51
|
Pittala S, Levy I, De S, Kumar Pandey S, Melnikov N, Hyman T, Shoshan-Barmatz V. The VDAC1-based R-Tf-D-LP4 Peptide as a Potential Treatment for Diabetes Mellitus. Cells 2020; 9:E481. [PMID: 32093016 PMCID: PMC7072803 DOI: 10.3390/cells9020481] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a metabolic disorder approaching epidemic proportions. Non-alcoholic fatty liver disease (NAFLD) regularly coexists with metabolic disorders, including type 2 diabetes, obesity, and cardiovascular disease. Recently, we demonstrated that the voltage-dependent anion channel 1 (VDAC1) is involved in NAFLD. VDAC1 is an outer mitochondria membrane protein that serves as a mitochondrial gatekeeper, controlling metabolic and energy homeostasis, as well as crosstalk between the mitochondria and the rest of the cell. It is also involved in mitochondria-mediated apoptosis. Here, we demonstrate that the VDAC1-based peptide, R-Tf-D-LP4, affects several parameters of a NAFLD mouse model in which administration of streptozotocin (STZ) and high-fat diet 32 (STZ/HFD-32) led to both type 2 diabetes (T2D) and NAFLD phenotypes. We focused on diabetes, showing that R-Tf-D-LP4 peptide treatment of STZ/HFD-32 fed mice restored the elevated blood glucose back to close to normal levels, and increased the number and average size of islets and their insulin content as compared to untreated controls. Similar results were obtained when staining the islets for glucose transporter type 2. In addition, the R-Tf-D-LP4 peptide decreased the elevated glucose levels in a mouse displaying obese, diabetic, and metabolic symptoms due to a mutation in the obese (ob) gene. To explore the cause of the peptide-induced improvement in the endocrine pancreas phenotype, we analyzed the expression levels of the proliferation marker, Ki-67, and found it to be increased in the islets of STZ/HFD-32 fed mice treated with the R-Tf-D-LP4 peptide. Moreover, peptide treatment of STZ/HFD-32 fed mice caused an increase in the expression of β-cell maturation and differentiation PDX1 transcription factor that enhances the expression of the insulin-encoding gene, and is essential for islet development, function, proliferation, and maintenance of glucose homeostasis in the pancreas. This increase occurred mainly in the β-cells, suggesting that the source of their increased number after R-Tf-D-LP4 peptide treatment was most likely due to β-cell proliferation. These results suggest that the VDAC1-based R-Tf-D-LP4 peptide has potential as a treatment for diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.P.); (I.L.); (S.D.); (S.K.P.); (N.M.); (T.H.)
| |
Collapse
|
52
|
Wei S, Peng L, Yang J, Sang H, Jin D, Li X, Chen M, Zhang W, Dang Y, Zhang G. Exosomal transfer of miR-15b-3p enhances tumorigenesis and malignant transformation through the DYNLT1/Caspase-3/Caspase-9 signaling pathway in gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:32. [PMID: 32039741 PMCID: PMC7011526 DOI: 10.1186/s13046-019-1511-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/17/2019] [Indexed: 02/10/2023]
Abstract
Background Exosomes are essential for tumor growth, metastasis, and are used as novel signaling molecules in targeted therapies. Therefore, exosomal miRNAs can be used in new diagnostic and therapeutic approaches due to their involvement in the development of cancers. However, the detailed biological function, potential molecular mechanism and clinical application of exo-miR-15b-3p in gastric cancer (GC) remains unclear. Methods miR-15b-3p mRNA levels in tissues, serum, cells and exosomes were analyzed using qRT-PCR assays. qRT-PCR, immunohistochemical and western blotting analyses were utilized for the determination of DYNLT1 expression. The interrelationship connecting miR-15b-3p with DYNLT1 was verified using Dual-luciferase report, western blotting and qRT-PCR assays. Fluorescent PKH-26 or GFP-Lv-CD63 labeled exosomes, as well as Cy3-miR-15b-3p, were utilized to determine the efficacy of the transfer of exo-miR-15b-3p between BGC-823 and recipient cells. Several in vitro assays and xenograft tumor models were conducted to determine exo-miR-15b-3p impact on GC progression. Results This is the first study to confirm high miR-15b-3p expression in GC cell lines, tissues and serum. Exosomes obtained from 108 GC patient serum samples and GC cell-conditioned medium were found to show upregulation of exo-miR-15b-3p, with the area under the ROC curve (AUC) being 0.820 [0.763–0.876], which is superior to the AUC of tissues and serum miR-15b-3p (0.674 [0.600–0.748] and 0.642 [0.499–0.786], respectively). In addition, high exo-miR-15b-3p expression in serum was found to accurately predict worse overall survival. SGC-7901 and GES-1 cells are capable of internalizing BGC-823 cell-derived exosomes, allowing the transfer of miR-15b-3p. Migration, invasion, proliferation and inhibition of apoptosis in vitro and in vivo were enhanced by exo-miR-15b-3p, by restraining DYNLT1, Cleaved Caspase-9 and Caspase-3 expression. Conclusions This study identified a previously unknown regulatory pathway, exo-miR-15b-3p/DYNLT1/Caspase-3/Caspase-9, which promotes GC development and GES-1 cell malignant transformation. Therefore, serum exo-miR-15b-3p may be a potential GC diagnosis and prognosis biomarker, which can be used in precise targeted GC therapy.
