51
|
Massarwa R, Schejter ED, Shilo BZ. Apical secretion in epithelial tubes of the Drosophila embryo is directed by the Formin-family protein Diaphanous. Dev Cell 2009; 16:877-88. [PMID: 19531358 DOI: 10.1016/j.devcel.2009.04.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 03/15/2009] [Accepted: 04/21/2009] [Indexed: 01/19/2023]
Abstract
Apical localization of filamentous actin (F-actin) is a common feature of epithelial tubes in multicellular organisms. However, its origins and function are not known. We demonstrate that the Diaphanous (Dia)/Formin actin-nucleating factor is required for generation of apical F-actin in diverse types of epithelial tubes in the Drosophila embryo. Dia itself is apically localized both at the RNA and protein levels, and apical localization of its activators, including Rho1 and two guanine exchange factor proteins (Rho-GEFs), contributes to its activity. In the absence of apical actin polymerization, apical-basal polarity and microtubule organization of tubular epithelial cells remain intact; however, secretion through the apical surface to the lumen of tubular organs is blocked. Apical secretion also requires the Myosin V (MyoV) motor, implying that secretory vesicles are targeted to the apical membrane by MyoV-based transport, along polarized actin filaments nucleated by Dia. This mechanism allows efficient utilization of the entire apical membrane for secretion.
Collapse
Affiliation(s)
- R'ada Massarwa
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
52
|
Jung SR, Kim MH, Hille B, Koh DS. Control of granule mobility and exocytosis by Ca2+ -dependent formation of F-actin in pancreatic duct epithelial cells. Traffic 2009; 10:392-410. [PMID: 19192247 PMCID: PMC3049446 DOI: 10.1111/j.1600-0854.2009.00884.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) triggers exocytosis of secretory granules in pancreatic duct epithelia. In this study, we find that the signal also controls granule movement. Motions of fluorescently labeled granules stopped abruptly after a [Ca(2+)](i) increase, kinetically coincident with formation of filamentous actin (F-actin) in the whole cytoplasm. At high resolution, the new F-actin meshwork was so dense that cellular structures of granule size appeared physically trapped in it. Depolymerization of F-actin with latrunculin B blocked both the F-actin formation and the arrest of granules. Interestingly, when monitored with total internal reflection fluorescence microscopy, the immobilized granules still moved slowly and concertedly toward the plasma membrane. This group translocation was abolished by blockers of myosin. Exocytosis measured by microamperometry suggested that formation of a dense F-actin meshwork inhibited exocytosis at small Ca(2+) rises <1 microm. Larger [Ca(2+)](i) rises increased exocytosis because of the co-ordinate translocation of granules and fusion to the membrane. We propose that the Ca(2+)-dependent freezing of granules filters out weak inputs but allows exocytosis under stronger inputs by controlling granule movements.
Collapse
Affiliation(s)
- Seung-Ryoung Jung
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA
- Department of Physics, POSTECH, Pohang, Kyungbuk 790-784, Korea
| | - Mean-Hwan Kim
- Department of Physics, POSTECH, Pohang, Kyungbuk 790-784, Korea
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA
| | - Duk-Su Koh
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA
- Department of Physics, POSTECH, Pohang, Kyungbuk 790-784, Korea
| |
Collapse
|
53
|
Xie J, Marchelletta RR, Thomas PB, Jacobs DT, Yarber FA, Cheney RE, Hamm-Alvarez SF, Trousdale MD. Transduced viral IL-10 is exocytosed from lacrimal acinar secretory vesicles in a myosin-dependent manner in response to carbachol. Exp Eye Res 2009; 88:467-78. [PMID: 19056381 PMCID: PMC2656410 DOI: 10.1016/j.exer.2008.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/17/2008] [Accepted: 10/29/2008] [Indexed: 01/16/2023]
Abstract
The purpose of this study was to determine the intracellular trafficking and release pathways for the therapeutic protein, viral IL-10 (vIL-10), from transduced acinar epithelial cells from rabbit lacrimal gland. Primary cultured rabbit lacrimal gland acinar cells (LGACs) were transduced with adenovirus serotype 5 containing viral interleukin-10 (AdvIL-10). The distribution of vIL-10 was assessed by confocal fluorescence microscopy. Carbachol (CCH)-stimulated release of vIL-10 was quantified by ELISA. vIL-10 localization and exocytosis was probed in response to treatments with agents modulating actin- and myosin-based transport. vIL-10 immunoreactivity was detected in large intracellular vesicles in transduced LGAC. vIL-10 was partially co-localized with biosynthetic but not endosomal compartment markers. vIL-10 release was sensitive to CCH, and the kinetics of release showed an initial burst phase that was similar but not identical to that of the secretory protein, beta-hexosaminidase. Disassembly of actin filaments with latrunculin B significantly increased CCH-stimulated vIL-10 secretion, suggesting that vIL-10 was released from stores sequestered beneath the subapical actin barrier. That release required the activity of actin-dependent myosin motors previously implicated in secretory vesicle exocytosis was confirmed by findings that CCH-stimulated vIL-10 release was reduced by inhibition of non-muscle myosin 2 and myosin 5c function, using ML-7 and overexpression of dominant negative myosin 5c, respectively. These results suggest that the majority of vIL-10 transgene product is packaged into a subpopulation of secretory vesicles that utilize actin-dependent myosin motors for aspects of actin coat assembly, compound fusion and exocytosis at the apical plasma membrane in response to CCH stimulation.
