51
|
Chung YC, Kim S, Kim JH, Lee GS, Lee JN, Lee NH, Hyun CG. Pratol, an O-Methylated Flavone, Induces Melanogenesis in B16F10 Melanoma Cells via p-p38 and p-JNK Upregulation. Molecules 2017; 22:molecules22101704. [PMID: 29019920 PMCID: PMC6151583 DOI: 10.3390/molecules22101704] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/05/2023] Open
Abstract
Tyrosinase is the rate-limiting enzyme critical for melanin synthesis. It controls pigmentation in the skin. Activation of tyrosinase is currently the most common approach in the development of tanning and haircare products. Pratol is a 7-hydroxy-4-methoxyflavone found in Trifoliumpratense. In this study, we investigated the effects of pratol on melanogenesis. We also studied the mechanism of action of pratol in B16F10 mouse melanoma cells. The cells were treated with various concentrations (6.25, 12.5, 25, and 50 μM) of pratol to observe its effects. The results showed that pratol significantly increased melanin content and tyrosinase activity in the cells without being cytotoxic. In addition, pratol strongly increased the expression of tyrosinase and tyrosinase-related protein-1 and 2 by enhancing the expression of microphthalmia-associated transcription factor. Furthermore, pratol stimulated melanogenesis via the phosphorylation of p38, c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinase (ERK). The findings from an assay searching for the inhibitor revealed that SB203580 (a specific p38 inhibitor) or SP600125 (a p-JNK inhibitor) attenuated pratol-induced cellular tyrosinase activity whereas PD98059 (an ERK inhibitor) did not. Additionally, pratol interfered with the phosphorylation of p-AKT. We also found that pratol-induced melanogenesis was reversed by H89, which is a specific protein kinase A inhibitor. The results suggest that, owing to its multi-functional properties, pratol may be a potential tanning agent or a therapeutic agent for hair depigmentation in the cosmetic industry.
Collapse
Affiliation(s)
- You Chul Chung
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| | - Seoyeon Kim
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| | - Jin Hwa Kim
- Skin Science Research Institute, Itshanbul Cosmetics Co., Chungbuk 27651, Korea.
| | - Geun Soo Lee
- Skin Science Research Institute, Itshanbul Cosmetics Co., Chungbuk 27651, Korea.
| | - Jung No Lee
- R&D Center, CoSeedBioPham Co., Chungbuk 28161, Korea.
| | - Nam Ho Lee
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| | - Chang-Gu Hyun
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
52
|
Im DS, Lee JM, Lee J, Shin HJ, No KT, Park SH, Kim K. Inhibition of collagenase and melanogenesis by ethanol extracts of Orostachys japonicus A. Berger: possible involvement of Erk and Akt signaling pathways in melanoma cells. Acta Biochim Biophys Sin (Shanghai) 2017; 49:945-953. [PMID: 28981602 DOI: 10.1093/abbs/gmx090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022] Open
Abstract
Orostachys japonicus is an herb that contains several functional components and has traditionally been used to treat various diseases in Asia. In this study, bioactive components from different parts of the O. japonicus plant were investigated, and the contents of the functional components in ethanol extracts of O. japonicus cultivated in Korea and China were compared. The antioxidant effects of O. japonicus ethanol extracts were investigated using Raw 264.7 cells. It was found that 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity was significantly decreased in the cells treated with the extracts. Moreover, the novel inhibitory functions of O. japonicus extracts on collagenase, elastase, and tyrosinase were established. We also found that O. japonicus extracts strongly inhibited melanin synthesis in B16F10 melanoma cells by decreasing MITF protein levels and activating the Erk and Akt signaling pathways. Thus, these findings would be useful for developing new cosmetic and pharmaceutical formulations based on O. japonicus extracts.
Collapse
Affiliation(s)
- Dai Sig Im
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
- SH Company, Asan 31538, Republic of Korea
| | - Jong-Min Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jongsung Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419,Republic of Korea
| | - Hye Jin Shin
- Department of Chemistry, Soonchunhyang University, Asan 31538,Republic of Korea
| | - Kyoung Tai No
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
53
|
He M, Zhou Z, Wu G, Chen Q, Wan Y. Emerging role of DUBs in tumor metastasis and apoptosis: Therapeutic implication. Pharmacol Ther 2017; 177:96-107. [PMID: 28279784 PMCID: PMC5565705 DOI: 10.1016/j.pharmthera.2017.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Malfunction of ubiquitin-proteasome system is tightly linked to tumor formation and tumor metastasis. Targeting the ubiquitin-pathway provides a new strategy for anti-cancer therapy. Despite the parts played by ubiquitin modifiers, removal of ubiquitin from the functional proteins by the deubiquitinating enzymes (DUBs) plays an important role in governing the multiple steps of the metastatic cascade, including local invasion, dissemination, and eventual colonization of the tumor to distant organs. Both deregulated ubiquitination and deubiquitination could lead to dysregulation of various critical events and pathways such as apoptosis and epithelial-mesenchymal transition (EMT). Recent TCGA study has further revealed the connection between mutations of DUBs and various types of tumors. In addition, emerging drug design targeting DUBs provides a new strategy for anti-cancer therapy. In this review, we will summarize the role of deubiquitination and highlight the recent discoveries of DUBs with regards to multiple metastatic events including anti-apoptosis pathway and EMT. We will further discuss the regulation of deubiquitination as a novel strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - George Wu
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
54
|
Shin JS, Cho JH, Lee H, Jeong HS, Kim MK, Yun HY, Kwon NS, Kim DS. Dual hypopigmentary effects of punicalagin via the ERK and Akt pathways. Biomed Pharmacother 2017; 92:122-127. [DOI: 10.1016/j.biopha.2017.05.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/04/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023] Open
|
55
|
Yang SH, Tsatsakis AM, Tzanakakis G, Kim HS, Le B, Sifaki M, Spandidos DA, Tsukamoto C, Golokhvast KS, Izotov BN, Chung G. Soyasaponin Ag inhibits α‑MSH‑induced melanogenesis in B16F10 melanoma cells via the downregulation of TRP‑2. Int J Mol Med 2017; 40:631-636. [PMID: 28713957 PMCID: PMC5548002 DOI: 10.3892/ijmm.2017.3061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/08/2017] [Indexed: 12/28/2022] Open
Abstract
Saponins, which are glycosylated, represent a diverse group of biologically functional products in plants. In the present study, we investigated the effects of soyasaponin Ag, a secondary metabolite extracted from soybean, on α‑melanocyte-stimulating hormone (α‑MSH)‑induced melanin synthesis in B16F10 mouse melanoma cells and the underlying molecular mechanisms. To elucidate the mechanisms through which soyasaponin Ag inhibits melanin synthesis, we performed cellular tyrosinase activity assays and analyzed the expression of the melanogenesis‑related genes, tyrosinase, tyrosinase‑related protein (TRP)‑1 and TRP‑2. We demonstrated that soyasaponin Ag inhibited α‑MSH‑induced melanin synthesis in melanoma cells. Of note, soyasaponin Ag had no inhibitory effect on intracellular tyrosinase activity. However, soyasaponin Ag inhibited TRP‑2 expression in a dose‑dependent manner. Therefore, the depigmenting effect of soyasaponin Ag may be due to the inhibition of tyrosinase expression or the enhancement of tyrosinase degradation. Moreover, soyasaponin Ag did not exert any toxic on B16F10 mouse melanoma cells, suggesting that soyasaponin is a safe component for use in skin care cosmetic formulations that are used for skin whitening.
Collapse
Affiliation(s)
- Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - George Tzanakakis
- Laboratory of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Hong-Suk Kim
- Durae Corporation, Research and Development Center, Gunpo, Gyeonggi 435‑832, Republic of Korea
| | - Bao Le
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea
| | - Maria Sifaki
- Laboratory of Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Demetrios A Spandidos
- Laboratory of Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Chigen Tsukamoto
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020‑8550, Japan
| | - Kirill S Golokhvast
- Educational Scientific Center of Nanotechnology, Engineering School, Far Eastern Federal University, Vladivostok 690950, Russia
| | - Boris N Izotov
- Department of Analytical Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, Moscow 119991, Russia
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea
| |
Collapse
|
56
|
Kim KI, Jeong HB, Ro H, Lee JH, Kim CD, Yoon TJ. Inhibitory effect of 5-iodotubercidin on pigmentation. Biochem Biophys Res Commun 2017; 490:1282-1286. [PMID: 28684314 DOI: 10.1016/j.bbrc.2017.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/02/2017] [Indexed: 01/20/2023]
Abstract
Melanin pigments are the primary contributors for the skin color. They are produced in melanocytes and then transferred to keratinocytes, eventually giving various colors on skin surface. Although many depigmenting and/or skin-lightening agents have been developed, there is still a growing demand on materials for reducing pigmentation. We attempted to find materials for depigmentation and/or skin-lightening using the small molecule compounds commercially available, and found that 5-iodotubercidin had inhibitory potential on pigmentation. When HM3KO melanoma cells were treated with 5-iodotubercidin, pigmentation was dramatically reduced. The 5-iodotubercidin decreased the protein level for pigmentation-related molecules such as MITF, tyrosinase, and TRP1. In addition, 5-iodotubercidin decreased the phosphorylation of CREB, while increased the phosphorylation of AKT and ERK. These data suggest that 5-iodotubercidin inhibits melanogenesis via the regulation of intracellular signaling related with pigmentation. Finally, 5-iodotubercidin markedly inhibited the melanogenesis of zebrafish embryos, an in vivo evaluation model for pigmentation. Together, these data suggest that 5-iodotubercidin can be developed as a depigmenting and/or skin-lightening agent.
