51
|
Noe O, Filipiak L, Royfman R, Campbell A, Lin L, Hamouda D, Stanbery L, Nemunaitis J. Adenomatous polyposis coli in cancer and therapeutic implications. Oncol Rev 2021; 15:534. [PMID: 34267890 PMCID: PMC8256374 DOI: 10.4081/oncol.2021.534] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Inactivating mutations of the adenomatous polyposis coli (APC) gene and consequential upregulation of the Wnt signaling pathway are critical initiators in the development of colorectal cancer (CRC), the third most common cancer in the United States for both men and women. Emerging evidence suggests APCmutations are also found in gastric, breast and other cancers. The APC gene, located on chromosome 5q, is responsible for negatively regulating the b-catenin/Wnt pathway by creating a destruction complex with Axin/Axin2, GSK-3b, and CK1. In the event of an APC mutation, b-catenin accumulates, translocates to the cell nucleus and increases the transcription of Wnt target genes that have carcinogenic consequences in gastrointestinal epithelial stem cells. A literature review was conducted to highlight carcinogenesis related to APC mutations, as well as preclinical and clinical studies for potential therapies that target steps in inflammatory pathways, including IL-6 transduction, and Wnt pathway signaling regulation. Although a range of molecular targets have been explored in murine models, relatively few pharmacological agents have led to substantial increases in survival for patients with colorectal cancer clinically. This article reviews a range of molecular targets that may be efficacious targets for tumors with APC mutations.
Collapse
Affiliation(s)
- Olivia Noe
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Louis Filipiak
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Rachel Royfman
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Austin Campbell
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Laura Stanbery
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | |
Collapse
|
52
|
Multi-Omics Perspective Reveals the Different Patterns of Tumor Immune Microenvironment Based on Programmed Death Ligand 1 (PD-L1) Expression and Predictor of Responses to Immune Checkpoint Blockade across Pan-Cancer. Int J Mol Sci 2021; 22:ijms22105158. [PMID: 34068143 PMCID: PMC8153013 DOI: 10.3390/ijms22105158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapies have shown great promise in cancer treatment. However, the intra-heterogeneity is a major barrier to reasonably classifying the potential benefited patients. Comprehensive heterogeneity analysis is needed to solve these clinical issues. In this study, the samples from pan-cancer and independent breast cancer datasets were divided into four tumor immune microenvironment (TIME) subtypes based on tumor programmed death ligand 1 (PD-L1) expression level and tumor-infiltrating lymphocyte (TIL) state. As the combination of the TIL Z score and PD-L1 expression showed superior prediction of response to ICI in multiple data sets compared to other methods, we used the TIL Z score and PD-L1 to classify samples. Therefore, samples were divided by combined TIL Z score and PD-L1 to identify four TIME subtypes, including type I (3.24%), type II (43.24%), type III (6.76%), and type IV (46.76%). Type I was associated with favorable prognosis with more T and DC cells, while type III had the poorest condition and composed a higher level of activated mast cells. Furthermore, TIME subtypes exhibited a distinct genetic and transcriptional feature: type III was observed to have the highest mutation rate (77.92%), while co-mutations patterns were characteristic in type I, and the PD-L1 positive subgroup showed higher carbohydrates, lipids, and xenobiotics metabolism compared to others. Overall, we developed a robust method to classify TIME and analyze the divergence of prognosis, immune cell composition, genomics, and transcriptomics patterns among TIME subtypes, which potentially provides insight for classification of TIME and a referrable theoretical basis for the screening benefited groups in the ICI immunotherapy.
Collapse
|
53
|
Suthon S, Perkins RS, Bryja V, Miranda-Carboni GA, Krum SA. WNT5B in Physiology and Disease. Front Cell Dev Biol 2021; 9:667581. [PMID: 34017835 PMCID: PMC8129536 DOI: 10.3389/fcell.2021.667581] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
WNT5B, a member of the WNT family of proteins that is closely related to WNT5A, is required for cell migration, cell proliferation, or cell differentiation in many cell types. WNT5B signals through the non-canonical β-catenin-independent signaling pathway and often functions as an antagonist of canonical WNT signaling. Although WNT5B has a high amino acid identity with WNT5A and is often assumed to have similar activities, WNT5B often exhibits unique expression patterns and functions. Here, we describe the distinct effects and mechanisms of WNT5B on development, bone, adipose tissue, cardiac tissue, the nervous system, the mammary gland, the lung and hematopoietic cells, compared to WNT5A. We also highlight aberrances in non-canonical WNT5B signaling contributing to diseases such as osteoarthritis, osteoporosis, obesity, type 2 diabetes mellitus, neuropathology, and chronic diseases associated with aging, as well as various cancers.
Collapse
Affiliation(s)
- Sarocha Suthon
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rachel S Perkins
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czechia
| | - Gustavo A Miranda-Carboni
- Division of Hematology and Oncology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Susan A Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
54
|
Han H, Davidson LA, Hensel M, Yoon G, Landrock K, Allred C, Jayaraman A, Ivanov I, Safe SH, Chapkin RS. Loss of Aryl Hydrocarbon Receptor Promotes Colon Tumorigenesis in ApcS580/+; KrasG12D/+ Mice. Mol Cancer Res 2021; 19:771-783. [PMID: 33495399 PMCID: PMC8137548 DOI: 10.1158/1541-7786.mcr-20-0789] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
The mutational genetic landscape of colorectal cancer has been extensively characterized; however, the ability of "cooperation response genes" to modulate the function of cancer "driver" genes remains largely unknown. In this study, we investigate the role of aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, in modulating oncogenic cues in the colon. We show that intestinal epithelial cell-targeted AhR knockout (KO) promotes the expansion and clonogenic capacity of colonic stem/progenitor cells harboring ApcS580/+; KrasG12D/+ mutations by upregulating Wnt signaling. The loss of AhR in the gut epithelium increased cell proliferation, reduced mouse survival rate, and promoted cecum and colon tumorigenesis in mice. Mechanistically, the antagonism of Wnt signaling induced by Lgr5 haploinsufficiency attenuated the effects of AhR KO on cecum and colon tumorigenesis. IMPLICATIONS: Our findings reveal that AhR signaling plays a protective role in genetically induced colon tumorigenesis at least by suppressing Wnt signaling and provides rationale for the AhR as a therapeutic target for cancer prevention and treatment.
Collapse
Affiliation(s)
- Huajun Han
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Laurie A Davidson
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Martha Hensel
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Grace Yoon
- Department of Statistics, Texas A&M University, College Station, Texas
| | - Kerstin Landrock
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Clinton Allred
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Ivan Ivanov
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen H Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas.
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
- Department of Nutrition, Texas A&M University, College Station, Texas
| |
Collapse
|
55
|
Zhou J, Zhang S, Sun X, Lou Y, Bao J, Yu J. Hyperoside ameliorates diabetic nephropathy induced by STZ via targeting the miR-499-5p/APC axis. J Pharmacol Sci 2021; 146:10-20. [PMID: 33858650 DOI: 10.1016/j.jphs.2021.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy is a serious complication of diabetes. Hyperoside has been widely reported to ameliorate diabetes-associated disease. The current study is designed to explore the mechanism of hyperoside in diabetic nephropathy. In the present study, high glucose was used to treat podocytes. Diabetic nephropathy mice models were established by high-fat feeding followed by multiple low dose injections of streptozocin. Western blot analysis was conducted for detection of extracellular matrix accumulation, inflammatory response and cell apoptosis. We found out that hyperoside improved high glucose-induced cell injury. Additionally, hyperoside prevented mice with diabetic nephropathy from diabetic symptoms and renal dysfunction. Mechanistically, hyperoside inhibited the mRNA and protein expression of APC. MiR-499-5p was found to be an upstream negative mediator of APC, and hyperoside induced the upregulation of miR-499-5p. MiR-499-5p bound with the 3' untranslated region of APC to inhibit its expression. Finally, rescue assays revealed that the suppressive effects of miR-499-5p overexpression on renal dysfunction were rescued by upregulation of APC in mice with diabetic nephropathy. In conclusion, these findings indicated that hyperoside ameliorates diabetic nephropathy via targeting the miR-499-5p/APC axis, suggesting that hyperoside may offer a potential tactic for diabetic nephropathy treatment.
Collapse
Affiliation(s)
- Jingbo Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Shu Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Xinyi Sun
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Yan Lou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Jinjing Bao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
56
|
Gorelyshev A, Mazerkina N, Medvedeva O, Vasilyev E, Petrov V, Ryzhova M, Gorelyshev S, Tiulpakov A. Second-hit APC mutation in a familial adamantinomatous craniopharyngioma. Neuro Oncol 2021; 22:889-891. [PMID: 32170310 DOI: 10.1093/neuonc/noaa060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Alexander Gorelyshev
- Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Center, Moscow, Russian Federation
| | - Nadia Mazerkina
- Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Center, Moscow, Russian Federation
| | - Olga Medvedeva
- Department of Pediatric Neurosurgery, Burdenko National Medical Research Center for Neurosurgery, Moscow, Russian Federation
| | - Evgeny Vasilyev
- Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Center, Moscow, Russian Federation
| | - Vasily Petrov
- Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Center, Moscow, Russian Federation
| | - Marina Ryzhova
- Department of Neuropathology, Burdenko National Medical Research Center for Neurosurgery, Moscow, Russian Federation
| | - Sergey Gorelyshev
- Department of Pediatric Neurosurgery, Burdenko National Medical Research Center for Neurosurgery, Moscow, Russian Federation
| | - Anatoly Tiulpakov
- Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Center, Moscow, Russian Federation
| |
Collapse
|
57
|
Shah M, Chacko LA, Joseph JP, Ananthanarayanan V. Mitochondrial dynamics, positioning and function mediated by cytoskeletal interactions. Cell Mol Life Sci 2021; 78:3969-3986. [PMID: 33576841 PMCID: PMC11071877 DOI: 10.1007/s00018-021-03762-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/27/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
The ability of a mitochondrion to undergo fission and fusion, and to be transported and localized within a cell are central not just to proper functioning of mitochondria, but also to that of the cell. The cytoskeletal filaments, namely microtubules, F-actin and intermediate filaments, have emerged as prime movers in these dynamic mitochondrial shape and position transitions. In this review, we explore the complex relationship between the cytoskeleton and the mitochondrion, by delving into: (i) how the cytoskeleton helps shape mitochondria via fission and fusion events, (ii) how the cytoskeleton facilitates the translocation and anchoring of mitochondria with the activity of motor proteins, and (iii) how these changes in form and position of mitochondria translate into functioning of the cell.