Collapse
Affiliation(s)
- Jiansong Xie
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, USA
| | - Ronald R. Marchelletta
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, USA
| | - Padmaja B. Thomas
- Department of Ophthalmology, University of Southern California, USA
- Doheny Eye Institute, University of Southern California, USA
| | - Damon T. Jacobs
- Department of Cell and Molecular Physiology, University of North Carolina, USA
| | - Francie A. Yarber
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, USA
| | - Richard E. Cheney
- Department of Cell and Molecular Physiology, University of North Carolina, USA
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, USA
- Department of Ophthalmology, University of Southern California, USA
| | - Melvin D. Trousdale
- Department of Ophthalmology, University of Southern California, USA
- Doheny Eye Institute, University of Southern California, USA
| |
Collapse
|
54
|
Bhat P, Thorn P. Myosin 2 maintains an open exocytic fusion pore in secretory epithelial cells. Mol Biol Cell 2009; 20:1795-803. [PMID: 19158378 DOI: 10.1091/mbc.e08-10-1048] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Many studies have implicated F-actin and myosin 2 in the control of regulated secretion. Most recently, evidence suggests a role for the microfilament network in regulating the postfusion events of vesicle dynamics. This is of potential importance as postfusion behavior can influence the loss of vesicle content and may provide a new target for drug therapy. We have investigated the role of myosin 2 in regulating exocytosis in secretory epithelial cells by using novel assays to determine the behavior of the fusion pore in individual granules. We immunolocalize myosin 2A to the apical region of pancreatic acinar cells, suggesting it is this isoform that plays a role in granule exocytosis. We further show myosin 2 phosphorylation increased on cell stimulation, consistent with a regulatory role in secretion. Importantly, in a single-cell, single-granule secretion assay, neither the myosin 2 inhibitor (-)-blebbistatin nor the myosin light chain kinase inhibitor ML-9 had any effect on the numbers of granules stimulated to fuse after cell stimulation. These data indicate that myosin 2, if it has any action on secretion, must be targeting postfusion granule behavior. This interpretation is supported by direct study of fusion pore opening in which we show that (-)-blebbistatin and ML-9 promote fusion pore closure and decrease fusion pore lifetimes. Our work now adds to a growing body of evidence showing that myosin 2 is an essential regulator of postfusion granule behavior. In particular, in the case of the secretory epithelial cells, myosin 2 activity is necessary to maintain fusion pore opening.
Collapse
Affiliation(s)
- Purnima Bhat
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, QLD 4072, Australia
| | | |
Collapse
|
55
|
Tandler B. Serous cells in the parotid glands of two species of tamarins: polarized secretory granules. Anat Rec (Hoboken) 2008; 291:1254-61. [PMID: 18780306 DOI: 10.1002/ar.20744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The parotid glands of two species of tamarins were examined by electron microscopy. Endpiece cells are typical in appearance, with an extensive rough endoplasmic reticulum, prominent Golgi apparatuses, and numerous serous granules. In the saddleback tamarin, the secretory granules contain a dense spherule pressed against the inner aspect of the limiting membrane, leading to a surface bulge. During the course of merocrine secretion (a form of exocytosis), such morphologically polarized granules approach the luminal plasma membranes with the bulge in the vanguard. It is these protuberances that fuse with the plasmalemma. In contrast, although serous granules in the cotton top tamarin contain a spherule, they lack surface bulges and their docking on luminal membranes seems to be a random event with respect to their surface morphology. Moreover, certain other types of cells in a taxonomically wide spectrum of species have granules with a less obvious structural polarity, as well as cells whose granules lack morphological polarity but have a functional polarity that comes into play during exocytosis of such secretory granules.
Collapse
Affiliation(s)
- Bernard Tandler
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4905, USA.