Collapse
Affiliation(s)
- Kyung-Il Kim
- Department of Dermatology and Institute of Health Sciences, School of Medicine, Gyeongsang National University & Hospital, Jinju, Republic of Korea
| | - Hae Bong Jeong
- Department of Dermatology and Institute of Health Sciences, School of Medicine, Gyeongsang National University & Hospital, Jinju, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; Skin Med Co., Daejeon, Republic of Korea
| | - Chang Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Tae-Jin Yoon
- Department of Dermatology and Institute of Health Sciences, School of Medicine, Gyeongsang National University & Hospital, Jinju, Republic of Korea.
| |
Collapse
|
57
|
FGF21 regulates melanogenesis in alpaca melanocytes via ERK1/2-mediated MITF downregulation. Biochem Biophys Res Commun 2017. [PMID: 28623131 DOI: 10.1016/j.bbrc.2017.06.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is known as a metabolic regulator to regulate the metabolism of glucose and lipids. However, the underlying mechanism of FGF21 on melanin synthesis remains unknown. Therefore, the current study investigates the effect of FGF21 on melanogenesis in alpaca melanocytes. We transfected the FGF21 into alpaca melanocytes, then detected the melanin contents, protein and mRNA levels of pigmentation-related genes in order to determine the melanogenesis-regulating pathway of FGF21. The results showed that FGF21 overexpression suppressed melanogenesis and decreased the expression of the major target genes termed microphthalmia-associated transcription factor (MITF) and its downstream genes, including tyrosinase (TYR) and tyrosinase-related protein 2 (TRP2). However FGF21 increased the expression of phospho-extracellular signal-regulated kinase (p-Erk1/2). In contrast, FGF21-siRNA, a small interference RNA mediating FGF21 silencing, abolished the inhibition of melanogenesis. Altogether, FGF21 may decrease melanogenesis in alpaca melanocytes via ERK activation and subsequent MITF downregulation, which is then followed by the suppression of melanogenic enzymes and melanin production.
Collapse
|
58
|
Alam MB, Bajpai VK, Lee J, Zhao P, Byeon JH, Ra JS, Majumder R, Lee JS, Yoon JI, Rather IA, Park YH, Kim K, Na M, Lee SH. Inhibition of melanogenesis by jineol from Scolopendra subspinipes mutilans via MAP-Kinase mediated MITF downregulation and the proteasomal degradation of tyrosinase. Sci Rep 2017; 7:45858. [PMID: 28393917 PMCID: PMC5385534 DOI: 10.1038/srep45858] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/06/2017] [Indexed: 12/26/2022] Open
Abstract
In this study, the authors investigated the anti-melanogenic effects of 3,8-dihydroxyquinoline (jineol) isolated from Scolopendra subspinipes mutilans, the mechanisms responsible for its inhibition of melanogenesis in melan-a cells, and its antioxidant efficacy. Mushroom tyrosinase activities and melanin contents were determined in melan-a cells, and the protein and mRNA levels of MITF, tyrosinase, TYRP-1, and TYRP-2 were assessed. Jineol exhibited significant, concentration-dependent antioxidant effects as determined by DPPH, ABTS, CUPRAC, and FRAP assays. Jineol significantly inhibited mushroom tyrosinase activity by functioning as an uncompetitive inhibitor, and markedly inhibited melanin production and intracellular tyrosinase activity in melan-a cells. In addition, jineol abolished the expressions of tyrosinase, TYRP-1, TYRP-2, and MITF, thereby blocking melanin production and interfering with the phosphorylations of ERK1/2 and p38. Furthermore, specific inhibitors of ERK1/2 and p38 prevented melanogenesis inhibition by jineol, and the proteasome inhibitor (MG-132) prevented jineol-induced reductions in cellular tyrosinase levels. Taken together, jineol was found to stimulate MAP-kinase (ERK1/2 and p38) phosphorylation and the proteolytic degradation pathway, which led to the degradations of MITF and tyrosinase, and to suppress the productions of melanin.
Collapse
Affiliation(s)
- Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Vivek K Bajpai
- Department of Applied Microbiology and Biotechnology, Microbiome Laboratory, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - JungIn Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Peijun Zhao
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Jung-Hee Byeon
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Jeong-Sic Ra
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Rajib Majumder
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Bio-security and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2567, Australia
| | - Jong Sung Lee
- Kcellbio, Seoulsoop Kolon Digital Tower, Seongsuil-ro-4-gil, Seongdong-gu 04713, Seoul, Korea
| | - Jung-In Yoon
- Kcellbio, Seoulsoop Kolon Digital Tower, Seongsuil-ro-4-gil, Seongdong-gu 04713, Seoul, Korea
| | - Irfan A Rather
- Department of Applied Microbiology and Biotechnology, Microbiome Laboratory, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Yong-Ha Park
- Department of Applied Microbiology and Biotechnology, Microbiome Laboratory, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Kangmin Kim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, 79 Gobong-ro, Iksan-si 570-752, Jeonbuk, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
59
|
Jang EJ, Shin Y, Park HJ, Kim D, Jung C, Hong JY, Kim S, Lee SK. Anti-melanogenic activity of phytosphingosine via the modulation of the microphthalmia-associated transcription factor signaling pathway. J Dermatol Sci 2017; 87:19-28. [PMID: 28390782 DOI: 10.1016/j.jdermsci.2017.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/07/2017] [Accepted: 03/17/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Microphthalmia-associated transcription factor (MITF) suppresses the expression of enzymes controlling the production of melanin. Phytosphingosine is a well-known cosmetic agent, but its anti-melanogenic activity and mechanism of action remain unclear. OBJECTIVE This study was designed to investigate the effects of phytosphingosine on melanin synthesis and elucidate the plausible mechanism of actions in vitro and ex vivo systems. METHODS Melanin content, cell viability, tyrosinase activity, p-CREB DNA binding activity, and the protein gene expression levels of the enzymes and proteins involved in melanogenesis were measured with the treatment of phytosphingosine. RESULTS Phytosphingosine inhibits melanin synthesis in cultured melan-a cells and a reconstructed human skin model. One possible mechanism of the anti-melanogenic activity of phytosphingosine appears to be associated with the modulation of MITF, which suppresses the expression of tyrosinase, tyrosinase-related protein-1 (TRP-1), and TRP-2. Further analysis revealed that phytosphingosine suppressed paired box 3 and SRY-related HMG-box 10, critical transcription factors of MITF. Phytosphingosine also effectively downregulated the protein levels of β-catenin and the phospho-cAMP response element binding protein, an upstream regulatory factor of MITF. These results are closely related to the suppression of MITF gene expression. In addition, treatment with phytosphingosine for over 12h, which is a relatively long period of time, did not directly suppress these MITF transcriptional factors. Instead, phytosphingosine induced ERK activation, which led to MITF phosphorylation, followed by its degradation. Therefore, the downregulation of MITF protein levels by phytosphingosine with a long time exposure is in part associated with MITF protein degradation through the MAPK kinase activation pathway. CONCLUSION The modulation of MITF by phytosphingosine is closely related with the signaling pathways, such as the suppression of the MITF gene expression and the degradation of the MITF protein, depending on the duration of treatment time. These results suggest that phytosphingosine might serve as an effective melanogenesis inhibitor in melanocytes via the regulation of the MITF signaling pathways.
Collapse
Affiliation(s)
- Eun Jeong Jang
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yoonho Shin
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyen Joo Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Donghwa Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Cholomi Jung
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji-Young Hong
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sanghee Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
60
|
Yoshida I, Ito C, Matsuda S, Tsuji A, Yanaka N, Yuasa K. Alisol B, a triterpene from Alismatis rhizoma (dried rhizome of Alisma orientale), inhibits melanin production in murine B16 melanoma cells. Biosci Biotechnol Biochem 2017; 81:534-540. [DOI: 10.1080/09168451.2016.1268042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
To develop new whitening agents from natural products, we screened 80 compounds derived from crude drugs in Kampo medicine in a melanin synthesis inhibition assay using murine B16 melanoma cells. The screen revealed that treatment with alisol B, a triterpene from Alismatis rhizoma, significantly decreased both melanin content and cellular tyrosinase activity in B16 cells. However, alisol B did not directly inhibit mushroom tyrosinase activity in vitro. Therefore, we investigated the mechanism underlying the inhibitory effect of alisol B on melanogenesis. Alisol B suppressed mRNA induction of tyrosinase and its transcription factor, microphthalmia-associated transcription factor (MITF). Furthermore, alisol B reduced the phosphorylation of CREB and maintained the activation of ERK1/2. These results suggest that the reduction in melanin production by alisol B is due to the downregulation of MITF through the suppression of CREB and activation of ERK and that alisol B may be useful as a new whitening agent.
Collapse
Affiliation(s)
- Ichiro Yoshida
- Laboratory of Nutritional Science, Department of Food Science and Nutrition, Shikoku Junior College, Tokushima, Japan
| | - Chihiro Ito
- Department of Biological Science and Technology, Tokushima University Graduate School, Tokushima, Japan
| | - Shinya Matsuda
- Department of Biological Science and Technology, Tokushima University Graduate School, Tokushima, Japan
| | - Akihiko Tsuji
- Department of Biological Science and Technology, Tokushima University Graduate School, Tokushima, Japan
- Department of Bioscience and Bioindustry, Tokushima University Graduate School, Tokushima, Japan
| | - Noriyuki Yanaka
- Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Keizo Yuasa
- Department of Biological Science and Technology, Tokushima University Graduate School, Tokushima, Japan
- Department of Bioscience and Bioindustry, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
61
|
Gomisin N Inhibits Melanogenesis through Regulating the PI3K/Akt and MAPK/ERK Signaling Pathways in Melanocytes. Int J Mol Sci 2017; 18:ijms18020471. [PMID: 28241436 PMCID: PMC5344003 DOI: 10.3390/ijms18020471] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/15/2023] Open
Abstract
Gomisin N, one of the lignan compounds found in Schisandra chinensis has been shown to possess anti-oxidative, anti-tumorigenic, and anti-inflammatory activities in various studies. Here we report, for the first time, the anti-melenogenic efficacy of Gomisin N in mammalian cells as well as in zebrafish embryos. Gomisin N significantly reduced the melanin content without cellular toxicity. Although it was not capable of modulating the catalytic activity of mushroom tyrosinase in vitro, Gomisin N downregulated the expression levels of key proteins that function in melanogenesis. Gomisin N downregulated melanocortin 1 receptor (MC1R), adenylyl cyclase 2, microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). In addition, Gomisin N-treated Melan-A cells exhibited increased p-Akt and p-ERK levels, which implies that the activation of the PI3K/Akt and MAPK/ERK pathways may function to inhibit melanogenesis. We also validated that Gomisin N reduced melanin production by repressing the expression of MITF, tyrosinase, TRP-1, and TRP-2 in mouse and human cells as well as in developing zebrafish embryos. Collectively, we conclude that Gomisin N inhibits melanin synthesis by repressing the expression of MITF and melanogenic enzymes, probably through modulating the PI3K/Akt and MAPK/ERK pathways.