Collapse
Affiliation(s)
- Shuchun Wei
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lei Peng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiajia Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huaiming Sang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Duochen Jin
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Meihong Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Weifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yini Dang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
53
|
Böhm R, Amodeo GF, Murlidaran S, Chavali S, Wagner G, Winterhalter M, Brannigan G, Hiller S. The Structural Basis for Low Conductance in the Membrane Protein VDAC upon β-NADH Binding and Voltage Gating. Structure 2020; 28:206-214.e4. [PMID: 31862297 PMCID: PMC8353649 DOI: 10.1016/j.str.2019.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 11/26/2022]
Abstract
The voltage-dependent anion channel (VDAC) forms the primary diffusion pore of the outer mitochondrial membrane. In its apo form, VDAC adopts an open conformation with high conductance. States of lower conductance can be induced by ligand binding or the application of voltage. Here, we clarify at the atomic level how β-NADH binding leads to a low-conductance state and characterize the role of the VDAC N-terminal helix in voltage gating. A high-resolution NMR structure of human VDAC-1 with bound NADH, combined with molecular dynamics simulation show that β-NADH binding reduces the pore conductance sterically without triggering a structural change. Electrophysiology recordings of crosslinked protein variants and NMR relaxation experiments probing different time scales show that increased helix dynamics is present in the open state and that motions of the N-terminal helices are involved in the VDAC voltage gating mechanism.
Collapse
Affiliation(s)
- Raphael Böhm
- Biozentrum, University of Basel, Basel 4056, Switzerland
| | | | - Sruthi Murlidaran
- Center for Computational Biology, Rutgers University, Camden, NJ 08102, USA
| | - Shashank Chavali
- Department of Biology, Rutgers University, Camden, NJ 08201, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Grace Brannigan
- Center for Computational Biology, Rutgers University, Camden, NJ 08102, USA; Department of Physics, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08201, USA
| | | |
Collapse
|
54
|
Danese A, Marchi S, Vitto VAM, Modesti L, Leo S, Wieckowski MR, Giorgi C, Pinton P. Cancer-Related Increases and Decreases in Calcium Signaling at the Endoplasmic Reticulum-Mitochondria Interface (MAMs). Rev Physiol Biochem Pharmacol 2020; 185:153-193. [PMID: 32789789 DOI: 10.1007/112_2020_43] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER)-mitochondria regions are specialized subdomains called also mitochondria-associated membranes (MAMs). MAMs allow regulation of lipid synthesis and represent hubs for ion and metabolite signaling. As these two organelles can module both the amplitude and the spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls several Ca2+-dependent pathways well known for their contribution to tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis. Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload, permeabilization of the mitochondrial outer membrane, and the release of mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the ER-mitochondria interface are being studied in depth as failure of apoptotic-dependent cell death is one of the predominant characteristics of cancer cells. However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation to tumor onset and progression have aroused the interest of the scientific community.In this review, we will describe how different MAMs-localized proteins modulate the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+ signaling.