| |
Collapse
|
56
|
Abstract
Major advances in understanding regulated mucin secretion from airway goblet cells have been made in the past decade in the areas of pharmacology and basic cell biology. For instance, it is now appreciated that nucleotide agonists acting locally through P2Y purinoceptors on apical membranes of surface goblet cells provide the major regulatory system for mucin secretion. Similarly, Clara cells, the primary secretory cell in the mouse airways (and human small airways), are now recognized as major mucin-secreting cells. In Clara cells, the relative lack of staining for mucosubstances reflects essentially equal baseline rates of mucin synthesis and secretion, with little to no accumulation of mucin granules in storage pools. During mucous metaplasia induced under inflammatory conditions, mucin synthesis is massively upregulated in Clara cells, and stored mucin granules come to dominate the secretory cell phenotype. More importantly, we have seen a transition in the past few years from a pharmacological focus on regulated mucin secretion to a more molecular mechanistic focus that has great promise going forward. In part, these advances are occurring through the use of well-differentiated primary human bronchial epithelial cell cultures, but recent work in mouse models perhaps has had the most important impact. Emerging data from Munc13-2- and synaptotagmin 2-deficient mouse models represent the first direct, molecular-level manipulations of proteins involved in regulated secretory cell mucin secretion. These new data indicate that Munc13-2 is responsible for regulating a baseline mucin secretory pathway in the airways and is not essential for purinergic agonist-induced mucin secretion. In contrast, synaptotagmin 2, a fast Ca2+ sensor for the SNARE complex, is essential for regulated secretion. Interestingly, these early results suggest that there are two pathways for excocytic mucin release from goblet cells.
Collapse
Affiliation(s)
- C William Davis
- Cystic Fibrosis/Pulmonary Research & Treatment Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.
| | | |
Collapse
|
57
|
Marchelletta RR, Jacobs DT, Schechter JE, Cheney RE, Hamm-Alvarez SF. The class V myosin motor, myosin 5c, localizes to mature secretory vesicles and facilitates exocytosis in lacrimal acini. Am J Physiol Cell Physiol 2008; 295:C13-28. [PMID: 18434623 DOI: 10.1152/ajpcell.00330.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We investigated the role of the actin-based myosin motor, myosin 5c (Myo5c) in vesicle transport in exocrine secretion. Lacrimal gland acinar cells (LGAC) are the major source for the regulated secretion of proteins from the lacrimal gland into the tear film. Confocal fluorescence and immunogold electron microscopy revealed that Myo5c was associated with secretory vesicles in primary rabbit LGAC. Upon stimulation of secretion with the muscarinic agonist, carbachol, Myo5c was also detected in association with actin-coated fusion intermediates. Adenovirus-mediated expression of green fluorescent protein (GFP) fused to the tail domain of Myo5c (Ad-GFP-Myo5c-tail) showed that this protein was localized to secretory vesicles. Furthermore, its expression induced a significant (P < or = 0.05) decrease in carbachol-stimulated release of two secretory vesicle content markers, secretory component and syncollin-GFP. Adenovirus-mediated expression of GFP appended to the full-length Myo5c (Ad-GFP-Myo5c-full) was used in parallel with adenovirus-mediated expression of GFP-Myo5c-tail in LGAC to compare various parameters of secretory vesicles labeled with either GFP-labeled protein in resting and stimulated LGAC. These studies revealed that the carbachol-stimulated increase in secretory vesicle diameter associated with compound fusion of secretory vesicles that was also exhibited by vesicles labeled with GFP-Myo5c-full was impaired in vesicles labeled with GFP-Myo5c-tail. A significant decrease in GFP labeling of actin-coated fusion intermediates was also seen in carbachol-stimulated LGAC transduced with GFP-Myo5c-tail relative to LGAC transduced with GFP-Myo5c-full. These results suggest that Myo5c participates in apical exocytosis of secretory vesicles.
Collapse
Affiliation(s)
- Ronald R Marchelletta
- Department Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
58
|
Evans E, Zhang W, Jerdeva G, Chen CY, Chen X, Hamm-Alvarez SF, Okamoto CT. Direct interaction between Rab3D and the polymeric immunoglobulin receptor and trafficking through regulated secretory vesicles in lacrimal gland acinar cells. Am J Physiol Cell Physiol 2008; 294:C662-74. [PMID: 18171724 PMCID: PMC4046641 DOI: 10.1152/ajpcell.00623.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lacrimal gland is responsible for tear production, and a major protein found in tears is secretory component (SC), the proteolytically cleaved fragment of the extracellular domain of the polymeric Ig receptor (pIgR), which is the receptor mediating the basal-to-apical transcytosis of polymeric immunoglobulins across epithelial cells. Immunofluorescent labeling of rabbit lacrimal gland acinar cells (LGACs) revealed that the small GTPase Rab3D, a regulated secretory vesicle marker, and the pIgR are colocalized in subapical membrane vesicles. In addition, the secretion of SC from primary cultures of LGACs was stimulated by the cholinergic agonist carbachol (CCH), and its release rate was very similar to that of other regulated secretory proteins in LGACs. In pull-down assays from resting LGACs, recombinant wild-type Rab3D (Rab3DWT) or the GDP-locked mutant Rab3DT36N both pulled down pIgR, but the GTP-locked mutant Rab3DQ81L did not. When the pull-down assays were performed in the presence of guanosine-5'-(gamma-thio)-triphosphate, GTP, or guanosine-5'-O-(2-thiodiphosphate), binding of Rab3DWT to pIgR was inhibited. In blot overlays, recombinant Rab3DWT bound to immunoprecipitated pIgR, suggesting that Rab3D and pIgR may interact directly. Adenovirus-mediated overexpression of mutant Rab3DT36N in LGACs inhibited CCH-stimulated SC release, and, in CCH-stimulated LGACs, pull down of pIgR with Rab3DWT and colocalization of pIgR with endogenous Rab3D were decreased relative to resting cells, suggesting that the pIgR-Rab3D interaction may be modulated by secretagogues. These data suggest that the novel localization of pIgR to the regulated secretory pathway of LGACs and its secretion therefrom may be affected by its novel interaction with Rab3D.