Collapse
|
62
|
Ishii N, Ryu M, Suzuki YA. Lactoferrin inhibits melanogenesis by down-regulating MITF in melanoma cells and normal melanocytes. Biochem Cell Biol 2017; 95:119-125. [DOI: 10.1139/bcb-2016-0053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to evaluate the effect of bovine lactoferrin (bLf) on melanin-producing cells and to elucidate its mechanism of action. We tested the anti-melanogenic effect of bLf on a 3-dimensional cultured pigmentation skin model and confirmed a 20% reduction in pigmentation, suggesting that bLf was transdermally absorbed and it suppressed melanin production. Treatment of human melanoma cells with bLf resulted in a significant, dose-dependent suppression of melanin production. Apo-bLf and holo-bLf suppressed melanogenesis to the same degree as bLf. The key feature behind this anti-melanogenic effect of bLf was the down-regulation of the microphthalmia-associated transcription factor (MITF), leading to the suppression of tyrosinase activity. Treatment with bLf resulted in both decreased expression of MITF mRNA and enhanced degradation of MITF protein. However, the primary effector was enhanced phosphorylation of extracellular signal-regulated kinase (ERK), leading to the phosphorylation and degradation of MITF. Our finding that bLf suppresses melanin production in melanocytes indicates that bLf is a possible candidate for application as a skin-whitening agent.
Collapse
Affiliation(s)
- Nanase Ishii
- Lactoferrin Laboratory, Saraya Co. Ltd., 24-12 Tamate-cho, Kashiwara, Osaka, Japan, 582-0028
- Lactoferrin Laboratory, Saraya Co. Ltd., 24-12 Tamate-cho, Kashiwara, Osaka, Japan, 582-0028
| | - Mizuyuki Ryu
- Lactoferrin Laboratory, Saraya Co. Ltd., 24-12 Tamate-cho, Kashiwara, Osaka, Japan, 582-0028
- Lactoferrin Laboratory, Saraya Co. Ltd., 24-12 Tamate-cho, Kashiwara, Osaka, Japan, 582-0028
| | - Yasushi A. Suzuki
- Lactoferrin Laboratory, Saraya Co. Ltd., 24-12 Tamate-cho, Kashiwara, Osaka, Japan, 582-0028
- Lactoferrin Laboratory, Saraya Co. Ltd., 24-12 Tamate-cho, Kashiwara, Osaka, Japan, 582-0028
| |
Collapse
|
63
|
Alam MB, Seo BJ, Zhao P, Lee SH. Anti-Melanogenic Activities of Heracleum moellendorffii via ERK1/2-Mediated MITF Downregulation. Int J Mol Sci 2016; 17:1844. [PMID: 27827938 PMCID: PMC5133844 DOI: 10.3390/ijms17111844] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 11/26/2022] Open
Abstract
In this study, the anti-melanogenic effects of Heracleum moellendorffii Hance extract (HmHe) and the mechanisms through which it inhibits melanogenesis in melan-a cells were investigated. Mushroom tyrosinase (TYR) activity and melanin content as well as cellular tyrosinase activity were measured in the cells. mRNA and protein expression of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), TYR-related protein-1 (TYRP-1) and -2 were also examined. The results demonstrate that treatment with HmHe significantly inhibits mushroom tyrosinase activity. Furthermore, HmHe also markedly inhibits melanin production and intracellular tyrosinase activity. By suppressing the expression of TYR, TYRP-1, TYRP-2, and MITF, HmHe treatment antagonized melanin production in melan-a cells. Additionally, HmHe interfered with the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, with reversal of HmHe-induced melanogenesis inhibition after treatment with specific inhibitor U0126. In summary, HmHe can be said to stimulate ERK1/2 phosphorylation and subsequent degradation of MITF, resulting in suppression of melanogenic enzymes and melanin production, possibly due to the presence of polyphenolic compounds.
Collapse
Affiliation(s)
- Md Badrul Alam
- Department of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea.
| | - Bum-Ju Seo
- Department of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea.
| | - Peijun Zhao
- Department of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea.
| | - Sang-Han Lee
- Department of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
64
|
Hwang E, Lee TH, Lee WJ, Shim WS, Yeo EJ, Kim S, Kim SY. A novel synthetic Piper amide derivative NED-180 inhibits hyperpigmentation by activating the PI3K and ERK pathways and by regulating Ca2+ influx via TRPM1 channels. Pigment Cell Melanoma Res 2016; 29:81-91. [PMID: 26459162 DOI: 10.1111/pcmr.12430] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/29/2015] [Indexed: 11/30/2022]
Abstract
Piper amides have a characteristic, unsaturated amide group and exhibit diverse biological activities, including proliferation and differentiation of melanocytes, although the molecular mechanisms underlying its antimelanogenesis effect remain unknown. We screened a selected chemical library of newly synthesized Piper amide derivatives and identified (E)-3-(4-(tert-butyl)phenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide (NED-180) as one of the most potent compounds in suppressing melanogenesis. In murine melan-a melanocytes, NED-180 downregulated the expression of melanogenic regulatory proteins including tyrosinase, Tyrp1, Dct, and MITF. PI3K/Akt-dependent phosphorylation of GSK3β by NED-180 decreases MITF phosphorylation and inhibits melanogenesis without any effects on cytotoxicity and proliferation. Furthermore, topical application of NED-180 significantly ameliorated UVB-induced skin hyperpigmentation in guinea pigs. Interestingly, data obtained using calcium imaging techniques suggested that NED-180 reduced the TPA-induced activation of TRPM1 (melastatin), which could explain the NED-180-induced inhibition of melanogenesis. All things taken together, NED-180 triggers activation of multiple pathways, such as PI3K and ERK, and inhibits TRPM1/TRPV1, leading to inhibition of melanogenesis.
Collapse
Affiliation(s)
- Eunson Hwang
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University, Yongin, Korea
| | - Taek Hwan Lee
- College of Pharmacy, Yonsei University, Incheon, Korea
| | - Wook-Joo Lee
- College of Pharmacy, Gachon University, Incheon, Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Incheon, Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon, Korea.,Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Korea.,Gachon Medical Research Institute, Gil Medical Center, Incheon, Korea
| |
Collapse
|
65
|
Seong ZK, Lee SY, Poudel A, Oh SR, Lee HK. Constituents of Cryptotaenia japonica Inhibit Melanogenesis via CREB- and MAPK-Associated Signaling Pathways in Murine B16 Melanoma Cells. Molecules 2016; 21:molecules21101296. [PMID: 27689982 PMCID: PMC6273111 DOI: 10.3390/molecules21101296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 11/25/2022] Open
Abstract
Melanin plays an important role in protecting the skin against ultraviolet light and is responsible for skin color. However, overproduction of melanin is related to several skin disorders, such as age spots, freckles, café au lait spots, Becker’s nevus and other hyperpigmentation syndromes. The aim of this study was to identify the effects of kaempferol-7-O-β-d-glucuronide (K7G) and tilianin, isolated from Cryptotaenia japonica, on melanogenesis and their mechanisms of action in murine B16 melanoma cells. The α-melanocyte-stimulating hormone (α-MSH)-induced melanin production was significantly inhibited by K7G and tilianin in a dose-dependent manner. The effects of these compounds on the signaling pathway of melanogenesis were examined. K7G and tilianin downregulated the expression of microphthalmia-associated transcription factor (MITF) and melanocyte-specific enzymes, i.e., tyrosinase and TRP1. These compounds also inhibited the phosphorylation of cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) in a dose-dependent manner. In addition, these compounds increased the phosphorylation of extracellular signal-regulated kinase (ERK) but decreased the phosphorylation of c-Jun N-terminal kinase (JNK) in B16 cells. Based on the above results, the anti-melanogenic effects of these compounds are caused by suppression of the MAPK signaling pathway through the down-regulation of α-MSH-induced CREB accumulation. This finding suggests that K7G and tilianin may be good candidates for further research to develop therapeutic agents for hyperpigmentation diseases.
Collapse
Affiliation(s)
- Zuh-Kyung Seong
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Yeongudanji-ro 30, Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea.
- Biomolecular Science, University of Science & Technology, 217 Gajeong-roYuseong-gu, Daejeon 34113, Korea.
| | - Sung-Yoon Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Yeongudanji-ro 30, Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea.
| | - Amrit Poudel
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Yeongudanji-ro 30, Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Yeongudanji-ro 30, Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea.
- Biomolecular Science, University of Science & Technology, 217 Gajeong-roYuseong-gu, Daejeon 34113, Korea.
| | - Hyeong-Kyu Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Yeongudanji-ro 30, Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Korea.
