51
|
Du S, Draper BW, Mione M, Moens CB, Bruce AEE. Differential regulation of epiboly initiation and progression by zebrafish Eomesodermin A. Dev Biol 2012; 362:11-23. [PMID: 22142964 PMCID: PMC3259739 DOI: 10.1016/j.ydbio.2011.10.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/24/2011] [Accepted: 10/19/2011] [Indexed: 01/07/2023]
Abstract
The T-box transcription factor Eomesodermin (Eomes) has been implicated in patterning and morphogenesis in frog, fish and mouse. In zebrafish, one of the two Eomes homologs, Eomesa, has been implicated in dorsal-ventral patterning, epiboly and endoderm specification in experiments employing over-expression, dominant-negative constructs and antisense morpholino oligonucleotides. Here we report for the first time the identification and characterization of an Eomesa mutant generated by TILLING. We find that Eomesa has a strictly maternal role in the initiation of epiboly, which involves doming of the yolk cell up into the overlying blastoderm. By contrast, epiboly progression is normal, demonstrating for the first time that epiboly initiation is genetically separable from progression. The yolk cell microtubules, which are required for epiboly, are defective in maternal-zygotic eomesa mutant embryos. In addition, the deep cells of the blastoderm are more tightly packed and exhibit more bleb-like protrusions than cells in control embryos. We postulate that the doming delay may be the consequence both of overly stabilized yolk cell microtubules and defects in the adhesive properties or motility of deep cells. We also show that Eomesa is required for normal expression of the endoderm markers sox32, bon and og9x; however it is not essential for endoderm formation.
Collapse
Affiliation(s)
- Susan Du
- Department of Cell and Systems Biology University of Toronto 25 Harbord Street Toronto, ON M5S 3G5 Canada
| | - Bruce W. Draper
- Molecular and Cellular Biology University of California, Davis One Shields Avenue Davis, CA 95616 USA
| | - Marina Mione
- IFOM, Istituto FIRC di Oncologia Molecolare Via Adamello 16 Milan, I-20139 Italy
| | - Cecilia B. Moens
- Howard Hughes Medical Institute Division of Basic Science Fred Hutchinson Cancer Research Center P.O. Box 19024 1100 Fairview Avenue North Seattle, WA 98109-1024 USA
| | - Ashley E. E. Bruce
- Department of Cell and Systems Biology University of Toronto 25 Harbord Street Toronto, ON M5S 3G5 Canada
| |
Collapse
|
52
|
Abstract
Vertebrate development begins with precise molecular, cellular, and morphogenetic controls to establish the basic body plan of the embryo. In zebrafish, these tightly regulated processes begin during oogenesis and proceed through gastrulation to establish and pattern the axes of the embryo. During oogenesis a maternal factor is localized to the vegetal pole of the oocyte that is a determinant of dorsal tissues. Following fertilization this vegetally localized dorsal determinant is asymmetrically translocated in the egg and initiates formation of the dorsoventral axis. Dorsoventral axis formation and patterning is then mediated by maternal and zygotic factors acting through Wnt, BMP (bone morphogenetic protein), Nodal, and FGF (fibroblast growth factor) signaling pathways, each of which is required to establish and/or pattern the dorsoventral axis. This review addresses recent advances in our understanding of the molecular factors and mechanisms that establish and pattern the dorsoventral axis of the zebrafish embryo, including establishment of the animal-vegetal axis as it relates to formation of the dorsoventral axis.
Collapse
Affiliation(s)
- Yvette G Langdon
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
53
|
Liu W, Foley AC. Signaling pathways in early cardiac development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:191-205. [PMID: 20830688 DOI: 10.1002/wsbm.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiomyocyte differentiation is a complex multistep process requiring the proper temporal and spatial integration of multiple signaling pathways. Previous embryological and genetic studies have identified a number of signaling pathways that are critical to mediate the initial formation of the mesoderm and its allocation to the cardiomyocyte lineage. It has become clear that some of these signaling networks work autonomously, in differentiating myocardial cells whereas others work non-autonomously, in neighboring tissues, to regulate cardiac differentiation indirectly. Here, we provide an overview of three signaling networks that mediate cardiomyocyte specification and review recent insights into their specific roles in heart development. In addition, we demonstrate how systems level, 'omic approaches' and other high-throughput techniques such as small molecules screens are beginning to impact our understanding of cardiomyocyte specification and, to identify novel signaling pathways involved in this process. In particular, it now seems clear that at least one chemokine receptor CXCR4 is an important marker for cardiomyocyte progenitors and may play a functional role in their differentiation. Finally, we discuss some gaps in our current understanding of early lineage selection that could be addressed by various types of omic analysis.
Collapse
Affiliation(s)
- Wenrui Liu
- Greenberg Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | |
Collapse
|
54
|
Putiri E, Pelegri F. The zebrafish maternal-effect gene mission impossible encodes the DEAH-box helicase Dhx16 and is essential for the expression of downstream endodermal genes. Dev Biol 2011; 353:275-89. [PMID: 21396359 PMCID: PMC3088167 DOI: 10.1016/j.ydbio.2011.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 01/26/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
Abstract
Early animal embryonic development requires maternal products that drive developmental processes prior to the activation of the zygotic genome at the mid-blastula transition. During and after this transition, maternal products may continue to act within incipient zygotic developmental programs. Mechanisms that control maternally-inherited products to spatially and temporally restrict developmental responses remain poorly understood, but necessarily depend on posttranscriptional regulation. We report the functional analysis and molecular identification of the zebrafish maternal-effect gene mission impossible (mis). Our studies suggest requirements for maternally-derived mis function in events that occur during gastrulation, including cell movement and the activation of some endodermal target genes. Cell transplantation experiments show that the cell movement defect is cell autonomous. Within the endoderm induction pathway, mis is not required for the activation of early zygotic genes, but is essential to implement nodal activity downstream of casanova/sox 32 but upstream of sox17 expression. Activation of nodal signaling in blastoderm explants shows that the requirement for mis function in endoderm gene induction is independent of the underlying yolk cell. Positional cloning of mis, including genetic rescue and complementation analysis, shows that it encodes the DEAH-box RNA helicase Dhx16, shown in other systems to act in RNA regulatory processes such as splicing and translational control. Analysis of a previously identified insertional dhx16 mutation shows that the zygotic component of this gene is also essential for embryonic viability. Our studies provide a striking example of the interweaving of maternal and zygotic genetic functions during the egg-to-embryo transition. Maternal RNA helicases have long been known to be involved in the development of the animal germ line, but our findings add to growing evidence that these factors may also control specific gene expression programs in somatic tissues.
Collapse
Affiliation(s)
- Emily Putiri
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, Madison, WI 53706
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, Madison, WI 53706
| |
Collapse
|
55
|
Li N, Wei C, Olena AF, Patton JG. Regulation of endoderm formation and left-right asymmetry by miR-92 during early zebrafish development. Development 2011; 138:1817-26. [PMID: 21447552 DOI: 10.1242/dev.056697] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
microRNAs (miRNAs) are a family of 21-23 nucleotide endogenous non-coding RNAs that post-transcriptionally regulate gene expression in a sequence-specific manner. Typically, miRNAs downregulate target genes by recognizing and recruiting protein complexes to 3'UTRs, followed by translation repression or mRNA degradation. miR-92 is a well-studied oncogene in mammalian systems. Here, using zebrafish as a model system, we uncovered a novel tissue-inductive role for miR-92 during early vertebrate development. Overexpression resulted in reduced endoderm formation during gastrulation with consequent cardia and viscera bifida. By contrast, depletion of miR-92 increased endoderm formation, which led to abnormal Kupffer's vesicle development and left-right patterning defects. Using target prediction algorithms and reporter constructs, we show that gata5 is a target of miR-92. Alteration of gata5 levels reciprocally mirrored the effects of gain and loss of function of miR-92. Moreover, genetic epistasis experiments showed that miR-92-mediated defects could be substantially suppressed by modulating gata5 levels. We propose that miR-92 is a critical regulator of endoderm formation and left-right asymmetry during early zebrafish development and provide the first evidence for a regulatory function for gata5 in the formation of Kupffer's vesicle and left-right patterning.