Collapse
Affiliation(s)
| | | | - Galina Jerdeva
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089-9121
| | - Chiao-Yu Chen
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089-9121
| | | | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089-9121
| | - Curtis T. Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089-9121
| |
Collapse
|
59
|
The role of actin remodeling in the trafficking of intracellular vesicles, transporters, and channels: focusing on aquaporin-2. Pflugers Arch 2007; 456:737-45. [DOI: 10.1007/s00424-007-0404-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 11/12/2007] [Accepted: 11/15/2007] [Indexed: 01/06/2023]
|
60
|
Larina O, Bhat P, Pickett JA, Launikonis BS, Shah A, Kruger WA, Edwardson JM, Thorn P. Dynamic regulation of the large exocytotic fusion pore in pancreatic acinar cells. Mol Biol Cell 2007; 18:3502-11. [PMID: 17596517 PMCID: PMC1951744 DOI: 10.1091/mbc.e07-01-0024] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 06/12/2007] [Accepted: 06/20/2007] [Indexed: 11/11/2022] Open
Abstract
Loss of granule content during exocytosis requires the opening of a fusion pore between the secretory granule and plasma membrane. In a variety of secretory cells, this fusion pore has now been shown to subsequently close. However, it is still unclear how pore closure is physiologically regulated and contentious as to how closure relates to granule content loss. Here, we examine the behavior of the fusion pore during zymogen granule exocytosis in pancreatic acinar cells. By using entry of high-molecular-weight dyes from the extracellular solution into the granule lumen, we show that the fusion pore has a diameter of 29-55 nm. We further show that by 5 min after granule fusion, many granules have a closed fusion pore with evidence indicating that pore closure is a prelude to endocytosis and that in granules with a closed fusion pore the chymotrypsinogen content is low. Finally, we show that latrunculin B treatment promotes pore closure, suggesting F-actin affects pore dynamics. Together, our data do not support the classical view in acinar cells that exocytosis ends with granule collapse. Instead, for many granules the fusion pore closes, probably as a transition to endocytosis, and likely involving an F-actin-dependent mechanism.
Collapse
Affiliation(s)
- Olga Larina
- *Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, United Kingdom; and
| | - Purnima Bhat
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - James A. Pickett
- *Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, United Kingdom; and
| | - Bradley S. Launikonis
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Amit Shah
- *Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, United Kingdom; and
| | - Wade A. Kruger
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - J. Michael Edwardson
- *Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, United Kingdom; and
| | - Peter Thorn
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
61
|
Selvam S, Thomas PB, Gukasyan HJ, Yu AS, Stevenson D, Trousdale MD, Mircheff AK, Schechter JE, Smith RE, Yiu SC. Transepithelial bioelectrical properties of rabbit acinar cell monolayers on polyester membrane scaffolds. Am J Physiol Cell Physiol 2007; 293:C1412-9. [PMID: 17699637 DOI: 10.1152/ajpcell.00200.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In our quest to develop a tissue-engineered tear secretory system, we have tried to demonstrate active transepithelial ion fluxes across rabbit lacrimal acinar cell monolayers on polyester membrane scaffolds to evaluate the bioelectrical properties of the cultured cells. Purified lacrimal gland acinar cells were seeded onto polyester membrane inserts and cultured to confluency. Morphological properties of the cell monolayers were evaluated by transmission electron microscopy and immunofluorescence staining for Na(+),K(+)-ATPase and the tight junction-associated protein occludin. Sections revealed cell monolayers with well-maintained epithelial cell polarity, i.e., presence of apical (AP) secretory granules, microvilli, and junctional complexes. Na(+),K(+)-ATPase was localized on both the basal-lateral and apical plasma membranes. The presence of tight cell junctions was demonstrated by a positive circumferential stain for occludin. Bioelectrical properties of the cell monolayers were studied in Ussing chambers under short-circuit conditions. Active ion fluxes were evaluated by inhibiting the short-circuit current (I(sc)) with a Na(+),K(+)-ATPase inhibitor, ouabain (100 microM; basal-lateral, BL), and under Cl(-)-free buffer conditions after carbachol stimulation (CCh; 100 microM). The directional apical secretion of Cl(-) was demonstrated through pharmacological analysis, using amiloride (1 mM; BL) and bumetanide (0.1 mM; BL), respectively. Regulated protein secretion was evaluated by measuring the beta-hexosaminidase catalytic activity in the AP culture medium in response to 100 microM basal CCh. In summary, rabbit lacrimal acinar cell monolayers generate a Cl(-)-dependent, ouabain-sensitive AP --> BL I(sc) in response to CCh, consistent with current models for Na(+)-dependent Cl(-) secretion.
