51
|
Pons V, Ustunel C, Rolland C, Torti E, Parton RG, Gruenberg J. SNX12 role in endosome membrane transport. PLoS One 2012; 7:e38949. [PMID: 22719997 PMCID: PMC3376135 DOI: 10.1371/journal.pone.0038949] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 05/16/2012] [Indexed: 12/03/2022] Open
Abstract
In this paper, we investigated the role of sorting nexin 12 (SNX12) in the endocytic pathway. SNX12 is a member of the PX domain-containing sorting nexin family and shares high homology with SNX3, which plays a central role in the formation of intralumenal vesicles within multivesicular endosomes. We found that SNX12 is expressed at very low levels compared to SNX3. SNX12 is primarily associated with early endosomes and this endosomal localization depends on the binding to 3-phosphoinositides. We find that overexpression of SNX12 prevents the detachment (or maturation) of multivesicular endosomes from early endosomes. This in turn inhibits the degradative pathway from early to late endosomes/lysosomes, much like SNX3 overexpression, without affecting endocytosis, recycling and retrograde transport. In addition, while previous studies showed that Hrs knockdown prevents EGF receptor sorting into multivesicular endosomes, we find that overexpression of SNX12 restores the sorting process in an Hrs knockdown background. Altogether, our data show that despite lower expression level, SNX12 shares redundant functions with SNX3 in the biogenesis of multivesicular endosomes.
Collapse
Affiliation(s)
- Véronique Pons
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- INSERM, UMR 1048, Institut Maladies Métaboliques et Cardiovasculaires, Université de Toulouse III, Toulouse, France
| | - Cansel Ustunel
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Corinne Rolland
- INSERM, U1043, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Eleonora Torti
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Robert G. Parton
- Institute for Molecular Bioscience and Center for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
52
|
McKenzie JE, Raisley B, Zhou X, Naslavsky N, Taguchi T, Caplan S, Sheff D. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi. Traffic 2012; 13:1140-59. [PMID: 22540229 DOI: 10.1111/j.1600-0854.2012.01374.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 12/23/2022]
Abstract
Retrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and endoplasmic reticulum (ER). To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes (EE), recycling endosomes, late endosomes and lysosomes. All cargos pass through EE, but may take different routes to the Golgi. Retromer-dependent cargos bypass the late endosomes to reach the Golgi. We compared how two very different retromer-dependent cargos negotiate the endosomal sorting system. Shiga toxin B, bound to the external layer of the plasma membrane, and chimeric CD8-mannose-6-phosphate receptor (CI-M6PR), which is anchored via a transmembrane domain. Both appear to pass through the recycling endosome. Ablation of the recycling endosome diverted both of these cargos to an aberrant compartment and prevented them from reaching the Golgi. Once in the recycling endosome, Shiga toxin required EHD1 to traffic to the TGN, while the CI-M6PR was not significantly dependent on EHD1. Knockdown of retromer components left cargo in the EE, suggesting that it is required for retrograde exit from this compartment. This work establishes the recycling endosome as a required step in retrograde traffic of at least these two retromer-dependent cargos. Along this pathway, retromer is associated with EE to recycling endosome traffic, while EHD1 is associated with recycling endosome to TGN traffic of STxB.
Collapse
Affiliation(s)
- Jenna E McKenzie
- Howard Hughes Medical Research Institute, Department of Molecular and Cellular Biology, University of California, Berkley, Berkley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Fernandes H, Franklin E, Jollivet F, Bliedtner K, Khan AR. Mapping the interactions between a RUN domain from DENND5/Rab6IP1 and sorting nexin 1. PLoS One 2012; 7:e35637. [PMID: 22558185 PMCID: PMC3338420 DOI: 10.1371/journal.pone.0035637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/19/2012] [Indexed: 12/03/2022] Open
Abstract
Eukaryotic cells have developed a diverse repertoire of Rab GTPases to regulate vesicle trafficking pathways. Together with their effector proteins, Rabs mediate various aspects of vesicle formation, tethering, docking and fusion, but details of the biological roles elicited by effectors are largely unknown. Human Rab6 is involved in the trafficking of vesicles at the level of Golgi via interactions with numerous effector proteins. We have previously determined the crystal structure of Rab6 in complex with DENND5, alternatively called Rab6IP1, which comprises two RUN domains (RUN1 and RUN2) separated by a PLAT domain. The structure of Rab6/RUN1-PLAT (Rab6/R1P) revealed the molecular basis for Golgi recruitment of DENND5 via the RUN1 domain, but the functional role of the RUN2 domain has not been well characterized. Here we show that a soluble DENND5 construct encompassing the RUN2 domain binds to the N-terminal region of sorting nexin 1 by surface plasmon resonance analyses.
Collapse
Affiliation(s)
| | - Edward Franklin
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Florence Jollivet
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | | | - Amir R. Khan
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
- * E-mail:
| |
Collapse
|
54
|
Sugawara T, Nakatsu D, Kii H, Maiya N, Adachi A, Yamamoto A, Kano F, Murata M. PKCδ and ε regulate the morphological integrity of the ER–Golgi intermediate compartment (ERGIC) but not the anterograde and retrograde transports via the Golgi apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:861-75. [DOI: 10.1016/j.bbamcr.2012.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 02/03/2023]
|
55
|
Abstract
The endo-lysosomal system is an interconnected tubulo-vesicular network that acts as a sorting station to process and distribute internalised cargo. This network accepts cargoes from both the plasma membrane and the biosynthetic pathway, and directs these cargos either towards the lysosome for degradation, the peri-nuclear recycling endosome for return to the cell surface, or to the trans-Golgi network. These intracellular membranes are variously enriched in different phosphoinositides that help to shape compartmental identity. These lipids act to localise a number of phosphoinositide-binding proteins that function as sorting machineries to regulate endosomal cargo sorting. Herein we discuss regulation of these machineries by phosphoinositides and explore how phosphoinositide-switching contributes toward sorting decisions made at this platform.
Collapse
Affiliation(s)
- Peter J Cullen
- Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, BS8 1TD, Bristol, United Kingdom,
| | | |
Collapse
|
56
|
Cullen PJ, Korswagen HC. Sorting nexins provide diversity for retromer-dependent trafficking events. Nat Cell Biol 2011; 14:29-37. [PMID: 22193161 PMCID: PMC3613977 DOI: 10.1038/ncb2374] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sorting nexins are a large family of evolutionarily conserved phosphoinositide-binding proteins that have fundamental roles in orchestrating cargo sorting through the membranous maze that is the endosomal network. One ancient group of complexes that contain sorting nexins is the retromer. Here we discuss how retromer complexes regulate endosomal sorting, and describe how this is generating exciting new insight into the central role played by endosomal sorting in development and homeostasis of normal tissues.
Collapse
Affiliation(s)
- Peter J. Cullen
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, U.K
| | - Hendrik C. Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
57
|
Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem J 2011; 441:39-59. [DOI: 10.1042/bj20111226] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mammalian genome encodes 49 proteins that possess a PX (phox-homology) domain, responsible for membrane attachment to organelles of the secretory and endocytic system via binding of phosphoinositide lipids. The PX domain proteins, most of which are classified as SNXs (sorting nexins), constitute an extremely diverse family of molecules that play varied roles in membrane trafficking, cell signalling, membrane remodelling and organelle motility. In the present review, we present an overview of the family, incorporating recent functional and structural insights, and propose an updated classification of the proteins into distinct subfamilies on the basis of these insights. Almost all PX domain proteins bind PtdIns3P and are recruited to early endosomal membranes. Although other specificities and localizations have been reported for a select few family members, the molecular basis for binding to other lipids is still not clear. The PX domain is also emerging as an important protein–protein interaction domain, binding endocytic and exocytic machinery, transmembrane proteins and many other molecules. A comprehensive survey of the molecular interactions governed by PX proteins highlights the functional diversity of the family as trafficking cargo adaptors and membrane-associated scaffolds regulating cell signalling. Finally, we examine the mounting evidence linking PX proteins to different disorders, in particular focusing on their emerging importance in both pathogen invasion and amyloid production in Alzheimer's disease.
