differentiation, but the mechanisms by which BMP controls differentiation are not well understood. We report that BMP regulates differentiation by blocking downregulation of Cdh1, an event that accompanies the earliest stages of neural and mesodermal differentiation. We find that loss of Cdh1 is a limiting requirement for differentiation of pluripotent cells, and that experimental suppression of Cdh1 activity rescues the BMP-imposed block to differentiation. We further show that BMP acts prior to and independently of Cdh1 to prime pluripotent cells for mesoderm differentiation, thus helping to reinforce the block to neural differentiation. We conclude that differentiation depends not only on exposure to appropriate extrinsic cues but also on morphogenetic events that control receptivity to those differentiation cues, and we explain how a key pluripotency signal, BMP, feeds into this control mechanism. DOI:http://dx.doi.org/10.7554/eLife.01197.001 The human body is made up of about 200 different types of cell, all of which are descended from a single fertilised egg. As an embryo develops, its cells divide and specialise into distinct lineages. Cells in each lineage go on to form a restricted number of cell types that are required to make a specific tissue. As such, during early development, cells switch from being ‘pluripotent’, with the potential to become the many different cell types, to committing to one particular cell lineage. Controlling this process involves a huge number of signalling proteins and pathways. One such protein is bone morphogenetic protein, or BMP for short, which has a number of different roles in embryo development: for example, it stops pluripotent cells turning into nerve tissue, and it also encourages embryonic stem cells to contribute to the ‘mesoderm’ of the early embryo (which goes on to form the muscles, connective tissues and some blood cells). How these two actions are linked, and whether they depend on similar signalling pathways, was unknown. BMP is also known to trigger the production of proteins known as ‘Id factors’—which stands for ‘inhibitor of differentiation’. Now, Malaguti et al. have investigated the roles of BMP and Id factors in controlling mouse embryo development and found, somewhat surprisingly, that these proteins needed help from a third protein to stop pluripotent cells turning into nerve tissue. This third protein, which is called E-Cadherin, normally helps cells to adhere to other cells. Malaguti et al. showed that losing this protein encourages cells to become either nerve or mesoderm tissues, and that a drop in E-Cadherin levels must occur before nerve tissue can form. Malaguti et al. also showed that encouraging cells to become part of the mesoderm requires BMP to activate another pathway, which does not require E-Cadherin. The two effects of BMP can be uncoupled by adjusting the levels of this protein. At low concentrations, BMP can keep cells pluripotent, but it cannot encourage cells to commit to a mesoderm fate. At higher doses, however, BMP ‘primes’ cells to respond to the signals that trigger their development into mesoderm tissue. The findings of Malaguti et al. suggest that manipulating both E-Cadherin and BMP signalling could improve our ability to generate useful cell types, such as neurons, from stem cells grown in laboratory cultures. DOI:http://dx.doi.org/10.7554/eLife.01197.002
Collapse
Affiliation(s)
- Mattias Malaguti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | |
Collapse
|
94
|
Cowin P. Highlighting Young Investigators: Guest Editor Ramanuj DasGupta Ram DasGupta: Pushing the boundaries of β-catenin signaling and drug development. ACTA ACUST UNITED AC 2013; 20:151-3. [DOI: 10.3109/15419061.2013.858134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
95
|
Livigni A, Peradziryi H, Sharov AA, Chia G, Hammachi F, Migueles RP, Sukparangsi W, Pernagallo S, Bradley M, Nichols J, Ko MSH, Brickman JM. A conserved Oct4/POUV-dependent network links adhesion and migration to progenitor maintenance. Curr Biol 2013; 23:2233-2244. [PMID: 24210613 PMCID: PMC4228055 DOI: 10.1016/j.cub.2013.09.