Collapse
Affiliation(s)
- Shivaram Selvam
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Zhang Y, Wada J, Yasuhara A, Iseda I, Eguchi J, Fukui K, Yang Q, Yamagata K, Hiesberger T, Igarashi P, Zhang H, Wang H, Akagi S, Kanwar YS, Makino H. The role for HNF-1beta-targeted collectrin in maintenance of primary cilia and cell polarity in collecting duct cells. PLoS One 2007; 2:e414. [PMID: 17476336 PMCID: PMC1853234 DOI: 10.1371/journal.pone.0000414] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 04/10/2007] [Indexed: 11/18/2022] Open
Abstract
Collectrin, a homologue of angiotensin converting enzyme 2 (ACE2), is a type I transmembrane protein, and we originally reported its localization to the cytoplasm and apical membrane of collecting duct cells. Recently, two independent studies of targeted disruption of collectrin in mice resulted in severe and general defects in renal amino acid uptake. Collectrin has been reported to be under the transcriptional regulation by HNF-1α, which is exclusively expressed in proximal tubules and localized at the luminal side of brush border membranes. The deficiency of collectrin was associated with reduction of multiple amino acid transporters on luminal membranes. In the current study, we describe that collectrin is a target of HNF-1β and heavily expressed in the primary cilium of renal collecting duct cells. Collectrin is also localized in the vesicles near the peri-basal body region and binds to γ-actin-myosin II-A, SNARE, and polycystin-2-polaris complexes, and all of these are involved in intracellular and ciliary movement of vesicles and membrane proteins. Treatment of mIMCD3 cells with collectrin siRNA resulted in defective cilium formation, increased cell proliferation and apoptosis, and disappearance of polycystin-2 in the primary cilium. Suppression of collectrin mRNA in metanephric culture resulted in the formation of multiple longitudinal cysts in ureteric bud branches. Taken together, the cystic change and formation of defective cilium with the interference in the collectrin functions would suggest that it is necessary for recycling of the primary cilia-specific membrane proteins, the maintenance of the primary cilia and cell polarity of collecting duct cells. The transcriptional hierarchy between HNF-1β and PKD (polycystic kidney disease) genes expressed in the primary cilia of collecting duct cells has been suggested, and collectrin is one of such HNF-1β regulated genes.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Okayama, Japan
- Department of Nephrology, Third Hospital Hebei Medical University, Shijiazhuang, China
| | - Jun Wada
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Okayama, Japan
- * To whom correspondence should be addressed. E-mail:
| | - Akihiro Yasuhara
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Izumi Iseda
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Jun Eguchi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kenji Fukui
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Qin Yang
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kazuya Yamagata
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Thomas Hiesberger
- Department of Internal Medicine and Division of Basic Science, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Peter Igarashi
- Department of Internal Medicine and Division of Basic Science, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Hong Zhang
- Renal Division, Institute of Nephrology, Peking University First Hospital, Peking University, Beijing, China
| | - Haiyan Wang
- Renal Division, Institute of Nephrology, Peking University First Hospital, Peking University, Beijing, China
| | - Shigeru Akagi
- Northwestern University, The Feinberg School of Medicine, Department of Pathology, Chicago, Illinois, United States of America
| | - Yashpal S. Kanwar
- Northwestern University, The Feinberg School of Medicine, Department of Pathology, Chicago, Illinois, United States of America
| | - Hirofumi Makino
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
63
|
Wang Y, Chiu CT, Nakamura T, Walker AM, Petridou B, Trousdale MD, Hamm-Alvarez SF, Schechter JE, Mircheff AK. Elevated prolactin redirects secretory vesicle traffic in rabbit lacrimal acinar cells. Am J Physiol Endocrinol Metab 2007; 292:E1122-34. [PMID: 17164431 DOI: 10.1152/ajpendo.00381.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During pregnancy, lymphocytes infiltrating the rabbit lacrimal gland disperse to the interacinar space from their normal focal concentrations, basal fluid secretion decreases, pilocarpine-induced fluid secretion increases, and stimulated fluid protein concentration decreases. Ductal epithelial cell prolactin (PRL) content increases and redistributes from the apical to the basal-lateral cytoplasm. A replication-incompetent adenovirus vector for rabbit PRL (AdPRL) was used to test the hypothesis that increased intracrine/autocrine PRL signaling alters secretory protein traffic in an ex vivo lacrimal acinar cell model. AdPRL had no discernable influence on microtubules or actin microfilaments or their responses to carbachol (CCh). Endogenous and transduced PRLs exhibited similar, nonpolarized, punctate distributions. Cells secreted PRL consititutively and at increased rates in response to CCh. In contrast, constitutive secretion of beta-hexosaminidase was negligible, suggesting that the constitutive pathway for PRL is relatively inaccessible to typical secretory proteins. AdPRL had no significant effect on total secretion of beta-hexosaminidase or syncollin-green fluorescent protein (GFP), a chimeric secretory protein construct. However, it reversed the polarized distributions of vesicles containing rab3D and syncollin-GFP. Live-cell imaging indicated that AdPRL redirected CCh-dependent syncollin-GFP exocytosis from the apical plasma membrane to the basal-lateral membrane. Elevated concentrations of exogenous rabbit PRL in the ambient medium elicited similar changes. These observations suggest that elevated PRL, as occurs in the physiological hyperprolactinemia of pregnancy, induces lacrimal epithelial cells to express a mixed exocrine/endocrine phenotype that secretes fluid to the acinus-duct lumen but secretes proteins to the underlying tissue space. This phenotype may contribute to the pregnancy-associated immunoarchitecture.