Collapse
|
58
|
Bugarcic A, Zhe Y, Kerr MC, Griffin J, Collins BM, Teasdale RD. Vps26A and Vps26B Subunits Define Distinct Retromer Complexes. Traffic 2011; 12:1759-73. [DOI: 10.1111/j.1600-0854.2011.01284.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
59
|
Identification and characterization of full-length vps29 gene in five mammalian species. Genes Genomics 2011. [DOI: 10.1007/s13258-011-0066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
60
|
Koumandou VL, Klute MJ, Herman EK, Nunez-Miguel R, Dacks JB, Field MC. Evolutionary reconstruction of the retromer complex and its function in Trypanosoma brucei. J Cell Sci 2011; 124:1496-509. [PMID: 21502137 DOI: 10.1242/jcs.081596] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Intracellular trafficking and protein sorting are mediated by various protein complexes, with the retromer complex being primarily involved in retrograde traffic from the endosome or lysosome to the Golgi complex. Here, comparative genomics, cell biology and phylogenetics were used to probe the early evolution of retromer and its function. Retromer subunits Vps26, Vps29 and Vps35 are near universal, and, by inference, the complex was an ancient feature of eukaryotic cells. Surprisingly, we found DSCR3, a Vps26 paralogue in humans associated with Down's syndrome, in at least four eukaryotic supergroups, implying a more ancient origin than previously suspected. By contrast, retromer cargo proteins showed considerable interlineage variability, with lineage-specific and broadly conserved examples found. Vps10 trafficking probably represents an ancestral role for the complex. Vps5, the BAR-domain-containing membrane-deformation subunit, was found in diverse eukaryotes, including in the divergent eukaryote Trypanosoma brucei, where it is the first example of a BAR-domain protein. To determine functional conservation, an initial characterisation of retromer was performed in T. brucei; the endosomal localisation and its role in endosomal targeting are conserved. Therefore retromer is identified as a further feature of the sophisticated intracellular trafficking machinery of the last eukaryotic common ancestor, with BAR domains representing a possible third independent mechanism of membrane-deformation arising in early eukaryotes.
Collapse
Affiliation(s)
- V Lila Koumandou
- Department of Pathology, University of Cambridge, Cambridge CB2 1QT, UK
| | | | | | | | | | | |
Collapse
|
61
|
Aletrari MO, McKibbin C, Williams H, Pawar V, Pietroni P, Lord JM, Flitsch SL, Whitehead R, Swanton E, High S, Spooner RA. Eeyarestatin 1 interferes with both retrograde and anterograde intracellular trafficking pathways. PLoS One 2011; 6:e22713. [PMID: 21799938 PMCID: PMC3143184 DOI: 10.1371/journal.pone.0022713] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/28/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The small molecule Eeyarestatin I (ESI) inhibits the endoplasmic reticulum (ER)-cytosol dislocation and subsequent degradation of ERAD (ER associated protein degradation) substrates. Toxins such as ricin and Shiga/Shiga-like toxins (SLTx) are endocytosed and trafficked to the ER. Their catalytic subunits are thought to utilise ERAD-like mechanisms to dislocate from the ER into the cytosol, where a proportion uncouples from the ERAD process, recovers a catalytic conformation and destroys their cellular targets. We therefore investigated ESI as a potential inhibitor of toxin dislocation. METHODOLOGY AND PRINCIPAL FINDINGS Using cytotoxicity measurements, we found no role for ES(I) as an inhibitor of toxin dislocation from the ER, but instead found that for SLTx, ESI treatment of cells was protective by reducing the rate of toxin delivery to the ER. Microscopy of the trafficking of labelled SLTx and its B chain (lacking the toxic A chain) showed a delay in its accumulation at a peri-nuclear location, confirmed to be the Golgi by examination of SLTx B chain metabolically labelled in the trans-Golgi cisternae. The drug also reduced the rate of endosomal trafficking of diphtheria toxin, which enters the cytosol from acidified endosomes, and delayed the Golgi-specific glycan modifications and eventual plasma membrane appearance of tsO45 VSV-G protein, a classical marker for anterograde trafficking. CONCLUSIONS AND SIGNIFICANCE ESI acts on one or more components that function during vesicular transport, whilst at least one retrograde trafficking pathway, that of ricin, remains unperturbed.
Collapse
Affiliation(s)
- Mina-Olga Aletrari
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Craig McKibbin
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Helen Williams
- School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Vidya Pawar
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Paola Pietroni
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - J. Michael Lord
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sabine L. Flitsch
- School of Chemistry, University of Manchester, Manchester, United Kingdom
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, United Kingdom
| | - Roger Whitehead
- School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Eileithyia Swanton
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Stephen High
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (RAS); (SH)
| | - Robert A. Spooner
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail: (RAS); (SH)
| |
Collapse
|
62
|
Chia PZC, Gasnereau I, Lieu ZZ, Gleeson PA. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin. J Cell Sci 2011; 124:2401-13. [PMID: 21693586 DOI: 10.1242/jcs.083782] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endopeptidase furin and the trans-Golgi network protein TGN38 are membrane proteins that recycle between the TGN and plasma membrane. TGN38 is transported by a retromer-dependent pathway from early endosomes to the TGN, whereas the intracellular transport of furin is poorly defined. Here we have identified the itinerary and transport requirements of furin. Using internalisation assays, we show that furin transits the early and late endosomes en route to the TGN. The GTPase Rab9 and the TGN golgin GCC185, components of the late endosome-to-TGN pathway, were required for efficient TGN retrieval of furin. By contrast, TGN38 trafficking was independent of Rab9 and GCC185. To identify the sorting signals for the early endosome-to-TGN pathway, the trafficking of furin-TGN38 chimeras was investigated. The diversion of furin from the Rab9-dependent late-endosome-to-TGN pathway to the retromer-dependent early-endosome-to-TGN pathway required both the transmembrane domain and cytoplasmic tail of TGN38. We present evidence to suggest that the length of the transmembrane domain is a contributing factor in endosomal sorting. Overall, these data show that furin uses the Rab9-dependent pathway from late endosomes and that retrograde transport directly from early endosomes is dependent on both the transmembrane domain and the cytoplasmic tail.
Collapse
Affiliation(s)
- Pei Zhi Cheryl Chia
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
63
|
Abstract
The endosomal network is an organized array of intracellular, membranous compartments that function as sorting sites for endosomal and biosynthetic cargo. The fate of endocytic cargo is reliant upon interactions with a number of molecularly distinct sorting complexes, which tightly control the relationship between sorting of their respective cargo and the physical process of membrane re-scuplturing required for the formation of transport carries. One such complex, retromer, mediates retrograde transport from endosomes to the trans-Golgi network (TGN). Disregulation of retromer has been implicated in a host of disease states including late-onset Alzheimer's. Rather than give a broad overview of retromer biology, here we aim to outline the recent advances in understanding this complex, focussing on the involvement of both clathrin and the cytoskeleton in retromer function.
