51
|
Wei S, Du H, Li Z, Tao G, Xu Z, Song X, Shang Z, Su Z, Chen H, Wen Y, Liu G, You Y, Zhang Z, Yang Z. Transcription factors
Sp8
and
Sp9
regulate the development of caudal ganglionic eminence‐derived cortical interneurons. J Comp Neurol 2019; 527:2860-2874. [DOI: 10.1002/cne.24712] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/16/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Song Wei
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai China
| | - Heng Du
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai China
| | - Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai China
| | - Guangxu Tao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai China
| | - Xiaolei Song
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai China
| | - Zicong Shang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai China
| | - Zihao Su
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai China
| | - Haotian Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai China
| | - Yan Wen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai China
| | - Yan You
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai China
| |
Collapse
|
52
|
Watanabe Y, Abe H, Nakajima K, Ideta-Otsuka M, Igarashi K, Woo GH, Yoshida T, Shibutani M. Aberrant Epigenetic Gene Regulation in GABAergic Interneuron Subpopulations in the Hippocampal Dentate Gyrus of Mouse Offspring Following Developmental Exposure to Hexachlorophene. Toxicol Sci 2019; 163:13-25. [PMID: 29301063 PMCID: PMC5917777 DOI: 10.1093/toxsci/kfx291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maternal hexachlorophene (HCP) exposure causes transient disruption of hippocampal neurogenesis in mouse offspring. We examined epigenetically hypermethylated and downregulated genes related to this HCP-induced disrupted neurogenesis. Mated female mice were dietary exposed to 0 or 100 ppm HCP from gestational day 6 to postnatal day (PND) 21 on weaning. The hippocampal dentate gyrus of male offspring was subjected to methyl-capture sequencing and real-time reverse transcription-polymerase chain reaction analyses on PND 21. Validation analyses on methylation identified three genes, Dlx4, Dmrt1, and Plcb4, showing promoter-region hypermethylation. Immunohistochemically, DLX4+, DMRT1+, and PLCB4+ cells in the dentate hilus co-expressed GAD67, a γ-aminobutyric acid (GABA)ergic neuron marker. HCP decreased all of three subpopulations as well as GAD67+ cells on PND 21. PLCB4+ cells also co-expressed the metabotropic glutamate receptor, GRM1. HCP also decreased transcript level of synaptic plasticity-related genes in the dentate gyrus and immunoreactive granule cells for synaptic plasticity-related ARC. On PND 77, all immunohistochemical cellular density changes were reversed, whereas the transcript expression of the synaptic plasticity-related genes fluctuated. Thus, HCP-exposed offspring transiently reduced the number of GABAergic interneurons. Among them, subpopulations expressing DLX4, DMRT1, or PLCB4 were transiently reduced in number through an epigenetic mechanism. Considering the role of the Dlx gene family in GABAergic interneuron migration and differentiation, the decreased number of DLX4+ cells may be responsible for reducing those GABAergic interneurons regulating neurogenesis. The effect on granule cell synaptic plasticity was sustained until the adult stage, and reduced GABAergic interneurons active in GRM1–PLCB4 signaling may be responsible for the suppression on weaning.
Collapse
Affiliation(s)
- Yousuke Watanabe
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu 501-1193, Japan
| | - Hajime Abe
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu 501-1193, Japan
| | - Maky Ideta-Otsuka
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo 142-5801, Japan
| | - Katsuhide Igarashi
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo 142-5801, Japan
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, Jecheon-si, Chungbuk 27136, Republic of Korea
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
53
|
Liu S, Liu LH, Hu WW, Wang M. Long noncoding RNA TUG1 regulates the development of oral squamous cell carcinoma through sponging miR-524-5p to mediate DLX1 expression as a competitive endogenous RNA. J Cell Physiol 2019; 234:20206-20216. [PMID: 30980391 DOI: 10.1002/jcp.28620] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
Long noncoding RNA (lncRNA) exerts a potential regulatory role in tumorigenesis. LncRNA TUG1 expression remains high in oral squamous cell carcinoma (OSCC) tissues. However, its biological mechanism in OSCC remains unknown. In this study, TUG1 expression in OSCC cells was detected by quantitative real-time polymerase chain reaction. Proliferative and migratory potentials of OSCC cells were determined by Cell Counting Kit 8, 5-Ethynyl-2'- deoxyuridine (EdU), and Transwell assay, respectively. We identified the potential target of TUG1 through bioinformatics and dual-luciferase reporter gene assay. Furthermore, their interaction and functions in regulating the development of OSCC were clarified by western blot and RNA immunoprecipitation assay. Our results demonstrated a high expression of TUG1 in OSCC cells. Overexpression of TUG1 markedly accelerated proliferative and migratory potentials of OSCC cells. Besides, TUG1 could positively regulate the expression of distal-less homeobox 1 (DLX1) by competing with miR-524-5p. These results indicated that TUG1 participated in the development of OSCC as a competing endogenous RNA to competitively bind to miR-524-5p and thus mediate DLX1 expression.
Collapse
Affiliation(s)
- Shuyan Liu
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Li-Hong Liu
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Wei Hu
- Department of Stomatology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Meng Wang
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
54
|
Wang S, Ochoa SD, Khaliullin RN, Gerson-Gurwitz A, Hendel JM, Zhao Z, Biggs R, Chisholm AD, Desai A, Oegema K, Green RA. A high-content imaging approach to profile C. elegans embryonic development. Development 2019; 146:dev174029. [PMID: 30890570 PMCID: PMC6467471 DOI: 10.1242/dev.174029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
The Caenorhabditis elegans embryo is an important model for analyzing mechanisms of cell fate specification and tissue morphogenesis. Sophisticated lineage-tracing approaches for analyzing embryogenesis have been developed but are labor intensive and do not naturally integrate morphogenetic readouts. To enable the rapid classification of developmental phenotypes, we developed a high-content method that employs two custom strains: a Germ Layer strain that expresses nuclear markers in the ectoderm, mesoderm and endoderm/pharynx; and a Morphogenesis strain that expresses markers labeling epidermal cell junctions and the neuronal cell surface. We describe a procedure that allows simultaneous live imaging of development in 80-100 embryos and provide a custom program that generates cropped, oriented image stacks of individual embryos to facilitate analysis. We demonstrate the utility of our method by perturbing 40 previously characterized developmental genes in variants of the two strains containing RNAi-sensitizing mutations. The resulting datasets yielded distinct, reproducible signature phenotypes for a broad spectrum of genes that are involved in cell fate specification and morphogenesis. In addition, our analysis provides new in vivo evidence for MBK-2 function in mesoderm fate specification and LET-381 function in elongation.
Collapse
Affiliation(s)
- Shaohe Wang
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stacy D Ochoa
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Renat N Khaliullin
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Adina Gerson-Gurwitz
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffrey M Hendel
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhiling Zhao
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronald Biggs
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Rebecca A Green
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
55
|
MacKenzie RK, Sankar PR, Bendall AJ. Dlx5 and Dlx6 can antagonize cell division at the G 1/S checkpoint. BMC Mol Cell Biol 2019; 20:8. [PMID: 31041891 PMCID: PMC6460778 DOI: 10.1186/s12860-019-0191-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/02/2019] [Indexed: 11/17/2022] Open
Abstract
Background Dlx5 and Dlx6 stimulate differentiation of diverse progenitors during embryonic development. Their actions as pro-differentiation transcription factors includes the up-regulation of differentiation markers but the extent to which differentiation may also be stimulated by regulation of the cell cycle has not been addressed. Results We document that expression of Dlx5 and Dlx6 antagonizes cell proliferation in a variety of cell types without inducing apoptosis or promoting cell cycle exit. Rather, a variety of evidence indicates that elevated Dlx5 and Dlx6 expression reduces the proportion of cells in S phase and affects the length of the cell cycle. Conclusions Antagonism of S-phase entry by Dlx5 and Dlx6 proteins likely represents a lineage-independent function to effect Dlx-mediated differentiation in multiple progenitor cell types.
Collapse
Affiliation(s)
- Rachel K MacKenzie
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd East, Guelph, Ontario, N1G 2W1, Canada
| | - Parvathy Ravi Sankar
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd East, Guelph, Ontario, N1G 2W1, Canada
| | - Andrew J Bendall
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
56
|
Narboux-Neme N, Ekker M, Levi G, Heude E. Posterior axis formation requires Dlx5/Dlx6 expression at the neural plate border. PLoS One 2019; 14:e0214063. [PMID: 30889190 PMCID: PMC6424422 DOI: 10.1371/journal.pone.0214063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/06/2019] [Indexed: 11/18/2022] Open
Abstract
Neural tube defects (NTDs), one of the most common birth defects in human, present a multifactorial etiology with a poorly defined genetic component. The Dlx5 and Dlx6 bigenic cluster encodes two evolutionary conserved homeodomain transcription factors, which are necessary for proper vertebrate development. It has been shown that Dlx5/6 genes are essential for anterior neural tube closure, however their role in the formation of the posterior structures has never been described. Here, we show that Dlx5/6 expression is required during vertebrate posterior axis formation. Dlx5 presents a similar expression pattern in neural plate border cells during posterior neurulation of zebrafish and mouse. Dlx5/6-inactivation in the mouse results in a phenotype reminiscent of NTDs characterized by open thoracic and lumbar vertebral arches and failure of epaxial muscle formation at the dorsal midline. The dlx5a/6a zebrafish morphants present posterior NTDs associated with abnormal delamination of neural crest cells showing altered expression of cell adhesion molecules and defects of motoneuronal development. Our findings provide new molecular leads to decipher the mechanisms of vertebrate posterior neurulation and might help to gather a better understanding of human congenital NTDs etiology.