Collapse
Affiliation(s)
- Yanru Wang
- Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, 1333 San Pablo St., MMR 626, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
The study tested the hypothesis that estrogen controls epithelial paracellular resistance through modulation of myosin. The objective was to understand how estrogen modulates nonmuscle myosin-II-B (NMM-II-B), the main component of the cortical actomyosin in human epithelial cervical cells. Experiments used human cervical epithelial cells CaSki as a model, and end points were NMM-II-B phosphorylation, filamentation, and MgATPase activity. The results were as follows: 1) treatment with estrogen increased phosphorylation and MgATPase activity and decreased NMM-II-B filamentation; 2) estrogen effects could be blocked by antisense nucleotides for the estrogen receptor-alpha and by ICI-182,780, tamoxifen, and the casein kinase-II (CK2) inhibitor, 5,6-dichloro-1-beta-(D)-ribofuranosylbenzimidazole and attenuated by AG1478 and PD98059 (inhibitors of epithelial growth factor receptor and ERK/MAPK) but not staurosporine [blocker of protein kinase C (PKC)]; 3) treatments with the PKC activator sn-1,2-dioctanoyl diglyceride induced biphasic effect on NMM-II-B MgATPase activity: an increase at 1 nm to 1 microM and a decrease in activity at more than 1 microM; 4) sn-1,2-dioctanoyl diglyceride also decreased NMM-II-B filamentation in a monophasic and saturable dose dependence (EC(50) 1-10 microM); 5) when coincubated directly with purified NMM-II-B filaments, both CK2 and PKC decreased filamentation and increased MgATPase activity; 6) assays done on disassembled NMM-II-B filaments showed MgATPase activity in filaments obtained from estrogen-treated cells but not estrogen-depleted cells; and 7) incubations in vitro with CK2, but not PKC, facilitated MgATPase activity, even in disassembled NMM-II-B filaments. The results suggest that estrogen, in an effect mediated by estrogen receptor-alpha and CK2 and involving the epithelial growth factor receptor and ERK/MAPK cascades, increases NMM-II-B MgATPase activity independent of NMM-II-B filamentation status.
Collapse
Affiliation(s)
- George I Gorodeski
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
65
|
Fant M, Barerra-Saldana H, Dubinsky W, Poindexter B, Bick R. The PLAC1 protein localizes to membranous compartments in the apical region of the syncytiotrophoblast. Mol Reprod Dev 2007; 74:922-9. [PMID: 17186554 DOI: 10.1002/mrd.20673] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
PLAC1 is a trophoblast-specific gene that maps to a locus on the X-chromosome important to placental development. We have previously shown that PLAC1 gene expression is linked to trophoblast differentiation. The objective of this study was to define the localization of the PLAC1 polypeptide as a prerequisite to understanding its function. Polyclonal antibodies specific for the putative PLAC1 polypeptide were generated. The subcellular localization of PLAC1 in the trophoblast was examined by immunohistochemical analysis of human placenta complemented by immunoblot analysis of subcellular fractions. Brightfield immunohistochemical analysis of placental tissue indicated that the PLAC1 protein localizes to the differentiated syncytiotrophoblast in the apical region of the cell. Deconvlution immunofluorescence microscopy confirmed localization to the apical region of the syncytiotrophoblast. Its distribution included both intracellular compartments as well as loci in close association with the maternal-facing, microvillous brush border membrane (MVM). These findings were supported by immunoblot analysis of subcellular fractions. A 30 kDa band was associated with the microsomal fraction of placental lysates but not the mitochondrial, nuclear, or soluble fractions, suggesting PLAC1 is targeted to a membrane location. Plasma membranes were obtained from the fetal-facing, basal surface (BM) and the maternal-facing, MVM of the syncytiotrophoblast membrane. PLAC1 immunoreactivity was only detected in membrane fractions derived from the apical MVM consistent with immunohistochemical analyses. These data demonstrate that the PLAC1 protein is restricted primarily to the differentiated trophoblast, localizing to intracellular membranous compartment(s) in the apical region of the syncytiotrophoblast and associated with its apical, microvillous membrane surface.