Collapse
Affiliation(s)
- Nan Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
56
|
Narayanan A, Thompson SA, Lee JJ, Lekven AC. A transgenic wnt8a:PAC reporter reveals biphasic regulation of vertebrate mesoderm development. Dev Dyn 2011; 240:898-907. [PMID: 21384472 DOI: 10.1002/dvdy.22599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2011] [Indexed: 12/25/2022] Open
Affiliation(s)
- Anand Narayanan
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | | | | | | |
Collapse
|
57
|
Yu P, Pan G, Yu J, Thomson JA. FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell 2011; 8:326-34. [PMID: 21362572 PMCID: PMC3052735 DOI: 10.1016/j.stem.2011.01.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/05/2010] [Accepted: 12/30/2010] [Indexed: 10/18/2022]
Abstract
Here, we show that as human embryonic stem cells (ESCs) exit the pluripotent state, NANOG can play a key role in determining lineage outcome. It has previously been reported that BMPs induce differentiation of human ESCs into extraembryonic lineages. Here, we find that FGF2, acting through the MEK-ERK pathway, switches BMP4-induced human ESC differentiation outcome to mesendoderm, characterized by the uniform expression of T (brachyury) and other primitive streak markers. We also find that MEK-ERK signaling prolongs NANOG expression during BMP-induced differentiation, that forced NANOG expression results in FGF-independent BMP4 induction of mesendoderm, and that knockdown of NANOG greatly reduces T induction. Together, our results demonstrate that FGF2 signaling switches the outcome of BMP4-induced differentiation of human ESCs by maintaining NANOG levels through the MEK-ERK pathway.
Collapse
Affiliation(s)
- Pengzhi Yu
- Morgridge Institute for Research, Madison, WI 53715-7365, USA
| | | | | | | |
Collapse
|
58
|
Abstract
The endoderm gives rise to the lining of the esophagus, stomach and intestines, as well as associated organs. To generate a functional intestine, a series of highly orchestrated developmental processes must occur. In this review, we attempt to cover major events during intestinal development from gastrulation to birth, including endoderm formation, gut tube growth and patterning, intestinal morphogenesis, epithelial reorganization, villus emergence, as well as proliferation and cytodifferentiation. Our discussion includes morphological and anatomical changes during intestinal development as well as molecular mechanisms regulating these processes.
Collapse
Affiliation(s)
- Jason R. Spence
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ryan Lauf
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Noah F. Shroyer
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
59
|
The yolk syncytial layer in early zebrafish development. Trends Cell Biol 2010; 20:586-92. [DOI: 10.1016/j.tcb.2010.06.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/28/2010] [Accepted: 06/28/2010] [Indexed: 11/30/2022]
|
60
|
Villegas SN, Canham M, Brickman JM. FGF signalling as a mediator of lineage transitions--evidence from embryonic stem cell differentiation. J Cell Biochem 2010; 110:10-20. [PMID: 20336694 DOI: 10.1002/jcb.22536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The fibroblast growth factor (FGF) signalling pathway is one of the most ubiquitous in biology. It has diverse roles in development, differentiation and cancer. Embryonic stem (ES) cells are in vitro cell lines capable of differentiating into all the lineages of the conceptus. As such they have the capacity to differentiate into derivatives of all three germ layers and to some extent the extra-embryonic lineages as well. Given the prominent role of FGF signalling in early embryonic development, we explore the role of this pathway in early ES cell differentiation towards the major lineages of the embryo. As early embryonic differentiation is intricately choreographed at the level of morphogenetic movement, adherent ES cell culture affords a unique opportunity to study the basic steps in early lineage specification in the absence of ever shifting complex in vivo microenvironments. Thus recent experiments in ES cell differentiation are able to pinpoint specific FGF dependent lineage transitions that are difficult to resolve in vivo. Here we review the role of FGF signalling in early development alongside the ES cell data and suggest that FGF dependent signalling via phospho-Erk activation maybe a major mediator of transitions in lineage specification.
Collapse
Affiliation(s)
- Santiago Nahuel Villegas
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, King's Buildings, West Mains Rd., Edinburgh EH9 3JQ, UK
| | | | | |
Collapse
|
61
|
Hong SK, Levin CS, Brown JL, Wan H, Sherman BT, Huang DW, Lempicki RA, Feldman B. Pre-gastrula expression of zebrafish extraembryonic genes. BMC DEVELOPMENTAL BIOLOGY 2010; 10:42. [PMID: 20423468 PMCID: PMC2873407 DOI: 10.1186/1471-213x-10-42] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 04/27/2010] [Indexed: 01/11/2023]
Abstract
Background Many species form extraembryonic tissues during embryogenesis, such as the placenta of humans and other viviparous mammals. Extraembryonic tissues have various roles in protecting, nourishing and patterning embryos. Prior to gastrulation in zebrafish, the yolk syncytial layer - an extraembryonic nuclear syncytium - produces signals that induce mesoderm and endoderm formation. Mesoderm and endoderm precursor cells are situated in the embryonic margin, an external ring of cells along the embryo-yolk interface. The yolk syncytial layer initially forms below the margin, in a domain called the external yolk syncytial layer (E-YSL). Results We hypothesize that key components of the yolk syncytial layer's mesoderm and endoderm inducing activity are expressed as mRNAs in the E-YSL. To identify genes expressed in the E-YSL, we used microarrays to compare the transcription profiles of intact pre-gastrula embryos with pre-gastrula embryonic cells that we had separated from the yolk and yolk syncytial layer. This identified a cohort of genes with enriched expression in intact embryos. Here we describe our whole mount in situ hybridization analysis of sixty-eight of them. This includes ten genes with E-YSL expression (camsap1l1, gata3, znf503, hnf1ba, slc26a1, slc40a1, gata6, gpr137bb, otop1 and cebpa), four genes with expression in the enveloping layer (EVL), a superficial epithelium that protects the embryo (zgc:136817, zgc:152778, slc14a2 and elovl6l), three EVL genes whose expression is transiently confined to the animal pole (elovl6l, zgc:136359 and clica), and six genes with transient maternal expression (mtf1, wu:fj59f04, mospd2, rftn2, arrdc1a and pho). We also assessed the requirement of Nodal signaling for the expression of selected genes in the E-YSL, EVL and margin. Margin expression was Nodal dependent for all genes we tested, including the concentrated margin expression of an EVL gene: zgc:110712. All other instances of EVL and E-YSL expression that we tested were Nodal independent. Conclusion We have devised an effective strategy for enriching and identifying genes expressed in the E-YSL of pre-gastrula embryos. To our surprise, maternal genes and genes expressed in the EVL were also enriched by this strategy. A number of these genes are promising candidates for future functional studies on early embryonic patterning.