Collapse
Affiliation(s)
- Nicolas Narboux-Neme
- Département Adaptations du Vivant, Centre National de la Recherche Scientifique UMR 7221, Muséum National d’Histoire Naturelle, Paris, France
| | - Marc Ekker
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| | - Giovanni Levi
- Département Adaptations du Vivant, Centre National de la Recherche Scientifique UMR 7221, Muséum National d’Histoire Naturelle, Paris, France
| | - Eglantine Heude
- Département Adaptations du Vivant, Centre National de la Recherche Scientifique UMR 7221, Muséum National d’Histoire Naturelle, Paris, France
- * E-mail:
| |
Collapse
|
57
|
Sugime Y, Oguchi K, Gotoh H, Hayashi Y, Matsunami M, Shigenobu S, Koshikawa S, Miura T. Termite soldier mandibles are elongated by dachshund under hormonal and Hox gene controls. Development 2019; 146:dev.171942. [PMID: 30833380 DOI: 10.1242/dev.171942] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/12/2019] [Indexed: 11/20/2022]
Abstract
In social insects, interactions among colony members trigger caste differentiation with morphological modifications. In termite soldier differentiation, the mandible size considerably increases through two moltings (via the presoldier stage) under the control of juvenile hormone (JH). Regulatory genes are predicted to provide patterning information that induces the mandible-specific cell proliferation. To identify factors responsible for the mandibular enlargement, expression analyses of 18 candidate genes were carried out in the termite Hodotermopsis sjostedti Among those, dachshund (dac), which identifies the intermediate domain along the proximodistal appendage axis, showed mandible-specific upregulation prior to the molt into presoldiers, which can explain the pattern of cell proliferation for the mandibular elongation. Knockdown of dac by RNAi reduced the mandibular length and distorted its morphology. Furthermore, the epistatic relationships among Methoprene tolerant, Insulin receptor, Deformed (Dfd) and dac were revealed by combined RNAi and qRT-PCR analyses, suggesting that dac is regulated by Dfd, downstream of the JH and insulin signaling pathways. Thus, caste-specific morphogenesis is controlled by interactions between the factors that provide spatial information and physiological status.
Collapse
Affiliation(s)
- Yasuhiro Sugime
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Kohei Oguchi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Miura, Kanagawa, 238-0225, Japan
| | - Hiroki Gotoh
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoshinobu Hayashi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Department of Biology, Keio University, Yokohama, Kanagawa, 223-8521, Japan
| | - Masatoshi Matsunami
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, 903-0215, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Shigeyuki Koshikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Toru Miura
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan .,Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Miura, Kanagawa, 238-0225, Japan
| |
Collapse
|
58
|
Fang T, Fang Y, Xu X, He M, Zhao Z, Huang P, Yuan F, Guo M, Yang B, Xia J. Actinidia chinensis Planch root extract attenuates proliferation and metastasis of hepatocellular carcinoma by inhibiting epithelial-mesenchymal transition. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:474-485. [PMID: 30415058 DOI: 10.1016/j.jep.2018.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Numerous studies have demonstrated the potent anticancer activity of various Chinese herbs. Actinidia chinensis Planch root (acRoots), a traditional Chinese medicine, functions as an antitumor and detoxifying agent and plays a role in diuresis and hemostasis. Treatment with acRoots confers strong inhibition of tumor growth in various forms of cancer. Here, we evaluated the anticancer activity and molecular mechanisms of Actinidia chinensis Planch root extract (acRoots) on hepatocellular carcinoma (HCC). MATERIALS AND METHODS Our previous study used mRNA chip analyses to identify the genes regulated by acRoots. Further analyses of the altered genes identified a key regulator of genes in response to acRoots. Here, the effects of acRoots on HCC cell proliferation, migration, invasion, and apoptosis were evaluated by cell counting, Transwell and apoptosis assays. In addition, the in vivo anti-HCC effects of acRoots were investigated using an HCC animal model. The expression of a key regulator of genes in response to acRoots was analyzed using quantitative polymerase chain reaction and western blotting. RESULTS Treatment with acRoots (10 mg/mL) had no cytotoxicity in L02 cells and had a positive effect on L02 cell viability; however, it significantly inhibited HCC cell proliferation. Treatment with acRoots downregulated DLX2 gene expression in HCC cells, and high DLX2 expression was associated with advanced stage and poor prognosis in patients with HCC. Treatment with acRoots inhibited proliferation, invasion and migration, clonality, and the epithelial-to-mesenchymal transition, and promoted the apoptosis of HCC cells by downregulating DLX2 expression. HCC cells with higher DLX2 expression were more sensitive to acRoots. CONCLUSIONS acRoots inhibited the malignant biological behavior of HCC cells via regulation of the epithelial-mesenchymal transition (EMT) by DLX2.
Collapse
Affiliation(s)
- Tingting Fang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China.
| | - Yuan Fang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China.
| | - Xiaojing Xu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China.
| | - Mingyan He
- Department of gastroenterology, The First Affiliated Hospital of Nanchang university, Jiangxi 330006, PR China.
| | - Zhiying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China.
| | - Peixin Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China.
| | - Feifei Yuan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China.
| | - Mengzhou Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China.
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China.
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, PR China; Minhang Hospital; Shanghai Medical School of Fudan University, Shanghai 201100, PR China.
| |
Collapse
|
59
|
Oncogenic Metabolism Acts as a Prerequisite Step for Induction of Cancer Metastasis and Cancer Stem Cell Phenotype. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1027453. [PMID: 30671168 PMCID: PMC6323533 DOI: 10.1155/2018/1027453] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
Abstract
Metastasis is a major obstacle to the efficient and successful treatment of cancer. Initiation of metastasis requires epithelial-mesenchymal transition (EMT) that is regulated by several transcription factors, including Snail and ZEB1/2. EMT is closely linked to the acquisition of cancer stem cell (CSC) properties and chemoresistance, which contribute to tumor malignancy. Tumor suppressor p53 inhibits EMT and metastasis by negatively regulating several EMT-inducing transcription factors and regulatory molecules; thus, its inhibition is crucial in EMT, invasion, metastasis, and stemness. Metabolic alterations are another hallmark of cancer. Most cancer cells are more dependent on glycolysis than on mitochondrial oxidative phosphorylation for their energy production, even in the presence of oxygen. Cancer cells enhance other oncogenic metabolic pathways, such as glutamine metabolism, pentose phosphate pathway, and the synthesis of fatty acids and cholesterol. Metabolic reprogramming in cancer is regulated by the activation of oncogenes or loss of tumor suppressors that contribute to tumor progression. Oncogenic metabolism has been recently linked closely with the induction of EMT or CSC phenotypes by the induction of several metabolic enzyme genes. In addition, several transcription factors and molecules involved in EMT or CSCs, including Snail, Dlx-2, HIF-1α, STAT3, TGF-β, Wnt, and Akt, regulate oncogenic metabolism. Moreover, p53 induces metabolic change by directly regulating several metabolic enzymes. The collective data indicate the importance of oncogenic metabolism in the regulation of EMT, cell invasion and metastasis, and adoption of the CSC phenotype, which all contribute to malignant transformation and tumor development. In this review, we highlight the oncogenic metabolism as a key regulator of EMT and CSC, which is related with tumor progression involving metastasis and chemoresistance. Targeting oncometabolism might be a promising strategy for the development of effective anticancer therapy.
Collapse
|
60
|
Nakamura N, Vijay V, Desai VG, Hansen DK, Han T, Chang CW, Chen YC, Harrouk W, McIntyre B, Foster PM, Fuscoe JC, Inselman AL. Transcript profiling in the testes and prostates of postnatal day 30 Sprague-Dawley rats exposed prenatally and lactationally to 2-hydroxy-4-methoxybenzophenone. Reprod Toxicol 2018; 82:111-123. [PMID: 30316929 PMCID: PMC6434700 DOI: 10.1016/j.reprotox.2018.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/19/2018] [Accepted: 10/03/2018] [Indexed: 01/13/2023]
Abstract
2-hydroxy-4-methoxybenzophenone (HMB) is an ultraviolet light-absorbing compound that is used in sunscreens, cosmetics and plastics. HMB has been reported to have weak estrogenic activity by in vivo and in vitro studies, making it a chemical with potential reproductive concern. To explore if prenatal and lactational HMB exposure alters gene expression profiles of the developing reproductive organs, we performed microarray analysis using the prostate and testis of postnatal day (PND) 30 male Sprague-Dawley rats offspring exposed to 0, 3000, or 30,000 ppm of HMB from gestational day 6 through PND 21. Gene expression profiles of the prostate and testis were differentially affected by HMB dose with significant alterations observed at the 30,000 ppm HMB group. Tissue-specific gene expression was also identified. These genes, whose expression was altered by HMB exposure, may be considered as candidate biomarker(s) for testicular or prostatic toxicity; however, further studies are necessary to explore this potential.
Collapse
Affiliation(s)
- Noriko Nakamura
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States.
| | - Vikrant Vijay
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Varsha G Desai
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Deborah K Hansen
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Tao Han
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Ching-Wei Chang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Yu-Chuan Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Wafa Harrouk
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Barry McIntyre
- National Toxicology Program, Research Triangle Park, NC 27709, United States
| | - Paul M Foster
- National Toxicology Program, Research Triangle Park, NC 27709, United States
| | - James C Fuscoe
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Amy L Inselman
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| |
Collapse
|
61
|
Meinecke L, Sharma PP, Du H, Zhang L, Nie Q, Schilling TF. Modeling craniofacial development reveals spatiotemporal constraints on robust patterning of the mandibular arch. PLoS Comput Biol 2018; 14:e1006569. [PMID: 30481168 PMCID: PMC6258504 DOI: 10.1371/journal.pcbi.1006569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
How does pattern formation occur accurately when confronted with tissue growth and stochastic fluctuations (noise) in gene expression? Dorso-ventral (D-V) patterning of the mandibular arch specifies upper versus lower jaw skeletal elements through a combination of Bone morphogenetic protein (Bmp), Endothelin-1 (Edn1), and Notch signaling, and this system is highly robust. We combine NanoString experiments of early D-V gene expression with live imaging of arch development in zebrafish to construct a computational model of the D-V mandibular patterning network. The model recapitulates published genetic perturbations in arch development. Patterning is most sensitive to changes in Bmp signaling, and the temporal order of gene expression modulates the response of the patterning network to noise. Thus, our integrated systems biology approach reveals non-intuitive features of the complex signaling system crucial for craniofacial development, including novel insights into roles of gene expression timing and stochasticity in signaling and gene regulation.