Collapse
Affiliation(s)
- Ian J McGough
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
64
|
Kano F, Arai T, Matsuto M, Hayashi H, Sato M, Murata M. Hydrogen peroxide depletes phosphatidylinositol-3-phosphate from endosomes in a p38 MAPK-dependent manner and perturbs endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:784-801. [PMID: 21277337 DOI: 10.1016/j.bbamcr.2011.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/14/2011] [Accepted: 01/20/2011] [Indexed: 01/08/2023]
Abstract
Phosphatidylinositol-3-phosphate (PI3P) is a lipid that is enriched specifically in early endosomes. Given that early endosomes containing PI3P act as a microdomain to recruit proteins that contain a PI3P-binding domain (FYVE domain), the equilibrium between the production and degradation of PI3P influences a variety of processes, including endocytosis and signal transduction via endosomes. In the study reported herein, we have developed a novel analytical method to quantify the amount of PI3P in endosomes by introducing a GST-2xFYVE protein probe into semi-intact cells. The GST-2xFYVE probe was targeted specifically to intracellular PI3P-containing endosomes, which retained their small punctate structure, and allowed the semi-quantitative measurement of intracellular PI3P. Using the method, we found that treatment of HeLa cells with H(2)O(2) decreased the amount of PI3P in endosomes in a p38 MAPK-dependent manner. In addition, H(2)O(2) treatment delayed transport through various endocytic pathways, especially post-early endosome transport; the retrograde transport of cholera toxin was especially dependent on the amount of PI3P in endosomes. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Fumi Kano
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | | | |
Collapse
|
65
|
Endocytosis and retrograde transport of Shiga toxin. Toxicon 2010; 56:1181-5. [DOI: 10.1016/j.toxicon.2009.11.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 11/17/2009] [Indexed: 01/22/2023]
|
66
|
Kim E, Lee Y, Lee HJ, Kim JS, Song BS, Huh JW, Lee SR, Kim SU, Kim SH, Hong Y, Shim I, Chang KT. Implication of mouse Vps26b-Vps29-Vps35 retromer complex in sortilin trafficking. Biochem Biophys Res Commun 2010; 403:167-71. [PMID: 21040701 DOI: 10.1016/j.bbrc.2010.10.121] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/26/2010] [Indexed: 11/30/2022]
Abstract
The retromer complex, which mediates retrograde transport from endosomes to the trans-Golgi network, is a heteropentameric complex that contains a multifunctional cargo recognition heterotrimer consisted of the vacuolar protein sorting (Vps) subunits Vps26, Vps29, and Vps35. In mammals, there are two different isoforms of Vps26, Vps26a and Vps26b, that localize to the endosome, and to the plasma membrane, respectively. To elucidate the biological significance of the Vps26b isoform, we generated Vps26b knockout mice and studied their molecular, histological, and behavioral phenotypes. We found that the loss of Vps26b results in no significant defects in the behavior, body size, and health of the mice. Vps26b-deficient mice showed a severe reduction of Vps35 protein at cellular level and lacked the Vps26b-Vps29-Vps35 retromer complex, despite the normal presence of the Vps26a-Vps29-Vps35 retromer complex. Relatively, the amount of sortilin was increased approximately 20% in the Vps26b-deficient mice, whereas the sorLA was normal. These results suggest that mouse Vps26b-Vps29-Vps35 retromer complex is implicated in the transport of sortilin from endosomes to the trans-Golgi network (TGN).
Collapse
Affiliation(s)
- Ekyune Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 685-1 Yangcheong-ri, Ochang-eup, Chung-buk 363-883, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Vieira SI, Rebelo S, Esselmann H, Wiltfang J, Lah J, Lane R, Small SA, Gandy S, da Cruz e Silva EF, da Cruz e Silva OAB. Retrieval of the Alzheimer's amyloid precursor protein from the endosome to the TGN is S655 phosphorylation state-dependent and retromer-mediated. Mol Neurodegener 2010; 5:40. [PMID: 20937087 PMCID: PMC2994555 DOI: 10.1186/1750-1326-5-40] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 10/11/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Retrograde transport of several transmembrane proteins from endosomes to the trans-Golgi network (TGN) occurs via Rab 5-containing endosomes, mediated by clathrin and the recently characterized retromer complex. This complex and one of its putative sorting receptor components, SorLA, were reported to be associated to late onset Alzheimer's disease (AD). The pathogenesis of this neurodegenerative disorder is still elusive, although accumulation of amyloidogenic Abeta is a hallmark. This peptide is generated from the sucessive β- and γ- secretase proteolysis of the Alzheimer's amyloid precursor protein (APP), events which are associated with endocytic pathway compartments. Therefore, APP targeting and time of residence in endosomes would be predicted to modulate Abeta levels. However, the formation of an APP- and retromer-containing protein complex with potential functions in retrieval of APP from the endosome to the TGN had, to date, not been demonstrated directly. Further, the motif(s) in APP that regulate its sorting to the TGN have not been characterized. RESULTS Through the use of APP-GFP constructs, we show that APP containing endocytic vesicles targeted for the TGN, are also immunoreactive for clathrin-, Rab 5- and VPS35. Further, they frequently generate protruding tubules near the TGN, supporting an association with a retromer-mediated pathway. Importantly, we show for the first time, that mimicking APP phosphorylation at S655, within the APP 653YTSI656 basolateral motif, enhances APP retrieval via a retromer-mediated process. The phosphomimetic APP S655E displays decreased APP lysosomal targeting, enhanced mature half-life, and decreased tendency towards Abeta production. VPS35 downregulation impairs the phosphorylation dependent APP retrieval to the TGN, and decreases APP half-life. CONCLUSIONS We reported for the first time the importance of APP phosphorylation on S655 in regulating its retromer-mediated sorting to the TGN or lysosomes. Significantly, the data are consistent with known interactions involving the retromer, SorLA and APP. Further, these findings add to our understanding of APP targeting and potentially contribute to our knowledge of sporadic AD pathogenesis representing putative new targets for AD therapeutic strategies.
Collapse
Affiliation(s)
- Sandra I Vieira
- Neuroscience, Centre for Cell Biology, Health Sciences Department SACS, University of Aveiro, Aveiro 3810, Portugal
| | - Sandra Rebelo
- Neuroscience, Centre for Cell Biology, Health Sciences Department SACS, University of Aveiro, Aveiro 3810, Portugal
| | - Hermann Esselmann
- Department of Psychiatry and Psychotherapy, Rhine State Hospital, University of Duisburg-Essen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, Rhine State Hospital, University of Duisburg-Essen, Germany
| | - James Lah
- Emory University Atlanta, Emory Cognitive Neurology Program, Atlanta, GA 30329, USA
| | - Rachel Lane
- Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Scott A Small
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sam Gandy
- Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Edgar F da Cruz e Silva
- Signal Transduction Laboratories, Centre for Cell Biology, Health Sciences Department SACS, University of Aveiro, Aveiro 3810, Portugal
| | - Odete AB da Cruz e Silva
- Neuroscience, Centre for Cell Biology, Health Sciences Department SACS, University of Aveiro, Aveiro 3810, Portugal
| |
Collapse
|
68
|
Jing J, Junutula JR, Wu C, Burden J, Matern H, Peden AA, Prekeris R. FIP1/RCP binding to Golgin-97 regulates retrograde transport from recycling endosomes to the trans-Golgi network. Mol Biol Cell 2010; 21:3041-53. [PMID: 20610657 PMCID: PMC2929997 DOI: 10.1091/mbc.e10-04-0313] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 11/22/2022] Open
Abstract
Many proteins are retrieved to the trans-Golgi Network (TGN) from the endosomal system through several retrograde transport pathways to maintain the composition and function of the TGN. However, the molecular mechanisms involved in these distinct retrograde pathways remain to be fully understood. Here we have used fluorescence and electron microscopy as well as various functional transport assays to show that Rab11a/b and its binding protein FIP1/RCP are both required for the retrograde delivery of TGN38 and Shiga toxin from early/recycling endosomes to the TGN, but not for the retrieval of mannose-6-phosphate receptor from late endosomes. Furthermore, by proteomic analysis we identified Golgin-97 as a FIP1/RCP-binding protein. The FIP1/RCP-binding domain maps to the C-terminus of Golgin-97, adjacent to its GRIP domain. Binding of FIP1/RCP to Golgin-97 does not affect Golgin-97 recruitment to the TGN, but appears to regulate the targeting of retrograde transport vesicles to the TGN. Thus, we propose that FIP1/RCP binding to Golgin-97 is required for tethering and fusion of recycling endosome-derived retrograde transport vesicles to the TGN.