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/19/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND The class V POU domain transcription factor Oct4 (Pou5f1) is a pivotal regulator of embryonic stem cell (ESC) self-renewal and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. Oct4 is also an important evolutionarily conserved regulator of progenitor cell differentiation during embryonic development. RESULTS Here we examine the function of Oct4 homologs in Xenopus embryos and compare this to the role of Oct4 in maintaining mammalian embryo-derived stem cells. Based on a combination of expression profiling of Oct4/POUV-depleted Xenopus embryos and in silico analysis of existing mammalian Oct4 target data sets, we defined a set of evolutionary-conserved Oct4/POUV targets. Most of these targets were regulators of cell adhesion. This is consistent with Oct4/POUV phenotypes observed in the adherens junctions in Xenopus ectoderm, mouse embryonic, and epiblast stem cells. A number of these targets could rescue both Oct4/POUV phenotypes in cellular adhesion and multipotent progenitor cell maintenance, whereas expression of cadherins on their own could only transiently support adhesion and block differentiation in both ESC and Xenopus embryos. CONCLUSIONS Currently, the list of Oct4 transcriptional targets contains thousands of genes. Using evolutionary conservation, we identified a core set of functionally relevant factors that linked the maintenance of adhesion to Oct4/POUV. We found that the regulation of adhesion by the Oct4/POUV network occurred at both transcriptional and posttranslational levels and was required for pluripotency.
Collapse
Affiliation(s)
- Alessandra Livigni
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Hanna Peradziryi
- The Danish Stem Cell Centre (DanStem), University of Copenhagen, 3B Blegdamsvej, 2200 Copenhagen, Denmark
| | - Alexei A Sharov
- Laboratory of Genetics, National Institute on Aging, NIH Biomedical Research Centre, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Gloryn Chia
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Fella Hammachi
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Rosa Portero Migueles
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Woranop Sukparangsi
- The Danish Stem Cell Centre (DanStem), University of Copenhagen, 3B Blegdamsvej, 2200 Copenhagen, Denmark
| | - Salvatore Pernagallo
- School of Chemistry, Joseph Black Building, King's Buildings, the University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Mark Bradley
- School of Chemistry, Joseph Black Building, King's Buildings, the University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Jennifer Nichols
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Minoru S H Ko
- Laboratory of Genetics, National Institute on Aging, NIH Biomedical Research Centre, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA; Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160, Japan
| | - Joshua M Brickman
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, Edinburgh EH16 4UU, UK; The Danish Stem Cell Centre (DanStem), University of Copenhagen, 3B Blegdamsvej, 2200 Copenhagen, Denmark.
| |
Collapse
|
96
|
Jerabek S, Merino F, Schöler HR, Cojocaru V. OCT4: dynamic DNA binding pioneers stem cell pluripotency. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:138-54. [PMID: 24145198 DOI: 10.1016/j.bbagrm.2013.10.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 12/12/2022]
Abstract
OCT4 was discovered more than two decades ago as a transcription factor specific to early embryonic development. Early studies with OCT4 were descriptive and looked at determining the functional roles of OCT4 in the embryo as well as in pluripotent cell lines derived from embryos. Later studies showed that OCT4 was one of the transcription factors in the four-factor cocktail required for reprogramming somatic cells into induced pluripotent stem cells (iPSCs) and that it is the only factor that cannot be substituted in this process by other members of the same protein family. In recent years, OCT4 has emerged as a master regulator of the induction and maintenance of cellular pluripotency, with crucial roles in the early stages of differentiation. Currently, mechanistic studies look at elucidating the molecular details of how OCT4 contributes to establishing selective gene expression programs that define different developmental stages of pluripotent cells. OCT4 belongs to the POU family of proteins, which have two conserved DNA-binding domains connected by a variable linker region. The functions of OCT4 depend on its ability to recognize and bind to DNA regulatory regions alone or in cooperation with other transcription factors and on its capacity to recruit other factors required to regulate the expression of specific sets of genes. Undoubtedly, future iPSC-based applications in regenerative medicine will benefit from understanding how OCT4 functions. Here we provide an integrated view of OCT4 research conducted to date by reviewing the different functional roles for OCT4 and discussing the current progress in understanding their underlying molecular mechanisms. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Stepan Jerabek
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Felipe Merino
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hans Robert Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany.