Collapse
Affiliation(s)
- Lina Meinecke
- Department of Mathematics, University of California, Irvine, CA, United States of America
- Center for Complex Biological Systems, University of California, Irvine, CA, United States of America
| | - Praveer P. Sharma
- Center for Complex Biological Systems, University of California, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| | - Huijing Du
- Department of Mathematics, University of Nebraska, Lincoln, NE, United States of America
| | - Lei Zhang
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, United States of America
- Center for Complex Biological Systems, University of California, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| | - Thomas F. Schilling
- Center for Complex Biological Systems, University of California, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| |
Collapse
|
62
|
Kantaputra PN, Carlson BM. Genetic regulatory pathways of split-hand/foot malformation. Clin Genet 2018; 95:132-139. [PMID: 30101460 DOI: 10.1111/cge.13434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
Split-hand/foot malformation (SHFM) is caused by mutations in TP63, DLX5, DLX6, FGF8, FGFR1, WNT10B, and BHLHA9. The clinical features of SHFM caused by mutations of these genes are not distinguishable. This implies that in normal situations these SHFM-associated genes share an underlying regulatory pathway that is involved in the development of the central parts of the hands and feet. The mutations in SHFM-related genes lead to dysregulation of Fgf8 in the central portion of the apical ectodermal ridge (AER) and subsequently lead to misexpression of a number of downstream target genes, failure of stratification of the AER, and thus SHFM. Syndactyly of the remaining digits is most likely the effects of dysregulation of Fgf-Bmp-Msx signaling on apoptotic cell death. Loss of digit identity in SHFM is hypothesized to be the effects of misexpression of HOX genes, abnormal SHH gradient, or the loss of balance between GLI3A and GLI3R. Disruption of canonical and non-canonical Wnt signaling is involved in the pathogenesis of SHFM. Whatever the causative genes of SHFM are, the mutations seem to lead to dysregulation of Fgf8 in AER cells of the central parts of the hands and feet and disruption of Wnt-Bmp-Fgf signaling pathways in AER.
Collapse
Affiliation(s)
- Piranit N Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand.,Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Dentaland Clinic, Chiang Mai, Thailand
| | - Bruce M Carlson
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
63
|
Wu M, Zhang D, Bi C, Mi T, Zhu W, Xia L, Teng Z, Hu B, Wu Y. A Chemical Recipe for Generation of Clinical-Grade Striatal Neurons from hESCs. Stem Cell Reports 2018; 11:635-650. [PMID: 30174316 PMCID: PMC6135866 DOI: 10.1016/j.stemcr.2018.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
Differentiation of human pluripotent stem cells (hPSCs) into striatal medium spiny neurons (MSNs) promises a cell-based therapy for Huntington's disease. However, clinical-grade MSNs remain unavailable. Here, we developed a chemical recipe named XLSBA to generate clinical-grade MSNs from embryonic stem cells (ESCs). We introduced the γ-secretase inhibitor DAPT into the recipe to accelerate neural differentiation, and replaced protein components with small molecules. Using this optimized protocol we could efficiently direct regular human ESCs (hESCs) as well as clinical-grade hESCs to lateral ganglionic eminence (LGE)-like progenitors and striatal MSNs within less than half of the time than previous protocols (within 14 days and 21 days, respectively). These striatal cells expressed appropriate MSN markers and electrophysiologically acted like authentic MSNs. Upon transplantation into brains of neonatal mice or mouse model of Huntington's disease, they exhibited sufficient safety and reasonable efficacy. Therefore, this quick and highly efficient derivation of MSNs offers unprecedented access to clinical application.
Collapse
Affiliation(s)
- Menghua Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunying Bi
- College of Life Science, QUFU Normal University, Qufu, Shandong 273165, China
| | - Tingwei Mi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenliang Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longkuo Xia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yihui Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
64
|
Weber A, Schwarz SC, Tost J, Trümbach D, Winter P, Busato F, Tacik P, Windhorst AC, Fagny M, Arzberger T, McLean C, van Swieten JC, Schwarz J, Vogt Weisenhorn D, Wurst W, Adhikary T, Dickson DW, Höglinger GU, Müller U. Epigenome-wide DNA methylation profiling in Progressive Supranuclear Palsy reveals major changes at DLX1. Nat Commun 2018; 9:2929. [PMID: 30050033 PMCID: PMC6062504 DOI: 10.1038/s41467-018-05325-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Genetic, epigenetic, and environmental factors contribute to the multifactorial disorder progressive supranuclear palsy (PSP). Here, we study epigenetic changes by genome-wide analysis of DNA from postmortem tissue of forebrains of patients and controls and detect significant (P < 0.05) methylation differences at 717 CpG sites in PSP vs. controls. Four-hundred fifty-one of these sites are associated with protein-coding genes. While differential methylation only affects a few sites in most genes, DLX1 is hypermethylated at multiple sites. Expression of an antisense transcript of DLX1, DLX1AS, is reduced in PSP brains. The amount of DLX1 protein is increased in gray matter of PSP forebrains. Pathway analysis suggests that DLX1 influences MAPT-encoded Tau protein. In a cell system, overexpression of DLX1 results in downregulation of MAPT while overexpression of DLX1AS causes upregulation of MAPT. Our observations suggest that altered DLX1 methylation and expression contribute to pathogenesis of PSP by influencing MAPT.
Collapse
Affiliation(s)
- Axel Weber
- Institute of Human Genetics, Justus-Liebig-Universität, Gießen, 35392, Germany.
| | - Sigrid C Schwarz
- Department of Neurology, Technische Universität München, Munich, 81377, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Evry, 91000, France
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Center München, Munich, 85764, Germany
| | - Pia Winter
- Institute of Human Genetics, Justus-Liebig-Universität, Gießen, 35392, Germany
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Evry, 91000, France
| | - Pawel Tacik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, 53127, Germany
| | - Anita C Windhorst
- Institute of Medical Informatics, Justus-Liebig-Universität, Gießen, 35392, Germany
| | - Maud Fagny
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Evry, 91000, France
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany
- Department of Psychiatry, Ludwig-Maximilians-Universität, Munich, 81377, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Catriona McLean
- Alfred Anatomical Pathology and NNF, Victorian Brain Bank, Carlton, VIC, 3053, Australia
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, 3000, The Netherlands
| | - Johannes Schwarz
- Department of Neurology, Technische Universität München, Munich, 81377, Germany
| | - Daniela Vogt Weisenhorn
- German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany
- Institute of Developmental Genetics, Helmholtz Center München, Munich, 85764, Germany
- Chair of Developmental Genetics, Technische Universität München-Weihenstephan, Neuherberg/Munich, 85764, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany
- Institute of Developmental Genetics, Helmholtz Center München, Munich, 85764, Germany
- Chair of Developmental Genetics, Technische Universität München-Weihenstephan, Neuherberg/Munich, 85764, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, 81377, Germany
| | - Till Adhikary
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Marburg, 35043, Germany
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Günter U Höglinger
- Department of Neurology, Technische Universität München, Munich, 81377, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, 81377, Germany.
| | - Ulrich Müller
- Institute of Human Genetics, Justus-Liebig-Universität, Gießen, 35392, Germany.
| |
Collapse
|
65
|
Ruiz-Losada M, Blom-Dahl D, Córdoba S, Estella C. Specification and Patterning of Drosophila Appendages. J Dev Biol 2018; 6:jdb6030017. [PMID: 30011921 PMCID: PMC6162442 DOI: 10.3390/jdb6030017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023] Open
Abstract
Appendages are external projections of the body that serve the animal for locomotion, feeding, or environment exploration. The appendages of the fruit fly Drosophilamelanogaster are derived from the imaginal discs, epithelial sac-like structures specified in the embryo that grow and pattern during larva development. In the last decades, genetic and developmental studies in the fruit fly have provided extensive knowledge regarding the mechanisms that direct the formation of the appendages. Importantly, many of the signaling pathways and patterning genes identified and characterized in Drosophila have similar functions during vertebrate appendage development. In this review, we will summarize the genetic and molecular mechanisms that lead to the specification of appendage primordia in the embryo and their posterior patterning during imaginal disc development. The identification of the regulatory logic underlying appendage specification in Drosophila suggests that the evolutionary origin of the insect wing is, in part, related to the development of ventral appendages.
Collapse
Affiliation(s)
- Mireya Ruiz-Losada
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - David Blom-Dahl
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Sergio Córdoba
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
66
|
Hiruta C, Kakui K, Tollefsen KE, Iguchi T. Targeted gene disruption by use of CRISPR/Cas9 ribonucleoprotein complexes in the water fleaDaphnia pulex. Genes Cells 2018; 23:494-502. [DOI: 10.1111/gtc.12589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/30/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Chizue Hiruta
- Faculty of Science; Hokkaido University; Sapporo Japan
| | - Keiichi Kakui
- Faculty of Science; Hokkaido University; Sapporo Japan
| | - Knut E. Tollefsen
- Section of Ecotoxicology and Risk Assessment; Norwegian Institute for Water Research (NIVA); Oslo Norway
| | - Taisen Iguchi
- Graduate School of Nanobioscience; Yokohama City University; Yokohama Japan
- Department of Basic Biology; Faculty of Life Science; Okazaki Institute for Integrative Bioscience; National Institute for Basic Biology; National Institutes of Natural Sciences; SOKENDAI (Graduate University for Advanced Studies); Okazaki Japan
| |
Collapse
|
67
|
Coelacanth-specific adaptive genes give insights into primitive evolution for water-to-land transition of tetrapods. Mar Genomics 2018; 38:89-95. [DOI: 10.1016/j.margen.2017.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/30/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022]
|
68
|
Lucchese G, Stahl B. Peptide Sharing Between Viruses and DLX Proteins: A Potential Cross-Reactivity Pathway to Neuropsychiatric Disorders. Front Neurosci 2018; 12:150. [PMID: 29618965 PMCID: PMC5871705 DOI: 10.3389/fnins.2018.00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 02/26/2018] [Indexed: 12/24/2022] Open
Abstract
The present study seeks to determine potential associations between viral infections and neuropsychiatric diseases. To address this issue, we investigated the peptide commonalities between viruses that have been related to psychiatric and neurological disorders—such as rubella, human immunodeficiency virus, and herpesviruses—and human distal-less homeobox (DLX) proteins expressed in developing brain—namely, DLX1, DLX2, DLX5, and DLX6. Peptide matching analyses revealed a high degree of pentapeptide sharing. From an immunological perspective, this overlap is relevant because pentapeptides are endowed with immunogenicity and antigenicity—that is, they are immune determinants. Moreover, infection-induced immune cross-reactions might have functional, spatial, and temporal implications related to the functions and expression patterns of DLX1 and DLX5 in the fetal and adult human brain. In sum, our data support the hypothesis that viral infections may be linked to neuropsychiatric diseases through autoimmune cross-reactions caused by molecular mimicry between viral proteins and brain-specific DLX self-antigens.