Collapse
Affiliation(s)
- Michael Fant
- Department of Pediatrics, University of Texas Health Science Center, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
66
|
Selvam S, Thomas PB, Hamm-Alvarez SF, Schechter JE, Stevenson D, Mircheff AK, Trousdale* MD. Current status of gene delivery and gene therapy in lacrimal gland using viral vectors. Adv Drug Deliv Rev 2006; 58:1243-57. [PMID: 17056149 PMCID: PMC1773022 DOI: 10.1016/j.addr.2006.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 07/31/2006] [Indexed: 12/22/2022]
Abstract
Gene delivery is one of the biggest challenges in the field of gene therapy. It involves the efficient transfer of transgenes into somatic cells for therapeutic purposes. A few major drawbacks in gene delivery include inefficient gene transfer and lack of sustained transgene expression. However, the classical method of using viral vectors for gene transfer has circumvented some of these issues. Several kinds of viruses, including retrovirus, adenovirus, adeno-associated virus, and herpes simplex virus, have been manipulated for use in gene transfer and gene therapy applications. The transfer of genetic material into lacrimal epithelial cells and tissues, both in vitro and in vivo, has been critical for the study of tear secretory mechanisms and autoimmunity of the lacrimal gland. These studies will help in the development of therapeutic interventions for autoimmune disorders such as Sjögren's syndrome and dry eye syndromes which are associated with lacrimal dysfunction. These studies are also critical for future endeavors which utilize the lacrimal gland as a reservoir for the production of therapeutic factors which can be released in tears, providing treatment for diseases of the cornea and posterior segment. This review will discuss the developments related to gene delivery and gene therapy in the lacrimal gland using several viral vector systems.
Collapse
Affiliation(s)
- Shivaram Selvam
- Department of Chemical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Ocular Surface Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - Padmaja B. Thomas
- Ocular Surface Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - Sarah F. Hamm-Alvarez
- Department of Pharmaceutical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Joel E. Schechter
- Ocular Surface Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Douglas Stevenson
- Ocular Surface Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - Austin K. Mircheff
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Melvin D. Trousdale*
- Ocular Surface Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Corresponding Author: Doheny Eye Institute, 1450 San Pablo Street, #204, Los Angeles, CA, 90033 USA, Tel.: +1 323 442 6610, Fax: +1 323 442 6688, E-mail: (Melvin D. Trousdale)
| |
Collapse
|
67
|
Abstract
Early in evolution, the diversification of membrane-bound compartments that characterize eukaryotic cells was accompanied by the elaboration of molecular machineries that mediate intercompartmental communication and deliver materials to specific destinations. Molecular motors that move on tracks of actin filaments or microtubules mediate the movement of organelles and transport between compartments. The subjects of this review are the motors that power the transport steps along the endocytic and recycling pathways, their modes of attachment to cargo and their regulation.
Collapse
Affiliation(s)
- Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, 30 quai Ernest Ansermet, Sciences II, CH-1211-Genève-4, Switzerland.
| | | |
Collapse
|
68
|
Xie J, Chiang L, Contreras J, Wu K, Garner JA, Medina-Kauwe L, Hamm-Alvarez SF. Novel fiber-dependent entry mechanism for adenovirus serotype 5 in lacrimal acini. J Virol 2006; 80:11833-51. [PMID: 16987972 PMCID: PMC1642591 DOI: 10.1128/jvi.00857-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The established mechanism for infection of most cells with adenovirus serotype 5 (Ad5) involves fiber capsid protein binding to coxsackievirus-adenovirus receptor (CAR) at the cell surface, followed by penton base capsid protein binding to alpha(v) integrins, which triggers clathrin-mediated endocytosis of the virus. Here we determined the identity of the capsid proteins responsible for mediating Ad5 entry into the acinar epithelial cells of the lacrimal gland. Ad5 transduction of primary rabbit lacrimal acinar cells was inhibited by excess Ad5 fiber or knob (terminal region of the fiber) but not excess penton base. Investigation of the interactions of recombinant Ad5 penton base, fiber, and knob with lacrimal acini revealed that the penton base capsid protein remained surface associated, while the knob domain of the fiber capsid protein was rapidly internalized. Introduction of rabbit CAR-specific small interfering RNA (siRNA) into lacrimal acini under conditions that reduced intracellular CAR mRNA significantly inhibited Ad5 transduction, in contrast to a control (nonspecific) siRNA. Preincubation of Ad5 with excess heparin or pretreatment of acini with a heparinase cocktail each inhibited Ad5 transduction by a separate and apparently additive mechanism. Functional and imaging studies revealed that Ad5, fiber, and knob, but not penton base, stimulated macropinocytosis in acini and that inhibition of macropinocytosis significantly reduced Ad5 transduction of acini. However, inhibition of macropinocytosis did not reduce Ad5 uptake. We propose that internalization of Ad5 into lacrimal acini is through a novel fiber-dependent mechanism that includes CAR and heparan sulfate glycosaminoglycans and that the subsequent intracellular trafficking of Ad5 is enhanced by fiber-induced macropinocytosis.