Collapse
Affiliation(s)
- Sung-Kook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Croce JC, McClay DR. Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo. Development 2010; 137:83-91. [PMID: 20023163 DOI: 10.1242/dev.044149] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endomesoderm is the common progenitor of endoderm and mesoderm early in the development of many animals. In the sea urchin embryo, the Delta/Notch pathway is necessary for the diversification of this tissue, as are two early transcription factors, Gcm and FoxA, which are expressed in mesoderm and endoderm, respectively. Here, we provide a detailed lineage analysis of the cleavages leading to endomesoderm segregation, and examine the expression patterns and the regulatory relationships of three known regulators of this cell fate dichotomy in the context of the lineages. We observed that endomesoderm segregation first occurs at hatched blastula stage. Prior to this stage, Gcm and FoxA are co-expressed in the same cells, whereas at hatching these genes are detected in two distinct cell populations. Gcm remains expressed in the most vegetal endomesoderm descendant cells, while FoxA is downregulated in those cells and activated in the above neighboring cells. Initially, Delta is expressed exclusively in the micromeres, where it is necessary for the most vegetal endomesoderm cell descendants to express Gcm and become mesoderm. Our experiments show a requirement for a continuous Delta input for more than two cleavages (or about 2.5 hours) before Gcm expression continues in those cells independently of further Delta input. Thus, this study provides new insights into the timing mechanisms and the molecular dynamics of endomesoderm segregation during sea urchin embryogenesis and into the mode of action of the Delta/Notch pathway in mediating mesoderm fate.
Collapse
Affiliation(s)
- Jenifer C Croce
- 1Biologie du Développement, UPMC (Univ. Paris 6) and CNRS, Observatoire Océanologique, 06230 Villefranche-sur-Mer, France.
| | | |
Collapse
|
63
|
|
64
|
Tremblay KD. Formation of the murine endoderm: lessons from the mouse, frog, fish, and chick. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:1-34. [PMID: 21075338 DOI: 10.1016/b978-0-12-381280-3.00001-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian definitive endoderm arises as a simple epithelial sheet. This sheet of cells will eventually produce the innermost tube that comprises the entire digestive tract from the esophagus to the colon as well as the epithelial component of the digestive and respiratory organs including the thymus, thyroid, lung, liver, gallbladder, and pancreas. Thus a wide array of tissue types are derived from the early endodermal sheet, and understanding the morphological and molecular mechanisms used to produce this tissue is integral to understanding the development of all these organs. The goal of this chapter is to summarize what is known about the morphological and molecular mechanisms used to produce this embryonic germ layer. Although this chapter mainly focuses on the mechanisms used to generate the murine endoderm, supportive or suggestive data from other species, including chick, frog (Xenopus laevis), and the Zebrafish (Danio rerio) are also examined.
Collapse
Affiliation(s)
- Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
65
|
Tiso N, Moro E, Argenton F. Zebrafish pancreas development. Mol Cell Endocrinol 2009; 312:24-30. [PMID: 19477220 DOI: 10.1016/j.mce.2009.04.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 04/28/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
An accurate understanding of the molecular events governing pancreas development can have an impact on clinical medicine related to diabetes, obesity and pancreatic cancer, diseases with a high impact in public health. Until 1996, the main animal models in which pancreas formation and differentiation could be studied were mouse and, for some instances related to early development, chicken and Xenopus. Zebrafish has penetrated this field very rapidly offering a new model of investigation; by joining functional genomics, genetics and in vivo whole mount visualization, Danio rerio has allowed large scale and fine multidimensional analysis of gene functions during pancreas formation and differentiation.
Collapse
Affiliation(s)
- Natascia Tiso
- Dipartimento di Biologia, Universita' degli Studi di Padova, Via Ugo Bassi 58b, I-35121 Padova, Italy
| | | | | |
Collapse
|
66
|
Porazzi P, Calebiro D, Benato F, Tiso N, Persani L. Thyroid gland development and function in the zebrafish model. Mol Cell Endocrinol 2009; 312:14-23. [PMID: 19481582 DOI: 10.1016/j.mce.2009.05.011] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/20/2009] [Accepted: 05/20/2009] [Indexed: 02/05/2023]
Abstract
Thyroid development has been intensively studied in the mouse, where it closely recapitulates the human situation. Despite the lack of a compact thyroid gland, the zebrafish thyroid tissue originates from the pharyngeal endoderm and the main genes involved in its patterning and early development are conserved between zebrafish and mammals. In recent years, the zebrafish has become a powerful model not only for the developmental biology studies, but also for large-scale genetic analyses and drug screenings, mostly thanks to the ease with which its embryos can be manipulated and to its translucent body, which allows in vivo imaging. In this review we will provide an overview of the current knowledge of thyroid gland origin and differentiation in the zebrafish. Moreover, we will consider the action of thyroid hormones and some aspects related to endocrine disruptors.
Collapse
Affiliation(s)
- P Porazzi
- Dipartimento di Scienze Mediche, Università degli Studi di Milano & Lab of Experimental Endocrinology, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano, Milan, Italy.
| | | | | | | | | |
Collapse
|
67
|
Semb H. Expandable endodermal progenitors: new tools to explore endoderm and its derivatives. Cell Stem Cell 2008; 3:355-6. [PMID: 18940723 DOI: 10.1016/j.stem.2008.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the two recent issues of Cell Stem Cell, Rossant and colleagues (Seguin et al., 2008) produced expandable endoderm from hESCs by constitutive expression of Sox transcription factors, while Brickman and associates (Morrison et al., 2008) used a reporter gene strategy to isolate replicating anterior definitive endoderm from mESCs.
Collapse
Affiliation(s)
- Henrik Semb
- Stem Cell Center, Lund University, BMC B10, S-221 84 Lund, Sweden.
| |
Collapse
|
68
|
Morrison GM, Oikonomopoulou I, Migueles RP, Soneji S, Livigni A, Enver T, Brickman JM. Anterior definitive endoderm from ESCs reveals a role for FGF signaling. Cell Stem Cell 2008; 3:402-15. [PMID: 18940732 DOI: 10.1016/j.stem.2008.07.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 06/01/2008] [Accepted: 07/22/2008] [Indexed: 01/12/2023]
Abstract
The use of embryonic stem cell (ESC) differentiation to generate functional hepatic or pancreatic progenitors and as a tool for developmental biology is limited by an inability to isolate in vitro equivalents of regionally specified anterior definitive endoderm (ADE). To address this, we devised a strategy using a fluorescent reporter gene under the transcriptional control of the anterior endoderm marker Hex alongside the definitive mesendoderm marker Cxcr4. Isolation of Hex(+)Cxcr4(+) differentiating ESCs yielded a population expressing ADE markers that both can be expanded and is competent to undergo differentiation toward liver and pancreatic fates. Hex reporter ESCs were also used to define conditions for ADE specification in serum-free adherent culture and revealed an unexpected role for FGF signaling in the generation of ADE. Our findings in defined monolayer differentiation suggest FGF signaling is an important regulator of early anterior mesendoderm differentiation rather than merely a mediator of morphogenetic movement.
Collapse
Affiliation(s)
- Gillian M Morrison
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JQ, UK.
| | | | | | | | | | | | | |
Collapse
|
69
|
Wardle FC, Papaioannou VE. Teasing out T-box targets in early mesoderm. Curr Opin Genet Dev 2008; 18:418-25. [PMID: 18778771 PMCID: PMC2700021 DOI: 10.1016/j.gde.2008.07.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 07/31/2008] [Indexed: 11/21/2022]
Abstract
T-box transcription factor genes are widely conserved in metazoan development and widely involved in developmental processes. With the phase of T-box gene discovery winding down, the phase of transcriptional target discovery for T-box transcription factors is finally taking off and yielding rich rewards. Mutant phenotypes in mouse and zebrafish as well as morpholino studies in zebrafish have helped to link the T-box genes to a variety of signaling pathways through diverse target genes and feedback loops. Particularly in early mesoderm development, it is emerging that a network of T-box genes interacts with Wnt/beta-catenin and Notch/Delta signaling pathways, among others, to control the important processes of mesoderm specification, somite segmentation, and left/right body axis determination.