Collapse
Affiliation(s)
- Guglielmo Lucchese
- Brain Language Laboratory, Freie Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Benjamin Stahl
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.,Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Psychologische Hochschule Berlin, Berlin, Germany
| |
Collapse
|
69
|
Bhattacharya S, Duverger O, Brooks SR, Morasso MI. Homeobox transcription factor DLX4 is not necessary for skin development and homeostasis. Exp Dermatol 2018; 27:289-292. [PMID: 29380438 PMCID: PMC5844850 DOI: 10.1111/exd.13503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/18/2022]
Abstract
Dlx4 is a member of a family of homeobox genes with homology to Drosophila distal-less (dll) gene. We show that Dlx4 expression pattern partially overlaps with its cis-linked gene Dlx3 during mouse development as well as in neonatal and adult skin. In mice, Dlx4 is expressed in the branchial arches, embryonic limbs, digits, nose, hair follicle and in the basal and suprabasal layers of mouse interfollicular epidermis. We show that inactivation of Dlx4 in mice did not result in any overtly gross pathology. Skin development, homeostasis and response to TPA treatment were similar in mice with loss of Dlx4 compared to wild-type counterparts.
Collapse
Affiliation(s)
- Shreya Bhattacharya
- Laboratory of Skin Biology, National Institute for Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Olivier Duverger
- Laboratory of Skin Biology, National Institute for Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Stephen R. Brooks
- Biodata Mining and Discovery Section, National Institute for Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Maria I. Morasso
- Laboratory of Skin Biology, National Institute for Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
70
|
Regulation of Tumor Progression by Programmed Necrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3537471. [PMID: 29636841 PMCID: PMC5831895 DOI: 10.1155/2018/3537471] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose) deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1), which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s) in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness.
Collapse
|
71
|
Glaser-Schmitt A, Parsch J. Functional characterization of adaptive variation within a cis-regulatory element influencing Drosophila melanogaster growth. PLoS Biol 2018; 16:e2004538. [PMID: 29324742 PMCID: PMC5783415 DOI: 10.1371/journal.pbio.2004538] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/24/2018] [Accepted: 12/18/2017] [Indexed: 11/18/2022] Open
Abstract
Gene expression variation is a major contributor to phenotypic diversity within species and is thought to play an important role in adaptation. However, examples of adaptive regulatory polymorphism are rare, especially those that have been characterized at both the molecular genetic level and the organismal level. In this study, we perform a functional analysis of the Drosophila melanogaster CG9509 enhancer, a cis-regulatory element that shows evidence of adaptive evolution in populations outside the species’ ancestral range in sub-Saharan Africa. Using site-directed mutagenesis and transgenic reporter gene assays, we determined that 3 single nucleotide polymorphisms are responsible for the difference in CG9509 expression that is observed between sub-Saharan African and cosmopolitan populations. Interestingly, while 2 of these variants appear to have been the targets of a selective sweep outside of sub-Saharan Africa, the variant with the largest effect on expression remains polymorphic in cosmopolitan populations, suggesting it may be subject to a different mode of selection. To elucidate the function of CG9509, we performed a series of functional and tolerance assays on flies in which CG9509 expression was disrupted. We found that CG9509 plays a role in larval growth and influences adult body and wing size, as well as wing loading. Furthermore, variation in several of these traits was associated with variation within the CG9509 enhancer. The effect on growth appears to result from a modulation of active ecdysone levels and expression of growth factors. Taken together, our findings suggest that selection acted on 3 sites within the CG9509 enhancer to increase CG9509 expression and, as a result, reduce wing loading as D. melanogaster expanded out of sub-Saharan Africa. Much of the phenotypic variation that is observed within species is thought to be caused by variation in gene expression. Variants within cis-regulatory elements, which affect the expression of nearby genes within the same DNA strand, are thought to be an abundant resource upon which natural selection can act. Understanding the functional consequences of adaptive cis-regulatory changes is important, as it can help elucidate the mechanisms underlying phenotypic evolution in general and provide insight into the development and maintenance of biodiversity. However, functional analyses of these types of changes remain rare. Here we present a functional analysis of an adaptively evolving enhancer element of a D. melanogaster gene called CG9509, of previously unknown function. We show that 3 single nucleotide polymorphisms located within the enhancer of this gene are responsible for an increase in CG9509 expression in cosmopolitan populations (outside of south and central Africa) relative to sub-Saharan populations, which include ancestral populations. We further show that CG9509 is involved in the regulation of growth rate and body size determination and propose that the CG9509 enhancer underwent positive selection to reduce wing loading as the species expanded out of sub-Saharan Africa.
Collapse
Affiliation(s)
- Amanda Glaser-Schmitt
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail: (AGS); (JP)
| | - John Parsch
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail: (AGS); (JP)
| |
Collapse
|
72
|
Wang L, Liu Y, Sun S, Lu M, Xia Y. Regulation of neuronal-glial fate specification by long non-coding RNAs. Rev Neurosci 2018; 27:491-9. [PMID: 26943605 DOI: 10.1515/revneuro-2015-0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/06/2016] [Indexed: 12/20/2022]
Abstract
Neural stem cell transplantation is becoming a promising and attractive cell-based treatment modality for repairing the damaged central nervous system. One of the limitations of this approach is that the proportion of functional cells differentiated from stem cells still remains at a low level. In recent years, novel long non-coding RNAs (lncRNAs) are being discovered at a growing pace, suggesting that this class of molecules may act as novel regulators in neuronal-glial fate specification. In this review, we first describe the general features of lncRNAs that are more likely to be relevant to reveal their function. By this, we aim to point out the specific roles of a number of lncRNAs whose function has been described during neuronal and glial cell differentiation. There is no doubt that investigation of the lncRNAs will open a new window in studying neuronal-glial fate specification.
Collapse
|
73
|
Shimizu K, Luo YJ, Satoh N, Endo K. Possible co-option of engrailed during brachiopod and mollusc shell development. Biol Lett 2017; 13:rsbl.2017.0254. [PMID: 28768795 DOI: 10.1098/rsbl.2017.0254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/11/2017] [Indexed: 01/09/2023] Open
Abstract
In molluscs, two homeobox genes, engrailed (en) and distal-less (dlx), are transcription factors that are expressed in correlation with shell development. They are expressed in the regions between shell-forming and non-shell-forming cells, likely defining the boundaries of shell-forming fields. Here we investigate the expression of two transcription factors in the brachiopod Lingula anatina We find that en is expressed in larval mantle lobes, whereas dlx is expressed in larval tentacles. We also demonstrate that the embryonic shell marker mantle peroxidase (mpox) is specifically expressed in mantle lobes. Our results suggest that en and mpox are possibly involved in brachiopod embryonic shell development. We discuss the evolutionary developmental origin of lophotrochozoan biomineralization through independent gene co-option.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan
| | - Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
74
|
Gilbert J, Man HY. Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity. Front Cell Neurosci 2017; 11:359. [PMID: 29209173 PMCID: PMC5701944 DOI: 10.3389/fncel.2017.00359] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. HighlightsAutism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States. ASDs are highly heterogeneous in their genetic basis. ASDs share common features at the cellular and molecular levels in the brain. Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function.
Collapse
Affiliation(s)
- James Gilbert
- Department of Biology, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States.,Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
75
|
Ezashi T, Imakawa K. Transcriptional control of IFNT expression. Reproduction 2017; 154:F21-F31. [PMID: 28982936 PMCID: PMC5687277 DOI: 10.1530/rep-17-0330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/01/2017] [Accepted: 08/29/2017] [Indexed: 12/24/2022]
Abstract
Once interferon-tau (IFNT) had been identified as a type I IFN in sheep and cattle and its functions were characterized, numerous studies were conducted to elucidate the transcriptional regulation of this gene family. Transfection studies performed largely with human choriocarcinoma cell lines identified regulatory regions of the IFNT gene that appeared responsible for trophoblast-specific expression. The key finding was the recognition that the transcription factor ETS2 bound to a proximal region within the 5'UTR of a bovine IFNT and acted as a strong transactivator. Soon after other transcription factors were identified as cooperative partners. The ETS2-binding site and the nearby AP1 site enable response to intracellular signaling from maternal uterine factors. The AP1 site also serves as a GATA-binding site in one of the bovine IFNT genes. The homeobox-containing transcription factor, DLX3, augments IFNT expression combinatorially with ETS2. CDX2 has also been identified as transactivator that binds to a separate site upstream of the main ETS2 enhancer site. CDX2 participates in IFNT epigenetic regulation by modifying histone acetylation status of the gene. The IFNT downregulation at the time of the conceptus attachment to the uterine endometrium appears correlated with the increased EOMES expression and the loss of other transcription coactivators. Altogether, the studies of transcriptional control of IFNT have provided mechanistic evidence of the regulatory framework of trophoblast-specific expression and critical expression pattern for maternal recognition of pregnancy.
Collapse
Affiliation(s)
- Toshihiko Ezashi
- Bond Life Sciences Center and Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211 USA
| | - Kazuhiko Imakawa
- Laboratory of Animal Breeding, Veterinary Medical Sciences and Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
76
|
The New RNA World: Growing Evidence for Long Noncoding RNA Functionality. Trends Genet 2017; 33:665-676. [DOI: 10.1016/j.tig.2017.08.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
|
77
|
p53-R273H upregulates neuropilin-2 to promote cell mobility and tumor metastasis. Cell Death Dis 2017; 8:e2995. [PMID: 28796261 PMCID: PMC5596564 DOI: 10.1038/cddis.2017.376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/12/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023]
Abstract
Mounting evidence indicates that hotspot p53 mutant proteins often possess gain-of-function property in promoting cell mobility and tumor metastasis. However, the molecular mechanisms are not totally understood. In this study, we demonstrate that the hotspot mutation, p53-R273H, promotes cell migration, invasion in vitro and tumor metastasis in vivo. p53-R273H significantly represses expression of DLX2, a homeobox protein involved in cell proliferation and pattern formation. We show that p53-R273H-mediated DLX2 repression leads to upregulation of Neuropilin-2 (NRP2), a multifunctional co-receptor involved in tumor initiation, growth, survival and metastasis. p53-R273H-induced cell mobility is effectively suppressed by DLX2 expression. Furthermore, knockdown of NRP2 significantly inhibits p53-R273H-induced tumor metastasis in xenograft mouse model. Together, these results reveal an important role for DLX2-NRP2 in p53-R273H-induced cell mobility and tumor metastasis.