Collapse
Affiliation(s)
- Jiansong Xie
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Wang X, Teng Y, Wang Q, Li X, Sheng X, Zheng M, Samaj J, Baluska F, Lin J. Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. PLANT PHYSIOLOGY 2006; 141:1591-603. [PMID: 16798949 PMCID: PMC1533916 DOI: 10.1104/pp.106.080168] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Evanescent wave excitation was used to visualize individual, FM4-64-labeled secretory vesicles in an optical slice proximal to the plasma membrane of Picea meyeri pollen tubes. A standard upright microscope was modified to accommodate the optics used to direct a laser beam at a variable angle. Under evanescent wave microscopy or total internal reflection fluorescence microscopy, fluorophores localized near the surface were excited with evanescent waves, which decay exponentially with distance from the interface. Evanescent waves with penetration depths of 60 to 400 nm were generated by varying the angle of incidence of the laser beam. Kinetic analysis of vesicle trafficking was made through an approximately 300-nm optical section beneath the plasma membrane using time-lapse evanescent wave imaging of individual fluorescently labeled vesicles. Two-dimensional trajectories of individual vesicles were obtained from the resulting time-resolved image stacks and were used to characterize the vesicles in terms of their average fluorescence and mobility, expressed here as the two-dimensional diffusion coefficient D2. The velocity and direction of vesicle motions, frame-to-frame displacement, and vesicle trajectories were also calculated. Analysis of individual vesicles revealed for the first time, to our knowledge, that two types of motion are present, and that vesicles in living pollen tubes exhibit complicated behaviors and oscillations that differ from the simple Brownian motion reported in previous investigations. Furthermore, disruption of the actin cytoskeleton had a much more pronounced effect on vesicle mobility than did disruption of the microtubules, suggesting that actin cytoskeleton plays a primary role in vesicle mobility.
Collapse
Affiliation(s)
- Xiaohua Wang
- Key Laboratory of Photosynthesis and Molecular Environment Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Puffer AB, Meschter EE, Musch MW, Goldstein L. Membrane trafficking factors are involved in the hypotonic activation of the taurine channel in the little skate (Raja erinacea) red blood cell. ACTA ACUST UNITED AC 2006; 305:594-601. [PMID: 16615100 DOI: 10.1002/jez.a.292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In response to volume expansion, red blood cells of the little skate (Raja erinacea) initially swell and then release small organic compounds and osmotically obligated water in what is called a regulatory volume decrease (RVD) to restore cell volume. One of the major intracellular solutes lost during this process is the non-metabolized beta amino acid taurine. This hypoosmotic-induced increase in cell taurine permeability requires the anion exchanger, skAE1. The abundance of this transporter increases on the surface plasma membrane by a process of exocytosis. The second-messenger pathways involved in exocytosis of skAE1 were investigated with the use of inhibitors which affect membrane trafficking. Hypoosmotic-stimulated taurine uptake was significantly decreased by 42% with wortmannin, a phosphatidylinositol 3-kinase (PI3 kinase) inhibitor. Additional evidence for the involvement of PI3K was obtained with a second inhibitor, LY294002, which decreased the hypoosmotic-stimulated taurine uptake by 28%. The state of actin is also involved, as the actin filament depolymerizer latrunculin B decreased hypoosmotic-stimulated taurine uptake by approximately 40%. Although hypoosmotic conditions did not stimulate changes in the distribution of actin between filamentous and globular forms, latrunculin stimulated a decrease in filamentous actin and increase in globular actin in both isoosmotic and hypoosmotic conditions. Disruptors of other potential cytoskeletal factors (myosin, kinesin, dynein, and microtubules) did not affect taurine uptake. The present results suggest that the exocytosis of skAE1 stimulated by hyposmotic-induced cell volume expansion requires activation of PI3 kinase and is regulated by the state of actin filaments.
Collapse
Affiliation(s)
- Amanda B Puffer
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
71
|
Wu K, Jerdeva GV, da Costa SR, Sou E, Schechter JE, Hamm-Alvarez SF. Molecular mechanisms of lacrimal acinar secretory vesicle exocytosis. Exp Eye Res 2006; 83:84-96. [PMID: 16530759 DOI: 10.1016/j.exer.2005.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/12/2005] [Accepted: 11/01/2005] [Indexed: 11/26/2022]
Abstract
The acinar epithelial cells of the lacrimal gland are responsible for the production, packaging and regulated exocytosis of tear proteins into ocular surface fluid. This review summarizes new findings on the mechanisms of exocytosis in these cells. Participating proteins are discussed within the context of different categories of trafficking effectors including targeting and specificity factors (rabs, SNAREs) and transport factors (microtubules, actin filaments and motor proteins). Recent information describing fundamental changes in basic exocytotic mechanisms in the NOD mouse, an animal model of Sjögren's syndrome, is presented.
Collapse
Affiliation(s)
- Kaijin Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Avenue, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|