Collapse
Affiliation(s)
- Jian Jing
- *Department of Cell and Developmental Biology, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | | | - Christine Wu
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Jemima Burden
- MRC Cell Biology Unit, University College London, London, WC1E 6BT, United Kingdom
| | - Hugo Matern
- Exelixis Inc., South San Francisco, CA 94080; and
| | - Andrew A. Peden
- University of Cambridge, Cambridge Institute for Medical Research, Hills Road, CB20XY, United Kingdom
| | - Rytis Prekeris
- *Department of Cell and Developmental Biology, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
69
|
Naughtin MJ, Sheffield DA, Rahman P, Hughes WE, Gurung R, Stow JL, Nandurkar HH, Dyson JM, Mitchell CA. The myotubularin phosphatase MTMR4 regulates sorting from early endosomes. J Cell Sci 2010; 123:3071-83. [PMID: 20736309 DOI: 10.1242/jcs.060103] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phosphatidylinositol 3-phosphate [PtdIns(3)P] regulates endocytic trafficking and the sorting of receptors through early endosomes, including the rapid recycling of transferrin (Tfn). However, the phosphoinositide phosphatase that selectively opposes this function is unknown. The myotubularins are a family of eight catalytically active and six inactive enzymes that hydrolyse PtdIns(3)P to form PtdIns. However, the role each myotubularin family member plays in regulating endosomal PtdIns(3)P and thereby endocytic trafficking is not well established. Here, we identify the myotubularin family member MTMR4, which localizes to early endosomes and also to Rab11- and Sec15-positive recycling endosomes. In cells with MTMR4 knockdown, or following expression of the catalytically inactive MTMR4, MTMR4(C407A), the number of PtdIns(3)P-decorated endosomes significantly increased. MTMR4 overexpression delayed the exit of Tfn from early endosomes and its recycling to the plasma membrane. By contrast, expression of MTMR4(C407A), which acts as a dominant-negative construct, significantly accelerated Tfn recycling. However, in MTMR4 knockdown cells Tfn recycling was unchanged, suggesting that other MTMs might also contribute to recycling. MTMR4 regulated the subcellular distribution of Rab11 and, in cells with RNAi-mediated knockdown of MTMR4, Rab11 was directed away from the pericentriolar recycling compartment. The subcellular distribution of VAMP3, a v-SNARE protein that resides in recycling endosomes and endosome-derived transport vesicles, was also regulated by MTMR4. Therefore, MTMR4 localizes at the interface of early and recycling endosomes to regulate trafficking through this pathway.
Collapse
Affiliation(s)
- Monica J Naughtin
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Shiga toxins: intracellular trafficking to the ER leading to activation of host cell stress responses. Toxins (Basel) 2010; 2:1515-35. [PMID: 22069648 PMCID: PMC3153247 DOI: 10.3390/toxins2061515] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/18/2010] [Accepted: 06/01/2010] [Indexed: 12/25/2022] Open
Abstract
Despite efforts to improve hygenic conditions and regulate food and drinking water safety, the enteric pathogens, Shiga toxin-producing Escherichia coli (STEC) and Shigella dysenteriae serotype 1 remain major public health concerns due to widespread outbreaks and the severity of extra-intestinal diseases they cause, including acute renal failure and central nervous system complications. Shiga toxins are the key virulence factors expressed by these pathogens mediating extra-intestinal disease. Delivery of the toxins to the endoplasmic reticulum (ER) results in host cell protein synthesis inhibition, activation of the ribotoxic stress response, the ER stress response, and in some cases, the induction of apoptosis. Intrinsic and/or extrinsic apoptosis inducing pathways are involved in executing cell death following intoxication. In this review we provide an overview of the current understanding Shiga toxin intracellular trafficking, host cellular responses to the toxin and ER stress-induced apoptosis with an emphasis on recent findings.
Collapse
|
71
|
Shiba Y, Römer W, Mardones GA, Burgos PV, Lamaze C, Johannes L. AGAP2 regulates retrograde transport between early endosomes and the TGN. J Cell Sci 2010; 123:2381-90. [PMID: 20551179 DOI: 10.1242/jcs.057778] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The retrograde transport route links early endosomes and the TGN. Several endogenous and exogenous cargo proteins use this pathway, one of which is the well-explored bacterial Shiga toxin. ADP-ribosylation factors (Arfs) are approximately 20 kDa GTP-binding proteins that are required for protein traffic at the level of the Golgi complex and early endosomes. In this study, we expressed mutants and protein fragments that bind to Arf-GTP to show that Arf1, but not Arf6 is required for transport of Shiga toxin from early endosomes to the TGN. We depleted six Arf1-specific ARF-GTPase-activating proteins and identified AGAP2 as a crucial regulator of retrograde transport for Shiga toxin, cholera toxin and the endogenous proteins TGN46 and mannose 6-phosphate receptor. In AGAP2-depleted cells, Shiga toxin accumulates in transferrin-receptor-positive early endosomes, suggesting that AGAP2 functions in the very early steps of retrograde sorting. A number of other intracellular trafficking pathways are not affected under these conditions. These results establish that Arf1 and AGAP2 have key trafficking functions at the interface between early endosomes and the TGN.
Collapse
Affiliation(s)
- Yoko Shiba
- Institut Curie - Centre de Recherche, Traffic, Signaling and Delivery Laboratory, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
72
|
Abstract
To inhibit protein synthesis and induce cell death, plant ricin toxin and bacterial Shiga toxins enter the cell through the endocytic and retrograde secretory pathways. Stechmann et al. (2010) now identify two small-molecule inhibitors that selectively block endosome-to-Golgi retrieval of ricin and Shiga toxins and protect mice from ricin's deadly effects.
Collapse
Affiliation(s)
- Matthew N J Seaman
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK.
| | | |
Collapse
|
73
|
Protein toxins from plants and bacteria: Probes for intracellular transport and tools in medicine. FEBS Lett 2010; 584:2626-34. [DOI: 10.1016/j.febslet.2010.04.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/07/2010] [Indexed: 01/07/2023]
|
74
|
Inhibition of the PtdIns(5) kinase PIKfyve disrupts intracellular replication of Salmonella. EMBO J 2010; 29:1331-47. [PMID: 20300065 DOI: 10.1038/emboj.2010.28] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 02/10/2010] [Indexed: 01/15/2023] Open
Abstract
3-phosphorylated phosphoinositides (3-PtdIns) orchestrate endocytic trafficking pathways exploited by intracellular pathogens such as Salmonella to gain entry into the cell. To infect the host, Salmonellae subvert its normal macropinocytic activity, manipulating the process to generate an intracellular replicative niche. Disruption of the PtdIns(5) kinase, PIKfyve, be it by interfering mutant, siRNA-mediated knockdown or pharmacological means, inhibits the intracellular replication of Salmonella enterica serovar typhimurium in epithelial cells. Monitoring the dynamics of macropinocytosis by time-lapse 3D (4D) videomicroscopy revealed a new and essential role for PI(3,5)P(2) in macropinosome-late endosome/lysosome fusion, which is distinct from that of the small GTPase Rab7. This PI(3,5)P(2)-dependent step is required for the proper maturation of the Salmonella-containing vacuole (SCV) through the formation of Salmonella-induced filaments (SIFs) and for the engagement of the Salmonella pathogenicity island 2-encoded type 3 secretion system (SPI2-T3SS). Finally, although inhibition of PIKfyve in macrophages did inhibit Salmonella replication, it also appears to disrupt the macrophage's bactericidal response.
Collapse
|
75
|
Lieu ZZ, Gleeson PA. Identification of different itineraries and retromer components for endosome-to-Golgi transport of TGN38 and Shiga toxin. Eur J Cell Biol 2010; 89:379-93. [PMID: 20138391 DOI: 10.1016/j.ejcb.2009.10.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/22/2009] [Accepted: 10/29/2009] [Indexed: 11/19/2022] Open
Abstract
The retrograde transport pathways from early/recycling endosomes are critical for recycling a range of endogenous cargo, as well as internalisation of bacterial and plant toxins. We have previously shown that the retrograde transport of the two model cargos, TGN38 and Shiga toxin, differs in the requirement for TGN golgins; transport of TGN38 requires the TGN golgin GCC88 whereas that of Shiga toxin requires GCC185. Here we have further defined the retrograde transport requirements of these two cargos. Tracking the transport of these cargos demonstrated that the bulk of Shiga toxin is transported from early endosomes to recycling endosomes en route to the TGN whereas the bulk of TGN38 is transported from early endosomes to the TGN with only low levels detected in recycling endosomes. In cells depleted of the TGN t-SNARE syntaxin 16, TGN38 accumulated predominantly in early endosomes whereas Shiga toxin accumulated in Rab11-positive recycling endosomes, suggesting distinct routes for each cargo. Retrograde transport of Shiga toxin and TGN38 requires retromer, however, whereas sorting nexin 1 (SNX1) is specifically required for transport of Shiga toxin, sorting nexin 2 (SNX2) is required for the transport of TGN38. Overall, our data have identified different itineraries for the retrograde transport of Shiga toxin and TGN38 and distinct retromer components that regulate the transport of these cargos.