| | - Vlad Cojocaru
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany.
| |
Collapse
|
97
|
A competitive protein interaction network buffers Oct4-mediated differentiation to promote pluripotency in embryonic stem cells. Mol Syst Biol 2013; 9:694. [PMID: 24104477 PMCID: PMC3817399 DOI: 10.1038/msb.2013.49] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/23/2013] [Indexed: 01/24/2023] Open
Abstract
The dynamic competition for complex formation between the pluripotency network components Oct4, Nanog, Tcf3, and β-catenin prevents embryonic stem cell differentiation by controlling the levels of free Oct4. ![]()
Pluripotency is defined by the ratios between the levels of pluripotency factors rather than by their absolute levels. Competition between different protein complexes involving Nanog, Oct4, Tcf3, and β-catenin can account for the ratios associated with pluripotency. The unstable pluripotency of Nanog mutant cells was shown to depend on the interactions between Oct4 and β-catenin. The function of the protein competition network is to control the levels of free Oct4, which are balanced by Nanog and β-catenin in embryonic stem cells.
Pluripotency in embryonic stem cells is maintained through the activity of a small set of transcription factors centred around Oct4 and Nanog, which control the expression of ‘self-renewal' and ‘differentiation' genes. Here, we combine single-cell quantitative immunofluorescence microscopy and gene expression analysis, together with theoretical modelling, to investigate how the activity of those factors is regulated. We uncover a key role for post-translational regulation in the maintenance of pluripotency, which complements the well-established transcriptional regulatory layer. Specifically, we find that the activity of a network of protein complexes involving Nanog, Oct4, Tcf3, and β-catenin suffices to account for the behavior of ES cells under different conditions. Our results suggest that the function of the network is to buffer the transcriptional activity of Oct4, which appears to be the main determinant to exit pluripotency. The protein network explains the mechanisms underlying the gain and loss of function in different mutants, and brings us closer to a full understanding of the molecular basis of pluripotency.
Collapse
|
98
|
Trott J, Martinez Arias A. Single cell lineage analysis of mouse embryonic stem cells at the exit from pluripotency. Biol Open 2013; 2:1049-56. [PMID: 24167715 PMCID: PMC3798188 DOI: 10.1242/bio.20135934] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 07/15/2013] [Indexed: 12/29/2022] Open
Abstract
Understanding how interactions between extracellular signalling pathways and transcription factor networks influence cellular decision making will be crucial for understanding mammalian embryogenesis and for generating specialised cell types in vitro. To this end, pluripotent mouse Embryonic Stem (mES) cells have proven to be a useful model system. However, understanding how transcription factors and signalling pathways affect decisions made by individual cells is confounded by the fact that measurements are generally made on groups of cells, whilst individual mES cells differentiate at different rates and towards different lineages, even in conditions that favour a particular lineage. Here we have used single-cell measurements of transcription factor expression and Wnt/β-catenin signalling activity to investigate their effects on lineage commitment decisions made by individual cells. We find that pluripotent mES cells exhibit differing degrees of heterogeneity in their expression of important regulators from pluripotency, depending on the signalling environment to which they are exposed. As mES cells differentiate, downregulation of Nanog and Oct4 primes cells for neural commitment, whilst loss of Sox2 expression primes cells for primitive streak commitment. Furthermore, we find that Wnt signalling acts through Nanog to direct cells towards a primitive streak fate, but that transcriptionally active β-catenin is associated with both neural and primitive streak commitment. These observations confirm and extend previous suggestions that pluripotency genes influence lineage commitment and demonstrate how their dynamic expression affects the direction of lineage commitment, whilst illustrating two ways in which the Wnt signalling pathway acts on this network during cell fate assignment.