Collapse
|
78
|
Solek CM, Feng S, Perin S, Weinschutz Mendes H, Ekker M. Lineage tracing of dlx1a/2a and dlx5a/6a expressing cells in the developing zebrafish brain. Dev Biol 2017; 427:131-147. [PMID: 28479339 DOI: 10.1016/j.ydbio.2017.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 02/06/2023]
Abstract
Lineage tracing of specific populations of progenitor cells provides crucial information about developmental programs. Four members of the Dlx homeobox gene family, Dlx1,2, 5 and 6, are involved in the specification of γ-aminobutyric acid (GABA)ergic neurons in the vertebrate forebrain. Orthologous genes in mammals and teleost show similarities in expression patterns and transcriptional regulation mechanisms. We have used lineage tracing to permanently label dlx-expressing cells in the zebrafish and have characterized the progeny of these cells in the larva and in the juvenile and adult brain. We have found that dlx1a/2a and dlx5a/6a expressing progenitors give rise, for the most part, to small populations of cells which constitute only a small proportion of GABAergic cells in the adult brain tissue. Moreover, some of the cells do not acquire a neuronal phenotype suggesting that, regardless of the time a cell expresses dlx genes in the brain, it can potentially give rise to cells other than neurons. In some instances, labeling larval dlx5a/6a-expressing cells, but not dlx1a/2a-expressing cells, results in massively expanding, widespread clonal expansion throughout the adult brain. Our data provide a detailed lineage analysis of the dlx1a/2a and dlx5a/6a expressing progenitors in the zebrafish brain and lays the foundation for further characterization of the role of these transcription factors beyond the specification of GABAergic neurons.
Collapse
Affiliation(s)
- Cynthia M Solek
- CAREG, Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa, ON, Canada K1N 6N5; Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, Canada H3A 2B4
| | - Shengrui Feng
- CAREG, Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa, ON, Canada K1N 6N5; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9
| | - Sofia Perin
- CAREG, Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa, ON, Canada K1N 6N5
| | - Hellen Weinschutz Mendes
- CAREG, Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa, ON, Canada K1N 6N5
| | - Marc Ekker
- CAREG, Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa, ON, Canada K1N 6N5.
| |
Collapse
|
79
|
Zhang H, Zhao M, Yi X, Ou Z, Li Y, Shi Y, He M. Characterization of the distal-less homologue gene, PfDlx, involved in regulating the expression of Pif in the pearl oyster, Pinctada fucata. Comp Biochem Physiol B Biochem Mol Biol 2017; 212:51-58. [PMID: 28652139 DOI: 10.1016/j.cbpb.2017.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 11/17/2022]
Abstract
Distal-less (Dlx) homeobox transcription factors play an important role in regulating various aspects of vertebrate biology. In vertebrates and invertebrates, distal-less is a highly conserved and well-studied transcription factor. In pearl oyster, we have identified a homologue of this gene, Dlx, and cloned the full-length cDNA. Genomic structure analysis revealed that PfDlx genomic DNA contained three exons and two introns. Their deduced amino acid sequences all showed the highest identity with homologues in Crassostrea gigas. Analyses of PfDlx mRNA in tissues and developmental stages showed high expressions in gonad, polar body stage, 2-4 cells and 32 cells. After shell notching, the changes in expression of Dlx shows that it reached a maximum at 24h. In co-transfection experiments, PfDlx significantly activates reporter constructs containing a Pif promoter. Through using RNAi techniques, we demonstrated that down-regulation of Dlx in P. fucata did not significantly disrupt the development of the nacreous layer in scanning electron microscopy, but it significantly down-regulated the expression of Pif gene. Thus, our work suggests that PfDlx might participate in regulating the expression of the Pif gene in the pearl oyster.
Collapse
Affiliation(s)
- Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mi Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejie Yi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zekui Ou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoguo Li
- College of Life Sciences and Ecology, Hainan Tropical Ocean University, 1 Yucai Road, Sanya 572022, China
| | - Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou 510301, China.
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou 510301, China.
| |
Collapse
|
80
|
DLX3 interacts with GCM1 and inhibits its transactivation-stimulating activity in a homeodomain-dependent manner in human trophoblast-derived cells. Sci Rep 2017; 7:2009. [PMID: 28515447 PMCID: PMC5435702 DOI: 10.1038/s41598-017-02120-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/06/2017] [Indexed: 11/25/2022] Open
Abstract
The placental transcription factors Distal-less 3 (DLX3) and Glial cell missing-1 (GCM1) have been shown to coordinate the specific regulation of PGF in human trophoblast cell lines. While both factors independently have a positive effect on PGF gene expression, when combined, DLX3 acts as an antagonist to GCM. Despite this understanding, potential mechanisms accounting for this regulatory interaction remain unexplored. We identify physical and functional interactions between specific domains of DLX3 and GCM1 in human trophoblast-derived cells by performing immunoprecipitation and mammalian one hybrid assays. Studies revealed that DLX3 binding reduced the transcriptional activity of GCM1, providing a mechanistic explanation of their functional antagonism in regulating PGF promoter activity. The DLX3 homeodomain (HD) was essential for DLX3-GCM1 interaction, and that the HD together with the DLX3 amino- or carboxyl-terminal domains was required for maximal inhibition of GCM1. Interestingly, a naturally occurring DLX3 mutant that disrupts the carboxyl-terminal domain leading to tricho-dento-osseous syndrome in humans displayed activities indistinguishable from wild type DLX3 in this system. Collectively, our studies demonstrate that DLX3 physically interacts with GCM1 and inhibits its transactivation activity, suggesting that DLX3 and GCM1 may form a complex to functionally regulate placental cell function through modulation of target gene expression.
Collapse
|
81
|
Cooper RL, Martin KJ, Rasch LJ, Fraser GJ. Developing an ancient epithelial appendage: FGF signalling regulates early tail denticle formation in sharks. EvoDevo 2017; 8:8. [PMID: 28469835 PMCID: PMC5414203 DOI: 10.1186/s13227-017-0071-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/22/2017] [Indexed: 11/18/2022] Open
Abstract
Background Vertebrate epithelial appendages constitute a diverse group of organs that includes integumentary structures such as reptilian scales, avian feathers and mammalian hair. Recent studies have provided new evidence for the homology of integumentary organ development throughout amniotes, despite their disparate final morphologies. These structures develop from conserved molecular signalling centres, known as epithelial placodes. It is not yet certain whether this homology extends beyond the integumentary organs of amniotes, as there is a lack of knowledge regarding their development in basal vertebrates. As the ancient sister lineage of bony vertebrates, extant chondrichthyans are well suited to testing the phylogenetic depth of this homology. Elasmobranchs (sharks, skates and rays) possess hard, mineralised epithelial appendages called odontodes, which include teeth and dermal denticles (placoid scales). Odontodes constitute some of the oldest known vertebrate integumentary appendages, predating the origin of gnathostomes. Here, we used an emerging model shark (Scyliorhinus canicula) to test the hypothesis that denticles are homologous to other placode-derived amniote integumentary organs. To examine the conservation of putative gene regulatory network (GRN) member function, we undertook small molecule inhibition of fibroblast growth factor (FGF) signalling during caudal denticle formation. Results We show that during early caudal denticle morphogenesis, the shark expresses homologues of conserved developmental gene families, known to comprise a core GRN for early placode morphogenesis in amniotes. This includes conserved expression of FGFs, sonic hedgehog (shh) and bone morphogenetic protein 4 (bmp4). Additionally, we reveal that denticle placodes possess columnar epithelial cells with a reduced rate of proliferation, a conserved characteristic of amniote skin appendage development. Small molecule inhibition of FGF signalling revealed placode development is FGF dependent, and inhibiting FGF activity resulted in downregulation of shh and bmp4 expression, consistent with the expectation from comparison to the amniote integumentary appendage GRN. Conclusion Overall, these findings suggest the core GRN for building vertebrate integumentary epithelial appendages has been highly conserved over 450 million years. This provides evidence for the continuous, historical homology of epithelial appendage placodes throughout jawed vertebrates, from sharks to mammals. Epithelial placodes constitute the shared foundation upon which diverse vertebrate integumentary organs have evolved. Electronic supplementary material The online version of this article (doi:10.1186/s13227-017-0071-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rory L Cooper
- Department of Animal and Plant Sciences, and the Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| | - Kyle J Martin
- Department of Animal and Plant Sciences, and the Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| | - Liam J Rasch
- Department of Animal and Plant Sciences, and the Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| | - Gareth J Fraser
- Department of Animal and Plant Sciences, and the Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| |
Collapse
|
82
|
Bone morphogenetic protein signaling mediated by ALK-2 and DLX2 regulates apoptosis in glioma-initiating cells. Oncogene 2017; 36:4963-4974. [PMID: 28459464 DOI: 10.1038/onc.2017.112] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic protein (BMP) signaling exerts antitumor activities in glioblastoma; however, its precise mechanisms remain to be elucidated. Here, we demonstrated that the BMP type I receptor ALK-2 (encoded by the ACVR1 gene) has crucial roles in apoptosis induction of patient-derived glioma-initiating cells (GICs), TGS-01 and TGS-04. We also characterized a BMP target gene, Distal-less homeobox 2 (DLX2), and found that DLX2 promoted apoptosis and neural differentiation of GICs. The tumor-suppressive effects of ALK-2 and DLX2 were further confirmed in a mouse orthotopic transplantation model. Interestingly, valproic acid (VPA), an anti-epileptic compound, induced BMP2, BMP4, ACVR1 and DLX2 mRNA expression with a concomitant increase in phosphorylation of Smad1/5. Consistently, we showed that treatment with VPA induced apoptosis of GICs, whereas silencing of ALK-2 or DLX2 expression partially suppressed it. Our study thus reveals BMP-mediated inhibitory mechanisms for glioblastoma, which explains, at least in part, the therapeutic effects of VPA.