Collapse
Affiliation(s)
- Zi Zhao Lieu
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
76
|
Esk C, Chen CY, Johannes L, Brodsky FM. The clathrin heavy chain isoform CHC22 functions in a novel endosomal sorting step. ACTA ACUST UNITED AC 2010; 188:131-44. [PMID: 20065094 PMCID: PMC2812854 DOI: 10.1083/jcb.200908057] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Clathrin heavy chain 22 (CHC22) is an isoform of the well-characterized CHC17 clathrin heavy chain, a coat component of vesicles that mediate endocytosis and organelle biogenesis. CHC22 has a distinct role from CHC17 in trafficking glucose transporter 4 (GLUT4) in skeletal muscle and fat, though its transfection into HEK293 cells suggests functional redundancy. Here, we show that CHC22 is eightfold less abundant than CHC17 in muscle, other cell types have variably lower amounts of CHC22, and endogenous CHC22 and CHC17 function independently in nonmuscle and muscle cells. CHC22 was required for retrograde trafficking of certain cargo molecules from endosomes to the trans-Golgi network (TGN), defining a novel endosomal-sorting step distinguishable from that mediated by CHC17 and retromer. In muscle cells, depletion of syntaxin 10 as well as CHC22 affected GLUT4 targeting, establishing retrograde endosome-TGN transport as critical for GLUT4 trafficking. Like CHC22, syntaxin 10 is not expressed in mice but is present in humans and other vertebrates, implicating two species-restricted endosomal traffic proteins in GLUT4 transport.
Collapse
Affiliation(s)
- Christopher Esk
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
77
|
Johannes L, Römer W. Shiga toxins--from cell biology to biomedical applications. Nat Rev Microbiol 2009; 8:105-16. [PMID: 20023663 DOI: 10.1038/nrmicro2279] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shiga toxin-producing Escherichia coli is an emergent pathogen that can induce haemolytic uraemic syndrome. The toxin has received considerable attention not only from microbiologists but also in the field of cell biology, where it has become a powerful tool to study intracellular trafficking. In this Review, we summarize the Shiga toxin family members and their structures, receptors, trafficking pathways and cellular targets. We discuss how Shiga toxin affects cells not only by inhibiting protein biosynthesis but also through the induction of signalling cascades that lead to apoptosis. Finally, we discuss how Shiga toxins might be exploited in cancer therapy and immunotherapy.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie - Centre de Recherche and CNRS UMR144, Traffic, Signalling and Delivery Laboratory, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | |
Collapse
|
78
|
van Weering JRT, Verkade P, Cullen PJ. SNX-BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting. Semin Cell Dev Biol 2009; 21:371-80. [PMID: 19914387 DOI: 10.1016/j.semcdb.2009.11.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 11/06/2009] [Indexed: 12/11/2022]
Abstract
The endocytic network is morphologically characterized by a wide variety of membrane bound compartments that are able to undergo dynamic re-modeling through tubular and vesicular structures. The precise molecular mechanisms governing such re-modeling, and the events that co-ordinated this with the major role of endosomes, cargo sorting, remain unclear. That said, recent work on a protein family of sorting nexins (SNX) - especially a subfamily of SNX that contain a BAR domain (SNX-BARs) - has begun to shed some much needed light on these issues and in particular the process of tubular-based endosomal sorting. SNX-BARs are evolutionary conserved in endosomal protein complexes such as retromer, where they co-ordinate membrane deformation with cargo selection. Furthermore a central theme emerges of SNX-BARs linking the forming membrane carrier to cytoskeletal elements for transport through motor proteins such as dynein. By studying these SNX-BARs, we are gaining an increasingly detailed appreciation of the mechanistic basis of endosomal sorting and how this highly dynamic process functions in health and disease.
Collapse
Affiliation(s)
- Jan R T van Weering
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
79
|
Affiliation(s)
- Naomi Attar
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
80
|
Popoff V, Mardones GA, Bai SK, Chambon V, Tenza D, Burgos PV, Shi A, Benaroch P, Urbé S, Lamaze C, Grant BD, Raposo G, Johannes L. Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes. Traffic 2009; 10:1868-80. [PMID: 19874558 DOI: 10.1111/j.1600-0854.2009.00993.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Clathrin and retromer have key functions for retrograde trafficking between early endosomes and the trans-Golgi network (TGN). Previous studies on Shiga toxin suggested that these two coat complexes operate in a sequential manner. Here, we show that the curvature recognition subunit component sorting nexin 1 (SNX1) of retromer interacts with receptor-mediated endocytosis-8 (RME-8) protein, and that RME-8 and SNX1 colocalize on early endosomes together with a model cargo of the retrograde route, the receptor-binding B-subunit of Shiga toxin (STxB). RME-8 has previously been found to bind to the clathrin uncoating adenosine triphosphatase (ATPase) Hsc70, and we now report that depletion of RME-8 or Hsc70 affects retrograde trafficking at the early endosomes-TGN interface of STxB and the cation-independent mannose 6-phosphate receptor, an endogenous retrograde cargo protein. We also provide evidence that retromer interacts with the clathrin-binding protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) not only via SNX1, as previously published (Chin Raynor MC, Wei X, Chen HQ, Li L. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J Biol Chem 2001;276:7069-7078), but also via the core complex component Vps35. Hrs codistributes at the ultrastructural level with STxB on early endosomes, and interfering with Hrs function using antibodies or mild overexpression inhibits retrograde transport. Our combined data suggest a model according to which the functions in retrograde sorting on early endosomes of SNX1/retromer and clathrin are articulated by RME-8, and possibly also by Hrs.
Collapse
Affiliation(s)
- Vincent Popoff
- Institut Curie - Centre de Recherche, Traffic, Signaling and Delivery Laboratory, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Smith RD, Willett R, Kudlyk T, Pokrovskaya I, Paton AW, Paton JC, Lupashin VV. The COG complex, Rab6 and COPI define a novel Golgi retrograde trafficking pathway that is exploited by SubAB toxin. Traffic 2009; 10:1502-17. [PMID: 19678899 PMCID: PMC2756830 DOI: 10.1111/j.1600-0854.2009.00965.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Toxin trafficking studies provide valuable information about endogenous pathways of intracellular transport. Subtilase cytotoxin (SubAB) is transported in a retrograde manner through the endosome to the Golgi and then to the endoplasmic reticulum (ER), where it specifically cleaves the ER chaperone BiP/GRP78 (Binding immunoglobin protein/Glucose-Regulated Protein of 78 kDa). To identify the SubAB Golgi trafficking route, we have used siRNA-mediated silencing and immunofluorescence microscopy in HeLa and Vero cells. Knockdown (KD) of subunits of the conserved oligomeric Golgi (COG) complex significantly delays SubAB cytotoxicity and blocks SubAB trafficking to the cis Golgi. Depletion of Rab6 and beta-COP proteins causes a similar delay in SubAB-mediated GRP78 cleavage and did not augment the trafficking block observed in COG KD cells, indicating that all three Golgi factors operate on the same 'fast' retrograde trafficking pathway. SubAB trafficking is completely blocked in cells deficient in the Golgi SNARE Syntaxin 5 and does not require the activity of endosomal sorting nexins SNX1 and SNX2. Surprisingly, depletion of Golgi tethers p115 and golgin-84 that regulates two previously described coat protein I (COPI) vesicle-mediated pathways did not interfere with SubAB trafficking, indicating that SubAB is exploiting a novel COG/Rab6/COPI-dependent retrograde trafficking pathway.