Collapse
Affiliation(s)
- Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Veronica Angela Maria Vitto
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Modesti
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sara Leo
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
55
|
Xin Z, Wu X, Yu Z, Shang J, Xu B, Jiang S, Yang Y. Mechanisms explaining the efficacy of psoralidin in cancer and osteoporosis, a review. Pharmacol Res 2019; 147:104334. [DOI: 10.1016/j.phrs.2019.104334] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022]
|
56
|
Shen HP, Wu WJ, Ko JL, Wu TF, Yang SF, Wu CH, Yeh CM, Wang PH. Effects of ABT-737 combined with irradiation treatment on uterine cervical cancer cells. Oncol Lett 2019; 18:4328-4336. [PMID: 31579427 DOI: 10.3892/ol.2019.10755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/24/2019] [Indexed: 01/30/2023] Open
Abstract
The aim of the present study was to examine the role of ABT-737, an inhibitor of B-cell lymphoma 2 (Bcl-2), in enhancing the effect of irradiation on uterine cervical cancer. Based on The Cancer Genomic Atlas (TCGA), Bcl-2 mRNA expression was associated with the Tumor-Node-Metastasis stage of cervical cancer. Therefore, it was hypothesized that Bcl-2 inhibition may decrease the progression of cervical cancer. ABT-737 was added to irradiation treatment to evaluate its effectiveness in inhibiting cancer cell progression. SiHa and CaSki cervical cancer cells were selected for in vitro assays. Patients with advanced stage III uterine cancer had slightly increased mRNA expression levels of Bcl-2 compared with patients with stage I cancer, although the difference was not significant. ABT-737 and radiation administration induced a synergistic cytotoxic effect based on the MTT assay and flow cytometry results, where an increase in apoptosis was observed. The apoptotic percentages were significantly increased in the cells treated with a combination of ABT-737 and irradiation. Loss of mitochondrial membrane potential and gain of reactive oxygen species (ROS) were detected by flow cytometry in CaSki and SiHa cells treated with ABT-737 and radiation. Additionally, the protein expression levels of the cleaved forms of poly ADP ribose polymerase and caspase-7 were increased following the combined treatment. In conclusion, ABT-737 and irradiation may induce apoptosis via loss of mitochondrial membrane potential and a ROS-dependent apoptotic pathway in CaSki and SiHa cells. The present study indicates that ABT-737 may be a potential irradiation adjuvant when treating cervical cancer.
Collapse
Affiliation(s)
- Huang-Pin Shen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 402, Taiwan, R.O.C.,School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Wen-Jun Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Tzu-Fan Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan, R.O.C
| | - Chih-Hsien Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Chia-Ming Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 402, Taiwan, R.O.C.,School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| |
Collapse
|
57
|
Shteinfer-Kuzmine A, Argueti S, Gupta R, Shvil N, Abu-Hamad S, Gropper Y, Hoeber J, Magrì A, Messina A, Kozlova EN, Shoshan-Barmatz V, Israelson A. A VDAC1-Derived N-Terminal Peptide Inhibits Mutant SOD1-VDAC1 Interactions and Toxicity in the SOD1 Model of ALS. Front Cell Neurosci 2019; 13:346. [PMID: 31474832 PMCID: PMC6702328 DOI: 10.3389/fncel.2019.00346] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in superoxide dismutase (SOD1) are the second most common cause of familial amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease caused by the death of motor neurons in the brain and spinal cord. SOD1 neurotoxicity has been attributed to aberrant accumulation of misfolded SOD1, which in its soluble form binds to intracellular organelles, such as mitochondria and ER, disrupting their functions. Here, we demonstrate that mutant SOD1 binds specifically to the N-terminal domain of the voltage-dependent anion channel (VDAC1), an outer mitochondrial membrane protein controlling cell energy, metabolic and survival pathways. Mutant SOD1G93A and SOD1G85R, but not wild type SOD1, directly interact with VDAC1 and reduce its channel conductance. No such interaction with N-terminal-truncated VDAC1 occurs. Moreover, a VDAC1-derived N-terminal peptide inhibited mutant SOD1-induced toxicity. Incubation of motor neuron-like NSC-34 cells expressing mutant SOD1 or mouse embryonic stem cell-derived motor neurons with different VDAC1 N-terminal peptides resulted in enhanced cell survival. Taken together, our results establish a direct link between mutant SOD1 toxicity and the VDAC1 N-terminal domain and suggest that VDAC1 N-terminal peptides targeting mutant SOD1 provide potential new therapeutic strategies for ALS.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Shirel Argueti
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Rajeev Gupta
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Neta Shvil
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Salah Abu-Hamad
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Yael Gropper
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Jan Hoeber
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Elena N Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