- Biomolecular Science, University of Science & Technology, 217 Gajeong-roYuseong-gu, Daejeon 34113, Korea.
| |
Collapse
|
66
|
Jiang MC. CAS (CSE1L) signaling pathway in tumor progression and its potential as a biomarker and target for targeted therapy. Tumour Biol 2016; 37:13077-13090. [PMID: 27596143 DOI: 10.1007/s13277-016-5301-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
CSE1L (chromosome segregation 1-like protein), also named as CAS (cellular apoptosis susceptibility protein), is highly expressed in most cancer types. CSE1L/CAS is a multiple functional protein that plays roles in apoptosis, cell survival, chromosome assembly, nucleocytoplasmic transport, microvesicle formation, and cancer metastasis; some of the functions are explicitly correlated. CSE1L is also a cancer serum biomarker. The phosphorylation of CAS is regulated by the extracellular signal-regulated kinase (ERK). The RAS/RAF/MAPK/ERK signaling pathways are the essential targets of most targeted cancer drugs, thus serum phosphorylated CSE1L may be a potential biomarker for monitoring drug resistance in targeted therapy. CSE1L can regulate Ras-induced ERK phosphorylation. CSE1L also regulates the expression and phosphorylation of CREB (cAMP response element binding protein) and MITF (microphthalmia-associated transcription factor) and is thus involved in the melanogenesis and progression of melanoma. CAS is an exosome/microvesicle membrane protein. Tumor cells consistently secrete microvesicles and tumor-derived microvesicles may be accumulated around tumors. Therefore, microvesicle membrane CSE1L may be a potential target for the development of high-efficacy antibody-drug conjugates (ADCs) for cancer therapy. This review will focus on CSE1L expression in cancers, its relationship to Ras/ERK and cAMP/PKA signaling pathways in melanoma development, its potential for the development of ADCs and tumor imaging reagents, and secretory phosphorylated CSE1L for monitoring the emergence of drug resistance in targeted cancer therapy.
Collapse
Affiliation(s)
- Ming-Chung Jiang
- Targetrust Biotech. Ltd., No. 510 Zhongzheng Rd, Xinzhuang Dist, New Taipei City, 24205, Taiwan.
| |
Collapse
|
67
|
Ullah S, Son S, Yun HY, Kim DH, Chun P, Moon HR. Tyrosinase inhibitors: a patent review (2011-2015). Expert Opin Ther Pat 2016; 26:347-62. [DOI: 10.1517/13543776.2016.1146253] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
68
|
Choi HR, Kang YA, Lee HS, Park KC. Disulfanyl peptide decreases melanin synthesis via receptor-mediated ERK activation and the subsequent downregulation of MITF and tyrosinase. Int J Cosmet Sci 2016; 38:279-85. [DOI: 10.1111/ics.12291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/26/2015] [Indexed: 01/25/2023]
Affiliation(s)
- H.-R. Choi
- Department of Dermatology; Seoul National University Bundang Hospital; 82 Gumi-ro 173 Beon-gil Bundang-gu Seongnam-si Gyeonggi-do 463-707 Korea
| | - Y.-A. Kang
- Department of Dermatology; Seoul National University Bundang Hospital; 82 Gumi-ro 173 Beon-gil Bundang-gu Seongnam-si Gyeonggi-do 463-707 Korea
| | - H.-S. Lee
- Department of Dermatology; Seoul National University Bundang Hospital; 82 Gumi-ro 173 Beon-gil Bundang-gu Seongnam-si Gyeonggi-do 463-707 Korea
| | - K.-C. Park
- Department of Dermatology; Seoul National University Bundang Hospital; 82 Gumi-ro 173 Beon-gil Bundang-gu Seongnam-si Gyeonggi-do 463-707 Korea
| |
Collapse
|
69
|
Lee WJ, Bang S, Chung BY, Jung H, Oh ES, Chang SE. Inhibitory effects of N,N,N-trimethyl phytosphingosine-iodide on melanogenesis via ERK activation-mediated MITF degradation. Biosci Biotechnol Biochem 2016; 80:121-7. [DOI: 10.1080/09168451.2015.1072459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
N,N,N-trimethyl phytosphingosine-iodide (TMP) was recently developed as an antitumor agent. We examined the effects of TMP on melanogenesis and its related signaling pathways in normal human melanocytes. Our results showed that melanin is significantly reduced in a dose-dependent manner in both cells following liposomal TMP treatment. We also investigated changes in the phosphorylation of extracellular signal-regulated kinase (ERK), which is related to the degradation of microphthalmia-associated transcription factor (MITF). Our results indicated that liposomal TMP treatment leads to the phosphorylation of ERK, which reduces both MITF and tyrosinase protein levels. Treatment with PD98059, an ERK pathway-specific inhibitor, restored liposomal TMP-induced reductions in melanin, abrogated reductions in tyrosinase activity, and downregulated MITF and tyrosinase protein. In conclusion, these results suggest that the inhibitory effects of TMP on melanogenesis are due to MITF and tyrosinase downregulation via ERK activation.
Collapse
Affiliation(s)
- Woo Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seunghyun Bang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bo Young Chung
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Hyejung Jung
- Department of Life Sciences, Division of Life and Pharmaceutical Sciences and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Eok Soo Oh
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
70
|
Nishio T, Usami M, Awaji M, Shinohara S, Sato K. Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis. Mol Cell Biochem 2015; 412:101-10. [PMID: 26699907 DOI: 10.1007/s11010-015-2613-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/08/2015] [Indexed: 11/29/2022]
Abstract
Acetylsalicylic acid (ASA) is widely used as an analgesic/antipyretic drug. It exhibits a wide range of biological effects, including preventative effects against heart attack and stroke, and the induction of apoptosis in various cancer cells. We previously found that ASA inhibits melanogenesis in B16 melanoma cells. However, the mechanisms of how ASA down-regulates melanin synthesis remain unclear. Here, we investigated the effect of ASA on melanogenic pathways, such as extracellular signal-regulated kinase (ERK) and microphthalmia-associated transcription factor (Mitf) transcription. ASA significantly inhibited melanin synthesis in a dose-dependent manner without oxidative stress and cell death. Semi-quantitative reverse transcription-polymerase chain reaction analysis showed that the inhibitory effect of ASA might be due to the inhibition of Mitf gene transcription. Interestingly, ASA also induced ERK phosphorylation. Additionally, treatment with PD98059, a specific ERK phosphorylation inhibitor, abolished the anti-melanogenic effect of ASA. These results suggest that the depigmenting effect of ASA results from down-regulation of Mitf, which is induced by both the induction of ERK phosphorylation and the inhibition of Mitf transcription.
Collapse
Affiliation(s)
- Takashi Nishio
- Graduate School of Agriculture, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo, 194-8610, Japan
| | - Mai Usami
- Department of Life Science, College of Agriculture, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo, 194-8610, Japan
| | - Mizuki Awaji
- Department of Life Science, College of Agriculture, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo, 194-8610, Japan
| | - Sumire Shinohara
- Department of Life Science, College of Agriculture, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo, 194-8610, Japan
| | - Kazuomi Sato
- Graduate School of Agriculture, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo, 194-8610, Japan. .,Department of Life Science, College of Agriculture, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo, 194-8610, Japan.
| |
Collapse
|
71
|
Park J, Chung H, Bang SH, Han AR, Seo EK, Chang SE, Kang DH, Oh ES. (E)-4-(3,4-Dimethoxyphenyl)but-3-en-1-ol Enhances Melanogenesis through Increasing Upstream Stimulating Factor-1-Mediated Tyrosinase Expression. PLoS One 2015; 10:e0141988. [PMID: 26535571 PMCID: PMC4633108 DOI: 10.1371/journal.pone.0141988] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/15/2015] [Indexed: 12/31/2022] Open
Abstract
We investigated the potential melanogenic effect of compounds from Zingiber cassumunar Roxb. Our data revealed that chloroform-soluble extract of Z. cassumunar enhanced melanin synthesis in B16F10 melanoma cells. Among the components of the chloroform extract, (E)-4-(3,4-dimethoxyphenyl)but-3-en-1-ol (DMPB) increased melanogenesis in both B16F10 cells and human primary melanocytes. In B16F10 cells, DMPB enhanced the activation of ERK and p38, and the level of tyrosinase. Although the level of microphthalmia-associated transcription factor was unchanged in DMPB-treated B16F10 cells, DMPB increased levels and nuclear localization of upstream stimulating factor-1 (USF1). Consistently, DMPB-mediated melanin synthesis was diminished in USF1-knockdown cells. Furthermore, DMPB induced hyperpigmentation in brown guinea pigs in vivo. Together, these data suggest that DMPB may promote melanin synthesis via USF1 dependent fashion and could be used as a clinical therapeutic agent against hypopigmentation-associated diseases.
Collapse
Affiliation(s)
- Jisu Park
- Department of Life Sciences, the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Heesung Chung
- Department of Life Sciences, the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Seung Hyun Bang
- Department of Dermatology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ah-Reum Han
- The Global Top5 Research Program, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Eun-Kyoung Seo
- The Global Top5 Research Program, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Sung Eun Chang
- Department of Dermatology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Medical Research Center, Ewha Womans University School of Medicine, Seoul, Korea
| | - Eok-Soo Oh
- Department of Life Sciences, the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| |
Collapse
|
72
|
Baek S, Lee S. Sesamol decreases melanin biosynthesis in melanocyte cells and zebrafish: Possible involvement of MITF via the intracellular cAMP and p38/JNK signalling pathways. Exp Dermatol 2015; 24:761-766. [PMID: 26010596 PMCID: PMC4744993 DOI: 10.1111/exd.12765] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 12/25/2022]
Abstract
The development of antimelanogenic agents is important for the prevention of serious aesthetic problems such as melasma, freckles, age spots and chloasma. The aim of this study was to investigate the antimelanogenic effect of sesamol, an active lignan isolated from Sesamum indicum, in melan-a cells. Sesamol strongly inhibited melanin biosynthesis and the activity of intracellular tyrosinase by decreasing cyclic adenosine monophosphate (cAMP) accumulation. Sesamol significantly decreased the expression of melanogenesis-related genes, such as tyrosinase, tyrosinase-related protein-1,2 (TRP-1,2), microphthalmia-associated transcription factor (MITF) and melanocortin 1 receptor (MC1R). In addition, sesamol also induces phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK). Moreover, sesamol dose-dependently decreased zebrafish pigment formation, tyrosinase activity and expression of melanogenesis-related genes. These findings indicate that sesamol inhibited melanin biosynthesis by down-regulating tyrosinase activity and melanin production via regulation of gene expression of melanogenesis-related proteins through modulation of MITF activity, which promoted phosphorylation of p38 and JNK in melan-a cells. Together, these results suggest that sesamol strongly inhibits melanin biosynthesis, and therefore, sesamol represents a new skin-whitening agent for use in cosmetics.