Collapse
Affiliation(s)
- Fiona C. Wardle
- Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3DY, UK,
| | - Virginia E. Papaioannou
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, 701 W 168 St., New York, NY 10032, USA,
| |
Collapse
|
70
|
Peterkin T, Gibson A, Patient R. Redundancy and evolution of GATA factor requirements in development of the myocardium. Dev Biol 2007; 311:623-35. [PMID: 17869240 PMCID: PMC2279743 DOI: 10.1016/j.ydbio.2007.08.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 08/01/2007] [Accepted: 08/07/2007] [Indexed: 11/26/2022]
Abstract
The transcription factors, GATA4, 5 and 6, recognize the same DNA sequence and are all expressed in the developing myocardium. However, knockout studies in the mouse have indicated that none of them are absolutely required for the specification of the myocardium. Here we present evidence for redundancy in this family for the first time. Using morpholinos in both Xenopus and zebrafish embryos, we show that GATA4 knockdown, for example, only affects cardiac marker expression in the absence of either GATA5 or GATA6. A similar situation pertains for GATA5 in Xenopus whereas, in zebrafish, GATA5 (faust) plays a major role in driving the myocardial programme. This requirement for GATA5 in zebrafish is for induction of the myocardium, in contrast to the GATA6 requirement in both species, which is for differentiation. This early role for GATA5 in zebrafish correlates with its earlier expression and with an earlier requirement for BMP signalling, suggesting that a mutual maintenance loop for GATA, BMP and Nkx expression is the evolutionarily conserved entity.
Collapse
Affiliation(s)
- Tessa Peterkin
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Abigail Gibson
- The Victor Chang Cardiac Research Institute, Level 6, 384 Victoria Street, Darlinghurst, NSW 2010, Sydney, Australia
| | - Roger Patient
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| |
Collapse
|
71
|
Wilkins SJ, Yoong S, Verkade H, Mizoguchi T, Plowman SJ, Hancock JF, Kikuchi Y, Heath JK, Perkins AC. Mtx2 directs zebrafish morphogenetic movements during epiboly by regulating microfilament formation. Dev Biol 2007; 314:12-22. [PMID: 18154948 DOI: 10.1016/j.ydbio.2007.10.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 10/17/2007] [Accepted: 10/19/2007] [Indexed: 11/16/2022]
Abstract
The homeobox transcription factor Mtx2 is essential for epiboly, the first morphogenetic movement of gastrulation in zebrafish. Morpholino knockdown of Mtx2 results in stalling of epiboly and lysis due to yolk rupture. However, the mechanism of Mtx2 action is unknown. The role of mtx2 is surprising as most mix/bix family genes are thought to have roles in mesendoderm specification. Using a transgenic sox17-promoter driven EGFP line, we show that Mtx2 is not required for endoderm specification but is required for correct morphogenetic movements of endoderm and axial mesoderm. During normal zebrafish development, mtx2 is expressed at both the blastoderm margin and in the zebrafish equivalent of visceral endoderm, the extra-embryonic yolk syncytial layer (YSL). We show that formation of the YSL is not Mtx2 dependent, but that Mtx2 directs spatial arrangement of YSL nuclei. Furthermore, we demonstrate that Mtx2 knockdown results in loss of the YSL F-actin ring, a microfilament structure previously shown to be necessary for epiboly progression. In summary, we propose that Mtx2 acts within the YSL to regulate morphogenetic movements of both embryonic and extra-embryonic tissues, independently of cell fate specification.
Collapse
Affiliation(s)
- Simon J Wilkins
- Institute for Molecular Bioscience, University of Queensland, Brisbane, 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Li Z, Korzh V, Gong Z. Localized rbp4 expression in the yolk syncytial layer plays a role in yolk cell extension and early liver development. BMC DEVELOPMENTAL BIOLOGY 2007; 7:117. [PMID: 17945029 PMCID: PMC2198918 DOI: 10.1186/1471-213x-7-117] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 10/19/2007] [Indexed: 01/08/2023]
Abstract
BACKGROUND The number of genes characterized in liver development is steadily increasing, but the origin of liver precursor cells and the molecular control of liver formation remain poorly understood. Existing theories about formation of zebrafish visceral organs emphasize either their budding from the endodermal rod or formation of independent anlage followed by their later fusion, but none of these is completely satisfactory in explaining liver organogenesis in zebrafish. RESULTS Expression of a gene encoding the retinol binding protein 4 (Rbp4) was analyzed in zebrafish. rbp4, which is expressed mainly in the liver in adults, was shown to be expressed in the yolk syncytial layer (YSL) during early embryogenesis. At 12-16 hpf rbp4 expression was restricted to the ventro-lateral YSL and later expanded to cover the posterior YSL. We demonstrated that rbp4 expression was negatively regulated by Nodal and Hedgehog (Hh) signalling and positively controlled by retinoic acid (RA). Knockdown of Rbp4 in the YSL resulted in shortened yolk extension as well as the formation of two liver buds, which could be due to impaired migration of liver progenitor cells. rbp4 appears also to regulate the extracellular matrix protein Fibronectin1 (Fn1) specifically in the ventro-lateral yolk, indicating a role of Fn1 in liver progenitor migration. Since exocrine pancreas, endocrine pancreas, intestine and heart developed normally in Rbp4 morphants, we suggest that rbp4 expression in the YSL is required only for liver development. CONCLUSION The characteristic expression pattern of rbp4 suggests that the YSL is patterned despite its syncytial nature. YSL-expressed Rbp4 plays a role in formation of both yolk extension and liver bud, the latter may also require migration of liver progenitor cells.
Collapse
Affiliation(s)
- Zhen Li
- Department of Biological Sciences, National University of Singapore, Singapore
- Computation and System Biology Program, Singapore-MIT Alliance, National University of Singapore, Singapore
| | - Vladimir Korzh
- Department of Biological Sciences, National University of Singapore, Singapore
- Laboratory of Fish Developmental Biology, Institute of Molecular and Cell Biology, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore
- Computation and System Biology Program, Singapore-MIT Alliance, National University of Singapore, Singapore
| |
Collapse
|
73
|
Pei W, Williams PH, Clark MD, Stemple DL, Feldman B. Environmental and genetic modifiers of squint penetrance during zebrafish embryogenesis. Dev Biol 2007; 308:368-78. [PMID: 17583692 PMCID: PMC1994576 DOI: 10.1016/j.ydbio.2007.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 05/01/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
The Nodal-related subgroup of the TGFbeta superfamily of secreted cytokines regulates the specification of the mesodermal and endodermal germ layers during gastrulation. Two Nodal-related proteins - Squint (Sqt) and Cyclops (Cyc) - are expressed during germ-layer specification in zebrafish. Genetic sqt mutant phenotypes have defined a variable requirement for zygotic Sqt, but not for maternal Sqt, in midline mesendoderm development. However a comparison of phenotypes arising from oocytes or zygotes injected with Sqt antisense morpholinos has suggested a novel requirement for maternal Sqt in dorsal specification. In this study we examined maternal-zygotic mutants for each of two sqt alleles and we also compared phenotypes of closely related zygotic and maternal-zygotic sqt mutants. Each of these approaches indicated there is no general requirement for maternal Sqt. To better understand the dispensability of maternal and zygotic Sqt, we sought out developmental contexts that more rigorously demand intact Sqt signalling. We found that sqt penetrance is influenced by genetic modifiers, by environmental temperature, by levels of residual Activin-like activity and by Heat-Shock Protein 90 (HSP90) activity. Therefore, Sqt may confer an evolutionary advantage by protecting early-stage embryos against detrimental interacting alleles and environmental challenges.