58
|
Shoshan-Barmatz V, Pittala S, Mizrachi D. VDAC1 and the TSPO: Expression, Interactions, and Associated Functions in Health and Disease States. Int J Mol Sci 2019; 20:ijms20133348. [PMID: 31288390 PMCID: PMC6651789 DOI: 10.3390/ijms20133348] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The translocator protein (TSPO), located at the outer mitochondrial membrane (OMM), serves multiple functions and contributes to numerous processes, including cholesterol import, mitochondrial metabolism, apoptosis, cell proliferation, Ca2+ signaling, oxidative stress, and inflammation. TSPO forms a complex with the voltage-dependent anion channel (VDAC), a protein that mediates the flux of ions, including Ca2+, nucleotides, and metabolites across the OMM, controls metabolism and apoptosis and interacts with many proteins. This review focuses on the two OMM proteins TSPO and VDAC1, addressing their structural interaction and associated functions. TSPO appears to be involved in the generation of reactive oxygen species, proposed to represent the link between TSPO activation and VDAC, thus playing a role in apoptotic cell death. In addition, expression of the two proteins in healthy brains and diseased states is considered, as is the relationship between TSPO and VDAC1 expression. Both proteins are over-expressed in in brains from Alzheimer’s disease patients. Finally, TSPO expression levels were proposed as a biomarker of some neuropathological settings, while TSPO-interacting ligands have been considered as a potential basis for drug development.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Srinivas Pittala
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Dario Mizrachi
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
59
|
High glucose induces apoptosis of HUVECs in a mitochondria-dependent manner by suppressing hexokinase 2 expression. Exp Ther Med 2019; 18:621-629. [PMID: 31258698 PMCID: PMC6566108 DOI: 10.3892/etm.2019.7609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/14/2019] [Indexed: 12/18/2022] Open
Abstract
Hyperglycemia in patients with diabetes induces vascular endothelial cell apoptosis and subsequent vasculopathy. The aim of the current study was to investigate the pathological mechanism of hyperglycemia-induced endothelial cell apoptosis and vasculopathy using human umbilical vein endothelial cells. As high glucose-induced apoptosis is caused by elevated mitochondrial permeability-mediated release of mitochondrial cytochrome c, the current study examined voltage-dependent anion channel (VDAC1), the controller of mitochondrial permeability, and its regulators, hexokinase2 (HK2), Bcl-2 and Bax. The current study demonstrated that HK2 may be involved in high glucose-induced cell apoptosis, as HK2 overexpression partially reversed high glucose-induced downregulation of mitochondrial/cellular HK2 and Bcl-2 as well as upregulation of mitochondrial Bax. These results suggest that HK2 overexpression partially reversed the reduced binding of HK2 and Bcl-2 and the enhanced binding of Bax to VDAC1, which reduced the high mitochondrial permeability observed under high-glucose conditions. Furthermore, high glucose reduced HK2 transcription via down-regulation of the HK2 transcriptional factor, peroxisome proliferator activated receptor γ (PPARγ). Taken together, these results suggest that PPARγ/HK2 may be novel targets for the prevention of diabetic vasculopathy.
Collapse
|
60
|
Wang G, Wang JJ, Yin PH, Xu K, Wang YZ, Shi F, Gao J, Fu XL. Strategies for targeting energy metabolism in Kirsten rat sarcoma viral oncogene homolog -mutant colorectal cancer. J Cell Biochem 2019; 120:1106-1121. [PMID: 30362665 DOI: 10.1002/jcb.27558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023]
Abstract
Alterations in cellular energy metabolism play critical roles in colorectal cancer (CRC). These alterations, which correlate to KRAS mutations, have been identified as energy metabolism signatures. This review summarizes the relationship between colorectal tumors associated with mutated KRAS and energy metabolism, especially for the deregulated energy metabolism that affects tumor cell proliferation, invasion, and migration. Furthermore, this review will concentrate on the role of metabolic genes, factors and signaling pathways, which are coupled with the primary energy source connected with the KRAS mutation that induces metabolic alterations. Strategies for targeting energy metabolism in mutated KRAS CRC are also introduced. In conclusion, deregulated energy metabolism has a close relationship with KRAS mutations in colorectal tumors. Therefore, selective inhibitors, agents against metabolic targets or KRAS signaling, may be clinically useful for colorectal tumor treatment through a patient-personalized approach.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Pei-Hao Yin
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Xu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Zhu Wang
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| |
Collapse
|
61
|
Reif MM, Fischer M, Fredriksson K, Hagn F, Zacharias M. The N-Terminal Segment of the Voltage-Dependent Anion Channel: A Possible Membrane-Bound Intermediate in Pore Unbinding. J Mol Biol 2019; 431:223-243. [DOI: 10.1016/j.jmb.2018.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 12/25/2022]