Collapse
Affiliation(s)
- Richard D Smith
- Department of Physiology and Biophysics, UAMS, Little Rock, AR, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Dyve AB, Bergan J, Utskarpen A, Sandvig K. Sorting nexin 8 regulates endosome-to-Golgi transport. Biochem Biophys Res Commun 2009; 390:109-14. [PMID: 19782049 DOI: 10.1016/j.bbrc.2009.09.076] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 09/20/2009] [Indexed: 11/25/2022]
Abstract
Sorting nexin 8 (SNX8) belongs to the sorting nexin protein family, whose members are involved in endocytosis and endosomal sorting and signaling. The function of SNX8 has so far been unknown. Here, we have investigated the role of SNX8 in intracellular transport of the bacterial toxin Shiga toxin (Stx) and the plant toxin ricin. After being endocytosed, these toxins are transported retrogradely from endosomes, via the Golgi apparatus and the endoplasmic reticulum (ER), into the cytosol, where they exert their toxic effect. Interestingly, our experiments show that SNX8 regulates the transport of Stx and ricin differently; siRNA-mediated knockdown of SNX8 significantly increased the Stx transport to the trans-Golgi network (TGN), whereas ricin transport was slightly inhibited. We also found that SNX8 colocalizes with early endosome antigen 1 (EEA1) and with retromer components, suggesting an endosomal localization of SNX8 and supporting our finding that SNX8 is involved in endosomal sorting.
Collapse
Affiliation(s)
- Anne Berit Dyve
- Faculty Division The Norwegian Radium Hospital, Centre for Cancer Biomedicine, University of Oslo, 0316 Oslo, Norway
| | | | | | | |
Collapse
|
83
|
Entry of Shiga toxin into cells. Toxicol Lett 2009. [DOI: 10.1016/j.toxlet.2009.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
84
|
Hehnly H, Longhini KM, Chen JL, Stamnes M. Retrograde Shiga toxin trafficking is regulated by ARHGAP21 and Cdc42. Mol Biol Cell 2009; 20:4303-12. [PMID: 19692570 DOI: 10.1091/mbc.e09-02-0155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Shiga-toxin-producing Escherichia coli remain a food-borne health threat. Shiga toxin is endocytosed by intestinal epithelial cells and transported retrogradely through the secretory pathway. It is ultimately translocated to the cytosol where it inhibits protein translation. We found that Shiga toxin transport through the secretory pathway was dependent on the cytoskeleton. Recent studies reveal that Shiga toxin activates signaling pathways that affect microtubule reassembly and dynein-dependent motility. We propose that Shiga toxin alters cytoskeletal dynamics in a way that facilitates its transport through the secretory pathway. We have now found that Rho GTPases regulate the endocytosis and retrograde motility of Shiga toxin. The expression of RhoA mutants inhibited endocytosis of Shiga toxin. Constitutively active Cdc42 or knockdown of the Cdc42-specific GAP, ARHGAP21, inhibited the transport of Shiga toxin to the juxtanuclear Golgi apparatus. The ability of Shiga toxin to stimulate microtubule-based transferrin transport also required Cdc42 and ARHGAP21 function. Shiga toxin addition greatly decreases the levels of active Cdc42-GTP in an ARHGAP21-dependent manner. We conclude that ARHGAP21 and Cdc42-based signaling regulates the dynein-dependent retrograde transport of Shiga toxin to the Golgi apparatus.
Collapse
Affiliation(s)
- Heidi Hehnly
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
85
|
Raa H, Grimmer S, Schwudke D, Bergan J, Wälchli S, Skotland T, Shevchenko A, Sandvig K. Glycosphingolipid requirements for endosome-to-Golgi transport of Shiga toxin. Traffic 2009; 10:868-82. [PMID: 19453975 DOI: 10.1111/j.1600-0854.2009.00919.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Shiga toxin binds to globotriaosylceramide (Gb3) receptors on the target cell surface. To enter the cytosol, Shiga toxin is dependent on endocytic uptake, retrograde transport to the Golgi apparatus and further to the endoplasmic reticulum before translocation of the enzymatically active moiety to the cytosol. Here, we have investigated the importance of newly synthesized glycosphingolipids for the uptake and intracellular transport of Shiga toxin in HEp-2 cells. Inhibition of glycosphingolipid synthesis by treatment with either PDMP or Fumonisin B(1) for 24-48 h strongly reduced the transport of Gb3-bound Shiga toxin from endosomes to the Golgi apparatus. This was associated with a change in localization of sorting nexins 1 and 2, and accompanied by a protection against the toxin. In contrast, there was no effect on transport or toxicity of the plant toxin ricin. High-resolution mass spectrometry revealed a 2-fold reduction in Gb3 at conditions giving a 10-fold inhibition of Shiga toxin transport to the Golgi. Furthermore, mass spectrometry showed that the treatment with PDMP (DL-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol) and Fumonisin B(1) among other changes of the lipidome, affected the relative content of the different glycosphingolipid species. The largest depletion was observed for the hexosylceramide species with the N-amidated fatty acid 16:0, whereas hexosylceramide species with 24:1 were less affected. Quantitative lipid profiling with mass spectrometry demonstrated that PDMP did not influence the content of sphingomyelins, phospholipids and plasmalogens. In contrast, Fumonisin B(1) affected the amount and composition of sphingomyelin and glycolipids and altered the profiles of phospholipids and plasmalogens.
Collapse
Affiliation(s)
- Hilde Raa
- Centre for Cancer Biomedicine, Faculty Division Norwegian Radium Hospital, University of Oslo, 0316 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Wassmer T, Attar N, Harterink M, van Weering JR, Traer CJ, Oakley J, Goud B, Stephens DJ, Verkade P, Korswagen HC, Cullen PJ. The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev Cell 2009; 17:110-22. [PMID: 19619496 PMCID: PMC2714578 DOI: 10.1016/j.devcel.2009.04.016] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 12/11/2008] [Accepted: 04/30/2009] [Indexed: 12/28/2022]
Abstract
Early endosome-to-trans-Golgi network (TGN) transport is organized by the retromer complex. Consisting of cargo-selective and membrane-bound subcomplexes, retromer coordinates sorting with membrane deformation and carrier formation. Here, we describe four mammalian retromers whose membrane-bound subcomplexes contain specific combinations of the sorting nexins (SNX), SNX1, SNX2, SNX5, and SNX6. We establish that retromer requires a dynamic spatial organization of the endosomal network, which is regulated through association of SNX5/SNX6 with the p150(glued) component of dynactin, an activator of the minus-end directed microtubule motor dynein; an association further defined through genetic studies in C. elegans. Finally, we also establish that the spatial organization of the retromer pathway is mediated through the association of SNX1 with the proposed TGN-localized tether Rab6-interacting protein-1. These interactions describe fundamental steps in retromer-mediated transport and establish that the spatial organization of the retromer network is a critical element required for efficient retromer-mediated sorting.
Collapse
Affiliation(s)
- Thomas Wassmer
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Naomi Attar
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Martin Harterink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jan R.T. van Weering
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Colin J. Traer
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Jacqueline Oakley
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Bruno Goud
- Department of Cell Biology, Institut Curie, 26, rue d'Ulm 75248, Paris cedex 05, France
| | - David J. Stephens
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Verkade
- Wolfson BioImaging Facility, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
- Department of Biochemistry and Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Hendrik C. Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Peter J. Cullen
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
87
|
Naslavsky N, McKenzie J, Altan-Bonnet N, Sheff D, Caplan S. EHD3 regulates early-endosome-to-Golgi transport and preserves Golgi morphology. J Cell Sci 2009; 122:389-400. [PMID: 19139087 DOI: 10.1242/jcs.037051] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Depletion of EHD3 affects sorting in endosomes by altering the kinetics and route of receptor recycling to the plasma membrane. Here we demonstrate that siRNA knockdown of EHD3, or its interaction partner rabenosyn-5, causes redistribution of sorting nexin 1 (SNX1) to enlarged early endosomes and disrupts transport of internalized Shiga toxin B subunit (STxB) to the Golgi. Moreover, under these conditions, Golgi morphology appears as a series of highly dispersed and fragmented stacks that maintain characteristics of cis-, medial- and trans-Golgi membranes. Although Arf1 still assembled onto these dispersed Golgi membranes, the level of AP-1 gamma-adaptin recruited to the Golgi was diminished. Whereas VSV-G-secretion from the dispersed Golgi remained largely unaffected, the distribution of mannose 6-phosphate receptor (M6PR) was altered: it remained in peripheral endosomes and did not return to the Golgi. Cathepsin D, a hydrolase that is normally transported to lysosomes via an M6PR-dependent pathway, remained trapped at the Golgi. Our findings support a role for EHD3 in regulating endosome-to-Golgi transport, and as a consequence, lysosomal biosynthetic, but not secretory, transport pathways are also affected. These data also suggest that impaired endosome-to-Golgi transport and the resulting lack of recruitment of AP-1 gamma-adaptin to Golgi membranes affect Golgi morphology.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | |
Collapse
|
88
|
Woollard AAD, Moore I. The functions of Rab GTPases in plant membrane traffic. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:610-9. [PMID: 18952493 DOI: 10.1016/j.pbi.2008.09.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/02/2008] [Accepted: 09/11/2008] [Indexed: 05/08/2023]
Abstract
Rab GTPases are important determinants of membrane identity and membrane targeting. Higher plants have evolved a unique set of Rab GTPases that presumably reflects the specific demands of plant cell trafficking. In recent years, significant progress has been made in identifying Rab GTPases involved in endosome organisation, cytokinesis and in post-Golgi traffic to the plasma membrane and vacuoles. These include members of the Rab-F1, Rab-F2, Rab-A1, Rab-A2 and Rab-A4 subclasses. Some important regulators or effectors have also been identified for Rab-F, Rab-A1 and Rab-A4 proteins. However, uncertainties remain about the trafficking pathways that connect the compartments in the trans-Golgi/prevacuolar/endosomal system and there is still little or no insight into the functions of several major subclasses within the Rab GTPase family.