Collapse
|
83
|
Vellutini BC, Martín-Durán JM, Hejnol A. Cleavage modification did not alter blastomere fates during bryozoan evolution. BMC Biol 2017; 15:33. [PMID: 28454545 PMCID: PMC5408385 DOI: 10.1186/s12915-017-0371-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Stereotypic cleavage patterns play a crucial role in cell fate determination by precisely positioning early embryonic blastomeres. Although misplaced cell divisions can alter blastomere fates and cause embryonic defects, cleavage patterns have been modified several times during animal evolution. However, it remains unclear how evolutionary changes in cleavage impact the specification of blastomere fates. Here, we analyze the transition from spiral cleavage - a stereotypic pattern remarkably conserved in many protostomes - to a biradial cleavage pattern, which occurred during the evolution of bryozoans. RESULTS Using 3D-live imaging time-lapse microscopy (4D-microscopy), we characterize the cell lineage, MAPK signaling, and the expression of 16 developmental genes in the bryozoan Membranipora membranacea. We found that the molecular identity and the fates of early bryozoan blastomeres are similar to the putative homologous blastomeres in spiral-cleaving embryos. CONCLUSIONS Our work suggests that bryozoans have retained traits of spiral development, such as the early embryonic fate map, despite the evolution of a novel cleavage geometry. These findings provide additional support that stereotypic cleavage patterns can be modified during evolution without major changes to the molecular identity and fate of embryonic blastomeres.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
84
|
Ravi N, Sanchez-Guardado L, Lois C, Kelsch W. Determination of the connectivity of newborn neurons in mammalian olfactory circuits. Cell Mol Life Sci 2017; 74:849-867. [PMID: 27695873 PMCID: PMC11107630 DOI: 10.1007/s00018-016-2367-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/24/2016] [Accepted: 09/13/2016] [Indexed: 12/24/2022]
Abstract
The mammalian olfactory bulb is a forebrain structure just one synapse downstream from the olfactory sensory neurons and performs the complex computations of sensory inputs. The formation of this sensory circuit is shaped through activity-dependent and cell-intrinsic mechanisms. Recent studies have revealed that cell-type specific connectivity and the organization of synapses in dendritic compartments are determined through cell-intrinsic programs already preset in progenitor cells. These progenitor programs give rise to subpopulations within a neuron type that have distinct synaptic organizations. The intrinsically determined formation of distinct synaptic organizations requires factors from contacting cells that match the cell-intrinsic programs. While certain genes control wiring within the newly generated neurons, other regulatory genes provide intercellular signals and are only expressed in neurons that will form contacts with the newly generated cells. Here, the olfactory system has provided a useful model circuit to reveal the factors regulating assembly of the highly structured connectivity in mammals.
Collapse
Affiliation(s)
- Namasivayam Ravi
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Luis Sanchez-Guardado
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
| | - Wolfgang Kelsch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
85
|
Tan Y, Sementino E, Xu J, Pei J, Liu Z, Ito TK, Cai KQ, Peri S, Klein-Szanto AJP, Wiest DL, Testa JR. The homeoprotein Dlx5 drives murine T-cell lymphomagenesis by directly transactivating Notch and upregulating Akt signaling. Oncotarget 2017; 8:14941-14956. [PMID: 28122332 PMCID: PMC5362456 DOI: 10.18632/oncotarget.14784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/11/2017] [Indexed: 12/01/2022] Open
Abstract
Homeobox genes play a critical role in embryonic development, but they have also been implicated in cancer through mechanisms that are largely unknown. While not expressed during normal T-cell development, homeobox transcription factor genes can be reactivated via recurrent chromosomal rearrangements in human T-cell acute leukemia/lymphoma (T-ALL), a malignancy often associated with activated Notch and Akt signaling. To address how epigenetic reprogramming via an activated homeobox gene might contribute to T-lymphomagenesis, we investigated a transgenic mouse model with thymocyte-specific overexpression of the Dlx5 homeobox gene. We demonstrate for the first time that Dlx5 induces T-cell lymphomas with high penetrance. Integrated ChIP-seq and mRNA microarray analyses identified Notch1/3 and Irs2 as direct transcriptional targets of Dlx5, a gene signature unique to lymphomas from Lck-Dlx5 mice as compared to T-cell lymphomas from Lck-MyrAkt2 mice, which were previously reported by our group. Moreover, promoter/enhancer studies confirmed that Dlx5 directly transactivates Notch expression. Notch1/3 expression and Irs2-induced Akt signaling were upregulated throughout early stages of T-cell development, which promoted cell survival during β-selection of T lymphocytes. Dlx5 was required for tumor maintenance via its activation of Notch and Akt, as tumor cells were highly sensitive to Notch and Akt inhibitors. Together, these findings provide unbiased genetic and mechanistic evidence that Dlx5 acts as an oncogene when aberrantly expressed in T cells, and that it is a novel discovery that Notch is a direct target of Dlx5. These experimental findings provide mechanistic insights about how reactivation of the Dlx5 gene can drive T-ALL by aberrant epigenetic reprogramming of the T-cell genome.
Collapse
Affiliation(s)
- Yinfei Tan
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Eleonora Sementino
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jinfei Xu
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jianming Pei
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Zemin Liu
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Timothy K Ito
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Suraj Peri
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Andres J P Klein-Szanto
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Joseph R Testa
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
86
|
Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI, Kang HS. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 2017; 16:10. [PMID: 28137309 PMCID: PMC5282724 DOI: 10.1186/s12943-016-0577-4] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/25/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy is one of the major tools of cancer treatment, and is widely used for a variety of malignant tumours. Radiotherapy causes DNA damage directly by ionization or indirectly via the generation of reactive oxygen species (ROS), thereby destroying cancer cells. However, ionizing radiation (IR) paradoxically promotes metastasis and invasion of cancer cells by inducing the epithelial-mesenchymal transition (EMT). Metastasis is a major obstacle to successful cancer therapy, and is closely linked to the rates of morbidity and mortality of many cancers. ROS have been shown to play important roles in mediating the biological effects of IR. ROS have been implicated in IR-induced EMT, via activation of several EMT transcription factors—including Snail, HIF-1, ZEB1, and STAT3—that are activated by signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, G-CSF, EGFR/PI3K/Akt, and MAPK. Cancer cells that undergo EMT have been shown to acquire stemness and undergo metabolic changes, although these points are debated. IR is known to induce cancer stem cell (CSC) properties, including dedifferentiation and self-renewal, and to promote oncogenic metabolism by activating these EMT-inducing pathways. Much accumulated evidence has shown that metabolic alterations in cancer cells are closely associated with the EMT and CSC phenotypes; specifically, the IR-induced oncogenic metabolism seems to be required for acquisition of the EMT and CSC phenotypes. IR can also elicit various changes in the tumour microenvironment (TME) that may affect invasion and metastasis. EMT, CSC, and oncogenic metabolism are involved in radioresistance; targeting them may improve the efficacy of radiotherapy, preventing tumour recurrence and metastasis. This study focuses on the molecular mechanisms of IR-induced EMT, CSCs, oncogenic metabolism, and alterations in the TME. We discuss how IR-induced EMT/CSC/oncogenic metabolism may promote resistance to radiotherapy; we also review efforts to develop therapeutic approaches to eliminate these IR-induced adverse effects.
Collapse
Affiliation(s)
- Su Yeon Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Eui Kyong Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Min Kyung Ju
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Hyun Min Jeon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Min Young Kim
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Pusan, 619-953, Korea
| | - Cho Hee Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea.,DNA Identification Center, National Forensic Service, Seoul, 158-707, Korea
| | - Hye Gyeong Park
- Nanobiotechnology Center, Pusan National University, Pusan, 609-735, Korea
| | - Song Iy Han
- The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju, 501-759, Korea
| | - Ho Sung Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea.
| |
Collapse
|
87
|
Lee SY, Jeon HM, Ju MK, Jeong EK, Kim CH, Park HG, Han SI, Kang HS. Dlx-2 and glutaminase upregulate epithelial-mesenchymal transition and glycolytic switch. Oncotarget 2016; 7:7925-39. [PMID: 26771232 PMCID: PMC4884964 DOI: 10.18632/oncotarget.6879] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 01/02/2016] [Indexed: 12/18/2022] Open
Abstract
Most cancer cells depend on enhanced glucose and glutamine (Gln) metabolism for growth and survival. Oncogenic metabolism provides biosynthetic precursors for nucleotides, lipids, and amino acids; however, its specific roles in tumor progression are largely unknown. We previously showed that distal-less homeobox-2 (Dlx-2), a homeodomain transcription factor involved in embryonic and tumor development, induces glycolytic switch and epithelial-mesenchymal transition (EMT) by inducing Snail expression. Here we show that Dlx-2 also induces the expression of the crucial Gln metabolism enzyme glutaminase (GLS1), which converts Gln to glutamate. TGF-β and Wnt induced GLS1 expression in a Dlx-2-dependent manner. GLS1 shRNA (shGLS1) suppressed in vivo tumor metastasis and growth. Inhibition of Gln metabolism by shGLS1, Gln deprivation, and Gln metabolism inhibitors (DON, 968 and BPTES) prevented Dlx-2-, TGF-β-, Wnt-, and Snail-induced EMT and glycolytic switch. Finally, shDlx-2 and Gln metabolism inhibition decreased Snail mRNA levels through p53-dependent upregulation of Snail-targeting microRNAs. These results demonstrate that the Dlx-2/GLS1/Gln metabolism axis is an important regulator of TGF-β/Wnt-induced, Snail-dependent EMT, metastasis, and glycolytic switch.
Collapse
Affiliation(s)
- Su Yeon Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan 609-735, Korea
| | - Hyun Min Jeon
- Department of Molecular Biology, College of Natural Sciences, Pusan 609-735, Korea
| | - Min Kyung Ju
- Department of Molecular Biology, College of Natural Sciences, Pusan 609-735, Korea
| | - Eui Kyong Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan 609-735, Korea
| | - Cho Hee Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan 609-735, Korea
| | - Hye Gyeong Park
- Nanobiotechnology Center, Pusan National University, Pusan 609-735, Korea
| | - Song Iy Han
- The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju 501-759, Korea
| | - Ho Sung Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan 609-735, Korea
| |
Collapse
|
88
|
Fazel Darbandi S, Poitras L, Monis S, Lindtner S, Yu M, Hatch G, Rubenstein JL, Ekker M. Functional consequences of I56ii Dlx enhancer deletion in the developing mouse forebrain. Dev Biol 2016; 420:S0012-1606(16)30263-9. [PMID: 27983964 DOI: 10.1016/j.ydbio.2016.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/22/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Dlx homeobox genes encode a group of transcription factors that play an essential role during developmental processes including maintaining the differentiation, proliferation and migration of GABAergic interneurons. The Dlx1/2 and Dlx5/6 genes are expressed in the forebrain and are arranged in convergently transcribed bigene clusters, with I12a/I12b and I56i/I56ii cis-regulatory elements (CREs) located in the intergenic region of each cluster respectively. We have characterized the phenotypic consequences of deleting I56ii on forebrain development and spatial patterning of corridor cells that are involved in guiding thalamocortical projections. Here we report that deletion of I56ii impairs expression of Dlx genes and that of potential targets including Gad2 as well as striatal markers Islet1, Meis2, and Ebf1. In addition, I56ii deletion reduces both the binding of DLX2 in the Dlx5/Dlx6 intergenic region and the presence of H3K9Ac at the Dlx5/Dlx6 locus, consistent with the reduced expression of these genes. Deletion of I56ii reduces the expression of the ISLET1 and CTIP2 in the striatum and disrupts the number of parvalbumin and calretinin expressing cells in the adult somatosensory cortex of the ΔI56ii mice. These data suggest an important regulatory role for I56ii in the developing forebrain by means of a potential regulatory mechanism which may regulate the expression of Dlx genes, notably Dlx6 as well as the spatial patterning of the ventral telencephalon, including possibly corridor cells.