|
62
|
Nagakannan P, Islam MI, Karimi-Abdolrezaee S, Eftekharpour E. Inhibition of VDAC1 Protects Against Glutamate-Induced Oxytosis and Mitochondrial Fragmentation in Hippocampal HT22 Cells. Cell Mol Neurobiol 2019; 39:73-85. [PMID: 30421242 PMCID: PMC11469849 DOI: 10.1007/s10571-018-0634-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/07/2018] [Indexed: 01/05/2023]
Abstract
The involvement of glutamate in neuronal cell death in neurodegenerative diseases and neurotrauma is mediated through excitotoxicity or oxytosis. The latter process induces oxidative stress via glutamate-mediated inhibition of cysteine transporter xCT, leading to depletion of the cellular glutathione pool. Mitochondrial damage, loss of mitochondrial membrane potential (MMP), and depletion of energy metabolites have been shown in this process. The Voltage-Dependent Anion Channel-1 (VDAC1) is one of the main components of the mitochondrial outer membrane and plays a gatekeeping role in mitochondria-cytoplasm transport of metabolites. In this study, we explored the possible participation of VDAC-1 in the pathophysiology of oxytosis. Administration of glutamate in HT22 cells that lack the glutamate ionotropic receptors induced an upregulation and oligomerization of VDAC1. This was associated with an increase in ROS and loss of cell survival. Glutamate-mediated oxytosis in this model also decreased MMP and promoted ATP depletion, resulting in translocation of cytochrome c (cyt C) and apoptosis inducing factor (AIF) from mitochondria into the cytosol. This was also accompanied by cleavage of AIF to form truncated AIF. Inhibition of VDAC1 oligomerization using 4,4'-Diisothiocyanatostilbene-2,2'-disulfonate (DIDS), significantly improved the cell survival, decreased the ROS levels, improved mitochondrial functions, and decreased the mitochondrial damage. Notably, DIDS also inhibited the mitochondrial fragmentation caused by glutamate, indicating the active role of VDAC1 oligomerization in the process of mitochondrial fragmentation in oxytosis. These results suggest a critical role for VDAC1 in mitochondrial fragmentation and its potential therapeutic value against glutamate-mediated oxidative neurotoxicity.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Department of Physiology and Pathophysiology, Regenerative Medicine Program and Spinal Cord Research Centre, University of Manitoba, Winnipeg, Canada
| | - Md Imamul Islam
- Department of Physiology and Pathophysiology, Regenerative Medicine Program and Spinal Cord Research Centre, University of Manitoba, Winnipeg, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program and Spinal Cord Research Centre, University of Manitoba, Winnipeg, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, Regenerative Medicine Program and Spinal Cord Research Centre, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
63
|
Wang G, Wang JJ, Yin PH, Xu K, Wang YZ, Shi F, Gao J, Fu XL. Strategies to target energy metabolism in consensus molecular subtype 3 along with Kirsten rat sarcoma viral oncogene homolog mutations for colorectal cancer therapy. J Cell Physiol 2018; 234:5601-5612. [PMID: 30341899 DOI: 10.1002/jcp.27388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
Alterations in cellular energy metabolism play a critical role in colorectal cancer (CRC), which has been identified as the definition of consensus molecular subtypes (CMSs), and CMS3 tumors exhibit energy metabolism signatures along with Kirsten rat sarcoma viral oncogene homolog (KRAS)-activating mutations. This review summarizes the relationship between CMS3 tumors associated with mutated KRAS and energy metabolism in CRC, especially for the dysregulated energy metabolism that affects tumor cell proliferation, invasion, and migration. Furthermore, this review concentrates on the role of metabolic genes and factors and signaling pathways, which coupled with a primary energy source connected with the CMS3 associated with mutated KRAS, induce metabolic alterations. The strategies to target energy metabolism for the metabolic alterations in mutated KRAS CRC are also introduced. In conclusion, dysregulated energy metabolism has a close relationship with mutated KRAS in CMS3 tumors. Therefore, selective inhibitors or agents against metabolic targets or KRAS signaling may be clinically useful for CMS3 tumor treatment through a personalized approach for patients with cancer.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Pei-Hao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Xu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Zhu Wang
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
64
|