Collapse
Affiliation(s)
- Mitali Shah
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Leeba Ann Chacko
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Joel P Joseph
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Vaishnavi Ananthanarayanan
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
58
|
Kannan S, Lock I, Ozenberger BB, Jones KB. Genetic drivers and cells of origin in sarcomagenesis. J Pathol 2021; 254:474-493. [DOI: 10.1002/path.5617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Sarmishta Kannan
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Ian Lock
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Benjamin B Ozenberger
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Kevin B Jones
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| |
Collapse
|
59
|
Mészáros B, Hajdu-Soltész B, Zeke A, Dosztányi Z. Mutations of Intrinsically Disordered Protein Regions Can Drive Cancer but Lack Therapeutic Strategies. Biomolecules 2021; 11:biom11030381. [PMID: 33806614 PMCID: PMC8000335 DOI: 10.3390/biom11030381] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Many proteins contain intrinsically disordered regions (IDRs) which carry out important functions without relying on a single well-defined conformation. IDRs are increasingly recognized as critical elements of regulatory networks and have been also associated with cancer. However, it is unknown whether mutations targeting IDRs represent a distinct class of driver events associated with specific molecular and system-level properties, cancer types and treatment options. Here, we used an integrative computational approach to explore the direct role of intrinsically disordered protein regions driving cancer. We showed that around 20% of cancer drivers are primarily targeted through a disordered region. These IDRs can function in multiple ways which are distinct from the functional mechanisms of ordered drivers. Disordered drivers play a central role in context-dependent interaction networks and are enriched in specific biological processes such as transcription, gene expression regulation and protein degradation. Furthermore, their modulation represents an alternative mechanism for the emergence of all known cancer hallmarks. Importantly, in certain cancer patients, mutations of disordered drivers represent key driving events. However, treatment options for such patients are currently severely limited. The presented study highlights a largely overlooked class of cancer drivers associated with specific cancer types that need novel therapeutic options.
Collapse
Affiliation(s)
- Bálint Mészáros
- Department of Biochemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary; (B.M.); (B.H.-S.)
- EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Borbála Hajdu-Soltész
- Department of Biochemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary; (B.M.); (B.H.-S.)
| | - András Zeke
- Institute of Enzymology, RCNS, P.O. Box 7, H-1518 Budapest, Hungary;
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary; (B.M.); (B.H.-S.)
- Correspondence: ; Tel.: +36-1-372 2500/8537
| |
Collapse
|
60
|
Davies MP, John Evans TW, Tahir F, Balasubramanian SP. Parathyroid cancer: A systematic review of diagnostic biomarkers. Surgeon 2021; 19:e536-e548. [PMID: 33642204 DOI: 10.1016/j.surge.2021.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Parathyroid cancers are rare and difficult to distinguish from benign parathyroid tumours. Prediction of malignancy often relies on intraoperative assessment of invasion. Standard histology is also inadequate; especially in the absence of local invasion, lymph nodal disease and metastasis. The aim of this project was to systematically review published literature on potential bio-markers used for the diagnosis of parathyroid cancer. METHODS Pubmed, Web of Science and Medline databases were searched. Inclusion criteria included English language papers published after 1985 and reporting on biomarkers in human studies of parathyroid cancer and benign disease. RESULTS 118 relevant papers were appraised; all were observational studies. At least 2 papers studied 8 serum, 4 urine and 27 tissue biomarkers on the diagnosis of parathyroid cancer. Of these, 5 serum and 13 tissue markers have been demonstrated in at least one study to be statistically different in benign and malignant disease. We present a synthesis of data for each biomarker and measures of diagnostic accuracy where possible. CONCLUSIONS Consideration should be given to the use of a panel of biomarkers to review patients with suspected parathyroid cancer. A profile including serum calcium and PTH levels and tissue expression of APC, Parafibromin, PGP9.5, Galectin 3 and Ki67 is proposed. Systematic Review Registration Number - CRD42019127833.
Collapse
Affiliation(s)
- Matthew Philip Davies
- Faculty of Medicine, Dentistry and Health, The University of Sheffield, United Kingdom.
| | | | - Fawzia Tahir
- Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom
| | - Saba P Balasubramanian
- Faculty of Medicine, Dentistry and Health, The University of Sheffield, United Kingdom; Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom
| |
Collapse
|
61
|
Garza-Rodríguez ML, Treviño V, Pérez-Maya AA, Rodríguez-Gutiérrez HF, González-Escamilla M, Elizondo-Riojas MÁ, Ramírez-Correa GA, Vidal-Gutiérrez O, Burciaga-Flores CH, Pérez-Ibave DC. Identification of a Novel Pathogenic Rearrangement Variant of the APC Gene Associated with a Variable Spectrum of Familial Cancer. Diagnostics (Basel) 2021; 11:diagnostics11030411. [PMID: 33670908 PMCID: PMC7997431 DOI: 10.3390/diagnostics11030411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 01/14/2023] Open
Abstract
Familial adenomatous polyposis (FAP) is an autosomal-dominant condition characterized by the presence of multiple colorectal adenomas, caused by germline variants in the adenomatous polyposis coli (APC) gene. More than 300 germline variants have been characterized. The detection of novel variants is important to understand the mechanisms of pathophysiology. We identified a novel pathogenic germline variant using next-generation sequencing (NGS) in a proband patient. The variant is a complex rearrangement (c.422+1123_532-577 del ins 423-1933_423-1687 inv) that generates a complete deletion of exon 5 of the APC gene. To study the variant in other family members, we designed an endpoint PCR method followed by Sanger sequencing. The variant was identified in the proband patient's mother, one daughter, her brother, two cousins, a niece, and a second nephew. In patients where the variant was identified, we found atypical clinical symptoms, including mandibular, ovarian, breast, pancreatic, and gastric cancer. Genetic counseling and cancer prevention strategies were provided for the family. According to the American College of Medical Genetics (ACMG) guidelines, this novel variant is considered a PVS1 variant (very strong evidence of pathogenicity), and it can be useful in association with clinical data for early surveillance and suitable treatment.
Collapse
Affiliation(s)
- María Lourdes Garza-Rodríguez
- Centro Universitario Contra el Cáncer (CUCC), Servicio de Oncología, Universidad Autónoma de Nuevo León, Hospital Universitario “Dr. José Eleuterio González”, Nuevo, León 64460, Mexico; (M.L.G.-R.); (H.F.R.-G.); (M.G.-E.); (M.Á.E.-R.); (O.V.-G.)
| | - Víctor Treviño
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Nuevo, León 64710, Mexico;
| | - Antonio Alí Pérez-Maya
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Nuevo, León 64460, Mexico;
| | - Hazyadee Frecia Rodríguez-Gutiérrez
- Centro Universitario Contra el Cáncer (CUCC), Servicio de Oncología, Universidad Autónoma de Nuevo León, Hospital Universitario “Dr. José Eleuterio González”, Nuevo, León 64460, Mexico; (M.L.G.-R.); (H.F.R.-G.); (M.G.-E.); (M.Á.E.-R.); (O.V.-G.)
| | - Moisés González-Escamilla
- Centro Universitario Contra el Cáncer (CUCC), Servicio de Oncología, Universidad Autónoma de Nuevo León, Hospital Universitario “Dr. José Eleuterio González”, Nuevo, León 64460, Mexico; (M.L.G.-R.); (H.F.R.-G.); (M.G.-E.); (M.Á.E.-R.); (O.V.-G.)
| | - Miguel Ángel Elizondo-Riojas
- Centro Universitario Contra el Cáncer (CUCC), Servicio de Oncología, Universidad Autónoma de Nuevo León, Hospital Universitario “Dr. José Eleuterio González”, Nuevo, León 64460, Mexico; (M.L.G.-R.); (H.F.R.-G.); (M.G.-E.); (M.Á.E.-R.); (O.V.-G.)
| | - Genaro A. Ramírez-Correa
- Department of Molecular Science, UT Health Rio Grande Valley, McAllen, TX 78502, USA;
- Department of Pediatrics, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Oscar Vidal-Gutiérrez
- Centro Universitario Contra el Cáncer (CUCC), Servicio de Oncología, Universidad Autónoma de Nuevo León, Hospital Universitario “Dr. José Eleuterio González”, Nuevo, León 64460, Mexico; (M.L.G.-R.); (H.F.R.-G.); (M.G.-E.); (M.Á.E.-R.); (O.V.-G.)
| | - Carlos Horacio Burciaga-Flores
- Centro Universitario Contra el Cáncer (CUCC), Servicio de Oncología, Universidad Autónoma de Nuevo León, Hospital Universitario “Dr. José Eleuterio González”, Nuevo, León 64460, Mexico; (M.L.G.-R.); (H.F.R.-G.); (M.G.-E.); (M.Á.E.-R.); (O.V.-G.)
- Correspondence: (C.H.B.-F.); or (D.C.P.-I.); Tel.: +52-(81)-83338111 (C.H.B.-F. & D.C.P.-I.)
| | - Diana Cristina Pérez-Ibave
- Centro Universitario Contra el Cáncer (CUCC), Servicio de Oncología, Universidad Autónoma de Nuevo León, Hospital Universitario “Dr. José Eleuterio González”, Nuevo, León 64460, Mexico; (M.L.G.-R.); (H.F.R.-G.); (M.G.-E.); (M.Á.E.-R.); (O.V.-G.)
- Correspondence: (C.H.B.-F.); or (D.C.P.-I.); Tel.: +52-(81)-83338111 (C.H.B.-F. & D.C.P.-I.)
| |
Collapse
|
62
|
Yang J, Wen Z, Li W, Sun X, Ma J, She X, Zhang H, Tu C, Wang G, Huang D, Shen X, Dong J, Zhang H. Immune Microenvironment: New Insight for Familial Adenomatous Polyposis. Front Oncol 2021; 11:570241. [PMID: 33628741 PMCID: PMC7897671 DOI: 10.3389/fonc.2021.570241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Currently, the main treatment for familial adenomatous polyposis (FAP) is surgery, however, surgery is far from ideal as there are many complications such as uncontrollable bowel movements, pouch inflammation, anastomotic stricture, and secondary fibroids. Therefore, it is necessary to further expand the understanding of FAP and develop new treatments for FAP. The immune microenvironment including immune cells and cytokines, plays an important role in FAP and the progression of FAP to adenocarcinoma, thus it may be a promising treatment for FAP. In the current review, we summarized the recent progress in the immune microenvironment of FAP.
Collapse
Affiliation(s)
- Jun Yang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhengqi Wen
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenliang Li
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xianghua Sun
- Department of Cadre Recuperation, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Junrui Ma
- Department of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueke She
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Hongbin Zhang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Changling Tu
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunan Cancer Hospital, Kunming, China
| | - Guoqiang Wang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Depei Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Xudong Shen
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Jian Dong
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunan Cancer Hospital, Kunming, China
| | - Hushan Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| |
Collapse
|
63
|
Yu H, Hemminki K. Genetic epidemiology of colorectal cancer and associated cancers. Mutagenesis 2021; 35:207-219. [PMID: 31424514 DOI: 10.1093/mutage/gez022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
We review here data on familial risk in colorectal cancer (CRC) generated from the Swedish Family-Cancer Database, the largest resource of its kind in the world. Although the concordant familial risk for CRC (i.e. CRC risk in families of CRC patients) has been reasonably well established, the studies on discordant familial risks (i.e. CRC risk in families with any other cancers) are rare. Because different cancers could be caused by shared genetic susceptibility or shared environment, data of associations of discordant cancers may provide useful information for identifying common risk factors. In analyses between any of 33 discordant cancers relative risks (RRs) for discordant cancers were estimated in families with increasing numbers of probands with CRC; in the reverse analyses, RRs for CRC were estimated in families with increasing numbers of probands with discordant cancers. In separate analyses, hereditary non-polyposis colorectal cancer (HNPCC) families were excluded from the study, based on HNPCC related double primary cancers, to assess the residual familial RRs. We further reviewed familial risks of colon and rectal cancers separately in search for distinct discordant associations. The reviewed data suggested that colon cancer was associated with a higher familial risk for CRC compared to rectal cancer. The previous data had reported associations of CRC with melanoma, thyroid and eye cancers. Nervous system cancer was only associated with colon cancer, and lung cancer only associated with rectal cancer. The reviewed data on discordant association may provide guidance to gene identification and may help genetic counseling.