Collapse
Affiliation(s)
- Astrid A D Woollard
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|
89
|
Rojas R, van Vlijmen T, Mardones GA, Prabhu Y, Rojas AL, Mohammed S, Heck AJR, Raposo G, van der Sluijs P, Bonifacino JS. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. ACTA ACUST UNITED AC 2008; 183:513-26. [PMID: 18981234 PMCID: PMC2575791 DOI: 10.1083/jcb.200804048] [Citation(s) in RCA: 411] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The retromer complex mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network (TGN). Mammalian retromer is composed of a sorting nexin (SNX) dimer that binds to phosphatidylinositol 3-phosphate–enriched endosomal membranes and a vacuolar protein sorting (Vps) 26/29/35 trimer that participates in cargo recognition. The mammalian SNX dimer is necessary but not sufficient for recruitment of the Vps26/29/35 trimer to membranes. In this study, we demonstrate that the guanosine triphosphatase Rab7 contributes to this recruitment. The Vps26/29/35 trimer specifically binds to Rab7–guanosine triphosphate (GTP) and localizes to Rab7-containing endosomal domains. Interference with Rab7 function causes dissociation of the Vps26/29/35 trimer but not the SNX dimer from membranes. This blocks retrieval of mannose 6-phosphate receptors to the TGN and impairs cathepsin D sorting. Rab5-GTP does not bind to the Vps26/29/35 trimer, but perturbation of Rab5 function causes dissociation of both the SNX and Vps26/29/35 components from membranes through inhibition of a pathway involving phosphatidylinositol 3-kinase. These findings demonstrate that Rab5 and Rab7 act in concert to regulate retromer recruitment to endosomes.
Collapse
Affiliation(s)
- Raul Rojas
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Affiliation(s)
- Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
91
|
Pons V, Luyet PP, Morel E, Abrami L, van der Goot FG, Parton RG, Gruenberg J. Hrs and SNX3 functions in sorting and membrane invagination within multivesicular bodies. PLoS Biol 2008; 6:e214. [PMID: 18767904 PMCID: PMC2528051 DOI: 10.1371/journal.pbio.0060214] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 07/17/2008] [Indexed: 11/18/2022] Open
Abstract
After internalization, ubiquitinated signaling receptors are delivered to early endosomes. There, they are sorted and incorporated into the intralumenal invaginations of nascent multivesicular bodies, which function as transport intermediates to late endosomes. Receptor sorting is achieved by Hrs--an adaptor--like protein that binds membrane PtdIns3P via a FYVE motif-and then by ESCRT complexes, which presumably also mediate the invagination process. Eventually, intralumenal vesicles are delivered to lysosomes, leading to the notion that EGF receptor sorting into multivesicular bodies mediates lysosomal targeting. Here, we report that Hrs is essential for lysosomal targeting but dispensable for multivesicular body biogenesis and transport to late endosomes. By contrast, we find that the PtdIns3P-binding protein SNX3 is required for multivesicular body formation, but not for EGF receptor degradation. PtdIns3P thus controls the complementary functions of Hrs and SNX3 in sorting and multivesicular body biogenesis.
Collapse
Affiliation(s)
- Véronique Pons
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Etienne Morel
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Laurence Abrami
- Institute of Global Health, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Institute of Global Health, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
92
|
Abstract
The retromer is a heteropentameric complex that associates with the cytosolic face of endosomes and mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network. The mammalian retromer complex comprises a sorting nexin dimer composed of a still undefined combination of SNX1, SNX2, SNX5 and SNX6, and a cargo-recognition trimer composed of Vps26, Vps29 and Vps35. The SNX subunits contain PX and BAR domains that allow binding to PI(3)P enriched, highly curved membranes of endosomal vesicles and tubules, while Vps26, Vps29 and Vps35 have arrestin, phosphoesterase and alpha-solenoid folds, respectively. Recent studies have implicated retromer in a broad range of physiological, developmental and pathological processes, underscoring the critical nature of retrograde transport mediated by this complex.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, Building 18T/Room 101, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
93
|
Hara S, Kiyokawa E, Iemura SI, Natsume T, Wassmer T, Cullen PJ, Hiai H, Matsuda M. The DHR1 domain of DOCK180 binds to SNX5 and regulates cation-independent mannose 6-phosphate receptor transport. Mol Biol Cell 2008; 19:3823-35. [PMID: 18596235 DOI: 10.1091/mbc.e08-03-0314] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
DOCK180 is the archetype of the DOCK180-family guanine nucleotide exchange factor for small GTPases Rac1 and Cdc42. DOCK180-family proteins share two conserved domains, called DOCK homology region (DHR)-1 and -2. Although the function of DHR2 is to activate Rac1, DHR1 is required for binding to phosphoinositides. To better understand the function of DHR1, we searched for its binding partners by direct nanoflow liquid chromatography/tandem mass spectrometry, and we identified sorting nexins (SNX) 1, 2, 5, and 6, which make up a multimeric protein complex mediating endosome-to-trans-Golgi-network (TGN) retrograde transport of the cation-independent mannose 6-phosphate receptor (CI-MPR). Among these SNX proteins, SNX5 was coimmunoprecipitated with DOCK180 most efficiently. In agreement with this observation, DOCK180 colocalized with SNX5 at endosomes. The RNA interference-mediated knockdowns of SNX5 and DOCK180, but not Rac1, resulted in the redistribution of CI-MPR from TGN to endosomes. Furthermore, expression of the DOCK180 DHR1 domain was sufficient to restore the perturbed CI-MPR distribution in DOCK180 knockdown cells. These data suggest that DOCK180 regulates CI-MPR trafficking via SNX5 and that this function is independent of its guanine nucleotide exchange factor activity toward Rac1.
Collapse
Affiliation(s)
- Shigeo Hara
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Cullen PJ. Endosomal sorting and signalling: an emerging role for sorting nexins. Nat Rev Mol Cell Biol 2008; 9:574-82. [DOI: 10.1038/nrm2427] [Citation(s) in RCA: 331] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
95
|
Pérez-Victoria FJ, Mardones GA, Bonifacino JS. Requirement of the human GARP complex for mannose 6-phosphate-receptor-dependent sorting of cathepsin D to lysosomes. Mol Biol Cell 2008; 19:2350-62. [PMID: 18367545 DOI: 10.1091/mbc.e07-11-1189] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The biosynthetic sorting of acid hydrolases to lysosomes relies on transmembrane, mannose 6-phosphate receptors (MPRs) that cycle between the TGN and endosomes. Herein we report that maintenance of this cycling requires the function of the mammalian Golgi-associated retrograde protein (GARP) complex. Depletion of any of the three GARP subunits, Vps52, Vps53, or Vps54, by RNAi impairs sorting of the precursor of the acid hydrolase, cathepsin D, to lysosomes and leads to its secretion into the culture medium. As a consequence, lysosomes become swollen, likely due to a buildup of undegraded materials. Missorting of cathepsin D in GARP-depleted cells results from accumulation of recycling MPRs in a population of light, small vesicles downstream of endosomes. These vesicles might correspond to intermediates in retrograde transport from endosomes to the TGN. Depletion of GARP subunits also blocks the retrograde transport of the TGN protein, TGN46, and the B subunit of Shiga toxin. These observations indicate that the mammalian GARP complex plays a general role in the delivery of retrograde cargo into the TGN. We also report that a Vps54 mutant protein in the Wobbler mouse strain is active in retrograde transport, thus explaining the viability of these mutant mice.