Collapse
Affiliation(s)
- S Fazel Darbandi
- Department of Biology, University of Ottawa, 20 Marie Curie, Ottawa, ON Canada K1N 6N5; Department of Psychiatry, School of Medicine, Rock Hall, University of California, San Francisco (UCSF), San Francisco, CA 94158-2324, USA
| | - L Poitras
- Department of Biology, University of Ottawa, 20 Marie Curie, Ottawa, ON Canada K1N 6N5
| | - S Monis
- Department of Biology, University of Ottawa, 20 Marie Curie, Ottawa, ON Canada K1N 6N5
| | - S Lindtner
- Department of Psychiatry, School of Medicine, Rock Hall, University of California, San Francisco (UCSF), San Francisco, CA 94158-2324, USA
| | - M Yu
- Department of Biology, University of Ottawa, 20 Marie Curie, Ottawa, ON Canada K1N 6N5
| | - G Hatch
- Department of Biology, University of Ottawa, 20 Marie Curie, Ottawa, ON Canada K1N 6N5
| | - J L Rubenstein
- Department of Psychiatry, School of Medicine, Rock Hall, University of California, San Francisco (UCSF), San Francisco, CA 94158-2324, USA
| | - M Ekker
- Department of Biology, University of Ottawa, 20 Marie Curie, Ottawa, ON Canada K1N 6N5.
| |
Collapse
|
89
|
Kobeissy FH, Hansen K, Neumann M, Fu S, Jin K, Liu J. Deciphering the Role of Emx1 in Neurogenesis: A Neuroproteomics Approach. Front Mol Neurosci 2016; 9:98. [PMID: 27799894 PMCID: PMC5065984 DOI: 10.3389/fnmol.2016.00098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022] Open
Abstract
Emx1 has long been implicated in embryonic brain development. Previously we found that mice null of Emx1 gene had smaller dentate gyri and reduced neurogenesis, although the molecular mechanisms underlying this defect was not well understood. To decipher the role of Emx1 gene in neural regeneration and the timing of its involvement, we determine the frequency of neural stem cells (NSCs) in embryonic and adult forebrains of Emx1 wild type (WT) and knock out (KO) mice in the neurosphere assay. Emx1 gene deletion reduced the frequency and self-renewal capacity of NSCs of the embryonic brain but did not affect neuronal or glial differentiation. Emx1 KO NSCs also exhibited a reduced migratory capacity in response to serum or vascular endothelial growth factor (VEGF) in the Boyden chamber migration assay compared to their WT counterparts. A thorough comparison between NSC lysates from Emx1 WT and KO mice utilizing 2D-PAGE coupled with tandem mass spectrometry revealed 38 proteins differentially expressed between genotypes, including the F-actin depolymerization factor Cofilin. A global systems biology and cluster analysis identified several potential mechanisms and cellular pathways implicated in altered neurogenesis, all involving Cofilin1. Protein interaction network maps with functional enrichment analysis further indicated that the differentially expressed proteins participated in neural-specific functions including brain development, axonal guidance, synaptic transmission, neurogenesis, and hippocampal morphology, with VEGF as the upstream regulator intertwined with Cofilin1 and Emx1. Functional validation analysis indicated that apart from the overall reduced level of phosphorylated Cofilin1 (p-Cofilin1) in the Emx1 KO NSCs compared to WT NSCs as demonstrated in the western blot analysis, VEGF was able to induce more Cofilin1 phosphorylation and FLK expression only in the latter. Our results suggest that a defect in Cofilin1 phosphorylation induced by VEGF or other growth factors might contribute to the reduced neurogenesis in the Emx1 null mice during brain development.
Collapse
Affiliation(s)
- Firas H Kobeissy
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida Gainesville, FL, USA
| | - Katharina Hansen
- Department of Neurological Surgery, University of California, San FranciscoSan Francisco, CA, USA; San Francisco VA Medical CenterSan Francisco, CA, USA
| | - Melanie Neumann
- Department of Neurological Surgery, University of California, San FranciscoSan Francisco, CA, USA; San Francisco VA Medical CenterSan Francisco, CA, USA
| | - Shuping Fu
- Department of Neurological Surgery, University of California, San FranciscoSan Francisco, CA, USA; San Francisco VA Medical CenterSan Francisco, CA, USA; Key Laboratory of Acupuncture and Medicine Research of Minister of Education, Nanjing University of Chinese MedicineNanjing, China
| | - Kulin Jin
- Pharmacology & Neuroscience, University of North Texas Health Science Center Fort Worth, TX, USA
| | - Jialing Liu
- Department of Neurological Surgery, University of California, San FranciscoSan Francisco, CA, USA; San Francisco VA Medical CenterSan Francisco, CA, USA
| |
Collapse
|
90
|
Cnbp ameliorates Treacher Collins Syndrome craniofacial anomalies through a pathway that involves redox-responsive genes. Cell Death Dis 2016; 7:e2397. [PMID: 27711076 PMCID: PMC5133970 DOI: 10.1038/cddis.2016.299] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/28/2016] [Accepted: 08/25/2016] [Indexed: 11/08/2022]
Abstract
Treacher Collins Syndrome (TCS) is a rare congenital disease (1:50 000 live births) characterized by craniofacial defects, including hypoplasia of facial bones, cleft palate and palpebral fissures. Over 90% of the cases are due to mutations in the TCOF1 gene, which codifies the nucleolar protein Treacle. Here we report a novel TCS-like zebrafish model displaying features that fully recapitulate the spectrum of craniofacial abnormalities observed in patients. As it was reported for a Tcof1+/- mouse model, Treacle depletion in zebrafish caused reduced rRNA transcription, stabilization of Tp53 and increased cell death in the cephalic region. An increase of ROS along with the overexpression of redox-responsive genes was detected; furthermore, treatment with antioxidants ameliorated the phenotypic defects of craniofacial anomalies in TCS-like larvae. On the other hand, Treacle depletion led to a lowering in the abundance of Cnbp, a protein required for proper craniofacial development. Tcof1 knockdown in transgenic zebrafish overexpressing cnbp resulted in barely affected craniofacial cartilage development, reinforcing the notion that Cnbp has a role in the pathogenesis of TCS. The cnbp overexpression rescued the TCS phenotype in a dose-dependent manner by a ROS-cytoprotective action that prevented the redox-responsive genes' upregulation but did not normalize the synthesis of rRNAs. Finally, a positive correlation between the expression of CNBP and TCOF1 in mesenchymal cells from both control and TCS subjects was found. Based on this, we suggest CNBP as an additional target for new alternative therapeutic treatments to reduce craniofacial defects not only in TCS but also in other neurocristopathies.
Collapse
|
91
|
Measuring inputs to a common function: The case of Dlx5 and Dlx6. Biochem Biophys Res Commun 2016; 478:371-377. [DOI: 10.1016/j.bbrc.2016.07.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/08/2016] [Indexed: 11/23/2022]
|
92
|
Li H, An J, Wu M, Zheng Q, Gui X, Li T, Pu H, Lu D. LncRNA HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2. Oncotarget 2016; 6:27847-64. [PMID: 26172293 PMCID: PMC4695030 DOI: 10.18632/oncotarget.4443] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/19/2015] [Indexed: 02/02/2023] Open
Abstract
Long non-coding RNA HOTAIR predicts negative tumor prognosis and exhibits oncogenic activity. Herein, we demonstrate HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2. Mechanistically, HOTAIR reduces the recuritment of the CREB, P300, RNA polII onto the SETD2 promoter region that inhibits SETD2 expression and its phosphorylation. Thereby, the SETD2 binding capacity to substrate histone H3 is weakened, triggering a reduction of trimethylation on histone H3 thirty-sixth lysine, and thereby the H3K36me3–hMSH2-hMSH6-SKP2 complex is also decreased. Strikingly, the complex occupancy on chromosome is depressed, preventing from mismatch DNA repair. While reducing the degradation capacity of Skp2 for aging histone H3 bound to damaged DNA, the aging histone repair is impaired. Furthermore, that the damaged DNA escaped to repair can causes microsatellite instability(MSI) and abnormal expression of cell cycle related genes that may trigger the hepatocarcinogenesis. This study provides evidence for HOTAIR to promote tumorigenesis via downregulating SETD2 in liver cancer stem cells.
Collapse
Affiliation(s)
- Haiyan Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jiahui An
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Mengying Wu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Qidi Zheng
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xin Gui
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tianming Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hu Pu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
93
|
Liu J, Cui X, Qu L, Hua L, Wu M, Shen Z, Lu C, Ni R. Overexpression of DLX2 is associated with poor prognosis and sorafenib resistance in hepatocellular carcinoma. Exp Mol Pathol 2016; 101:58-65. [PMID: 27302463 DOI: 10.1016/j.yexmp.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/04/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
The mechanism underlying poor prognosis and sorafenib resistance in patients with hepatocellular carcinoma (HCC) is unknown and, to date, no useful predictive biomarkers of sorafenib resistance have been identified. Distal-less homeobox 2 (DLX2) is a transcription factor involved in cell cycle regulation that is closely correlated with cancer prognosis. In this study, we showed that DLX2 is overexpressed in HCC tissues and cell lines and that the level of DLX2 overexpression is positively correlated with histological grade, metastasis and Ki67 expression, which are indicators of poor prognosis. We also found that DLX2 accumulates in proliferating HCC cells, where it is associated with the expression of proliferating cell nuclear antigen (PCNA), Cyclin D1 and Cyclin A. Flow cytometry and cell counting kit-8 (CCK-8) assays indicated that DLX2 depletion causes cell cycle arrest at the G1 phase and hinders cell proliferation. Moreover, the sensitivity of HCC cells to sorafenib is restored when the DLX2 gene is knocked down using a short interfering RNA. We demonstrated that DLX2 facilitates sorafenib resistance by promoting the expression of markers of epithelial-mesenchymal transition and by activating the extracellular signal-regulated protein kinase pathway. Our findings reveal that DLX2 plays a regulatory role in HCC cell proliferation and suggests that targeting DLX2 represents a novel strategy to increase sorafenib efficacy in the management of HCC. In conclusion, DLX2 is a novel marker of poor prognosis and sorafenib resistance in patients with HCC.
Collapse
Affiliation(s)
- Jinxia Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Xiaopeng Cui
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Lishuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Lu Hua
- Grade 14, Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Miaomiao Wu
- Grade 14, Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Zhongyi Shen
- Grade 15, Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China.