Collapse
Affiliation(s)
- Jamie Trott
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge CB2 1QR, UK
- Present address: Institute of Medical Biology, 8A Biomedical Grove, No. 06-06 Immunos, Singapore 138648
| | | |
Collapse
|
99
|
Biechele S, Cockburn K, Lanner F, Cox BJ, Rossant J. Porcn-dependent Wnt signaling is not required prior to mouse gastrulation. Development 2013; 140:2961-71. [PMID: 23760955 DOI: 10.1242/dev.094458] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In mice and humans the X-chromosomal porcupine homolog (Porcn) gene is required for the acylation and secretion of all 19 Wnt ligands and thus represents a bottleneck for all Wnt signaling. We have generated a mouse line carrying a floxed allele for Porcn and used zygotic, oocyte-specific and visceral endoderm-specific deletions to investigate embryonic and extra-embryonic requirements for Wnt ligand secretion. We show that there is no requirement for Porcn-dependent secretion of Wnt ligands during preimplantation development of the mouse embryo. Porcn-dependent Wnts are first required for the initiation of gastrulation, where Porcn function is required in the epiblast but not the visceral endoderm. Heterozygous female embryos, which are mutant in both trophoblast and visceral endoderm due to imprinted X chromosome inactivation, complete gastrulation but display chorio-allantoic fusion defects similar to Wnt7b mutants. Our studies highlight the importance of Wnt3 and Wnt7b for embryonic and placental development but suggest that endogenous Porcn-dependent Wnt secretion does not play an essential role in either implantation or blastocyst lineage specification.
Collapse
Affiliation(s)
- Steffen Biechele
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
100
|
Ectopic γ-catenin expression partially mimics the effects of stabilized β-catenin on embryonic stem cell differentiation. PLoS One 2013; 8:e65320. [PMID: 23724138 PMCID: PMC3664634 DOI: 10.1371/journal.pone.0065320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 04/27/2013] [Indexed: 11/19/2022] Open
Abstract
β-catenin, an adherens junction component and key Wnt pathway effector, regulates numerous developmental processes and supports embryonic stem cell (ESC) pluripotency in specific contexts. The β-catenin homologue γ-catenin (also known as Plakoglobin) is a constituent of desmosomes and adherens junctions and may participate in Wnt signaling in certain situations. Here, we use β-catenin(+/+) and β-catenin(−/−) mouse embryonic stem cells (mESCs) to investigate the role of γ-catenin in Wnt signaling and mESC differentiation. Although γ-catenin protein is markedly stabilized upon inhibition or ablation of GSK-3 in wild-type (WT) mESCs, efficient silencing of its expression in these cells does not affect β-catenin/TCF target gene activation after Wnt pathway stimulation. Nonetheless, knocking down γ-catenin expression in WT mESCs appears to promote their exit from pluripotency in short-term differentiation assays. In β-catenin(−/−) mESCs, GSK-3 inhibition does not detectably alter cytosolic γ-catenin levels and does not activate TCF target genes. Intriguingly, β-catenin/TCF target genes are induced in β-catenin(−/−) mESCs overexpressing stabilized γ-catenin and the ability of these genes to be activated upon GSK-3 inhibition is partially restored when wild-type γ-catenin is overexpressed in these cells. This suggests that a critical threshold level of total catenin expression must be attained before there is sufficient signaling-competent γ-catenin available to respond to GSK-3 inhibition and to regulate target genes as a consequence. WT mESCs stably overexpressing γ-catenin exhibit robust Wnt pathway activation and display a block in tri-lineage differentiation that largely mimics that observed upon overexpression of β-catenin. However, β-catenin overexpression appears to be more effective than γ-catenin overexpression in sustaining the retention of markers of naïve pluripotency in cells that have been subjected to differentiation-inducing conditions. Collectively, our study reveals a function for γ-catenin in the regulation of mESC differentiation and has implications for human cancers in which γ-catenin is mutated and/or aberrantly expressed.
Collapse
|