Collapse
Affiliation(s)
- Wuhong Pei
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - P. Huw Williams
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Matthew D. Clark
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Derek L. Stemple
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Benjamin Feldman
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
74
|
Slusarski DC, Pelegri F. Calcium signaling in vertebrate embryonic patterning and morphogenesis. Dev Biol 2007; 307:1-13. [PMID: 17531967 PMCID: PMC2729314 DOI: 10.1016/j.ydbio.2007.04.043] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 04/25/2007] [Accepted: 04/29/2007] [Indexed: 10/23/2022]
Abstract
Signaling pathways that rely on the controlled release and/or accumulation of calcium ions are important in a variety of developmental events in the vertebrate embryo, affecting cell fate specification and morphogenesis. One such major developmentally important pathway is the Wnt/calcium signaling pathway, which, through its antagonism of Wnt/beta-catenin signaling, appears to regulate the formation of the early embryonic organizer. In addition, the Wnt/calcium pathway shares components with another non-canonical Wnt pathway involved in planar cell polarity, suggesting that these two pathways form a loose network involved in polarized cell migratory movements that fashion the vertebrate body plan. Furthermore, left-right axis determination, neural induction and somite formation also display dynamic calcium release, which may be critical in these patterning events. Finally, we summarize recent evidence that propose a role for calcium signaling in stem cell biology and human developmental disorders.
Collapse
Affiliation(s)
- Diane C. Slusarski
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, Phone: 319.335.3229, FAX: 319.335.1069,
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI 53706, Phone: 608.265.9286, FAX: 608.262.2976,
| |
Collapse
|
75
|
Amack JD, Wang X, Yost HJ. Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer's vesicle in zebrafish. Dev Biol 2007; 310:196-210. [PMID: 17765888 DOI: 10.1016/j.ydbio.2007.05.039] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 05/24/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
The brain, heart and gastro-intestinal tract develop distinct left-right (LR) asymmetries. Asymmetric cilia-dependent fluid flow in the embryonic node in mouse, Kupffer's vesicle in zebrafish, notochordal plate in rabbit and gastrocoel roof plate in frog appears to be a conserved mechanism that directs LR asymmetric gene expression and establishes the orientation of organ asymmetry. However, the cellular processes and genetic pathways that control the formation of these essential ciliated structures are unknown. In zebrafish, migratory dorsal forerunner cells (DFCs) give rise to Kupffer's vesicle (KV), a ciliated epithelial sheet that forms a lumen and generates fluid flow. Using the epithelial marker atypical Protein Kinase C (aPKC) and other markers to analyze DFCs and KV cells, we describe a multi-step process by which DFCs form a functional KV. Using mutants and morpholinos, we show that two T-box transcription factors-No tail (Ntl)/Brachyury and Tbx16/Spadetail-cooperatively regulate an early step of DFC mesenchyme to epithelial transition (MET) and KV cell specification. Subsequently, each transcription factor independently controls a distinct step in KV formation: Tbx16 regulates apical clustering of KV cells and Ntl is necessary for KV lumen formation. By targeting morpholinos to DFCs, we show that these cell autonomous functions in KV morphogenesis are necessary for LR patterning throughout the embryo.
Collapse
Affiliation(s)
- Jeffrey D Amack
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
76
|
Smith J, Wardle F, Loose M, Stanley E, Patient R. Germ layer induction in ESC--following the vertebrate roadmap. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2007; Chapter 1:Unit 1D.1. [PMID: 18785165 DOI: 10.1002/9780470151808.sc01d01s1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Controlled differentiation of pluripotential cells takes place routinely and with great success in developing vertebrate embryos. It therefore makes sense to take note of how this is achieved and use this knowledge to control the differentiation of embryonic stem cells (ESCs). An added advantage is that the differentiated cells resulting from this process in embryos have proven functionality and longevity. This unit reviews what is known about the embryonic signals that drive differentiation in one of the most informative of the vertebrate animal models of development, the amphibian Xenopus laevis. It summarizes their identities and the extent to which their activities are dose-dependent. The unit details what is known about the transcription factor responses to these signals, describing the networks of interactions that they generate. It then discusses the target genes of these transcription factors, the effectors of the differentiated state. Finally, how these same developmental programs operate during germ layer formation in the context of ESC differentiation is summarized.
Collapse
Affiliation(s)
- Jim Smith
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
77
|
Abstract
Locomotion mediated by skeletal muscle provides a basis for the behavioral repertoire of most animals. Embryological and genetic studies of mouse, bird, fish and frog embryos are providing insights into the functions of the myogenic regulatory factors (MRFs) and the signaling molecules that regulate activity of MRFs. Nevertheless, our understanding of muscle development remains somewhat limited. Fundamental goals are to elucidate how mesodermal cells are induced during gastrulation to form muscle precursor cells and how muscle precursor cells acquire specific cell fates, such as slow and fast muscle cells. In this review, we focus on studies of zebrafish muscle development that have advanced our understanding of the molecular genetics of muscle cell induction and specification.
Collapse
Affiliation(s)
- Haruki Ochi
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | | |
Collapse
|
78
|
Bennett JT, Joubin K, Cheng S, Aanstad P, Herwig R, Clark M, Lehrach H, Schier AF. Nodal signaling activates differentiation genes during zebrafish gastrulation. Dev Biol 2007; 304:525-40. [PMID: 17306247 PMCID: PMC1885460 DOI: 10.1016/j.ydbio.2007.01.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 12/17/2006] [Accepted: 01/04/2007] [Indexed: 01/10/2023]
Abstract
Nodal signals induce mesodermal and endodermal progenitors during vertebrate development. To determine the role of Nodal signaling at a genomic level, we isolated Nodal-regulated genes by expression profiling using macroarrays and gene expression databases. Putative Nodal-regulated genes were validated by in situ hybridization screening in wild type and Nodal signaling mutants. 46 genes were identified, raising the currently known number of Nodal-regulated genes to 72. Based on their expression patterns along the dorsoventral axis, most of these genes can be classified into two groups. One group is expressed in the dorsal margin, whereas the other group is expressed throughout the margin. In addition to transcription factors and signaling components, the screens identified several new functional classes of Nodal-regulated genes, including cytoskeletal components and molecules involved in protein secretion or endoplasmic reticulum stress. We found that x-box binding protein-1 (xbp1) is a direct target of Nodal signaling and required for the terminal differentiation of the hatching gland, a specialized secretory organ whose specification is also dependent on Nodal signaling. These results indicate that Nodal signaling regulates not only specification genes but also differentiation genes.
Collapse
Affiliation(s)
- James T. Bennett
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York, NY 10016, USA
| | - Katherine Joubin
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York, NY 10016, USA
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Simon Cheng
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York, NY 10016, USA
- Department of Radiation Oncology New York University School of Medicine, New York, NY 10016, USA
| | - Pia Aanstad
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Ralf Herwig
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Matthew Clark
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Hans Lehrach
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Alexander F. Schier
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York, NY 10016, USA
- Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Center for Brain Science, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
79
|
Evolution of the mechanisms and molecular control of endoderm formation. Mech Dev 2007; 124:253-78. [PMID: 17307341 DOI: 10.1016/j.mod.2007.01.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 12/24/2006] [Accepted: 01/03/2007] [Indexed: 01/13/2023]
Abstract
Endoderm differentiation and movements are of fundamental importance not only for subsequent morphogenesis of the digestive tract but also to enable normal patterning and differentiation of mesoderm- and ectoderm-derived organs. This review defines the tissues that have been called endoderm in different species, their cellular origin and their movements. We take a comparative approach to ask how signaling pathways leading to embryonic and extraembryonic endoderm differentiation have emerged in different organisms, how they became integrated and point to specific gaps in our knowledge that would be worth filling. Lastly, we address whether the gastrulation movements that lead to endoderm internalization are coupled with its differentiation.