Collapse
Affiliation(s)
- Hongyao Yu
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany.,Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
64
|
Zhang Y, Liang B, Song X, Wang H, Evert M, Zhou Y, Calvisi DF, Tang L, Chen X. Loss of Apc Cooperates with Activated Oncogenes to Induce Liver Tumor Formation in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:930-946. [PMID: 33545120 DOI: 10.1016/j.ajpath.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) and hepatoblastoma are the major types of primary liver cancer in adulthood and childhood, respectively. Wnt/β-catenin signaling deregulation is one of the most frequent genetic events in hepatocarcinogenesis. APC regulator of WNT signaling pathway (APC) encodes an inhibitor of the Wnt cascade and acts as a tumor suppressor. Germline defects of the APC gene lead to familial adenomatous polyposis, and its somatic mutations occur in multiple tumor types. However, the contribution of APC in hepatocarcinogenesis remains unclear. Therefore, APC mutations and expression patterns were examined in human HCC and hepatoblastoma samples. Whether loss of Apc alone or in cooperation with other oncogenes triggers liver tumor development in vivo was also investigated. sgApc alone could not drive liver tumor formation, but synergized with activated oncogenes (YapS127A, TazS89A, and c-Met) to induce hepatocarcinogenesis. Mechanistically, Apc deletion induced the activation of β-catenin and its downstream targets in mouse liver tumors. Furthermore, Ctnnb1 ablation or TCF4-mediated transcription blockade completely prevented liver tumor formation, indicating the requirement of a functional β-catenin pathway for loss of Apc-driven hepatocarcinogenesis. This study shows that a subset of HCC patients with loss-of-function APC mutations might benefit from therapeutic strategies targeting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China; Department of Bioengineering University of California, San Francisco, California
| | - Binyong Liang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinhua Song
- Department of Bioengineering University of California, San Francisco, California
| | - Haichuan Wang
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Yi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Xin Chen
- Department of Bioengineering University of California, San Francisco, California; Department of Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
65
|
Caspi M, Wittenstein A, Kazelnik M, Shor-Nareznoy Y, Rosin-Arbesfeld R. Therapeutic targeting of the oncogenic Wnt signaling pathway for treating colorectal cancer and other colonic disorders. Adv Drug Deliv Rev 2021; 169:118-136. [PMID: 33346022 DOI: 10.1016/j.addr.2020.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
The canonical Wnt pathway is one of the key cellular signaling cascades that regulates, via the transcriptional co-activator β-catenin, numerous embryogenic developmental processes, as well as tissue homeostasis. It is therefore not surprising that misregulation of the Wnt/β-catenin pathway has been implicated in carcinogenesis. Aberrant Wnt signaling has been reported in a variety of malignancies, and its role in both hereditary and sporadic colorectal cancer (CRC), has been the subject of intensive study. Interestingly, the vast majority of colorectal tumors harbor mutations in the tumor suppressor gene adenomatous polyposis coli (APC). The Wnt pathway is complex, and despite decades of research, the mechanisms that underlie its functions are not completely known. Thus, although the Wnt cascade is an attractive target for therapeutic intervention against CRC, one of the malignancies with the highest morbidity and mortality rates, achieving efficacy and safety is yet extremely challenging. Here, we review the current knowledge of the Wnt different epistatic signaling components and the mechanism/s by which the signal is transduced in both health and disease, focusing on CRC. We address some of the important questions in the field and describe various therapeutic strategies designed to combat unregulated Wnt signaling, the development of targeted therapy approaches and the emerging challenges that are associated with these advanced methods.
Collapse
|
66
|
Zebardast A, Tehrani SS, Latifi T, Sadeghi F. Critical review of Epstein-Barr virus microRNAs relation with EBV-associated gastric cancer. J Cell Physiol 2021; 236:6136-6153. [PMID: 33507558 DOI: 10.1002/jcp.30297] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
Abstract
Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) is regarded as the most prevalent malignant tumor triggered by EBV infection. In recent years, increasing attention has been considered to recognize more about the disease process's exact mechanisms. There is accumulating evidence that showing epigenetic modifications play critical roles in the EBVaGC pathogenesis. MicroRNAs (miRNAs), as critical epigenetic modulators, are single-strand short noncoding RNA (length ~ <200 bp), which regulate gene expression through binding to the 3'-untranslated region (3'-UTR) of target RNA transcripts and either degrade or repress their activities. In the latest research on EBV, it was found that this virus could encode miRNAs. Mechanistically, EBV-encoded miRNAs are involved in carcinogenesis and the progression of EBV-associated malignancies. Moreover, these miRNAs implicated in immune evasion, identification of pattern recognition receptors, regulation of lymphocyte activation and lethality, modulation of infected host cell antigen, maintain of EBV infection status, promotion of cell proliferation, invasion and migration, and reduction of apoptosis. As good news, not only has recent data demonstrated the crucial function of EBV-encoded miRNAs in the pathogenesis of EBVaGC, but it has also been revealed that aberrant expression of exosomal miRNAs in EBVaGC has made them biomarkers for detection of EBVaGC. Regarding these substantial characterizes, the critical role of EBV-encoded miRNAs has been a hot topic in research. In this review, we will focus on the multiple mechanisms involved in EBVaGC caused by EBV-encoded miRNAs and briefly discuss their potential application in the clinic as a diagnostic biomarker.
Collapse
Affiliation(s)
- Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadra S Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Sadeghi
- Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
67
|
Phull MS, Jadav SS, Gundla R, Mainkar PS. A perspective on medicinal chemistry approaches towards adenomatous polyposis coli and Wnt signal based colorectal cancer inhibitors. Eur J Med Chem 2021; 212:113149. [PMID: 33445154 DOI: 10.1016/j.ejmech.2020.113149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of carcinogenic mortality in numbers only after lung and breast cancers. The mutations in adenomatous polyposis coli (APC) gene leads to formation of colorectal polyps in the colonic region and which develop as a malignant tumour upon coalition with patient related risk factors. The protein-protein interaction (PPI) of APC with Asef (A Rac specific guanine nucleotide exchange factor) overwhelms the patient's conditions by rapidly spreading in the entire colorectal region. Most mutations in APC gene occur in mutated cluster region (MCR), where it specifically binds with the cytosolic β-catenin to regulate the Wnt signalling pathway required for CRC cell adhesion, invasion, progression, differentiation and stemness in initial cell cycle phages. The current broad spectrum perspective is attempted to elaborate the sources of identification, development of selective APC inhibitors by targeting emopamil-binding protein (EBP) & dehydrocholesterol reductase-7 & 24 (DHCR-7 & 24); APC-Asef, β-catenin/APC, Wnt/β-catenin, β-catenin/TCF4 PPI inhibitors with other vital Wnt signal cellular proteins and APC/Pol-β interface of colorectal cancer. In this context, this perspective would serve as a platform for design of new medicinal agents by targeting cellular essential components which could accelerate anti-colorectal potential candidates.
Collapse
Affiliation(s)
- Manjinder Singh Phull
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Hyderabad, 502329, Telangana, India
| | - Surender Singh Jadav
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Hyderabad, 502329, Telangana, India
| | - Prathama S Mainkar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Utter Pradesh, India.
| |
Collapse
|
68
|
Molecular Mechanisms of Colon Cancer Progression and Metastasis: Recent Insights and Advancements. Int J Mol Sci 2020; 22:ijms22010130. [PMID: 33374459 PMCID: PMC7794761 DOI: 10.3390/ijms22010130] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC), the third most common type of cancer, is the second leading cause of cancer-related mortality rates worldwide. Although modern research was able to shed light on the pathogenesis of CRC and provide enhanced screening strategies, the prevalence of CRC is still on the rise. Studies showed several cellular signaling pathways dysregulated in CRC, leading to the onset of malignant phenotypes. Therefore, analyzing signaling pathways involved in CRC metastasis is necessary to elucidate the underlying mechanism of CRC progression and pharmacotherapy. This review focused on target genes as well as various cellular signaling pathways including Wnt/β-catenin, p53, TGF-β/SMAD, NF-κB, Notch, VEGF, and JAKs/STAT3, which are associated with CRC progression and metastasis. Additionally, alternations in methylation patterns in relation with signaling pathways involved in regulating various cellular mechanisms such as cell cycle, transcription, apoptosis, and angiogenesis as well as invasion and metastasis were also reviewed. To date, understanding the genomic and epigenomic instability has identified candidate biomarkers that are validated for routine clinical use in CRC management. Nevertheless, better understanding of the onset and progression of CRC can aid in the development of early detection molecular markers and risk stratification methods to improve the clinical care of CRC patients.
Collapse
|
69
|
Jovanovic D, Markovic J, Ceriman V, Peric J, Pavlovic S, Soldatovic I. Correlation of genomic alterations and PD-L1 expression in thymoma. J Thorac Dis 2020; 12:7561-7570. [PMID: 33447447 PMCID: PMC7797854 DOI: 10.21037/jtd-2019-thym-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/18/2020] [Indexed: 11/06/2022]
Abstract
Thymic epithelial tumors (TETs) include several anterior mediastinal malignant tumours: thymomas, thymic carcinomas and thymic neuroendocrine cancers. There is significant variety in the biologic features and clinical course of TETs and many attempts have been made to identify target genes for successful therapy of TETs. Next generation sequencing (NGS) represents a huge advancement in diagnostics and these new molecular technologies revealed that thymic neoplasms have the lowest tumor mutation burden among all adult malignant tumours with a different pattern of molecular aberrations in thymomas and thymic carcinomas. As for the PD-L1 expression in tumor cells in thymoma and thymic carcinoma, it varies a lot in published studies, with findings of PD-L1 expression from 23% to 92% in thymoma and 36% to 100% in thymic carcinoma. When correlated PD-L1 expression with disease stage some controversial results were obtained, with no association with tumor stage in most studies. This is, at least in part, explained by the fact that several diverse PD-L1 immunohistochemical tests were used in each trial, with four different antibodies (SP142, SP263, 22C3, and 28-8), different definition of PD-L1 positivity and cutoff values throughout the studies as well. There is a huge interest in using genomic features to produce predictive genomic-based immunotherapy biomarkers, particularly since recent data suggest that certain tumor-specific genomic alterations, either individually or in combination, appear to influence immune checkpoint activity and better responses as the outcome, so as such in some cancer types they may complement existing biomarkers to improve the selection criteria for immunotherapy.