Manzo G, Serra I, Magrí A, Casu M, De Pinto V, Ceccarelli M, Scorciapino MA. Folded Structure and Membrane Affinity of the N-Terminal Domain of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion-Selective Channel. ACS OMEGA 2018; 3:11415-11425. [PMID: 30320261 PMCID: PMC6173511 DOI: 10.1021/acsomega.8b01536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Voltage-dependent anion-selective channels (VDACs) are primarily located in the mitochondrial outer membrane (MOM). They are essential for the regulation of ion and metabolite exchanges. In particular, their role in energy-related nucleotide exchange has many implications in apoptosis, cancer, and neurodegenerative diseases. It has been proposed that VDACs' functions are regulated by mobility of the N-terminal helical domain, which is bound to the inner wall of the main β-barrel domain but exists in equilibrium between the bound-folded and the unbound-unfolded state. When the N-terminal domain detaches from the channel's wall and eventually leaves the lumen, it can either stay exposed to the cytosolic environment or interact with the outer leaflet of the MOM; then, it may also interact with other protein partners. In humans, three different VDAC isoforms are expressed at different tissue-specific levels with evidence of distinct roles. Although the N-terminal domains share high sequence similarity, important differences do exist, with the functionality of the entire protein mostly attributed to them. In this work, the three-dimensional structure and membrane affinity of the three isolated hVDAC N-terminal peptides have been compared through Fourier-transform infrared and NMR spectroscopy in combination with molecular dynamics simulations, and measurement of the surface pressure of lipid monolayers. Although peptides were studied as isolated from the β-barrel domain, the observed differences are relevant for those whole protein's functions in which a protein-protein interaction is mediated by the N-terminal domain.
Collapse
Affiliation(s)
- Giorgia Manzo
- Department
of Chemical and Geological Sciences, Cittadella Universitaria di Monserrato, Department of Physics,
Cittadella Universitaria di Monserrato, and Department
of Biomedical Sciences, Biochemistry Unit, Cittadella Universitaria
di Monserrato, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Cagliari, Italy
| | - Ilaria Serra
- Department
of Chemical and Geological Sciences, Cittadella Universitaria di Monserrato, Department of Physics,
Cittadella Universitaria di Monserrato, and Department
of Biomedical Sciences, Biochemistry Unit, Cittadella Universitaria
di Monserrato, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Cagliari, Italy
| | - Andrea Magrí
- Department of Biomedicine
and Biotechnology, Section of Biology and Genetics, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Mariano Casu
- Department
of Chemical and Geological Sciences, Cittadella Universitaria di Monserrato, Department of Physics,
Cittadella Universitaria di Monserrato, and Department
of Biomedical Sciences, Biochemistry Unit, Cittadella Universitaria
di Monserrato, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Cagliari, Italy
| | - Vito De Pinto
- Department of Biomedicine
and Biotechnology, Section of Biology and Genetics, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Matteo Ceccarelli
- Department
of Chemical and Geological Sciences, Cittadella Universitaria di Monserrato, Department of Physics,
Cittadella Universitaria di Monserrato, and Department
of Biomedical Sciences, Biochemistry Unit, Cittadella Universitaria
di Monserrato, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Cagliari, Italy
| | - Mariano Andrea Scorciapino
- Department
of Chemical and Geological Sciences, Cittadella Universitaria di Monserrato, Department of Physics,
Cittadella Universitaria di Monserrato, and Department
of Biomedical Sciences, Biochemistry Unit, Cittadella Universitaria
di Monserrato, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
65
|
Interaction of the cryptic fragment of myelin basic protein with mitochondrial voltage-dependent anion-selective channel-1 affects cell energy metabolism. Biochem J 2018; 475:2355-2376. [PMID: 29954845 DOI: 10.1042/bcj20180137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
Abstract
In demyelinating nervous system disorders, myelin basic protein (MBP), a major component of the myelin sheath, is proteolyzed and its fragments are released in the neural environment. Here, we demonstrated that, in contrast with MBP, the cellular uptake of the cryptic 84-104 epitope (MBP84-104) did not involve the low-density lipoprotein receptor-related protein-1, a scavenger receptor. Our pull-down assay, mass spectrometry and molecular modeling studies suggested that, similar with many other unfolded and aberrant proteins and peptides, the internalized MBP84-104 was capable of binding to the voltage-dependent anion-selective channel-1 (VDAC-1), a mitochondrial porin. Molecular modeling suggested that MBP84-104 directly binds to the N-terminal α-helix located midway inside the 19 β-blade barrel of VDAC-1. These interactions may have affected the mitochondrial functions and energy metabolism in multiple cell types. Notably, MBP84-104 caused neither cell apoptosis nor affected the total cellular ATP levels, but repressed the aerobic glycolysis (lactic acid fermentation) and decreased the l-lactate/d-glucose ratio (also termed as the Warburg effect) in normal and cancer cells. Overall, our findings implied that because of its interactions with VDAC-1, the cryptic MBP84-104 peptide invoked reprogramming of the cellular energy metabolism that favored enhanced cellular activity, rather than apoptotic cell death. We concluded that the released MBP84-104 peptide, internalized by the cells, contributes to the reprogramming of the energy-generating pathways in multiple cell types.