Collapse
|
80
|
Zorn AM, Wells JM. Molecular basis of vertebrate endoderm development. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 259:49-111. [PMID: 17425939 DOI: 10.1016/s0074-7696(06)59002-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The embryonic endoderm gives rise to the epithelial lining of the digestive and respiratory systems and organs such as the thyroid, lungs, liver, gallbladder, and pancreas. Studies in Xenopus, zebrafish, and mice have revealed a conserved molecular pathway controlling vertebrate endoderm development. The TGFbeta/Nodal signaling pathway is at the top of this molecular hierarchy and controls the expression of a number of key transcription factors including Mix-like homeodomain proteins, Gata zinc finger factors, Sox HMG domain proteins, and Fox forkhead factors. Here we review the function of these molecules comparing and contrasting their roles in each model organism. Finally, we will describe how our understanding of the molecular pathway governing endoderm development in embryos is being used to differentiate embryonic stem cells in vitro along endodermal lineages, with the ultimate goal of making therapeutically useful tissue.
Collapse
Affiliation(s)
- Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Research, Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
81
|
Kumano G, Nishida H. Ascidian embryonic development: An emerging model system for the study of cell fate specification in chordates. Dev Dyn 2007; 236:1732-47. [PMID: 17366575 DOI: 10.1002/dvdy.21108] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ascidian tadpole larva represents the basic body plan of all chordates in a relatively small number of cells and tissue types. Although it had been considered that ascidians develop largely in a determinative way, whereas vertebrates develop in an inductive way, recent studies at the molecular and cellular levels have uncovered several similarities in the way developmental fates are specified. In this review, we describe ascidian embryogenesis and its cell lineages, introduce several characteristics of ascidian embryos, describe recent advances in understanding of the mechanisms of cell fate specification, and discuss them in the context of what is known in vertebrates and other organisms.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | | |
Collapse
|
82
|
Lewis SL, Tam PPL. Definitive endoderm of the mouse embryo: formation, cell fates, and morphogenetic function. Dev Dyn 2006; 235:2315-29. [PMID: 16752393 DOI: 10.1002/dvdy.20846] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The endoderm is one of the primary germ layers but, in comparison to ectoderm and mesoderm, has received less attention. The definitive endoderm forms during gastrulation and replaces the extraembryonic visceral endoderm. It participates in the complex morphogenesis of the gut tube and contributes to the associated visceral organs. This review highlights the role of the definitive endoderm as a source of patterning cues for the morphogenesis of other germ-layer tissues, such as the anterior neurectoderm and the pharyngeal region, and also emphasizes the intricate patterning that the endoderm itself undergoes enabling the acquisition of regionalized cell fates.
Collapse
Affiliation(s)
- Samara L Lewis
- Embryology Unit, Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
83
|
Abstract
The endomesoderm gene regulatory network (GRN) of C. elegans is a rich resource for studying the properties of cell-fate-specification pathways. This GRN contains both cell-autonomous and cell non-autonomous mechanisms, includes network motifs found in other GRNs, and ties maternal factors to terminal differentiation genes through a regulatory cascade. In most cases, upstream regulators and their direct downstream targets are known. With the availability of resources to study close and distant relatives of C. elegans, the molecular evolution of this network can now be examined. Within Caenorhabditis, components of the endomesoderm GRN are well conserved. A cursory examination of the preliminary genome sequences of two parasitic nematodes, Haemonchus contortus and Brugia malayi, suggests that evolution in this GRN is occurring most rapidly for the zygotic genes that specify blastomere identity.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
84
|
Fletcher G, Jones GE, Patient R, Snape A. A role for GATA factors in Xenopus gastrulation movements. Mech Dev 2006; 123:730-45. [PMID: 16949798 DOI: 10.1016/j.mod.2006.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 07/12/2006] [Accepted: 07/16/2006] [Indexed: 01/12/2023]
Abstract
Gastrulation movements in Xenopus laevis are becoming increasingly well characterised, however the molecular mechanisms involved are less clear. Active migration of the leading edge mesendoderm across the fibronectin-coated blastocoel roof is necessary for further development of tissues such as head mesoderm, heart, blood and liver. The zinc finger transcription factors GATA4 and GATA6 are expressed in this migratory tissue during gastrulation, but their role here is unknown. This study further characterises the expression of GATA4 and 6 during gastrulation, and investigates their function in migratory behaviour. Gain-of-function experiments with these GATA factors induce cell spreading, polarisation and migration in non-motile presumptive ectoderm cells. Expression of a dominant-interfering form of GATA6, which inhibits transactivation of GATA targets, severely impairs the ability of dorsal leading edge mesendoderm to spread and translocate on fibronectin. Mosaic inhibition of GATA activity indicates that GATA factors function cell autonomously to induce cell spreading and movement in dorsal mesendoderm. Knockdown of specific GATA factors using anti-sense morpholinos indicates that GATA4 and GATA6 both contribute to dorsal mesendoderm migration in vitro. GATA4 and GATA6 are known to be involved in cell-specification of mesoderm and endoderm-derived tissues, but this is the first description of an additional role for these factors in cell migration.
Collapse
Affiliation(s)
- Georgina Fletcher
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guys Campus, London SE1 1UL, UK
| | | | | | | |
Collapse
|
85
|
Mizoguchi T, Izawa T, Kuroiwa A, Kikuchi Y. Fgf signaling negatively regulates Nodal-dependent endoderm induction in zebrafish. Dev Biol 2006; 300:612-22. [PMID: 17026981 DOI: 10.1016/j.ydbio.2006.08.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 08/22/2006] [Accepted: 08/25/2006] [Indexed: 11/21/2022]
Abstract
In zebrafish development, Nodal signaling is critical for the induction of endoderm and mesoderm. Three transcription factors downstream of Nodal, Bonnie and Clyde (Bon), Faust (Fau)/Gata5 and Casanova (Cas), are required for endoderm induction. However, it is not yet fully understood how the Nodal signaling pathway regulates the decision process of endoderm and mesoderm induction. In this study, we focused on Fgf signaling, downstream of Nodal signaling, during endoderm induction. We found that activation of Fgf signaling decreases the number of cas-expressing endodermal cells. Conversely, inhibition of this signaling increases the number of endodermal cells without affecting the expression of Nodal, Nodal antagonists, bon or fau/gata5. Inhibition of Fgf signaling in endoderm mutants suggests that this signaling negatively regulates cas expression by a pathway parallel to Bon and Fau/Gata5 in the molecular cascade leading to endoderm. Furthermore, activation of Fgf signaling can overcome Cas-mediated abrogation of mesodermal gene expression. Altogether, these results suggest that Fgf signaling negatively regulates endoderm induction, possibly through repression of cas expression and down-regulation of Cas function.
Collapse
Affiliation(s)
- Takamasa Mizoguchi
- Division of Biological Science, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
86
|
Jacobsen CM, Mannisto S, Porter-Tinge S, Genova E, Parviainen H, Heikinheimo M, Adameyko II, Tevosian SG, Wilson DB. GATA-4:FOG interactions regulate gastric epithelial development in the mouse. Dev Dyn 2006; 234:355-62. [PMID: 16127717 DOI: 10.1002/dvdy.20552] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transcription factor GATA-4 is a key participant in cytodifferentiation of the mouse hindstomach. Here we show that GATA-4 cooperates with a Friend-of-GATA (FOG) cofactor to direct gene expression in this segment of gut. Immunohistochemical staining revealed that GATA-4 and FOG-1 are co-expressed in hindstomach epithelial cells from embryonic days (E) 11.5 to 18.5. The other member of the mammalian FOG family, FOG-2, was not detected in gastric epithelium. To show that GATA-4:FOG interactions influence stomach development, we analyzed Gata4(ki/ki) mice, which express a mutant GATA-4 that cannot bind FOG cofactors. Sonic Hedgehog, an endoderm-derived signaling molecule normally down-regulated in the distal stomach, was over-expressed in hindstomach epithelium of E11.5 Gata4(ki/ki) mice, and there was a concomitant decrease in fibroblast growth factor-10 in adjacent mesenchyme. We conclude that functional interaction between GATA-4 and a member of the FOG family, presumably FOG-1, is required for proper epithelial-mesenchymal signaling in the developing stomach.