Collapse
Affiliation(s)
| | - Jelena Markovic
- Pathology Department, Clinical Center of Serbia, Belgrade, Serbia
| | - Vesna Ceriman
- Clinic for Pulmonology, Clinical Center of Serbia, Belgrade, Serbia
| | - Jelena Peric
- Institute of Molecular Genetics and Genetic Engineering University of Belgrade, Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering University of Belgrade, Belgrade, Serbia
| | - Ivan Soldatovic
- Institute of Medical Statistics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
70
|
CDX2 inhibits epithelial-mesenchymal transition in colorectal cancer by modulation of Snail expression and β-catenin stabilisation via transactivation of PTEN expression. Br J Cancer 2020; 124:270-280. [PMID: 33239678 PMCID: PMC7782852 DOI: 10.1038/s41416-020-01148-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Emerging evidence suggests the involvement of caudal-related homoeobox transcription factor 2 (CDX2) in tumorigenesis of various cancers. Although CDX2 functions in cancer invasion and metastasis, fewer studies focus on the role of CDX2 during the induction of epithelial–mesenchymal transition (EMT) in colorectal cancer (CRC). Methods Immunohistochemical analysis of CDX2 was performed. A series of in vitro and in vivo experiments were conducted to reveal the role of CDX2 in the invasion and metastasis of CRC. Results CDX2 was downregulated in CRC tissues and reduced CDX2 correlated with poor prognosis. Knockdown of CDX2 promoted colon cancer cell invasion in vitro and facilitated liver metastasis in vivo with inducing EMT phenotypes. Further investigation indicated that CDX2 retarded Akt and GSK-3β phosphorylation, and thereby diminished Snail expression, β-catenin stabilisation and nuclear translocation. The depletion of β-catenin neutralised the regulation of Slug and ZEB1 by CDX2 knockdown. Mechanistically, CDX2 antagonised PI3K/Akt activity in CRC by modulating PTEN expression. CDX2 directly bound to the promoter of PTEN and transactivated its expression. Conclusions Our study first uncovered that CDX2 inhibits EMT and metastasis of CRC by regulation of Snail expression and β-catenin stabilisation via transactivation of PTEN expression. ![]()
Collapse
|
71
|
Finding MEMO-Emerging Evidence for MEMO1's Function in Development and Disease. Genes (Basel) 2020; 11:genes11111316. [PMID: 33172038 PMCID: PMC7694686 DOI: 10.3390/genes11111316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022] Open
Abstract
Although conserved throughout animal kingdoms, the protein encoded by the gene Mediator of ERBB2 Driven Cell Motility 1 or MEMO1, has only recently come into focus. True to its namesake, MEMO1 first emerged from a proteomic screen of molecules bound to the ERBB2 receptor and was found to be necessary for efficient cell migration upon receptor activation. While initially placed within the context of breast cancer metastasis—a pathological state that has provided tremendous insight into MEMO1′s cellular roles—MEMO1′s function has since expanded to encompass additional cancer cell types, developmental processes during embryogenesis and homeostatic regulation of adult organ systems. Owing to MEMO1′s deep conservation, a variety of model organisms have been amenable to uncovering biological facets of this multipurpose protein; facets ranging from the cellular (e.g., receptor signaling, cytoskeletal regulation, redox flux) to the organismal (e.g., mineralization and mineral homeostasis, neuro/gliogenesis, vasculogenesis) level. Although these facets emerge at the intersection of numerous biological and human disease processes, how and if they are interconnected remains to be resolved. Here, we review our current understanding of this ‘enigmatic’ molecule, its role in development and disease and open questions emerging from these previous studies.
Collapse
|
72
|
Lam D, Clark S, Stirzaker C, Pidsley R. Advances in Prognostic Methylation Biomarkers for Prostate Cancer. Cancers (Basel) 2020; 12:E2993. [PMID: 33076494 PMCID: PMC7602626 DOI: 10.3390/cancers12102993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
There is a major clinical need for accurate biomarkers for prostate cancer prognosis, to better inform treatment strategies and disease monitoring. Current clinically recognised prognostic factors, including prostate-specific antigen (PSA) levels, lack sensitivity and specificity in distinguishing aggressive from indolent disease, particularly in patients with localised intermediate grade prostate cancer. There has therefore been a major focus on identifying molecular biomarkers that can add prognostic value to existing markers, including investigation of DNA methylation, which has a known role in tumorigenesis. In this review, we will provide a comprehensive overview of the current state of DNA methylation biomarker studies in prostate cancer prognosis, and highlight the advances that have been made in this field. We cover the numerous studies into well-established candidate genes, and explore the technological transition that has enabled hypothesis-free genome-wide studies and the subsequent discovery of novel prognostic genes.
Collapse
Affiliation(s)
- Dilys Lam
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; (D.L.); (S.C.); (C.S.)
| | - Susan Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; (D.L.); (S.C.); (C.S.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Clare Stirzaker
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; (D.L.); (S.C.); (C.S.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Ruth Pidsley
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; (D.L.); (S.C.); (C.S.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
73
|
Nagy N, Reis H, Hadaschik B, Niedworok C, Módos O, Szendrői A, Bíró K, Hager T, Herold T, Ablat J, Black PC, Okon K, Tolkach Y, Csizmarik A, Oláh C, Keresztes D, Bremmer F, Gaisa NT, Kriegsmann J, Kovalszky I, Kiss A, Tímár J, Szász MA, Rink M, Fisch M, Nyirády P, Szarvas T. Prevalence of APC and PTEN Alterations in Urachal Cancer. Pathol Oncol Res 2020; 26:2773-2781. [PMID: 32754865 PMCID: PMC7471184 DOI: 10.1007/s12253-020-00872-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Urachal carcinoma (UrC) is a rare tumor with remarkable histological and molecular similarities to colorectal cancer (CRC). Adenomatous polyposis coli (APC) is the most frequently affected gene in CRC, but the prevalence and significance of its alterations in UrC is poorly understood. In addition, loss of phosphatase and tensin homologue (PTEN) was shown to be associated with therapy resistance in CRC. Our primary aim was to assess specific genetic alterations including APC and PTEN in a large series of UrC samples in order to identify clinically significant genomic alterations. We analyzed a total of 40 UrC cases. Targeted 5-gene (APC, PTEN, DICER1, PRKAR1A, TSHR, WRN) panel sequencing was performed on the Illumina MiSeq platform (n = 34). In addition, ß-catenin (n = 38) and PTEN (n = 30) expressions were assessed by immunohistochemistry. APC and PTEN genes were affected in 15% (5/34) and 6% (2/34) of cases. Two of five APC alterations (p.Y1075*, p.K1199*) were truncating pathogenic mutations. One of the two PTEN variants was a pathogenic frameshift insertion (p.C211fs). In 29% (11/38) of samples, at least some weak nuclear ß-catenin immunostaining was detected and PTEN loss was observed in 20% (6/30) of samples. The low prevalence of APC mutations in UrC represents a characteristic difference to CRC. Based on APC and ß-catenin results, the Wnt pathway seems to be rarely affected in UrC. Considering the formerly described involvement of PTEN protein loss in anti-EGFR therapy-resistance its immunohistochemical testing may have therapeutic relevance.
Collapse
Affiliation(s)
- Nikolett Nagy
- Department of Urology, Semmelweis University, Budapest, 1082, Hungary
| | - Henning Reis
- Institute of Pathology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147, Essen, Germany
| | - Christian Niedworok
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147, Essen, Germany
| | - Orsolya Módos
- Department of Urology, Semmelweis University, Budapest, 1082, Hungary
| | - Attila Szendrői
- Department of Urology, Semmelweis University, Budapest, 1082, Hungary
| | | | - Thomas Hager
- Institute of Pathology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147, Essen, Germany
| | - Thomas Herold
- Institute of Pathology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147, Essen, Germany
| | - Jason Ablat
- Vancouver Prostate Centre, University of British Columbia, Vancouver, V6H 3Z6, Canada
| | - Peter C Black
- Vancouver Prostate Centre, University of British Columbia, Vancouver, V6H 3Z6, Canada
| | - Krzysztof Okon
- Department of Pathomorphology, Jagiellonian University, 30252, Cracow, Poland
| | - Yuri Tolkach
- Institute of Pathology, University of Bonn, 53113, Bonn, Germany
| | - Anita Csizmarik
- Department of Urology, Semmelweis University, Budapest, 1082, Hungary
| | - Csilla Oláh
- Department of Urology, Semmelweis University, Budapest, 1082, Hungary
| | - David Keresztes
- Department of Urology, Semmelweis University, Budapest, 1082, Hungary
| | - Felix Bremmer
- Institute of Pathology, University of Göttingen, 37073, Göttingen, Germany
| | - Nadine T Gaisa
- Institute of Pathology, RWTH Aachen University, 52074, Aachen, Germany
| | - Joerg Kriegsmann
- Cytology and Molecular Diagnostics Trier, Center for Histology, 54296, Trier, Germany
| | - Ilona Kovalszky
- 1st Institute of Pathology and Expreimental Cancer Research, Semmelweis University, Budapest, 1085, Hungary
| | - András Kiss
- 2nd Department of Pathology, Semmelweis University, Budapest, 1091, Hungary
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, 1091, Hungary
| | - Marcell A Szász
- Cancer Center, Semmelweis University, Budapest, 1083, Hungary
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Budapest, 1082, Hungary
| | - Tibor Szarvas
- Department of Urology, Semmelweis University, Budapest, 1082, Hungary.
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147, Essen, Germany.
| |
Collapse
|
74
|
The Effects of Doxorubicin, Ethanol Extract and Flavonoid-rich Fraction of Euphorbia Splendida Mobayen on the PARP Level, and APC Gene Expression in HT-29 Human Colon Cancer Cell Line. Jundishapur J Nat Pharm Prod 2020. [DOI: 10.5812/jjnpp.79679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Natural products derived from various sources are being used to develop chemotherapeutic drugs. Euphorbiaceae is widely used to treat different types of cancers. Colorectal cancer (CRC) is the second and third cause of cancer in women and men, respectively. CRC is strongly associated with the deregulation of the Adenomatous polyposis coli (APC) gene and Poly [ADP-ribose] polymerase (PPAR) protein. Objectives: The current study aimed to examine the effect of doxorubicin, ethanol extract, and the flavonoid-rich fraction of Euphorbia Splendida Mobayen on colon cancer HT-29 cell line death, APC gene expression, and PPAR concentration. Methods: Following treatment of cells by Euphorbia ethanol extract, Euphorbia flavonoid-rich fraction, and doxorubicin, cell viability assay was used to investigate the viability status of the HT-29 cell line. Total RNA was isolated from the cell line and converted into cDNA. The expression level of the APC gene was determined by quantitative real-time PCR. Poly (ADP-ribose) polymerase (PPAR) protein was detected by the ELIZA method. Results: We found that Euphorbia ethanol extract, Euphorbia flavonoid-rich fraction, and doxorubicin can stimulate dose-dependent cell death in the HT-29 cell line, increase ACP gene expression (P = 0.001, P = 0.041, P = 0.019), and decrease PARP level (P = 0.001, P = 0.001, P = 0.001, respectively). Conclusions: The findings indicated that doxorubicin, ethanol extract, and the flavonoid-rich fraction of Euphorbia Splendida Mobayen had cytotoxic effects on human colon cancer HT-29 cell line by possibly stimulating apoptosis.