Collapse
Affiliation(s)
- Seung‐hwa Baek
- Department of Food Science & BiotechnologyGraduate SchoolKyungpook National UniversityDaeguKorea
| | - Sang‐Han Lee
- Department of Food Science & BiotechnologyGraduate SchoolKyungpook National UniversityDaeguKorea
- Department of Nano‐Science & TechnologyGraduate SchoolKyungpook National UniversityDaeguKorea
- Food & Bio‐industry Research InstituteKyungpook National UniversityDaeguKorea
| |
Collapse
|
73
|
Shin HJ, Oh CT, Kwon TR, Beak HS, Joo YH, Kim JH, Lee CS, Lee JH, Kim BJ, Shin SS, Park ES. A novel adamantyl benzylbenzamide derivative, AP736, inhibits melanogenesis in B16F10 mouse melanoma cells via glycogen synthase kinase 3β phosphorylation. Int J Mol Med 2015; 36:1353-60. [PMID: 26398893 DOI: 10.3892/ijmm.2015.2348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/20/2015] [Indexed: 11/06/2022] Open
Abstract
Recently, much effort has been made to develop effective dermatological depigmenting compounds. In this study, we investigated the novel candidate compound, AP736 (an adamantyl benzylbenzamide derivative), and its effects on melanogenesis in B16F10 melanoma cells, as well as the mechanisms involved. AP736 has been reported to exert anti-melanogenic effects in melanocytes in vitro and in artificial skin equivalents through the inhibition of key melanogenic enzymes and the suppression of the cAMP-protein kinase A (PKA)-cAMP response element‑binding protein (CREB) signaling pathway. Thus, we examined another pathway of melanogenesis involving the effects of AP736 on the glycogen synthesis kinase 3β (GSK3β) pathway. Melanin content and tyrosinase activity were measured using a spectrophotometer after the cells were treated with AP736. The AP736-induced activation of signaling pathways was examined by western blot analysis. We confirmed that AP736 decreased melanin production in a dose-dependent manner; however, it did not directly inhibit tyrosinase, the rate-limiting melanogenic enzyme. The expression of microphthalmia-associated transcription factor, tyrosinase, and related signal transduction pathways was also investigated. The Wnt signaling pathway is deeply involved in melanogenesis; therefore, phosphorylation by GSK3β was assessed following treatment with AP736. AP736 induced GSK3β phosphorylation (inactivation), but it did not alter the level of β-catenin. Furthermore, the expression of α-melanocyte-stimulating hormone-induced tyrosinase was downregulated by AP736. Our data suggest that AP736 exerts hypopigmentary effects through the downregulation of tyrosinase via GSK3β phosphorylation.
Collapse
Affiliation(s)
- Hong-Ju Shin
- Medical Beauty Research Institute, AmorePacific R&D Center, Yongin 446-729, Republic of Korea
| | - Chang Taek Oh
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756, Republic of Korea
| | - Tae-Rin Kwon
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756, Republic of Korea
| | - Heung Soo Beak
- Skin Research Institute, AmorePacific R&D Center, Yongin 446-729, Republic of Korea
| | - Yung Hyup Joo
- Skin Research Institute, AmorePacific R&D Center, Yongin 446-729, Republic of Korea
| | - Jeong-Hwan Kim
- Medical Beauty Research Institute, AmorePacific R&D Center, Yongin 446-729, Republic of Korea
| | - Chang Seok Lee
- Medical Beauty Research Institute, AmorePacific R&D Center, Yongin 446-729, Republic of Korea
| | - John Hwan Lee
- Skin Research Institute, AmorePacific R&D Center, Yongin 446-729, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756, Republic of Korea
| | - Song Seok Shin
- Skin Research Institute, AmorePacific R&D Center, Yongin 446-729, Republic of Korea
| | - Eun-Seok Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| |
Collapse
|
74
|
Lee WR, Shen SC, Wu PR, Chou CL, Shih YH, Yeh CM, Yeh KT, Jiang MC. CSE1L Links cAMP/PKA and Ras/ERK pathways and regulates the expressions and phosphorylations of ERK1/2, CREB, and MITF in melanoma cells. Mol Carcinog 2015; 55:1542-1552. [PMID: 26331446 DOI: 10.1002/mc.22407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/13/2022]
Abstract
The Ras/ERK (extracellular signal-regulated protein kinase) and cAMP/PKA (protein kinase A) pathways are essential for the transcriptional activities of CREB (cAMP response element binding protein) and MITF (microphthalmia-associated transcription factor) in melanogenesis and the progression of melanoma. However, the interaction between Ras/ERK and cAMP/PKA pathways in the melanogenesis and progression of melanoma is not fully known. Here, we report that CSE1L (chromosome segregation 1-like protein) regulates cAMP/PKA-induced CREB and MITF expressions as well as Ras-induced ERK1/2 phosphorylation. IBMX, a cAMP/PKA activator, treatment induced CSE1L phosphorylation and augmented Ras-induced ERK1/2 phosphorylation. CSE1L knockdown by CSE1L shRNA expression vectors inhibited Ras-induced ERK1/2 phosphorylation and melanogenesis in melanoma cells. CSE1L overexpression increased phospho-CREB expression; CSE1L knockdown also inhibited Ras-induced phospho-CREB, MITF, and tyrosinase expressions, regardless of the presence of IBMX. This study identifies CSE1L links and controls the Ras/ERK and cAMP/PKA pathways in the melanogenesis of melanoma cells. Melanomas frequently develop drug resistance via paradoxical activation of Ras/Raf/MEK/ERK or alternatively activated Ras/ERK and cAMP/PKA pathways. Thus CSE1L may be a potential target for treating melanomas that harbor Ras mutations or are resistant to drugs targeting Raf/MEK/ERK. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Woan-Ruoh Lee
- Department of Dermatology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ru Wu
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Chia-Lun Chou
- Department of Dermatology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsien Shih
- Department of Dermatology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Min Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Chung Jiang
- Department of Dermatology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
75
|
Lee HJ, Lee WJ, Chang SE, Lee GY. Hesperidin, A Popular Antioxidant Inhibits Melanogenesis via Erk1/2 Mediated MITF Degradation. Int J Mol Sci 2015; 16:18384-95. [PMID: 26262610 PMCID: PMC4581251 DOI: 10.3390/ijms160818384] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/09/2015] [Accepted: 07/29/2015] [Indexed: 01/07/2023] Open
Abstract
Regulation of melanogenesis has been the focus of treatment for hyperpigmentary skin disorders. Although hesperidin is one of the most well-known, naturally occurring flavonoids with antioxidant and anti-inflammatory effect, its anti-melanogenic effect is not known. The present study aims to determine the anti-melanogenic effect of hespiridin as well as its underlying molecular mechanisms. Melanin contents were measured in normal human melanocytes and B16F10 melanoma cells. Protein and mRNA levels of tyrosinase, microphthalmia-associated transcription factor (MITF), tyrosinase related protein-1 (TRP-1) and TRP-2 were determined. Melanogenesis-regulating signals were examined. In results, hesperidin strongly inhibited melanin synthesis and tyrosinase activity. Hesperidin decreased tyrosinase, TRP-1, and TRP-2 protein expression but increased phospho-extracellular signal-regulated kinase 1/2 (p-Erk1/2) expression. Specific inhibitor of Erk1/2 or proteasome inhibitor reversed the inhibition of melanogenesis induced by hesperidin. Taken together, hesperidin, a popular antioxidant, stimulated Erk1/2 phosphorylation which subsequently degraded MITF which resulted in suppression of melanogenic enzymes and melanin synthesis.
Collapse
Affiliation(s)
- Heun Joo Lee
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Pyeong-dong, Jongno-gu, Seoul 110-746, Korea.
| | - Woo Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong Songpa-gu, Seoul 138-736, Korea.
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong Songpa-gu, Seoul 138-736, Korea.
| | - Ga-Young Lee
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Pyeong-dong, Jongno-gu, Seoul 110-746, Korea.
| |
Collapse
|
76
|
Baicalin-induced Akt activation decreases melanogenesis through downregulation of microphthalmia-associated transcription factor and tyrosinase. Eur J Pharmacol 2015; 761:19-27. [DOI: 10.1016/j.ejphar.2015.04.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
|
77
|
Kim ES, Jeon HB, Lim H, Shin JH, Park SJ, Jo YK, Oh W, Yang YS, Cho DH, Kim JY. Conditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF. PLoS One 2015; 10:e0128078. [PMID: 26024475 PMCID: PMC4449211 DOI: 10.1371/journal.pone.0128078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/23/2015] [Indexed: 12/23/2022] Open
Abstract
Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM) derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF) expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation.