Collapse
Affiliation(s)
- Christina M Jacobsen
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
The basic vertebrate body plan of the zebrafish embryo is established in the first 10 hours of development. This period is characterized by the formation of the anterior-posterior and dorsal-ventral axes, the development of the three germ layers, the specification of organ progenitors, and the complex morphogenetic movements of cells. During the past 10 years a combination of genetic, embryological, and molecular analyses has provided detailed insights into the mechanisms underlying this process. Maternal determinants control the expression of transcription factors and the location of signaling centers that pattern the blastula and gastrula. Bmp, Nodal, FGF, canonical Wnt, and retinoic acid signals generate positional information that leads to the restricted expression of transcription factors that control cell type specification. Noncanonical Wnt signaling is required for the morphogenetic movements during gastrulation. We review how the coordinated interplay of these molecules determines the fate and movement of embryonic cells.
Collapse
Affiliation(s)
- Alexander F Schier
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016-6497, USA.
| | | |
Collapse
|
88
|
Bjornson CRR, Griffin KJP, Farr GH, Terashima A, Himeda C, Kikuchi Y, Kimelman D. Eomesodermin is a localized maternal determinant required for endoderm induction in zebrafish. Dev Cell 2005; 9:523-33. [PMID: 16198294 DOI: 10.1016/j.devcel.2005.08.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 08/22/2005] [Accepted: 08/24/2005] [Indexed: 11/23/2022]
Abstract
In zebrafish, endoderm induction occurs in marginal blastomeres and requires Casanova (Cas), the first endoderm-specific factor expressed in the embryo. Whereas the transcription factors Gata5 and Bon are necessary and sufficient for cas expression in marginal blastomeres, Bon and Gata5 are unable to induce cas in animal pole cells, suggesting that cas expression requires an additional, unidentified factor(s). Here, we show that cas expression depends upon the T box transcription factor Eomesodermin (Eomes), a maternal determinant that is localized to marginal blastomeres. Eomes synergizes potently with Bon and Gata5 to induce cas, even in animal pole blastomeres. We show that Eomes is required for endogenous endoderm induction, acting via an essential binding site in the cas promoter. Direct physical interactions between Eomes, Bon, and Gata5 suggest that Eomes promotes endoderm induction in marginal blastomeres by facilitating the assembly of a transcriptional activating complex on the cas promoter.
Collapse
|
89
|
Pfendler KC, Catuar CS, Meneses JJ, Pedersen RA. Overexpression of Nodal promotes differentiation of mouse embryonic stem cells into mesoderm and endoderm at the expense of neuroectoderm formation. Stem Cells Dev 2005; 14:162-72. [PMID: 15910242 DOI: 10.1089/scd.2005.14.162] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding how to direct the fate of embryonic stem (ES) cells upon differentiation is critical to their eventual use in therapeutic applications. Clues for controlling ES cell differentiation may be found in the early embryo because mouse ES cells form derivatives of all three embryonic germ layers upon injection into blastocysts. One promising candidate for influencing the differentiation of ES cells into the embryonic germ layers is the transforming growth factor-beta (TGF-beta) growth factor, Nodal. Nodal null mouse mutants lack mesoderm, and injection of Nodal mRNA into nonmammalian embryos induces mesodermal and endodermal tissues. We find that overexpression of Nodal in mouse ES cells leads not only to up-regulation of mesodermal and endodermal cell markers but also to downregulation of neuroectodermal markers. These findings demonstrate the importance of Nodal's influence on the differentiation of pluripotent cells to all three of the primary germ layers. Accordingly, altering expression of factors responsible for cell differentiation in the intact embryo provides an approach for directing ES cell fates in vitro toward therapeutically useful cell types.
Collapse
Affiliation(s)
- Kristina C Pfendler
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
90
|
Fukuda K, Kikuchi Y. Endoderm development in vertebrates: fate mapping, induction and regional specification. Dev Growth Differ 2005; 47:343-55. [PMID: 16109032 DOI: 10.1111/j.1440-169x.2005.00815.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of the vertebrate body plan begins with the differentiation of cells into three germ layers: ectoderm, mesoderm and endoderm. Cells in the endoderm give rise to the epithelial lining of the digestive tract, associated glands and respiratory system. One of the fundamental problems in developmental biology is to elucidate how these three primary germ layers are established from the homologous population of cells in the early blastomere. To address this question, ectoderm and mesoderm development have been extensively analyzed, but study of endoderm development has only begun relatively recently. In this review, we focus on the 'where', 'when' and 'how' of endoderm development in four vertebrate model organisms: the zebrafish, Xenopus, chick and mouse. We discuss the classical fate mapping of the endoderm and the more recent progress in characterizing its induction, segregation and regional specification.
Collapse
Affiliation(s)
- Kimiko Fukuda
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
91
|
Abstract
Fibroblast growth factors (FGFs) have been implicated in diverse cellular processes including apoptosis, cell survival, chemotaxis, cell adhesion, migration, differentiation, and proliferation. This review presents our current understanding on the roles of FGF signaling, the pathways employed, and its regulation. We focus on FGF signaling during early embryonic processes in vertebrates, such as induction and patterning of the three germ layers as well as its function in the control of morphogenetic movements.
Collapse
Affiliation(s)
- Ralph T Böttcher
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
92
|
Ball EE, Hayward DC, Saint R, Miller DJ. A simple plan — cnidarians and the origins of developmental mechanisms. Nat Rev Genet 2004; 5:567-77. [PMID: 15266339 DOI: 10.1038/nrg1402] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Eldon E Ball
- Centre for the Molecular Genetics of Development and Research School of Biological Sciences, Australian National University, P.O. Box 475, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|
93
|
Abstract
Zebrafish have emerged as a useful vertebrate model system in which unbiased large-scale screens have revealed hundreds of mutations affecting vertebrate development. Many zebrafish mutants closely resemble known human disorders, thus providing intriguing prospects for uncovering the genetic basis of human diseases and for the development of pharmacologic agents that inhibit or correct the progression of developmental disorders. The rapid pace of advances in genomic sequencing and map construction, in addition to morpholino targeting and transgenic techniques, have facilitated the identification and analysis of genes associated with zebrafish mutants, thus promoting the development of zebrafish as a model for human disorders. This review aims to illustrate how the zebrafish has been used to identify unknown genes, to assign function to known genes, and to delineate genetic pathways, all contributing valuable leads toward understanding human pathophysiology.
Collapse
Affiliation(s)
- Trista E North
- Division of Hematology/Oncology, Department of Medicine, Children's Hospital of Boston, Enders Research Building, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
94
|
Abstract
All processes that occur before the activation of the zygotic genome at the midblastula transition are driven by maternal products, which are produced during oogenesis and stored in the mature oocyte. Upon egg activation and fertilization, these maternal factors initiate developmental cascades that carry out the embryonic developmental program. Even after the initiation of zygotic gene expression, perduring maternal products continue performing essential functions, either together with other maternal factors or through interactions with newly expressed zygotic products. Advances in zebrafish research have placed this organism in a unique position to contribute to a detailed understanding of the role of maternal factors in early vertebrate development. This review summarizes our knowledge on the processes involved in the production and redistribution of maternal factors during zebrafish oogenesis and early development, as well as our understanding of the function of these factors in axis formation, germ layer and germ cell specification, and other early embryonic processes.