Collapse
|
66
|
Bachmann M, Costa R, Peruzzo R, Prosdocimi E, Checchetto V, Leanza L. Targeting Mitochondrial Ion Channels to Fight Cancer. Int J Mol Sci 2018; 19:ijms19072060. [PMID: 30011966 PMCID: PMC6073807 DOI: 10.3390/ijms19072060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, several experimental evidences have underlined a new role of ion channels in cancer development and progression. In particular, mitochondrial ion channels are arising as new oncological targets, since it has been proved that most of them show an altered expression during tumor development and the pharmacological targeting of some of them have been demonstrated to be able to modulate cancer growth and progression, both in vitro as well as in vivo in pre-clinical mouse models. In this scenario, pharmacology of mitochondrial ion channels would be in the near future a new frontier for the treatment of tumors. In this review, we discuss the new advances in the field, by focusing our attention on the improvements in new drug developments to target mitochondrial ion channels.
Collapse
Affiliation(s)
| | - Roberto Costa
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Roberta Peruzzo
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Elena Prosdocimi
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | | | - Luigi Leanza
- Department of Biology, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
67
|
Caterino M, Ruoppolo M, Mandola A, Costanzo M, Orrù S, Imperlini E. Protein-protein interaction networks as a new perspective to evaluate distinct functional roles of voltage-dependent anion channel isoforms. MOLECULAR BIOSYSTEMS 2018; 13:2466-2476. [PMID: 29028058 DOI: 10.1039/c7mb00434f] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Voltage-dependent anion channels (VDACs) are a family of three mitochondrial porins and the most abundant integral membrane proteins of the mitochondrial outer membrane (MOM). VDACs are known to be involved in metabolite/ion transport across the MOM and in many cellular processes ranging from mitochondria-mediated apoptosis to the control of energy metabolism, by interacting with cytosolic, mitochondrial and cytoskeletal proteins and other membrane channels. Despite redundancy and compensatory mechanisms among VDAC isoforms, they display not only different channel properties and protein expression levels, but also distinct protein partners. Here, we review the known protein interactions for each VDAC isoform in order to shed light on their peculiar roles in physiological and pathological conditions. As proteins associated with the MOM, VDAC opening/closure as a metabolic checkpoint is regulated by protein-protein interactions, and is of pharmacological interest in pathological conditions such as cancer. The interactions involving VDAC1 have been characterized more in depth than those involving VDAC2 and VDAC3. Nevertheless, the so far explored VDAC-protein interactions for each isoform show that VDAC1 is mainly involved in the maintenance of cellular homeostasis and in pro-apoptotic processes, whereas VDAC2 displays an anti-apoptotic role. Despite there being limited information on VDAC3, this isoform could contribute to mitochondrial protein quality control and act as a marker of oxidative status. In pathological conditions, namely neurodegenerative and cardiovascular diseases, both VDAC1 and VDAC2 establish abnormal interactions aimed to counteract the mitochondrial dysfunction which contributes to end-organ damage.