Collapse
|
75
|
Huang D, Gao Y, Wang S, Zhang W, Cao H, Zheng L, Chen Y, Zhang S, Chen J. Impact of low-intensity pulsed ultrasound on transcription and metabolite compositions in proliferation and functionalization of human adipose-derived mesenchymal stromal cells. Sci Rep 2020; 10:13690. [PMID: 32792566 PMCID: PMC7426954 DOI: 10.1038/s41598-020-69430-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/02/2020] [Indexed: 01/09/2023] Open
Abstract
To investigate the effect of low-intensity pulsed ultrasound (LIPUS) on the proliferation of human adipose-derived mesenchymal stromal cells (hASCs) and uncovered its stimulation mechanism. LIPUS at 30 mW/cm2 was applied for 5 min/day to promote the proliferation of hASCs. Flow cytometry was used to study the cell surface markers, cell cycle, and apoptosis of hASCs. The proliferation of hASCs was detected by cell counting kit-8, cell cycle assay, and RT-PCR. The expression of hASCs cytokines was determined by ELISA. The differences between transcriptional genes and metabolites were analyzed by transcript analysis and metabolomic profiling experiments. The number of cells increased after LIPUS stimulation, but there was no significant difference in cell surface markers. The results of flow cytometry, RT-PCR, and ELISA after LIPUS was administered showed that the G1 and S phases of the cell cycle were prolonged. The expression of cell proliferation related genes (CyclinD1 and c-myc) and the paracrine function related gene (SDF-1α) were up-regulated. The expression of cytokines was increased, while the apoptosis rate was decreased. The results of transcriptome experiments showed that there were significant differences in 27 genes;15 genes were up-regulated, while 12 genes were down-regulated. The results of metabolomics experiments showed significant differences in 30 metabolites; 7 metabolites were up-regulated, and 23 metabolites were down-regulated. LIPUS at 30 mW/cm2 intensity can promote the proliferation of hASCs cells in an undifferentiating state, and the stem-cell property of hASCs was maintained. CyclinD1 gene, c-myc gene, and various genes of transcription and products of metabolism play an essential role in cell proliferation. This study provides an important experimental and theoretical basis for the clinical application of LIPUS in promoting the proliferation of hASCs cells.
Collapse
Affiliation(s)
- Denggao Huang
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Yuanhui Gao
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Shunlan Wang
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Wei Zhang
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Hui Cao
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Linlin Zheng
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Yang Chen
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Shufang Zhang
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China.
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada.
| |
Collapse
|
76
|
Romero-Garcia S, Prado-Garcia H, Carlos-Reyes A. Role of DNA Methylation in the Resistance to Therapy in Solid Tumors. Front Oncol 2020; 10:1152. [PMID: 32850327 PMCID: PMC7426728 DOI: 10.3389/fonc.2020.01152] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in chemotherapeutic treatments against cancer, some types of highly aggressive and invasive cancer develop drug resistance against conventional therapies, which continues to be a major problem in the fight against cancer. In recent years, studies of alterations of DNA methylome have given us a better understanding of the role of DNA methylation in the development of tumors. DNA methylation (DNAm) is an epigenetic change that promotes the covalent transfer of methyl groups to DNA. This process suppresses gene expression through the modulation of the transcription machinery access to the chromatin or through the recruitment of methyl binding proteins. DNAm is regulated mainly by DNA methyltransferases. Aberrant DNAm contributes to tumor progression, metastasis, and resistance to current anti-tumoral therapies. Aberrant DNAm may occur through hypermethylation in the promoter regions of tumor suppressor genes, which leads to their silencing, while hypomethylation in the promoter regions of oncogenes can activate them. In this review, we discuss the impact of dysregulated methylation in certain genes, which impact signaling pathways associated with apoptosis avoidance, metastasis, and resistance to therapy. The analysis of methylome has revealed patterns of global methylation, which regulate important signaling pathways involved in therapy resistance in different cancer types, such as breast, colon, and lung cancer, among other solid tumors. This analysis has provided gene-expression signatures of methylated region-specific DNA that can be used to predict the treatment outcome in response to anti-cancer therapy. Additionally, changes in cancer methylome have been associated with the acquisition of drug resistance. We also review treatments with demethylating agents that, in combination with standard therapies, seem to be encouraging, as tumors that are in early stages can be successfully treated. On the other hand, tumors that are in advanced stages can be treated with these combination schemes, which could sensitize tumor cells that are resistant to the therapy. We propose that rational strategies, which combine specific demethylating agents with conventional treatment, may improve overall survival in cancer patients.
Collapse
Affiliation(s)
- Susana Romero-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| | - Heriberto Prado-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| | - Angeles Carlos-Reyes
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
77
|
Curated multiple sequence alignment for the Adenomatous Polyposis Coli (APC) gene and accuracy of in silico pathogenicity predictions. PLoS One 2020; 15:e0233673. [PMID: 32750050 PMCID: PMC7402488 DOI: 10.1371/journal.pone.0233673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/05/2020] [Indexed: 11/19/2022] Open
Abstract
Computational algorithms are often used to assess pathogenicity of Variants of Uncertain Significance (VUS) that are found in disease-associated genes. Most computational methods include analysis of protein multiple sequence alignments (PMSA), assessing interspecies variation. Careful validation of PMSA-based methods has been done for relatively few genes, partially because creation of curated PMSAs is labor-intensive. We assessed how PMSA-based computational tools predict the effects of the missense changes in the APC gene, in which pathogenic variants cause Familial Adenomatous Polyposis. Most Pathogenic or Likely Pathogenic APC variants are protein-truncating changes. However, public databases now contain thousands of variants reported as missense. We created a curated APC PMSA that contained >3 substitutions/site, which is large enough for statistically robust in silico analysis. The creation of the PMSA was not easily automated, requiring significant querying and computational analysis of protein and genome sequences. Of 1924 missense APC variants in the NCBI ClinVar database, 1800 (93.5%) are reported as VUS. All but two missense variants listed as P/LP occur at canonical splice or Exonic Splice Enhancer sites. Pathogenicity predictions by five computational tools (Align-GVGD, SIFT, PolyPhen2, MAPP, REVEL) differed widely in their predictions of Pathogenic/Likely Pathogenic (range 17.5–75.0%) and Benign/Likely Benign (range 25.0–82.5%) for APC missense variants in ClinVar. When applied to 21 missense variants reported in ClinVar and securely classified as Benign, the five methods ranged in accuracy from 76.2–100%. Computational PMSA-based methods can be an excellent classifier for variants of some hereditary cancer genes. However, there may be characteristics of the APC gene and protein that confound the results of in silico algorithms. A systematic study of these features could greatly improve the automation of alignment-based techniques and the use of predictive algorithms in hereditary cancer genes.
Collapse
|
78
|
Azim R, Wang S, Zhou S, Zhong X. Purity estimation from differentially methylated sites using Illumina Infinium methylation microarray data. Cell Cycle 2020; 19:2028-2039. [PMID: 32627651 PMCID: PMC7469651 DOI: 10.1080/15384101.2020.1789315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022] Open
Abstract
Solid tissues collected from patient-driven clinical settings are composed of both normal and cancer cells, which often precede complications in data analysis and epigenetic findings. The Purity estimation of samples is crucial for reliable genomic aberration identification and uniform inter-sample and inter-patient comparisons as well. Here, an effective and flexible method has been developed and designed to estimate the level of methylation, which infers tumor purity without prior knowledge from the other datasets. The comprehensive analysis of our approach on Illumina Infinium 450 k methylation microarray explains that TCGA Breast Cancer data exhibits improved performance for purity assessment. This assessment has a strong correlation with other advanced methods.
Collapse
Affiliation(s)
- Riasat Azim
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, P.R. China
| | - Shulin Wang
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, P.R. China
| | - Su Zhou
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, P.R. China
| | - Xing Zhong
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, P.R. China
| |
Collapse
|
79
|
Patel KR, Patel HD. p53: An Attractive Therapeutic Target for Cancer. Curr Med Chem 2020; 27:3706-3734. [PMID: 31223076 DOI: 10.2174/1573406415666190621094704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/28/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
Abstract
Cancer is a leading cause of death worldwide. It initiates when cell cycle regulatory genes lose their function either by environmental and/or by internal factors. Tumor suppressor protein p53, known as "Guardian of genome", plays a central role in maintaining genomic stability of the cell. Mutation of TP53 is documented in more than 50% of human cancers, usually by overexpression of negative regulator protein MDM2. Hence, reactivation of p53 by blocking the protein-protein interaction between the murine double minute 2 (MDM2) and the tumor suppressor protein p53 has become the most promising therapeutic strategy in oncology. Several classes of small molecules have been identified as potent, selective and efficient p53-MDM2 inhibitors. Herein, we review the druggability of p53-MDM2 inhibitors and their optimization approaches as well as clinical candidates categorized by scaffold type.
Collapse
Affiliation(s)
- Krupa R Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Hitesh D Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
80
|
Cerasuolo A, Miele E, Russo M, Aversano A, Cammarota F, Duraturo F, Liccardo R, Izzo P, Rosa MD. Sporadic pediatric severe familial adenomatous polyposis: A case report. Mol Clin Oncol 2020; 13:20. [PMID: 32754334 DOI: 10.3892/mco.2020.2090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Familial adenomatous polyposis (FAP) is an autosomal dominant hereditary precancerous condition caused by germline pathogenetic variants in the tumor suppressor adenomatous polyposis coli (APC) gene. Patients with FAP develop multiple gastrointestinal adenomatous polyps usually at the age of ~20 years, which, if untreated, become cancerous in 100% of cases. Genotype-phenotype associations have been extensively described; however, inter- and intra-familial variability exists. It is crucial to characterize the causative pathogenetic variant in each pedigree in order to develop a cancer prevention program and follow-up strategy for at-risk families. The present report describes a severe case of sporadic FAP that was diagnosed when the patient was ~2 years old. The patient was a carrier of the de novo pathogenic c.4132 C>T (p.Gln1378X) variant. Additionally, the patient was a carrier of the homozygous c.5465 T>A (p.Asp1822Val) polymorphism, inherited from both parents. However, it remains unclear whether or not this polymorphism is involved in the phenotypic manifestation. This case highlights the need to extend molecular screening to very young children when they show iron-deficiency, anaemia and/or rectal bleeding, even in the absence of a familial history of disease.
Collapse
Affiliation(s)
- Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale', I-80131 Naples, Italy
| | - Erasmo Miele
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, I-80131 Naples, Italy
| | - Marina Russo
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, I-80131 Naples, Italy
| | - Antonietta Aversano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Francesca Cammarota
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy.,Ceinge Biotecnologie Avanzate, I-80131 Naples, Italy
| | - Francesca Duraturo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy.,Ceinge Biotecnologie Avanzate, I-80131 Naples, Italy
| | - Raffaella Liccardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy.,Ceinge Biotecnologie Avanzate, I-80131 Naples, Italy
| | - Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy.,Ceinge Biotecnologie Avanzate, I-80131 Naples, Italy
| |
Collapse
|
81
|
Caggiari L, Fornasarig M, De Zorzi M, Cannizzaro R, Steffan A, De Re V. Family's History Based on the CDH1 Germline Variant (c.360delG) and a Suspected Hereditary Gastric Cancer Form. Int J Mol Sci 2020; 21:ijms21144904. [PMID: 32664545 PMCID: PMC7402300 DOI: 10.3390/ijms21144904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022] Open
Abstract
Hereditary diffuse gastric cancer (HDGC) is a cancer susceptibility syndrome caused by germline pathogenic variant in CDH1, the gene encoding E-cadherin. The germline loss-of-function variants are the only proven cause of the cancer syndrome HDGC, occurring in approximately 10-18% of cases and representing a helpful tool in genetic counseling. The current case reports the family history based on a CDH1 gene variant, c.360delG, p.His121Thr in a suspected family for hereditary gastric cancer form. This frameshift deletion generates a premature stop codon at the amino acid 214, which leads to a truncated E-cadherin protein detecting it as a deleterious variant. The present study expands the mutational spectra of the family with the CDH1 variant. Our results highlight the clinical impact of the reported CDH1 variant running in gastric cancer families.