Collapse
Affiliation(s)
- Eun Sung Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hong Bae Jeon
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hoon Lim
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ji Hyun Shin
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - So Jung Park
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yoon Kyung Jo
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yoon Sun Yang
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Dong-Hyung Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
- * E-mail: (DHC); (JYK)
| | - Ju-Yeon Kim
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
- * E-mail: (DHC); (JYK)
| |
Collapse
|
78
|
Pillaiyar T, Manickam M, Jung SH. Inhibitors of melanogenesis: a patent review (2009 - 2014). Expert Opin Ther Pat 2015; 25:775-88. [PMID: 25939410 DOI: 10.1517/13543776.2015.1039985] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Melanogenesis is the process of producing the melanin pigment, in which a series of chemical and enzymatic pathways are involved. Modulation at any level of this process would become an important approach in the treatment of hyper- or hypopigmentation-related diseases. Since hyperpigmentation covers important issue in cosmetics, there is a need of such review to understand and update this field to the public domain. AREAS COVERED In this review, authors discuss most recent melanogenesis inhibitors published in the patents since 2009. The up-to-date overview of classical catechol-based tyrosinase inhibitors to non-classical melanogenesis inhibitors with different mechanism of action is discussed. Inhibitors including small-interfering RNA and peptides from ∼ 30 patents and their associated literature are also discussed. EXPERT OPINION Although a huge number of melanogenesis inhibitors have been reported, the future studies should be focused towards the identification of new inhibitors with a clear mechanism. The next breakthrough in the field therefore, is likely to come from the detailed structure-activity relationship studies of thioureas with improved therapeutic profiles. Targeting other parameters such as number or size of melanosomes, maturation of melanosomes and expression of melanogenic enzymes may give the best results to overcome toxicity and other formulation problems.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- University of Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , D-53121 Bonn , Germany +49 228 73 2360 ; +49 178 873 6953 ; ;
| | | | | |
Collapse
|
79
|
Kim HJ, Kim IS, Dong Y, Lee IS, Kim JS, Kim JS, Woo JT, Cha BY. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression. Int J Mol Sci 2015; 16:8772-88. [PMID: 25903150 PMCID: PMC4425108 DOI: 10.3390/ijms16048772] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/09/2015] [Indexed: 01/10/2023] Open
Abstract
The melanin-inducing properties of cirsimaritin were investigated in murine B16F10 cells. Cirsimaritin is an active flavone with methoxy groups, which is isolated from the branches of Lithocarpus dealbatus. Tyrosinase activity and melanin content in murine B16F10 melanoma cells were increased by cirsimaritin in a dose-dependent manner. Western blot analysis revealed that tyrosinase, tyrosinase-related protein (TRP) 1, TRP2 protein levels were enhanced after treatment with cirsimaritin for 48 h. Cirsimaritin also upregulated the expression of microphthalmia-associated transcription factor (MITF) after 24 h of treatment. Furthermore, cirsimaritin induced phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) in a dose-dependent manner after treatment for 15 min. The cirsimaritin-mediated increase of tyrosinase activity was significantly attenuated by H89, a cAMP-dependent protein kinase A inhibitor. These findings indicate that cirsimaritin stimulates melanogenesis in B16F10 cells by activation of CREB as well as upregulation of MITF and tyrosinase expression, which was activated by cAMP signaling. Finally, the melanogenic effect of cirsimaritin was confirmed in human epidermal melanocytes. These results support the putative application of cirsimaritin in ultraviolet photoprotection and hair coloration treatments.
Collapse
Affiliation(s)
- Hyo Jung Kim
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan.
| | - Il Soon Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea.
| | - Yin Dong
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan.
| | - Ik-Soo Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea.
| | - Jin Sook Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea.
| | - Jong-Sang Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 702-701, Korea.
| | - Je-Tae Woo
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan.
- Department of Research and Development, Erina Co., Inc., 1-9-2 Hagashi-Shinbashi, Minato-ku, Tokyo 105-0021, Japan.
| | - Byung-Yoon Cha
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan.
| |
Collapse
|
80
|
Yoon HS, Ko HC, Kim SS, Park KJ, An HJ, Choi YH, Kim SJ, Lee NH, Hyun CG. Tangeretin Triggers Melanogenesis through the Activation of Melanogenic Signaling Proteins and Sustained Extracellular Signal-Regulated Kinase in B16/F10 Murine Melanoma Cells. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to test the effectiveness of tangeretin at ameliorating melanoma and melanoma-associated depigmentation, western blotting was used to assess the melanin content of treated melanoma cells. Tangeretin, a 4′,5,6,7,8-pentamethoxyflavone, was found to trigger intracellular melanin production in a concentration-dependent manner in B16/F10 murine melanoma cells. Melanin content increased 1.74-fold in response to treatment with 25 μM of tangeretin, compared to that in non-treated cells. Examination of melanogenic protein expression showed that tyrosinase, tyrosinase-related protein (TRP)-1, and extracellular signal-regulated kinase (ERK) 1/2 levels increased in a dose-dependent manner. Furthermore, the expression of cyclic adenosine monophosphate response element binding protein (CREB) and microphthalmia transcription factor (MITF) was increased by tangeretin in 1 h and 4 h, respectively. Tangeretin-upregulated melanogenesis was suppressed by ERK 1/2 inhibitor and not by ERK1 inhibitor. These results suggest that tangeretin has therapeutic potential for melanoma and melanoma-associated depigmentation because it can induce hyperpigmentation through the activation of melanogenic signaling proteins and initiation of sustained ERK2 expression.
Collapse
Affiliation(s)
- Hoon Seok Yoon
- Cosmetic Sciences Center and Faculty of Chemistry and Cosmetics, Jeju National University, Jeju 690-756, Korea
| | - Hee-Chul Ko
- Jeju Sasa Industry Development Agency, Jeju National University, Jeju 690-756, Korea
| | - Sang Suk Kim
- Citrus Research Station, National Institute of Horticulture and Herbal Science, Seogwipo 697-943, Korea
| | - Kyung Jin Park
- Citrus Research Station, National Institute of Horticulture and Herbal Science, Seogwipo 697-943, Korea
| | - Hyun Joo An
- Citrus Research Station, National Institute of Horticulture and Herbal Science, Seogwipo 697-943, Korea
| | - Young Hun Choi
- Citrus Research Station, National Institute of Horticulture and Herbal Science, Seogwipo 697-943, Korea
| | - Se-Jae Kim
- Jeju Sasa Industry Development Agency, Jeju National University, Jeju 690-756, Korea
| | - Nam-Ho Lee
- Cosmetic Sciences Center and Faculty of Chemistry and Cosmetics, Jeju National University, Jeju 690-756, Korea
| | - Chang-Gu Hyun
- Cosmetic Sciences Center and Faculty of Chemistry and Cosmetics, Jeju National University, Jeju 690-756, Korea
| |
Collapse
|
81
|
Lee SJ, Lee WJ, Chang SE, Lee GY. Antimelanogenic effect of ginsenoside Rg3 through extracellular signal-regulated kinase-mediated inhibition of microphthalmia-associated transcription factor. J Ginseng Res 2015. [PMID: 26199555 PMCID: PMC4506376 DOI: 10.1016/j.jgr.2015.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Panax ginseng has been used to prolong longevity and is believed to be useful for improving skin complexion. Ginsenosides are the most active components isolated from ginseng, and ginsenoside Rg3 (G-Rg3) in particular has been demonstrated to possess antioxidative, antitumorigenic, and anti-inflammatory properties. The aim of this study was to examine the ability of G-Rg3 to inhibit melanogenesis. Methods The effects of G-Rg3 on melanin contents and the protein levels of tyrosinase, microphthalmia-associated transcription factor (MITF), and tyrosinase-related protein 1 (TRP1) were evaluated. Melanogenesis-regulating signaling molecules such as Akt and extracellular signal-regulated kinase (ERK) were also examined to explore G-Rg3-induced antimelanogenic mechanisms. Results G-Rg3 was found to significantly inhibit the synthesis of melanin in normal human epidermal melanocytes and B16F10 cells in a dose-dependent manner. The activity of cellular tyrosinase and the expression of MITF, tyrosinase, and TRP1 were all reduced, whereas ERK was strongly activated. PD98059 (a specific inhibitor of ERK) attenuated the G-Rg3-induced inhibition of melanin synthesis and tyrosinase activity. Conclusion Taken together, these results showed that G-Rg3 induces the activation of ERK, which accounts for its antimelanogenic effects. G-Rg3 may be a promising safe skin-whitening agent, adding to the long list of uses of P. ginseng for the enhancement of skin beauty.
Collapse
Affiliation(s)
| | - Woo Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ga-Young Lee
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
82
|
Song YS, Balcos MC, Yun HY, Baek KJ, Kwon NS, Kim MK, Kim DS. ERK Activation by Fucoidan Leads to Inhibition of Melanogenesis in Mel-Ab Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 19:29-34. [PMID: 25605994 PMCID: PMC4297759 DOI: 10.4196/kjpp.2015.19.1.29] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/17/2014] [Accepted: 12/01/2014] [Indexed: 11/15/2022]
Abstract
Fucoidan, a fucose-rich sulfated polysaccharide derived from brown seaweed in the class Phaeophyceae, has been widely studied for its possible health benefits. However, the potential of fucoidan as a possible treatment for hyperpigmentation is not fully understood. This study investigated the effects of fucoidan on melanogenesis and related signaling pathways using Mel-Ab cells. Fucoidan significantly decreased melanin content. While fucoidan treatment decreased tyrosinase activity, it did not do so directly. Western blot analysis indicated that fucoidan downregulated microphthalmia-associated transcription factor and reduced tyrosinase protein expression. Further investigation showed that fucoidan activated the extracellular signal-regulated kinase (ERK) pathway, suggesting a possible mechanism for the inhibition of melanin synthesis. Treatment with PD98059, a specific ERK inhibitor, resulted in the recovery of melanin production. Taken together, these findings suggest that fucoidan inhibits melanogenesis via ERK phosphorylation.
Collapse
Affiliation(s)
- Yu Seok Song
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea. ; Department of Convergence Medicine and Pharmaceutical Biosciences, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Marie Carmel Balcos
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Hye-Young Yun
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Kwang Jin Baek
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Nyoun Soo Kwon
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Myo-Kyoung Kim
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Dong-Seok Kim
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| |
Collapse
|
83
|
|
84
|
[6]-Shogaol inhibits α-MSH-induced melanogenesis through the acceleration of ERK and PI3K/Akt-mediated MITF degradation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:842569. [PMID: 25045707 PMCID: PMC4090493 DOI: 10.1155/2014/842569] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/08/2014] [Accepted: 05/27/2014] [Indexed: 12/18/2022]
Abstract
[6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF) were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1) and microphthalmia-associated transcriptional factor (MITF). In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126) or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor) (LY294002). Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH-) induced melanogenesis through the acceleration of extracellular responsive kinase (ERK) and phosphatidylinositol-3-kinase- (PI3K/Akt-) mediated MITF degradation.