Collapse
Affiliation(s)
- Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
95
|
Correa RG, Tergaonkar V, Ng JK, Dubova I, Izpisua-Belmonte JC, Verma IM. Characterization of NF-kappa B/I kappa B proteins in zebra fish and their involvement in notochord development. Mol Cell Biol 2004; 24:5257-68. [PMID: 15169890 PMCID: PMC419862 DOI: 10.1128/mcb.24.12.5257-5268.2004] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Although largely involved in innate and adaptive immunity, NF-kappa B plays an important role in vertebrate development. In chicks, the inactivation of the NF-kappa B pathway induces functional alterations of the apical ectodermal ridge, which mediates limb outgrowth. In mice, the complete absence of NF-kappa B activity leads to prenatal death and neural tube defects. Here, we report the cloning and characterization of NF-kappa B/I kappa B proteins in zebra fish. Despite being ubiquitously expressed among the embryonic tissues, NF-kappa B/I kappa B members present distinct patterns of gene expression during the early zebra fish development. Biochemical assays indicate that zebra fish NF-kappa B proteins are able to bind consensus DNA-binding (kappa B) sites and inhibitory I kappa B alpha proteins from mammals. We show that zebra fish I kappa B alphas are degraded in a time-dependent manner after induction of transduced murine embryo fibroblasts (MEFs) and that these proteins are able to rescue NF-kappa B activity in I kappa B alpha(-/-) MEFs. Expression of a dominant-negative form of the murine I kappa B alpha (mI kappa B alpha M), which is able to block NF-kappa B in zebra fish cells, interferes with the notochord differentiation, generating no tail (ntl)-like embryos. This phenotype can be rescued by coinjection of the T-box gene ntl (Brachyury homologue), which is typically required for the formation of posterior mesoderm and axial development, suggesting that ntl lies downstream of NF-kappa B . We further show that ntl and Brachyury promoter regions contain functional kappa B sites and NF-kappa B can directly modulate ntl expression. Our study illustrates the conservation and compatibility of NF-kappa B/I kappa B proteins among vertebrates and the importance of NF-kappa B pathway in mesoderm formation during early embryogenesis.
Collapse
Affiliation(s)
- Ricardo G Correa
- Salk Institute for Biological Studies, La Jolla, CA 92037-1099, USA
| | | | | | | | | | | |
Collapse
|
96
|
Reim G, Mizoguchi T, Stainier DY, Kikuchi Y, Brand M. The POU domain protein spg (pou2/Oct4) is essential for endoderm formation in cooperation with the HMG domain protein casanova. Dev Cell 2004; 6:91-101. [PMID: 14723850 DOI: 10.1016/s1534-5807(03)00396-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The gastrulating vertebrate embryo develops three germlayers: ectoderm, mesoderm, and endoderm. Zebrafish endoderm differentiation starts with the activation of sox17 by casanova (cas). We report that spg (pou2/Oct4) is essential for endoderm formation. Embryos devoid of maternal and zygotic spg function (MZspg) lack endodermal precursors. Cell transplantations show that spg acts in early endodermal precursors, and cas mRNA-injection into MZspg embryos does not restore endoderm development. spg and cas together are both necessary and sufficient to activate endoderm development, and stimulate expression of a sox17 promoter-luciferase reporter. Endoderm and mesoderm derive from a common origin, mesendoderm. We propose that Spg and Cas commit mesendodermal precursors to an endodermal fate. The joint control of endoderm formation by spg and cas suggests that the endodermal germlayer may be a tissue unit with distinct genetic control, thus adding genetic support to the germlayer concept in metazoan development.
Collapse
Affiliation(s)
- Gerlinde Reim
- MPI of Molecular Cell Biology and Genetics, and Department of Genetics, TU Dresden, Pfotenhauerstrasse 108, D-01309 Dresden, Germany
| | | | | | | | | |
Collapse
|
97
|
Affiliation(s)
- Lara Gnügge
- Developmental Biology, University of Freiburg, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
98
|
Abstract
In vertebrates, EGF-CFC factors are essential for Nodal signaling. Here, we show that the zygotic function of one-eyed pinhead, the zebrafish EGF-CFC factor, is necessary for cell movement throughout the blastoderm of the early embryo. During the blastula and gastrula stages, mutant cells are more cohesive and migrate slower than wild-type cells. Chimeric analysis reveals that these early motility defects are cell-autonomous; later, one-eyed pinhead mutant cells have a cell-autonomous tendency to acquire ectodermal rather than mesendodermal fates. Moreover, wild-type cells transplanted into the axial region of mutant hosts tend to form isolated aggregates of notochord tissue adjacent to the mutant notochord. Upon misexpressing the Nodal-like ligand Activin in whole embryos, which rescues aspects of the mutant phenotype, cell behavior retains the one-eyed pinhead motility phenotype. However, in squint;cyclops double mutants, which lack Nodal function and possess a more severe phenotype than zygotic one-eyed pinhead mutants, cells of the dorsal margin exhibit a marked tendency to widely disperse rather than cohere together. Elsewhere in the double mutants, for cells of the blastoderm and for rare cells of the gastrula that involute into the hypoblast, motility appears wild-type. Notably, cells at the animal pole, which are not under direct regulation by the Nodal pathway, behave normal in squint;cyclops mutants but exhibit defective motility in one-eyed pinhead mutants. We conclude that, in addition to a role in Nodal signaling, One-eyed pinhead is required for aspects of cell movement, possibly by regulating cell adhesion.
Collapse
Affiliation(s)
- Rachel M Warga
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | |
Collapse
|
99
|
Wang Y, Ge W. Involvement of cyclic adenosine 3',5'-monophosphate in the differential regulation of activin betaA and betaB expression by gonadotropin in the zebrafish ovarian follicle cells. Endocrinology 2003; 144:491-9. [PMID: 12538609 DOI: 10.1210/en.2002-220734] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activin is a dimeric protein consisting of two similar but distinct beta-subunits, betaA and betaB. In our previous studies, both activin A (betaAbetaA) and activin B (betaBbetaB) have been demonstrated to stimulate oocyte maturation and promote oocyte maturational competence in the zebrafish. Follistatin, a specific activin-binding protein, can block both activin- and gonadotropin-induced final oocyte maturation in vitro, suggesting that activin is likely a downstream mediator of gonadotropin actions in the zebrafish ovary. In the present study, a full-length cDNA encoding zebrafish ovarian activin betaA was cloned and sequenced. The precursor of zebrafish activin betaA consists of 395 amino acids and its mature region exhibits about 78% homology with that of mammals. Using an in vitro primary culture of the ovarian follicle cells and semiquantitative RT-PCR assays, we examined the regulation of activin betaA and betaB expression by human chorionic gonadotropin (hCG) and its intracellular signal transduction mechanisms. hCG (15 IU/ml) increased the mRNA level of activin betaA-subunit; however, it significantly down-regulated the steady-state expression level of activin betaB in a time- and dose-dependent manner. The differential regulation of the two beta-subunits by hCG could be mimicked by 3-isobutyl-1-methylxanthine, forskolin, and dibutyryl-cAMP, suggesting involvement of the intracellular cAMP pathway. Interestingly, H89 (a specific inhibitor of protein kinase A, PKA) could effectively block hCG- and forskolin-stimulated activin betaA expression at 10 micro M, but it was unable to reverse the inhibitory effects of hCG and forskolin on betaB expression. This suggests that the hCG-stimulated activin betaA expression is dependent on the activation of the cAMP-PKA pathway, whereas the inhibitory effect of hCG on activin betaB expression is likely mediated by PKA-independent pathway(s).
Collapse
Affiliation(s)
- Yajun Wang
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
100
|
Abstract
Recent studies in zebrafish have contributed to our understanding of early endoderm formation in vertebrates. Specifically, they have illustrated the importance of Nodal signaling as well as three transcription factors, Faust/Gata5, Bonnie and Clyde, and Casanova, in this process. Ongoing genetic and embryological studies in zebrafish are also contributing to our understanding of later aspects of endoderm development, including the formation of the gut and its associated organs, the liver and pancreas. The generation of transgenic lines expressing GFP in these organs promises to be particularly helpful in such studies.
Collapse
Affiliation(s)
- Elke A Ober
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, University of California, San Francisco, CA 94143-0448, USA
| | | | | |
Collapse
|