Collapse
Affiliation(s)
- Laura Caggiari
- Immunopathology and Cancer Biomarkers, Bioproteomic facility, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.C.); (M.D.Z.); (A.S.)
| | - Mara Fornasarig
- Gastroenterology, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.F.); (R.C.)
| | - Mariangela De Zorzi
- Immunopathology and Cancer Biomarkers, Bioproteomic facility, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.C.); (M.D.Z.); (A.S.)
| | - Renato Cannizzaro
- Gastroenterology, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.F.); (R.C.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Bioproteomic facility, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.C.); (M.D.Z.); (A.S.)
| | - Valli De Re
- Immunopathology and Cancer Biomarkers, Bioproteomic facility, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.C.); (M.D.Z.); (A.S.)
- Correspondence: ; Tel.: +39-0434-659672
| |
Collapse
|
82
|
Peric J, Samaradzic N, Skodric Trifunovic V, Tosic N, Stojsic J, Pavlovic S, Jovanovic D. Genomic profiling of thymoma using a targeted high-throughput approach. Arch Med Sci 2020; 20:909-917. [PMID: 39050176 PMCID: PMC11264071 DOI: 10.5114/aoms.2020.96537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/21/2019] [Indexed: 07/27/2024] Open
Abstract
Introduction Thymomas and thymic carcinoma (TC) are the most common neoplasms localised in the thymus. These diseases are poorly understood, but progress made in next-generation sequencing (NGS) technology has provided novel data on their molecular pathology. Material and methods Genomic DNA was isolated from formalin-fixed paraffin-embedded tumour tissue. We investigated somatic variants in 35 thymoma patients using amplicon-based TruSeq Amplicon Cancer Panel (TSACP) that covers 48 cancer related genes. We also analysed three samples from healthy individuals by TSACP platform and 32 healthy controls using exome sequencing. Results The total number of detected variants was 4447, out of which 2906 were in the coding region (median per patient 83, range: 2-300) and 1541 were in the non-coding area (median per patient 44, range: 0-172). We identified four genes, APC, ATM, ERBB4, and SMAD4, having more than 100 protein-changing variants. Additionally, more than 70% of the analysed cases harboured protein-changing variants in SMAD4, APC, ATM, PTEN, KDR, and TP53. Moreover, this study revealed 168 recurrent variants, out of which 15 were shown to be pathogenic. Comparison to controls revealed that the variants we reported in this study were somatic thymoma-specific variants. Additionally, we found that the presence of variants in SMAD4 gene predicted shorter overall survival in thymoma patients. Conclusions The most frequently mutated genes in thymoma samples analysed in this study belong to the EGFR, ATM, and TP53 signalling pathways, regulating cell cycle check points, gene expression, and apoptosis. The results of our study complement the knowledge of thymoma molecular pathogenesis.
Collapse
Affiliation(s)
- Jelena Peric
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Natalija Samaradzic
- University Hospital of Pulmonology, Clinical Centre of Serbia, Belgrade, Serbia
| | - Vesna Skodric Trifunovic
- University Hospital of Pulmonology, Clinical Centre of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Natasa Tosic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Stojsic
- Department of Thoracopulmonary Pathology, Service of Pathology, Clinical Centre of Serbia, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dragana Jovanovic
- University Hospital of Pulmonology, Clinical Centre of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
83
|
Batth IS, Li S. Discovery of Cell-Surface Vimentin (CSV) as a Sarcoma Target and Development of CSV-Targeted IL12 Immune Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1257:169-178. [PMID: 32483739 DOI: 10.1007/978-3-030-43032-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This chapter discusses a novel target of osteosarcoma (OS), cell-surface vimentin (CSV), and a novel generation of interleukin-12 (IL12), CSV-targeted IL12, for treating OS tumor metastasis. Vimentin is a known intracellular structural protein for mesenchymal cells but is also documented in tumor cells. Our recent study definitively revealed that vimentin can be translocated to the surface of very aggressive tumor cells, such as metastatic cells. This CSV property allows investigators to capture circulating tumor cells (CTCs) across any type of tumor, including OS. CTCs are known as the seeds of metastasis; therefore, targeting these cells using CSV is a logical approach for use in a metastatic OS setting. Interestingly, we found that the peptide VNTANST can bind to CSV when fused to the p40 subunit encoding the DNA of IL12. Systemic delivery of this CSV-targeted IL12 immune therapy inhibited OS metastasis and relapse in a mouse tumor model as detailed in this chapter. This CSV-targeted delivery of IL12 also reduced toxicity of IL12. In summary, this chapter details a novel approach for safe IL12 immune therapy via targeting CSV.
Collapse
Affiliation(s)
- Izhar S Batth
- The University of Texas MD Anderson Cancer Center, Department of Pediatrics - Research, Houston, TX, USA
| | - Shulin Li
- The University of Texas MD Anderson Cancer Center, Department of Pediatrics - Research, Houston, TX, USA.
| |
Collapse
|
84
|
|
85
|
Escudero-Paniagua B, Bartolomé RA, Rodríguez S, De Los Ríos V, Pintado L, Jaén M, Lafarga M, Fernández-Aceñero MJ, Casal JI. PAUF/ZG16B promotes colorectal cancer progression through alterations of the mitotic functions and the Wnt/β-catenin pathway. Carcinogenesis 2020; 41:203-213. [PMID: 31095674 DOI: 10.1093/carcin/bgz093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/28/2019] [Accepted: 05/15/2019] [Indexed: 12/29/2022] Open
Abstract
Pancreatic adenocarcinoma upregulated factor (PAUF), also known as ZG16B, was previously found in the secretome of metastatic colorectal cancer cells. Here, we demonstrated the presence of PAUF at the intracellular level and its multiple effects on cancer progression. An initial decline of PAUF expression was observed at early stages of colorectal cancer followed by an increase at the metastatic site. PAUF was located at different cellular compartments: membrane-associated vesicles, endosomes, microtubule-associated vesicles, cell growth cones and the cell nucleus. PAUF loss in two colorectal cancer cell lines caused severe alterations in the cell phenotype and cell cycle, including tetraploidy, extensive genomic alterations, micronuclei and increased apoptosis. An exhaustive analysis of the PAUF interactome using different proteomic approaches revealed the presence of multiple components of the cell cycle, mitotic checkpoint, Wnt pathway and intracellular transport. Among the interacting proteins we found ZW10, a moonlighting protein with a dual function in membrane trafficking and mitosis. In addition, PAUF silencing was associated to APC loss and increased β-catenin nuclear expression. Altogether, our results suggest that PAUF depletion increases aneuploidy, promotes apoptosis and activates the Wnt/β-catenin pathway in colorectal cancer cells facilitating cancer progression. In summary, PAUF behaves as a multifunctional protein, with different roles in cancer progression according to the extra- or intracellular expression, suggesting a therapeutic value for colorectal cancer.
Collapse
Affiliation(s)
| | | | - Sandra Rodríguez
- Molecular Cytogenetics Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Vivian De Los Ríos
- Proteomics Core Facility, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Laura Pintado
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Marta Jaén
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, Universidad de Cantabria-IDIVAL, Santander, Spain
| | | | | |
Collapse
|
86
|
Qi PF, Fang L, Li H, Li SK, Yang YS, Qi JL, Xu C, Zhu HL. Discovery of novel pyrazoline derivatives containing methyl-1H-indole moiety as potential inhibitors for blocking APC-Asef interactions. Bioorg Chem 2020; 99:103838. [PMID: 32334194 DOI: 10.1016/j.bioorg.2020.103838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/01/2020] [Accepted: 04/06/2020] [Indexed: 11/17/2022]
Abstract
A series of novel pyrazoline derivatives containing methyl-1H-indole moiety were discovered as potential inhibitors for blocking APC-Asef interactions. The top hit Q19 suggested potency of inhibiting APC-Asef interactions and attractive preference for human-sourced colorectal cells. It was already comparable with the previous representative and the positive control Regorafenib before further pharmacokinetic optimization. The introduction of methyl-1H-indole moiety realized the Mitochondrial affection thus might connect the impact on the protein-interaction level with the apoptosis events. The molecular docking simulation inferred that bringing trifluoromethyl groups seemed a promising approach for causing more key interactions such as H-bonds. This work raised referable information for further discovery of inhibitors for blocking APC-Asef interactions.
Collapse
Affiliation(s)
- Peng-Fei Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Li Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hua Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Shu-Kai Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Chen Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
87
|
Liang S, Mao Y, Liao M, Xu Y, Chen Y, Huang X, Wei C, Wu C, Wang Q, Pan X, Tang W. Gut microbiome associated with APC gene mutation in patients with intestinal adenomatous polyps. Int J Biol Sci 2020; 16:135-146. [PMID: 31892851 PMCID: PMC6930378 DOI: 10.7150/ijbs.37399] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023] Open
Abstract
Background: The 'adenoma-carcinoma sequence' is a well-recognized model of colorectal cancer (CRC) development. However, the interaction between gut microbiota and genetic variation in the initiation of CRC is not clear. Our study attempts to demonstrate the relationship between gut microbiota and host genetics in patients with intestinal adenomatous polyps. Method: The entire exon region of the APC gene was sequenced in 35 patients with pathologically diagnosed adenomatous polyps. Patients with highly pathogenic APC mutation were classified as the case group, while the others were classified as the control group. The patients'stool and serum samples were respectively collected for metagenomics and metabolomics measurements. Results: In the analysis of gut microbiome, there were three most important species, in which Fusobacterium_mortiferum was significantly increased while Faecalibacterium_prausnitzii and Bifidobacterium_pseudocatenulatum were significantly decreased in the case group. The significantly low abundance of the Photosynthesis pathway in patients with APC mutation was due to the low abundance of species Faecalibacterium_prausnitzii and Bifidobacterium_pseudocatenulatum. Moreover, there were two clusters of KEGG pathways correlated with two clusters of species characterized by Faecalibacterium_prausnitzii and Fusobacterium_mortiferum. As to serum metabolomics, the abundance of (R)-3-Hydroxybutyric acid and 2-Hydroxyphenethylamine were significantly higher in patients with APC mutation, while the abundance of 1-Aminocyclopropanecarboxylic acid,7-Ketocholesterol, DL-lactate, and L-Pyroglutamic acid were significantly higher in controlgroup. After analyzing the metabolome and microbiome data by sparCCmethod, we found that there was a significantly negative correlation between the abundance of Faecalibacterium_prausnitzii and Fusobacterium_mortiferum, and a significantly positive correlation between Faecalibacterium_prausnitzii abundance and the steroid hormone Hydrocortisone (Cortisol) in serum. Conclusions: Host's APC mutation was closely related to the changes of gut microbiota and serum metabolites, and some species of gut microbiome like Faecalibacterium_prausnitzii and Fusobacterium_mortiferum might have the potential to predict the development of CRC from intestinal adenomatous polyps.