Collapse
Affiliation(s)
- F Javier Pérez-Victoria
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
96
|
Pavelka M, Neumüller J, Ellinger A. Retrograde traffic in the biosynthetic-secretory route. Histochem Cell Biol 2008; 129:277-88. [PMID: 18270728 PMCID: PMC2248610 DOI: 10.1007/s00418-008-0383-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2008] [Indexed: 02/04/2023]
Abstract
In the biosynthetic-secretory route from the rough endoplasmic reticulum, across the pre-Golgi intermediate compartments, the Golgi apparatus stacks, trans Golgi network, and post-Golgi organelles, anterograde transport is accompanied and counterbalanced by retrograde traffic of both membranes and contents. In the physiologic dynamics of cells, retrograde flow is necessary for retrieval of molecules that escaped from their compartments of function, for keeping the compartments' balances, and maintenance of the functional integrities of organelles and compartments along the secretory route, for repeated use of molecules, and molecule repair. Internalized molecules may be transported in retrograde direction along certain sections of the secretory route, and compartments and machineries of the secretory pathway may be misused by toxins. An important example is the toxin of Shigella dysenteriae, which has been shown to travel from the cell surface across endosomes, and the Golgi apparatus en route to the endoplasmic reticulum, and the cytosol, where it exerts its deleterious effects. Most importantly in medical research, knowledge about the retrograde cellular pathways is increasingly being utilized for the development of strategies for targeted delivery of drugs to the interior of cells. Multiple details about the molecular transport machineries involved in retrograde traffic are known; a high number of the molecular constituents have been characterized, and the complicated fine structural architectures of the compartments involved become more and more visible. However, multiple contradictions exist, and already established traffic models again are in question by contradictory results obtained with diverse cell systems, and/or different techniques. Additional problems arise by the fact that the conditions used in the experimental protocols frequently do not reflect the physiologic situations of the cells. Regular and pathologic situations often are intermingled, and experimental treatments by themselves change cell organizations. This review addresses physiologic and pathologic situations, tries to correlate results obtained by different cell biologic techniques, and asks questions, which may be the basis and starting point for further investigations.
Collapse
Affiliation(s)
- Margit Pavelka
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, Austria.
| | | | | |
Collapse
|
97
|
Collins BM, Norwood SJ, Kerr MC, Mahony D, Seaman MNJ, Teasdale RD, Owen DJ. Structure of Vps26B and mapping of its interaction with the retromer protein complex. Traffic 2008; 9:366-79. [PMID: 18088321 DOI: 10.1111/j.1600-0854.2007.00688.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retromer is a heteromeric protein complex with important roles in endosomal membrane trafficking, most notably in the retrograde transport of lysosomal hydrolase receptors from endosomes to the Golgi. The core of retromer is composed of three subunits vacuolar protein sorting (Vps)35, Vps26 and Vps29, and in mammals, there are two paralogues of the medium subunit Vps26A and Vps26B. We find that both Vps26A and Vps26B bind to Vps35/Vps29 with nanomolar affinity and compete for a single-binding site to define distinct retromer complexes in vitro and in vivo. We have determined the crystal structure of mouse Vps26B and compare this structure with that of Vps26A. Vps26 proteins have a striking similarity to the arrestin family of proteins that regulate the signalling and endocytosis of G-protein-coupled receptors, although we observe that surface residues involved in arrestin function are not conserved in Vps26. Using structure-based mutagenesis, we show that both Vps26A and Vps26B are incorporated into retromer complexes through binding of Vps35 to a highly conserved surface patch within the C-terminal subdomain and that this interaction is required for endosomal recruitment of the proteins.
Collapse
Affiliation(s)
- Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
98
|
Ganley IG, Espinosa E, Pfeffer SR. A syntaxin 10-SNARE complex distinguishes two distinct transport routes from endosomes to the trans-Golgi in human cells. ACTA ACUST UNITED AC 2008; 180:159-72. [PMID: 18195106 PMCID: PMC2213607 DOI: 10.1083/jcb.200707136] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mannose 6-phosphate receptors (MPRs) are transported from endosomes to the Golgi after delivering lysosomal enzymes to the endocytic pathway. This process requires Rab9 guanosine triphosphatase (GTPase) and the putative tether GCC185. We show in human cells that a soluble NSF attachment protein receptor (SNARE) complex comprised of syntaxin 10 (STX10), STX16, Vti1a, and VAMP3 is required for this MPR transport but not for the STX6-dependent transport of TGN46 or cholera toxin from early endosomes to the Golgi. Depletion of STX10 leads to MPR missorting and hypersecretion of hexosaminidase. Mouse and rat cells lack STX10 and, thus, must use a different target membrane SNARE for this process. GCC185 binds directly to STX16 and is competed by Rab6. These data support a model in which the GCC185 tether helps Rab9-bearing transport vesicles deliver their cargo to the trans-Golgi and suggest that Rab GTPases can regulate SNARE–tether interactions. Importantly, our data provide a clear molecular distinction between the transport of MPRs and TGN46 to the trans-Golgi.
Collapse
Affiliation(s)
- Ian G Ganley
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
99
|
McKenzie J, Johannes L, Taguchi T, Sheff D. Passage through the Golgi is necessary for Shiga toxin B subunit to reach the endoplasmic reticulum. FEBS J 2008; 276:1581-95. [PMID: 19220458 DOI: 10.1111/j.1742-4658.2009.06890.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Both Shiga holotoxin and the isolated B subunit, navigate a retrograde pathway from the plasma membrane to the endoplasmic reticulum (ER) of mammalian cells to deliver catalytic A subunits into the cytosol. This route passes through early/recycling endosomes and then through the Golgi. Although passage through the endosomes takes only 30 min, passage through the Golgi is much slower, taking hours. This suggests that Golgi passage is a key step in retrograde traffic. However, there is no empirical data demonstrating that Golgi passage is required for the toxins to enter the ER. In fact, an alternate pathway bypassing the Golgi is utilized by SV40 virus. Here we find that blocking Shiga toxin B access to the entire Golgi with AlF(4)(-) treatment, temperature block or subcellular surgery prevented Shiga toxin B from reaching the ER. This suggests that there is no direct endosome to ER route available for retrograde traffic. Curiously, when Shiga toxin B was trapped in endosomes, it entered the cytosol directly from the endosomal compartment. Our results suggest that trafficking through the Golgi apparatus is required for Shiga toxin B to reach the ER and that diversion into the Golgi may prevent toxin escape from endosomes into the cytosol.
Collapse
Affiliation(s)
- Jenna McKenzie
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-2600, USA
| | | | | | | |
Collapse
|
100
|
Vergés M. Retromer: multipurpose sorting and specialization in polarized transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:153-98. [PMID: 19081543 DOI: 10.1016/s1937-6448(08)01204-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Retromer is an evolutionary conserved protein complex required for endosome-to-Golgi retrieval of lysosomal hydrolases' receptors. A dimer of two sorting nexins-typically, SNX1 and/or SNX2-deforms the membrane and thus cooperates with retromer to ensure cargo sorting. Research in various model organisms indicates that retromer participates in sorting of additional molecules whose proper transport has important repercussions in development and disease. The role of retromer as well as SNXs in endosomal protein (re)cycling and protein targeting to specialized plasma membrane domains in polarized cells adds further complexity and has implications in growth control, the establishment of developmental patterns, cell adhesion, and migration. This chapter will discuss the functions of retromer described in various model systems and will focus on relevant aspects in polarized transport.
Collapse
Affiliation(s)
- Marcel Vergés
- Laboratory of Epithelial Cell Biology, Centro de Investigación Príncipe Felipe, C/E.P. Avda. Autopista del Saler, Valencia, Spain
| |
Collapse
|