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
94
|
Murphy E, Benítez-Burraco A. Language deficits in schizophrenia and autism as related oscillatory connectomopathies: An evolutionary account. Neurosci Biobehav Rev 2016; 83:742-764. [PMID: 27475632 DOI: 10.1016/j.neubiorev.2016.07.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/23/2016] [Accepted: 07/25/2016] [Indexed: 01/28/2023]
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASD) are characterised by marked language deficits, but it is not clear how these arise from gene mutations associated with the disorders. Our goal is to narrow the gap between SZ and ASD and, ultimately, give support to the view that they represent abnormal (but related) ontogenetic itineraries for the human faculty of language. We will focus on the distinctive oscillatory profiles of the SZ and ASD brains, in turn using these insights to refine our understanding of how the brain implements linguistic computations by exploring a novel model of linguistic feature-set composition. We will argue that brain rhythms constitute the best route to interpreting language deficits in both conditions and mapping them to neural dysfunction and risk alleles of the genes. Importantly, candidate genes for SZ and ASD are overrepresented among the gene sets believed to be important for language evolution. This translational effort may help develop an understanding of the aetiology of SZ and ASD and their high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.
| | | |
Collapse
|
95
|
Shin JH, Haggadone MD, Sunwoo JB. Transcription factor Dlx3 induces aryl hydrocarbon receptor promoter activity. Biochem Biophys Rep 2016; 7:353-360. [PMID: 27777986 PMCID: PMC5074085 DOI: 10.1016/j.bbrep.2016.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Distal-less (Dlx) homeobox transcription factors (TFs) play a prominent role in regulating multiple facets of vertebrate biology. Though widely studied as mediators of tissue development, recent work has uncovered a role for this TF family in modulating the vertebrate hematopoietic compartment. Pertinent to our study, murine Dlx1-3 are expressed in an innate lymphocyte population known as natural killer (NK) cells, and they are implicated to assume a functional role in the NK cell maturation pathway. However, Dlx target genes are poorly understood. In Drosophila, the invertebrate Dlx ortholog Distal-less (Dll) regulates another transcription factor called Spineless (ss), which is critical for specifying distal antennal segments. Importantly, the vertebrate ortholog of ss is the aryl hydrocarbon receptor (AhR), a transcription factor recently shown to be important in the regulation of a number of immune cell subsets, including NK cells. Given these findings, we investigated whether Dlx TF family members might analogously regulate AhR in an NK cell context. Our results demonstrate that Dlx3 is constitutively co-expressed with AhR in murine and human CD127+ NK cells. Critically, we show that Dlx3 induces AhR promoter activity by binding to a regulatory region that resides ~5.5 kb upstream of the transcriptional start site. This mechanism is functionally relevant, as Dlx3 expression in human NK cells significantly enhances TF activity at AhR DNA-binding elements (Xenobiotic Responsive Elements, XREs). Thus, our study defines Dlx3 as a positive regulator of the aryl hydrocarbon receptor.
Collapse
Affiliation(s)
- June Ho Shin
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Mikel D Haggadone
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford CA 94305, USA
| | - John B Sunwoo
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford CA 94305, USA
| |
Collapse
|
96
|
Parrilla M, Chang I, Degl'Innocenti A, Omura M. Expression of homeobox genes in the mouse olfactory epithelium. J Comp Neurol 2016; 524:2713-39. [PMID: 27243442 DOI: 10.1002/cne.24051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/16/2015] [Accepted: 05/25/2016] [Indexed: 01/22/2023]
Abstract
Homeobox genes constitute a large family of genes widely studied because of their role in the establishment of the body pattern. However, they are also involved in many other events during development and adulthood. The main olfactory epithelium (MOE) is an excellent model to study neurogenesis in the adult nervous system. Analyses of homeobox genes during development show that some of these genes are involved in the formation and establishment of cell diversity in the MOE. Moreover, the mechanisms of expression of odorant receptors (ORs) constitute one of the biggest enigmas in the field. Analyses of OR promoters revealed the presence of homeodomain binding sites in their sequences. Here we characterize the expression patterns of a set of 49 homeobox genes in the MOE with in situ hybridization. We found that seven of them (Dlx3, Dlx5, Dlx6, Msx1, Meis1, Isl1, and Pitx1) are zonally expressed. The homeobox gene Emx1 is expressed in three guanylate cyclase(+) populations, two located in the MOE and the third one in an olfactory subsystem known as Grüneberg ganglion located at the entrance of the nasal cavity. The homeobox gene Tshz1 is expressed in a unique patchy pattern across the MOE. Our findings provide new insights to guide functional studies that aim to understand the complexity of transcription factor expression and gene regulation in the MOE. J. Comp. Neurol. 524:2713-2739, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marta Parrilla
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| | - Isabelle Chang
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| | - Andrea Degl'Innocenti
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany.,Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Masayo Omura
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| |
Collapse
|
97
|
Dai J, Si J, Zhu X, Zhang L, Wu D, Lu J, Ouyang N, Wang X, Shen G. Overexpression of Dlx2 leads to postnatal condyle degradation. Mol Med Rep 2016; 14:1624-30. [PMID: 27315306 PMCID: PMC4940110 DOI: 10.3892/mmr.2016.5406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 05/31/2016] [Indexed: 11/06/2022] Open
Abstract
Distal-less homeobox 2 (Dlx2), a member of the Dlx family of transcription factors, is important for the development of craniofacial tissues. Previous studies based on knock-out mutant mice revealed that Dlx2 primarily disturbed the development of tissues from maxillary arch. The present study used a transgenic mouse model to specifically overexpress Dlx2 in neural crest cells in order to investigate the role of Dlx2 overexpression in post-natal condyle in mice. The model was constructed and the phenotype observed using gross observation, micro-CT scan and histological examination. The model determined that overexpression of Dlx2 may lead to postnatal condyle malformation, subchondral bone degradation and irregular histological structure of the condylar cartilage. In addition, the expression of osteocalcin in the condyle region was markedly downregulated, whereas expression of msh homeobox 2 was upregulated. The results of the present study suggest that Dlx2 overexpression in cranial neural crest cells would disrupt the development of post-natal condyle, which demonstrates that the expression level and the spatiotemporal expression patterns of Dlx2 may be important in regulating the development of post-natal condyle in mice, and also offered a possible temporal-mandibular joint osteoarthritis model animal for future studies.
Collapse
Affiliation(s)
- Jiewen Dai
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Jiawen Si
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Xiaofang Zhu
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Lei Zhang
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Dandan Wu
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Jingting Lu
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Ningjuan Ouyang
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Xudong Wang
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Guofang Shen
- Department of Oral and Cranio‑Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
98
|
Chen B, Piel WH, Monteiro A. Distal-less homeobox genes of insects and spiders: genomic organization, function, regulation and evolution. INSECT SCIENCE 2016; 23:335-352. [PMID: 26898323 DOI: 10.1111/1744-7917.12327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The Distal-less (Dll) genes are homeodomain transcription factors that are present in most Metazoa and in representatives of all investigated arthropod groups. In Drosophila, the best studied insect, Dll plays an essential role in forming the proximodistal axis of the legs, antennae and analia, and in specifying antennal identity. The initiation of Dll expression in clusters of cells in mid-lateral regions of the Drosophila embryo represents the earliest genetic marker of limbs. Dll genes are involved in the development of the peripheral nervous system and sensitive organs, and they also function as master regulators of black pigmentation in some insect lineages. Here we analyze the complete genomes of six insects, the nematode Caenorhabditis elegans and Homo sapiens, as well as multiple Dll sequences available in databases in order to examine the structure and protein features of these genes. We also review the function, expression, regulation and evolution of arthropod Dll genes with emphasis on insects and spiders.
Collapse
Affiliation(s)
- Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, P.R. China
| | - William H Piel
- Yale-NUS College, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Antónia Monteiro
- Yale-NUS College, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
99
|
Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments. Neurosci Biobehav Rev 2016; 68:946-978. [PMID: 27143622 DOI: 10.1016/j.neubiorev.2016.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Dendrite morphology is pivotal for neural circuitry functioning. While the causative relationship between small-scale dendrite morphological abnormalities (shape, density of dendritic spines) and neurodevelopmental disorders is well established, such relationship remains elusive for larger-scale dendrite morphological impairments (size, shape, branching pattern of dendritic trees). Here, we summarize published data on dendrite morphological irregularities in human patients and animal models for neurodevelopmental disorders, with focus on autism and schizophrenia. We next discuss high-risk genes for these disorders and their role in dendrite morphogenesis. We finally overview recent developments in therapeutic attempts and we discuss how they relate to dendrite morphology. We find that both autism and schizophrenia are accompanied by dendritic arbor morphological irregularities, and that majority of their high-risk genes regulate dendrite morphogenesis. Thus, we present a compelling argument that, along with smaller-scale morphological impairments in dendrites (spines and synapse), irregularities in larger-scale dendrite morphology (arbor shape, size) may be an important part of neurodevelopmental disorders' etiology. We suggest that this should not be ignored when developing future therapeutic treatments.
Collapse
|
100
|
Benítez-Burraco A, Murphy E. The Oscillopathic Nature of Language Deficits in Autism: From Genes to Language Evolution. Front Hum Neurosci 2016; 10:120. [PMID: 27047363 PMCID: PMC4796018 DOI: 10.3389/fnhum.2016.00120] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders involving a number of deficits to linguistic cognition. The gap between genetics and the pathophysiology of ASD remains open, in particular regarding its distinctive linguistic profile. The goal of this article is to attempt to bridge this gap, focusing on how the autistic brain processes language, particularly through the perspective of brain rhythms. Due to the phenomenon of pleiotropy, which may take some decades to overcome, we believe that studies of brain rhythms, which are not faced with problems of this scale, may constitute a more tractable route to interpreting language deficits in ASD and eventually other neurocognitive disorders. Building on recent attempts to link neural oscillations to certain computational primitives of language, we show that interpreting language deficits in ASD as oscillopathic traits is a potentially fruitful way to construct successful endophenotypes of this condition. Additionally, we will show that candidate genes for ASD are overrepresented among the genes that played a role in the evolution of language. These genes include (and are related to) genes involved in brain rhythmicity. We hope that the type of steps taken here will additionally lead to a better understanding of the comorbidity, heterogeneity, and variability of ASD, and may help achieve a better treatment of the affected populations.
Collapse
Affiliation(s)
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College LondonLondon, UK
| |
Collapse
|