Collapse
Affiliation(s)
- Siyuan Liang
- Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi, 530021, China
| | - Yan Mao
- Oncology Department, Nanning Second People's Hospital, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530031, China
| | - Ming Liao
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, Guangxi, 530021, China
- Department of Reproductive Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yansong Xu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yingchun Chen
- Guangxi Medical University, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, Guangxi, 530021, China
| | - Xiaoliang Huang
- Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi, 530021, China
| | - Chuangyi Wei
- Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi, 530021, China
| | - Changtao Wu
- Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi, 530021, China
| | - Qiuyan Wang
- Guangxi Medical University, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, Guangxi, 530021, China
| | - Xiaoyan Pan
- Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Weizhong Tang
- Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi, 530021, China
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
88
|
Wu L, Wang J, Zhu D, Zhang S, Zhou X, Zhu W, Zhu J, He X. Circulating Epstein-Barr virus microRNA profile reveals novel biomarker for nasopharyngeal carcinoma diagnosis. Cancer Biomark 2020; 27:365-375. [PMID: 31958073 DOI: 10.3233/cbm-190160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nasopharyngeal carcinoma (NPC), a tumor quite prevalent in Asia, is closely associated with Epstein-Barr virus (EBV) infection status. Many NPC patients are not able to be treated in time when being diagnosed at an advanced stage. EBV-encoded microRNAs are reliable sources of biomarkers for NPC diagnosis. In this study, we conducted circulating EBV microRNAs profiling by quantitative reverse transcription polymerase chain reaction (qRT-PCR) among plasma samples of 159 NPC patients versus 145 normal controls (NCs) and serum samples of 60 NPC patients versus 60 NCs. Among the 44 mature EBV-encoded miRNAs, only miR-BART19-3p in plasma was proved to be significantly up-regulated in NPC patients (P< 0.05; fold change (FC) > 2.0). The area under the receiver operating characteristic curve (AUC) for the signature to discriminate NPC patients from NCs was 0.848 with the sensitivity and specificity being 71.7% and 72.3%, respectively. The identified biomarker was analyzed in tissue specimens (44 NPC VS. 32 NCs) and proved to be consistently up-regulated in NPC tumor tissues. Bioinformatics analysis was further conducted to predict the potential targets of miR-BART-19-3p, which provided some hints to its close relationship with NPC development. In conclusion, we identified a novel biomarker - plasma miR-BART19-3p for the detection of NPC.
Collapse
Affiliation(s)
- Lirong Wu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jingyi Wang
- Department of Breast Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danxia Zhu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Shiyu Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Zhu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xia He
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| |
Collapse
|
89
|
Analysis of hepatic and retinal cell microRNAome during AAV infection reveals their diverse impact on viral transduction and cellular physiology. Gene 2020; 724:144157. [DOI: 10.1016/j.gene.2019.144157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
|
90
|
Enomoto K, Tamagawa S, Kumashiro N, Warigaya K, Takeda S, Gunduz M, Murata SI, Hotomi M. A rare case of the recurrent surgery for cribriform-morular variant of papillary thyroid carcinoma. Int J Surg Case Rep 2019; 66:385-389. [PMID: 31954984 PMCID: PMC6970130 DOI: 10.1016/j.ijscr.2019.11.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The cribriform-morular variant of papillary thyroid carcinoma (CMV-PTC) is an uncommon subtype of PTC, and it is associated with familial adenomatous polyposis (FAP). PRESENTATION OF CASE We describe a 32-year-old female who presented recurrent CMV-PTC with FAP. Surgery performed after the recurrent disease resulted in left recurrent laryngeal nerve palsy due to formation of strong scar after initial operation. The histopathological examination revealed the recurrent CMV-PTC without thyroid capsular invasion in remnant thyroid tissue of berry ligament. In addition, the immunohistochemical analysis showed that β-Catenin was diffusely positive in both cytoplasm and nucleus in CMV-PTC tissue. CONCLUSION Total thyroidectomy in CMV-PTC with FAP should be performed at initial surgery due to high recurrence.
Collapse
Affiliation(s)
- Keisuke Enomoto
- Departments of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Shunji Tamagawa
- Departments of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Naoko Kumashiro
- Departments of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Kenji Warigaya
- Departments of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Saori Takeda
- Departments of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Mehmet Gunduz
- Departments of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Shin-Ichi Murata
- Departments of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Muneki Hotomi
- Departments of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
91
|
Lim MA, Chong VH, Ong SK, Lim YC. Colorectal Cancer in Brunei Darussalam: An Overview and Rationale for National Screening Programme. Asian Pac J Cancer Prev 2019; 20:3571-3580. [PMID: 31870096 PMCID: PMC7173360 DOI: 10.31557/apjcp.2019.20.12.3571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/27/2019] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide after lung and breast cancers, and ranks second in terms of cancer mortality globally. Brunei Darussalam reports high incidence of CRC in the Southeast Asian region and has no formal national screening programme for CRC. Screening for CRC in Brunei Darussalam is offered in an opportunistic fashion for individuals with average or above average risks for CRC, that is, the individual has a positive family history of CRC or neoplasms and is more than 50 years old. Opportunistic screening is widely practiced but this is not standardised. The Ministry of Health in Brunei Darussalam is currently in the process of implementing a CRC screening programme as part of a larger national health screening based on the increasing incidence of non-communicable diseases (NCDs). This review article assesses the situation of CRC in Brunei Darussalam from the 1980s to present day, including incidence of CRC in different age groups, ethnicities and genders; relevant non-modifiable and modifiable risk factors of CRC in Brunei Darussalam setting; and common CRC screening techniques used in Brunei Darussalam as well as other Asia-Pacific countries. The review also discusses the merits of a national CRC screening programme. With the increasing incidence of CRC worldwide and in Brunei Darussalam, national screening for CRC in Brunei Darussalam is an important strategy to lower morbidity and mortality rates. A review of the progress and outcome of the national screening programme will be available a few years after rollout.
Collapse
Affiliation(s)
- Mei Ann Lim
- PAPRBS Institute of Health Sciences, Universiti Brunei Darussalam,
| | - Vui Heng Chong
- Ministry of Health, Bandar Seri Begawan, Brunei Darussalam.
| | - Sok King Ong
- Ministry of Health, Bandar Seri Begawan, Brunei Darussalam.
| | - Ya Chee Lim
- PAPRBS Institute of Health Sciences, Universiti Brunei Darussalam,
| |
Collapse
|
92
|
Sajic T, Liu Y, Arvaniti E, Surinova S, Williams EG, Schiess R, Hüttenhain R, Sethi A, Pan S, Brentnall TA, Chen R, Blattmann P, Friedrich B, Niméus E, Malander S, Omlin A, Gillessen S, Claassen M, Aebersold R. Similarities and Differences of Blood N-Glycoproteins in Five Solid Carcinomas at Localized Clinical Stage Analyzed by SWATH-MS. Cell Rep 2019; 23:2819-2831.e5. [PMID: 29847809 DOI: 10.1016/j.celrep.2018.04.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/30/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer is mostly incurable when diagnosed at a metastatic stage, making its early detection via blood proteins of immense clinical interest. Proteomic changes in tumor tissue may lead to changes detectable in the protein composition of circulating blood plasma. Using a proteomic workflow combining N-glycosite enrichment and SWATH mass spectrometry, we generate a data resource of 284 blood samples derived from patients with different types of localized-stage carcinomas and from matched controls. We observe whether the changes in the patient's plasma are specific to a particular carcinoma or represent a generic signature of proteins modified uniformly in a common, systemic response to many cancers. A quantitative comparison of the resulting N-glycosite profiles discovers that proteins related to blood platelets are common to several cancers (e.g., THBS1), whereas others are highly cancer-type specific. Available proteomics data, including a SWATH library to study N-glycoproteins, will facilitate follow-up biomarker research into early cancer detection.
Collapse
Affiliation(s)
- Tatjana Sajic
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Yansheng Liu
- Department of Pharmacology, Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Eirini Arvaniti
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; PhD Program in Systems Biology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | - Evan G Williams
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Atul Sethi
- Department of Biomedicine, University of Basel/University Hospital Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1825 Pressler, Houston, TX 77030, USA
| | - Teresa A Brentnall
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ru Chen
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Peter Blattmann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Betty Friedrich
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; PhD Program in Systems Biology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Emma Niméus
- Department of Clinical Sciences Lund, Surgery, Oncology and Pathology, Lund University, and Skåne University Hospital, Department of Surgery, Lund, Sweden
| | - Susanne Malander
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, and Skåne University Hospital, Department of Oncology, Lund, Sweden
| | - Aurelius Omlin
- Department of Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Silke Gillessen
- Department of Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Manfred Claassen
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
93
|
Park J, Kim JW, Park H, Park SY, Kim TH, Kim SW, Oh YL, Chung JH. Multifocality in a Patient with Cribriform-Morular Variant of Papillary Thyroid Carcinoma Is an Important Clue for the Diagnosis of Familial Adenomatous Polyposis. Thyroid 2019; 29:1606-1614. [PMID: 31469036 DOI: 10.1089/thy.2019.0261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background: Cribriform-morular variant of papillary thyroid carcinoma (CMV-PTC) is a rare subtype of PTC, which occurrs predominantly in young women. This disease much more frequently presents in patients with familial adenomatous polyposis (FAP). FAP is an autosomal dominant inherited disease, which arises from germline mutations in the adenomatous polyposis coli (APC) gene. To clarify the distinctive clinical features of CMV-PTC, a comparison study was performed between familial types and sporadic types. Methods: Between 2007 and 2018, 15 CMV-PTC patients underwent thyroidectomy in Samsung Medical Center. The clinical features of these patients were retrospectively reviewed. Results: All patients were women with a median age of 26 years (range 17-46 years). The median maximum diameter was 1.0 cm (range 0.4-3.5 cm). All tumors underwent immunostaining and showed nuclear and/or cytoplasmic staining for β-catenin. On ultrasonography, most nodules had benign-looking features (well-defined, hypoechoic, and oval to round shapes without calcification), but a few nodules had capsular invasion and taller than wide shape. On preoperative fine-needle aspiration cytology, five patients (33%) were diagnosed as CMV-PTC, nine (60%) as PTC, but one (7%) as follicular neoplasm or PTC-follicular variant. Six patients (40%) had FAP, and four of them had total colectomy due to FAP. Five of them had a family history of FAP or colon cancer, or thyroid cancer. Germline mutations in the APC gene were found in all six patients with CMV-PTC associated with FAP, and five of them had de novo mutations. All patients with FAP-associated CMV-PTC had multiple tumors. All CMV-PTC patients had excellent response to initial therapy. Conclusions: Because of the association between FAP or colon cancer with multifocal CMV-PTC, we confirm that mutational analysis of the APC gene and colonoscopy should be carried out in these patients when multiple thyroid tumors are found.
Collapse
Affiliation(s)
- Jun Park
- Division of Endocrinology & Metabolism, Department of Medicine, Thyroid Centre, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyunju Park
- Division of Endocrinology & Metabolism, Department of Medicine, Thyroid Centre, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So Young Park
- Division of Endocrinology & Metabolism, Department of Medicine, Thyroid Centre, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Hyuk Kim
- Division of Endocrinology & Metabolism, Department of Medicine, Thyroid Centre, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Wook Kim
- Division of Endocrinology & Metabolism, Department of Medicine, Thyroid Centre, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Lyun Oh
- Department of Pathology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hoon Chung
- Division of Endocrinology & Metabolism, Department of Medicine, Thyroid Centre, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
94
|
Human Colorectal Cancer from the Perspective of Mouse Models. Genes (Basel) 2019; 10:genes10100788. [PMID: 31614493 PMCID: PMC6826908 DOI: 10.3390/genes10100788] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease that includes both hereditary and sporadic types of tumors. Tumor initiation and growth is driven by mutational or epigenetic changes that alter the function or expression of multiple genes. The genes predominantly encode components of various intracellular signaling cascades. In this review, we present mouse intestinal cancer models that include alterations in the Wnt, Hippo, p53, epidermal growth factor (EGF), and transforming growth factor β (TGFβ) pathways; models of impaired DNA mismatch repair and chemically induced tumorigenesis are included. Based on their molecular biology characteristics and mutational and epigenetic status, human colorectal carcinomas were divided into four so-called consensus molecular subtype (CMS) groups. It was shown subsequently that the CMS classification system could be applied to various cell lines derived from intestinal tumors and tumor-derived organoids. Although the CMS system facilitates characterization of human CRC, individual mouse models were not assigned to some of the CMS groups. Thus, we also indicate the possible assignment of described animal models to the CMS group. This might be helpful for selection of a suitable mouse strain to study a particular type of CRC.