Collapse
|
85
|
Ng LT, Lin LT, Chen CL, Chen HW, Wu SJ, Lin CC. Anti-melanogenic effects of δ-tocotrienol are associated with tyrosinase-related proteins and MAPK signaling pathway in B16 melanoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:978-983. [PMID: 24680613 DOI: 10.1016/j.phymed.2014.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/21/2014] [Accepted: 03/02/2014] [Indexed: 06/03/2023]
Abstract
Tocotrienols are known to possess potent antioxidant, anticancer, and cholesterol lowering activities. Being able to rapidly penetrate the skin, these vitamin E isoforms have been explored for potential treatment against melanoma. This study aimed to elucidate the mechanism involved in the anti-melanogenic effects of δ-tocotrienol (δT3) in B16 melanoma cells. Results showed that at 20 μM of δT3 significantly inhibited melanin formation and ROS generation. Treatment with δT3 also effectively suppressed the expression of melanogenesis-related proteins, including MC1R, MITF, TYRP-1, and TYRP-2. More importantly, we observed that the mitogen-activated protein kinase (MAPK) pathway was involved in mediating δT3's inhibitory effect against melanin production. Specifically, δT3 treatment markedly induced the activation of extracellular signal-regulated kinases (ERK). The use of ERK activation inhibitor (PD98059) abrogated the δT3-mediated downregulation expression melanogenesis-related proteins and restored melanin production. Furthermore, siRNA targeting ERK effectively blocked the δT3-induced repression of tyrosinase and TYRP-1 expression. These results suggest that δT3's inhibitory effect against melanogenesis is mediated by the activation of ERK signaling, thereby resulting in downstream repression of melanogenesis-related proteins and the subsequent melanin production. These data provide insight to δT3's effect and the targeting of ERK signaling for treatment against melanogenesis.
Collapse
Affiliation(s)
- Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiu-Lan Chen
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Hsiu-Wen Chen
- Department of Nutritional Health, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Shu-Jing Wu
- Department of Nutritional Health, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan.
| | - Chun-Ching Lin
- Faculty of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
86
|
Li H, Kim J, Hahn HG, Yun J, Jeong HS, Yun HY, Baek KJ, Kwon NS, Min YS, Park KC, Kim DS. KHG26792 Inhibits Melanin Synthesis in Mel-Ab Cells and a Skin Equivalent Model. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:249-54. [PMID: 24976765 PMCID: PMC4071178 DOI: 10.4196/kjpp.2014.18.3.249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/05/2023]
Abstract
The purpose of this study is to characterize the effects of KHG26792 (3-(naphthalen-2-yl(propoxy) methyl)azetidine hydrochloride), a potential skin whitening agent, on melanin synthesis and identify the underlying mechanism of action. Our data showed that KHG26792 significantly reduced melanin synthesis in a dose-dependent manner. Additionally, KHG26792 downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase, the rate-limiting enzyme in melanogenesis, although tyrosinase was not inhibited directly. KHG26792 activated extracellular signal-regulated kinase (ERK), whereas an ERK pathway inhibitor, PD98059, rescued KHG26792-induced hypopigmentation. These results suggest that KHG26792 decreases melanin production via ERK activation. Moreover, the hypopigmentary effects of KHG26792 were confirmed in a pigmented skin equivalent model using Cervi cornus Colla (deer antler glue), in which the color of the pigmented artificial skin became lighter after treatment with KHG26792. In summary, our findings suggest that KHG26792 is a novel skin whitening agent.
Collapse
Affiliation(s)
- Hailan Li
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Jandi Kim
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Hoh-Gyu Hahn
- Organic Chemistry Laboratory, Korea Institute of Science & Technology, Seoul 136-791, Korea
| | - Jun Yun
- Organic Chemistry Laboratory, Korea Institute of Science & Technology, Seoul 136-791, Korea
| | - Hyo-Soon Jeong
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Hye-Young Yun
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Kwang Jin Baek
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Nyoun Soo Kwon
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Young Sil Min
- Department of Herb Industry, Jungwon University, Goesan 367-805, Korea
| | - Kyoung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Dong-Seok Kim
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| |
Collapse
|
87
|
Fermented Rice Bran Downregulates MITF Expression and Leads to Inhibition of α-MSH-Induced Melanogenesis in B16F1 Melanoma. Biosci Biotechnol Biochem 2014; 73:1704-10. [DOI: 10.1271/bbb.80766] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
88
|
Lopez-Bergami P. The role of mitogen- and stress-activated protein kinase pathways in melanoma. Pigment Cell Melanoma Res 2014; 24:902-21. [PMID: 21914141 DOI: 10.1111/j.1755-148x.2011.00908.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent discoveries have increased our comprehension of the molecular signaling events critical for melanoma development and progression. Many oncogenes driving melanoma have been identified, and most of them exert their oncogenic effects through the activation of the RAF/MEK/ERK mitogen-activated protein kinase (MAPK) pathway. The c-Jun N-terminal kinase (JNK) and p38 MAPK pathways are also important in melanoma, but their precise role is not clear yet. This review summarizes our current knowledge on the role of the three main MAPK pathways, extracellular regulated kinase (ERK), JNK, and p38, and their impact on melanoma biology. Although the results obtained with BRAF inhibitors in melanoma patients are impressive, several mechanisms of acquired resistance have emerged. To overcome this obstacle constitutes the new challenge in melanoma therapy. Given the major role that MAPKs play in melanoma, understanding their functions and the interconnection among them and with other signaling pathways represents a step forward toward this goal.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Instituto de Medicina y Biología Experimental, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
89
|
Drakakis G, Hendry AE, Hanson K, Brewerton SC, Bodkin MJ, Evans DA, Wheeler GN, Bender A. Comparative mode-of-action analysis following manual and automated phenotype detection in Xenopus laevis. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00313b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Given the increasing utilization of phenotypic screens in drug discovery also the subsequent mechanism-of-action analysis gains increased attention.
Collapse
Affiliation(s)
- Georgios Drakakis
- Unilever Centre for Molecular Science Informatics
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Adam E. Hendry
- School of Biological Sciences
- University of East Anglia
- Norwich
- UK
| | | | | | | | | | | | - Andreas Bender
- Unilever Centre for Molecular Science Informatics
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| |
Collapse
|
90
|
Kim EH, Kim MK, Yun HY, Baek KJ, Kwon NS, Park KC, Kim DS. Menadione (Vitamin K3) decreases melanin synthesis through ERK activation in Mel-Ab cells. Eur J Pharmacol 2013; 718:299-304. [DOI: 10.1016/j.ejphar.2013.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/10/2013] [Accepted: 08/16/2013] [Indexed: 11/29/2022]
|
91
|
Cinnamomum cassia essential oil inhibits α-MSH-induced melanin production and oxidative stress in murine B16 melanoma cells. Int J Mol Sci 2013; 14:19186-201. [PMID: 24051402 PMCID: PMC3794828 DOI: 10.3390/ijms140919186] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 01/24/2023] Open
Abstract
Essential oils extracted from aromatic plants exhibit important biological activities and have become increasingly important for the development of aromatherapy for complementary and alternative medicine. The essential oil extracted from Cinnamomum cassia Presl (CC-EO) has various functional properties; however, little information is available regarding its anti-tyrosinase and anti-melanogenic activities. In this study, 16 compounds in the CC-EO have been identified; the major components of this oil are cis-2-methoxycinnamic acid (43.06%) and cinnamaldehyde (42.37%). CC-EO and cinnamaldehyde exhibited anti-tyrosinase activities; however, cis-2-methoxycinnamic acid did not demonstrate tyrosinase inhibitory activity. In murine B16 melanoma cells stimulated with α-melanocyte-stimulating hormone (α-MSH), CC-EO and cinnamaldehyde not only reduced the melanin content and tyrosinase activity of the cells but also down-regulated tyrosinase expression without exhibiting cytotoxicity. Moreover, CC-EO and cinnamaldehyde decreased thiobarbituric acid-reactive substance (TBARS) levels and restored glutathione (GSH) and catalase activity in the α-MSH-stimulated B16 cells. These results demonstrate that CC-EO and its major component, cinnamaldehyde, possess potent anti-tyrosinase and anti-melanogenic activities that are coupled with antioxidant properties. Therefore, CC-EO may be a good source of skin-whitening agents and may have potential as an antioxidant in the future development of complementary and alternative medicine-based aromatherapy.
Collapse
|
92
|
Chao HC, Najjaa H, Villareal MO, Ksouri R, Han J, Neffati M, Isoda H. Arthrophytum scoparium inhibits melanogenesis through the down-regulation of tyrosinase and melanogenic gene expressions in B16 melanoma cells. Exp Dermatol 2013; 22:131-6. [PMID: 23362872 DOI: 10.1111/exd.12089] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2013] [Indexed: 12/16/2022]
Abstract
Melanin performs a crucial role in protecting the skin against harmful ultraviolet light. However, hyperpigmentation may lead to aesthetic problems and disorders such as solar lentigines (SL), melasma, postinflammatory hyperpigmentation and even melanoma. Arthrophytum scoparium grows in the desert in the North African region, and given this type of environment, A. scoparium exhibits adaptations for storing water and produces useful bioactive factors. In this study, the effect of A. scoparium ethanol extract (ASEE) on melanogenesis regulation in B16 murine melanoma cells was investigated. Cells treated with 0.017% (w/v) ASEE showed a significant inhibition of melanin biosynthesis in a time-dependent manner without cytotoxicity. To clarify the mechanism behind the ASEE-treated melanogenesis regulation, the expressions of tyrosinase enzyme and melanogenesis-related genes were determined. Results showed that the expression of tyrosinase enzyme was significantly decreased and Tyr, Trp-1, Mitf and Mc1R mRNA expressions were significantly down-regulated. LC-ESI-TOF-MS analysis of the extract identified the presence of six phenolic compounds: coumaric acid, cinnamic acid, chrysoeriol, cyanidin, catechol and caffeoylquinic acid. The melanogenesis inhibitory effect of ASEE may therefore be attributed to its catechol and tetrahydroisoquinoline derivative content. We report here that ASEE can inhibit melanogenesis in a time-dependent manner by decreasing the tyrosinase protein and Tyr, Trp-1, Mitf and Mc1R mRNA expressions. This is the first report on the antimelanogenesis effect of A. scoparium and on its potential as a whitening agent.