Collapse
|
95
|
Lee S, Chen DY, Zaki MS, Maroofian R, Houlden H, Di Donato N, Abdin D, Morsy H, Mirzaa GM, Dobyns WB, McEvoy-Venneri J, Stanley V, James KN, Mancini GM, Schot R, Kalayci T, Altunoglu U, Karimiani EG, Brick L, Kozenko M, Jamshidi Y, Manzini MC, Beiraghi Toosi M, Gleeson JG. Bi-allelic Loss of Human APC2, Encoding Adenomatous Polyposis Coli Protein 2, Leads to Lissencephaly, Subcortical Heterotopia, and Global Developmental Delay. Am J Hum Genet 2019; 105:844-853. [PMID: 31585108 DOI: 10.1016/j.ajhg.2019.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Lissencephaly is a severe brain malformation in which failure of neuronal migration results in agyria or pachygyria and in which the brain surface appears unusually smooth. It is often associated with microcephaly, profound intellectual disability, epilepsy, and impaired motor abilities. Twenty-two genes are associated with lissencephaly, accounting for approximately 80% of disease. Here we report on 12 individuals with a unique form of lissencephaly; these individuals come from eight unrelated families and have bi-allelic mutations in APC2, encoding adenomatous polyposis coli protein 2. Brain imaging studies demonstrate extensive posterior predominant lissencephaly, similar to PAFAH1B1-associated lissencephaly, as well as co-occurrence of subcortical heterotopia posterior to the caudate nuclei, "ribbon-like" heterotopia in the posterior frontal region, and dysplastic in-folding of the mesial occipital cortex. The established role of APC2 in integrating the actin and microtubule cytoskeletons to mediate cellular morphological changes suggests shared function with other lissencephaly-encoded cytoskeletal proteins such as α-N-catenin (CTNNA2) and platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1, also known as LIS1). Our findings identify APC2 as a radiographically distinguishable recessive form of lissencephaly.
Collapse
|
96
|
Ito T, Matoba R, Maekawa H, Sakurada M, Kushida T, Orita H, Wada R, Sato K. Detection of gene mutations in gastric cancer tissues using a commercial sequencing panel. Mol Clin Oncol 2019; 11:455-460. [PMID: 31620276 PMCID: PMC6787944 DOI: 10.3892/mco.2019.1926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022] Open
Abstract
Predicting malignancy is important for adequate adjuvant therapy in patients with cancer. Due to cancer being a genetic disease, the detection of gene mutations could be helpful in predicting the prognosis and efficacy of drugs. Gastric cancer is the fifth most common cancer and is the third leading cause of cancer associated mortality worldwide. Mutations in genes may correlate with clinical information in patients with gastric cancer after surgery and, therefore, may be useful for predicting the prognosis of this disease. In the present study, to assess the usefulness of a commercial sequencing panel, TruSeq® Amplicon-Cancer Panel (Illumina), using a next-generation sequencer (Illumina MiSeq), mutation analysis of fresh as well as formalin-fixed paraffin-embedded (FFPE) gastric cancer tissues was performed retrospectively. The study group comprised of 4 patients who underwent gastrectomy for gastric cancer. Cancer and normal stomach tissues were collected immediately following surgical removal. Thereafter, the specimens were fixed in 10% neutral formalin for 24–72 h. Normal and FFPE cancer tissues were histologically examined and confirmed. A total of 3 mutations were identified in the driver genes (KRAS, TP53 and APC) in cancer tissues from 2 of the 4 patients, using fresh samples. In addition, FFPE samples were analysed for the same tissues and the same results were obtained by setting the threshold for the percentage of the mutation rate to avoid detection of pseudo-positive mutations. In conclusion, the sequencing analysis using FFPE-derived DNA samples was successfully performed.
Collapse
Affiliation(s)
- Tomoaki Ito
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka 410-2295, Japan
| | - Ryo Matoba
- DNA Chip Research Inc., Tokyo 105-0022, Japan
| | - Hiroshi Maekawa
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka 410-2295, Japan
| | - Mutsumi Sakurada
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka 410-2295, Japan
| | - Tomoyuki Kushida
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka 410-2295, Japan
| | - Hajime Orita
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka 410-2295, Japan
| | - Ryo Wada
- Department of Pathology, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka 410-2295, Japan
| | - Koichi Sato
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka 410-2295, Japan
| |
Collapse
|
97
|
Li N, Lu N, Xie C. The Hippo and Wnt signalling pathways: crosstalk during neoplastic progression in gastrointestinal tissue. FEBS J 2019; 286:3745-3756. [PMID: 31342636 DOI: 10.1111/febs.15017] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/24/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
The Hippo and Wnt signalling pathways play crucial roles in maintaining tissue homeostasis and organ size by orchestrating cell proliferation, differentiation and apoptosis. These pathways have been frequently found to be dysregulated in human cancers. While the canonical signal transduction of Hippo and Wnt has been well studied, emerging evidence shows that these two signalling pathways contribute to and exhibit overlapping functions in gastrointestinal (GI) tumorigenesis. In fact, the core effectors YAP/TAZ in Hippo signalling pathway cooperate with β-catenin in Wnt signalling pathway to promote GI neoplasia. Here, we provide a brief review to summarize the molecular mechanisms underlying the crosstalk between these two pathways and elucidate their involvement in GI tumorigenesis, particularly focusing on the intestine, stomach and liver.
Collapse
Affiliation(s)
- Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, China
| |
Collapse
|
98
|
Ghazanfari T, Asaadi Tehrani G, Maziri P. The Relationship between the Methylation of Promoter Regions of Tumor Suppressor Genes PTEN and APC with Endometrial Cancer. Asian Pac J Cancer Prev 2019; 20:2259-2265. [PMID: 31450893 PMCID: PMC6852804 DOI: 10.31557/apjcp.2019.20.8.2259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 11/25/2022] Open
Abstract
Background: Endometrial neoplasms is one of the most typical gynecologic diseases with harmful effects. Promoter hypermethylation is an important mechanism of the inactivation of tumor suppressor genes in endometrial neoplasms. Epigenetic changes of the PTEN and APC genes have shown to be present in various cancers. Therefore, in this study, we have investigated the association between the promoter hypermethylation of PTEN and APC genes with endometrial neoplasms. Methods: For this study, 28 patients with endometrial neoplasms as well as 22 controls were studied. Analysis of the promoter methylation regions of PTEN and APC genes were performed by Methylation-Specific PCR. Results: The frequency of PTEN and APC genes promoter methylation was 28.57% and 17.86% in tumor tissues, and 11.54% and 3.85% in blood samples, respectively. We found a significant relationship between blood and tissue in PTEN methylation (p = 0.0353). Additionally, we determined a closely significant difference between normal tissue and tumor tissue of the PTEN gene (p = 0.0787) and blood and tissue samples of the APC gene in methylated promoter regions (p=0.0623). Furthermore, these results suggest that there is no significant relationship between the promoter methylation of PTEN and APC with clinical characteristics. Conclusion: DNA methylation deficiency is a well known highlighted factor in tumorigenesis, therefore the promoter hypermethylation of PTEN and APC can be indicated as a risk factor in endometrial neoplasms.
Collapse
Affiliation(s)
- Tayebeh Ghazanfari
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Zanjan Branch, Zanjan, Iran.
| | - Golnaz Asaadi Tehrani
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Zanjan Branch, Zanjan, Iran.
| | - Parisa Maziri
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Zanjan Branch, Zanjan, Iran.
| |
Collapse
|
99
|
Functional characterization of CNOT3 variants identified in familial adenomatous polyposis adenomas. Oncotarget 2019; 10:3939-3951. [PMID: 31231471 PMCID: PMC6570471 DOI: 10.18632/oncotarget.27003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/20/2019] [Indexed: 01/28/2023] Open
Abstract
Germline mutations in the tumor suppressor Adenomatous Polyposis Coli (APC) define Familial Adenomatous Polyposis (FAP), the genetic predisposition to developing adenomatous polyps. Recent sequencing of FAP adenomas have challenged established dogma that APC mutations alone represent the adenoma mutational landscape because recurrent somatic mutations in non-WNT pathway genes were also discovered. In particular, one of these novel genes, CNOT3, presented E20K and E70K mutations that are predicted to be deleterious in silico. We utilized zebrafish embryos to determine if these mutations affect CNOT3 function and perform novel biology in an APC-dependent pathway in vivo. Human CNOT3 (hCNOT3) and E20K mRNA injection rescued zebrafish cnot3a knockdown lordosis phenotype while E70K did not. In the FAP apcmcr zebrafish model, we show that ctbp1, but not retinoic acid, regulates cnot3a expression. Injection of hCNOT3 and E20K, but not E70K, to homozygous apcmcr zebrafish initiated gut differentiation while cnot3a knockdown in wildtype embryos led to decreased intestinal development and differentiation. Finally, targeted sequencing of 37 additional FAP adenomas revealed CNOT3 mutations in 20% of these samples. Overall, our work supports a mechanism where CTBP1 regulates CNOT3 and that overall CNOT3 perturbation could work in concert with germline APC mutations in advancing adenomas to a more transformed state prior to progression to adenocarcinoma.
Collapse
|
100
|
Yan XQ, Wang ZC, Qi PF, Li G, Zhu HL. Design, synthesis and biological evaluation of 2-H pyrazole derivatives containing morpholine moieties as highly potent small molecule inhibitors of APC-Asef interaction. Eur J Med Chem 2019; 177:425-447. [PMID: 31158755 DOI: 10.1016/j.ejmech.2019.05.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 11/15/2022]
Abstract
Mutated adenomatous polyposis coli (APC) selectively combining with Asef has been reported to be implicated in promoting colon cancer proliferation, invasion and metastasis in several cancer biotherapy studies. However, there were universally resistance and harsh terms in disrupting APC-Asef interaction in biotherapy. Under the circumstances small-molecule inhibitors as the new APC interface could resolve the problems. In this research, a series of novel dihydropyrazole derivatives containing morpholine as high potent interaction inhibitors between APC and Asef were first synthesized after selection by means of docking simulation and virtual screening. Afterwards they were evaluated interaction inhibition of APC-Asef and pharmacological efficiency both in vitro and in vivo utilizing orthotopic transplantation model with multi-angle of view. Among them, compound 7g exhibited most excellent anti-proliferation activities against HCT116 cells with IC50 of 0.10 ± 0.01 μM than Regorafenib (IC50 = 0.16 ± 0.04 μM). The results favored our rational design intention and provides a new class of small-molecule inhibitors available for the development of colon tumor therapeutics targeting APC-Asef interaction inhibitions.
Collapse
Affiliation(s)
- Xiao-Qiang Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China; Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China.
| | - Peng-Fei Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Guigen Li
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|