Collapse
Affiliation(s)
- Hui-Chia Chao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
93
|
Hwang JM, Kuo HC, Lin CT, Kao ES. Inhibitory effect of liposome-encapsulated anthocyanin on melanogenesis in human melanocytes. PHARMACEUTICAL BIOLOGY 2013; 51:941-947. [PMID: 23570521 DOI: 10.3109/13880209.2013.771376] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Melanin plays an important role in preventing ultraviolet (UV) light-induced skin damage. Overexposure to UV radiation can lead to the formation of free radicals and trigger inflammation and hyperpigmentation of the skin. Anthocyanin can combat excessive free radicals in the body and can reduce the occurrence of inflammation. However, anthocyanin molecules are unstable and highly susceptible to degradation. OBJECTIVE The present study aims to elucidate the effects of liposome-capsulated anthocyanin (LCA) from Hibiscus sabdariffa Linn. on melanogenesis in human A375 melanocytes. MATERIALS AND METHODS The effects of LCA with various doses (5-50 mg/mL) on cell viability, melanin content, tyrosinase activity, expression of the tyrosinase and microphthalmia-associated transcription factor (MITF) were measured. RESULTS Anthocyanin exhibits scavenging activity on DPPH radical with the inhibitory rate of 11 and 24% at 20 and 50 mg/mL concentration treatment, respectively, and inhibitory effects on melanin production by 8, 14, 23 and 30% at 5, 10, 20 and 50 mg/mL concentration treatment, respectively. However, LCA has enhanced DPPH scavenging activity (64 and 76% at 20 and 50 mg/mL concentration treatment, respectively) and inhibitory effects against melanin synthesis (23, 35, 43 and 60% at 5, 10, 20 and 50 mg/mL concentration treatment, respectively). Moreover, anthocyanin-inhibited melanin synthesis occurs through the inhibition of tyrosinase enzymatic activity and suppression of the protein expression of tyrosinase and MITF. DISCUSSION AND CONCLUSION Liposome encapsulation increases the stabilization of anthocyanin and the inhibition of melanogenesis. Our findings indicate that LCA may be suitable as a photoprotective agent for the skin.
Collapse
Affiliation(s)
- Jin-Ming Hwang
- School of Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
94
|
Activation of MITF by Argan Oil Leads to the Inhibition of the Tyrosinase and Dopachrome Tautomerase Expressions in B16 Murine Melanoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:340107. [PMID: 23935660 PMCID: PMC3723062 DOI: 10.1155/2013/340107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 12/26/2022]
Abstract
Argan (Argania spinosa L.) oil has been used for centuries in Morocco as cosmetic oil to maintain a fair complexion and to cure skin pimples and chicken pox pustules scars. Although it is popular, the scientific basis for its effect on the skin has not yet been established. Here, the melanogenesis regulatory effect of argan oil was evaluated using B16 murine melanoma cells. Results of melanin assay using B16 cells treated with different concentrations of argan oil showed a dose-dependent decrease in melanin content. Western blot results showed that the expression levels of tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT) proteins were decreased. In addition, there was an increase in the activation of MITF and ERK1/2. Real-time PCR results revealed a downregulation of Tyr, Trp1, Dct, and Mitf mRNA expressions. Argan oil treatment causes MITF phosphorylation which subsequently inhibited the transcription of melanogenic enzymes, TYR and DCT. The inhibitory effect of argan oil on melanin biosynthesis may be attributed to tocopherols as well as the synergistic effect of its components. The results of this study provide the scientific basis for the traditionally established benefits of argan oil and present its therapeutic potential against hyperpigmentation disorders.
Collapse
|
95
|
Geranylgeranylacetone inhibits melanin synthesis via ERK activation in Mel-Ab cells. Life Sci 2013; 93:226-32. [PMID: 23792203 DOI: 10.1016/j.lfs.2013.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/18/2013] [Accepted: 06/10/2013] [Indexed: 12/21/2022]
Abstract
AIMS Geranylgeranylacetone (GGA) has shown cytoprotective activity through induction of a 70-kDa heat shock protein (HSP70). Although HSP70 is reported to regulate melanogenesis, the effects of GGA on melanin synthesis in melanocytes have not been previously studied. Therefore, this study investigated the effects of GGA on melanogenesis and the related signaling pathways. MAIN METHODS Melanin content and tyrosinase activities were measured in Mel-Ab cells. GGA-induced signal transduction pathways were investigated by western blot analysis. KEY FINDINGS Our results showed that GGA significantly decreased melanin content in a concentration-dependent manner. Similarly, GGA reduced tyrosinase activity dose-dependently, but it did not directly inhibit tyrosinase. Western blot analysis indicated that GGA downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase protein expression, whereas it increased the phosphorylation of extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR). Furthermore, a specific ERK pathway inhibitor, PD98059, blocked GGA-induced melanin reduction and then prevented downregulation of MITF and tyrosinase by GGA. However, a specific mTOR inhibitor, rapamycin, only slightly restored inhibition of melanin production by GGA, indicating that mTOR signaling is not a key mechanism regulating the inhibition of melanin production. SIGNIFICANCE These findings suggest that activation of ERK by GGA reduces melanin synthesis in Mel-Ab cells through downregulation of MITF and tyrosinase expression.
Collapse
|
96
|
Liver X receptor activation inhibits melanogenesis through the acceleration of ERK-mediated MITF degradation. J Invest Dermatol 2012; 133:1063-71. [PMID: 23223141 DOI: 10.1038/jid.2012.409] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Liver X receptors (LXRs) are nuclear receptors that act as ligand-activated transcription factors regulating lipid metabolism and inflammation. In the skin, activation of LXRs stimulates differentiation of keratinocytes and augments lipid synthesis in sebocytes. However, the function of LXRs in melanocytes remains largely unknown. We investigated whether LXR activation would affect melanogenesis. In human primary melanocytes, MNT-1, and B16 melanoma cells, TO901317, a synthetic LXR ligand, inhibited melanogenesis. Small interfering RNA (siRNA) experiments revealed the dominant role of LXRβ in TO901317-mediated antimelanogenesis. Enzymatic activities of tyrosinase were unaffected, but the expression of tyrosinase, tyrosinase-related protein-1 (TRP-1), and TRP-2 was suppressed by TO901317. Expressions of microphthalmia-associated transcription factor (MITF), a master transcriptional regulator of melanogenesis, and cAMP-responsive element-binding activation were not affected. It is noteworthy that the degradation of MITF was accelerated by TO901317. Extracellular signal-regulated kinase (ERK) contributed to TO901317-induced antimelanogenesis, which was evidenced by recovery of melanogenesis with ERK inhibitor. Other LXR ligands, 22(R)-hydroxycholesterol (22(R)HC) and GW3965, also activated ERK and suppressed melanogenesis. The intermediary role of Ras was confirmed in TO901317-induced ERK phosphorylation. Finally, antimelanogenic effects of TO901317 were confirmed in vivo in UVB-tanning model in brown guinea pigs, providing a previously unreported line of evidence that LXRs may be important targets for antimelanogenesis.
Collapse
|
97
|
|
98
|
Jeong HS, Choi HR, Yun HY, Baek KJ, Kwon NS, Park KC, Kim DS. Ceramide PC102 inhibits melanin synthesis via proteasomal degradation of microphthalmia-associated transcription factor and tyrosinase. Mol Cell Biochem 2012. [PMID: 23203344 DOI: 10.1007/s11010-012-1530-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A few types of ceramide are reported to decrease melanin synthesis. In the present study, we examined the effects of an artificial ceramide analog, PC102, on melanogenesis using a spontaneously immortalized melanocyte cell line (Mel-Ab). PC102 is currently used as a moisturizing additive in a variety of cosmetics. Our data showed that PC102 inhibited melanin production and tyrosinase activity in a dose-dependent manner, but did not directly affect tyrosinase activity. Microphthalmia-associated transcription factor (MITF), tyrosinase, and β-catenin protein levels decreased after 48 h of PC102 treatment. In contrast, PC102 did not decrease MITF, tyrosinase, and β-catenin mRNA levels. Therefore, we investigated whether the decrease in MITF and tyrosinase by PC102 is due to proteasomal degradation. MG132, a proteasomal inhibitor, completely abolished tyrosinase downregulation due to PC102 and partially reduced the downregulation of MITF and β-catenin due to PC102. Moreover, MG132 abrogated the inhibition of melanin synthesis by PC102. Taken together, our data suggest that PC102 may inhibit melanin synthesis through MITF and tyrosinase degradation.
Collapse
Affiliation(s)
- Hyo-Soon Jeong
- Department of Biochemistry, Chung-Ang University College of Medicine, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
99
|
Liu H, Sui X, Li X, Li Y. Lyoniresinol inhibits melanogenic activity through the induction of microphthalmia-associated transcription factor and extracellular receptor kinase activation. Mol Cell Biochem 2012; 373:211-6. [DOI: 10.1007/s11010-012-1492-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
|
100
|
Abstract
Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme, tyrosinase, catalyzes the first and only rate-limiting steps in melanogenesis, and the down-regulation of enzyme activity is the most reported method for the inhibition of melanogenesis. Because of the cosmetically important issue of hyperpigmentation, there is a big demand for melanogenesis inhibitors. This encourages researchers to seek potent melanogenesis inhibitors for cosmetic uses. This article reviews melanogenesis inhibitors that have been recently discovered from natural sources. The reaction mechanisms of the inhibitors on tyrosinase activity are also discussed.
Collapse
|