Collapse
Affiliation(s)
- Marianna Caterino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | | | | | | | | | | |
Collapse
|
68
|
Pittala S, Krelin Y, Shoshan-Barmatz V. Targeting Liver Cancer and Associated Pathologies in Mice with a Mitochondrial VDAC1-Based Peptide. Neoplasia 2018; 20:594-609. [PMID: 29747160 PMCID: PMC5994780 DOI: 10.1016/j.neo.2018.02.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third most lethal cancer worldwide. Despite progress in identifying risk factors, the incidence of HCC is increasing. Moreover, therapeutic options are limited and survival is poor. Therefore, alternative and innovative therapeutic strategies are urgently required. R-Tf-D-LP4, a cell-penetrating peptide derived from the mitochondrial multifunctional protein the voltage-dependent anion channel (VDAC1), is identified here as a highly effective liver cancer treatment. Recently, we demonstrated that R-Tf-D-LP4 induced apoptosis and inhibited tumor growth in mouse models. We now demonstrate that R-Tf-D-LP4 induced apoptosis in cancer liver-derived cell lines and inhibited tumor growth in three different liver cancer mouse models. These included diethylnitrosamine (DEN)-induced HCC, metabolically high-fat diet-induced HCC, and using a subcutaneous HepG2 cell xenograft model. Intravenous injection of the peptide into tumor-carrying DEN-treated mice resulted in dose-dependent inhibition of tumor growth up to complete tumor elimination. TUNEL staining of liver sections demonstrated peptide-induced apoptosis. Hematoxylin/eosin and Sirius red staining of liver sections showed decreased fibrotic formation. Immunohistochemical staining demonstrated reduced numbers of α-SMA-expressing cells in R-Tf-D-LP4-treated mouse livers. Additionally, macrophage presence in liver tissue was reduced in R-Tf-D-LP4-treated mice. Liver sections from DEN-treated mice showed steatohepatic pathology, reflected as fatty liver, inflammation, ballooning degeneration, and fibrosis; all were eliminated upon peptide treatment. Peptide treatment also inhibited tumor development in a nonalcoholic steatohepatitis-hepatocellular carcinoma mouse model induced by HFD. In HepG2 subcutaneous tumor xenografts, R-Tf-D-LP4 inhibited tumor growth. CONCLUSION These results show that the VDAC1-based peptide R-Tf-D-LP4 has multiple effects on liver cancer cells, leading to impairment of cell energy and metabolism homeostasis, induction of apoptosis, and elimination of liver cancer-associated processes, and thus represents a promising therapeutic approach for liver cancer.
Collapse
Key Words
- vdac1, voltage-dependent anion channel 1
- hk, hexokinase
- cyto c, cytochrome c
- den, diethylnitrosamine
- hcc, hepatocellular carcinoma
- hfd, high fat diet
- aif, apoptosis-inducing factor
- ldh, lactate dehydrogenase
- nash, nonalcoholic steatohepatitis
- tfr, transferrin receptor
Collapse
Affiliation(s)
- Srinivas Pittala
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
69
|
Shteinfer-Kuzmine A, Amsalem Z, Arif T, Zooravlov A, Shoshan-Barmatz V. Selective induction of cancer cell death by VDAC1-based peptides and their potential use in cancer therapy. Mol Oncol 2018; 12:1077-1103. [PMID: 29698587 PMCID: PMC6026870 DOI: 10.1002/1878-0261.12313] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/22/2018] [Accepted: 04/15/2018] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial VDAC1 mediates cross talk between the mitochondria and other parts of the cell by transporting anions, cations, ATP, Ca2+, and metabolites and serves as a key player in apoptosis. As such, VDAC1 is involved in two important hallmarks of cancer development, namely energy and metabolic reprograming and apoptotic cell death evasion. We previously developed cell‐penetrating VDAC1‐derived peptides that interact with hexokinase (HK), Bcl‐2, and Bcl‐xL to prevent the anti‐apoptotic activities of these proteins and induce cancer cell death, with a focus on leukemia and glioblastoma. In this study, we demonstrated the sensitivity of a panel of genetically characterized cancer cell lines, differing in origin and carried mutations, to VDAC1‐based peptide‐induced apoptosis. Noncancerous cell lines were less affected by the peptides. Furthermore, we constructed additional VDAC1‐based peptides with the aim of improving targeting, selectivity, and cellular stability, including R‐Tf‐D‐LP4, containing the transferrin receptor internalization sequence (Tf) that allows targeting of the peptide to cancer cells, known to overexpress the transferrin receptor. The mode of action of the VDAC1‐based peptides involves HK detachment, interfering with the action of anti‐apoptotic proteins, and thus activating multiple routes leading to an impairment of cell energy and metabolism homeostasis and the induction of apoptosis. Finally, in xenograft glioblastoma, lung, and breast cancer mouse models, R‐Tf‐D‐LP4 inhibited tumor growth while inducing massive cancer cell death, including of cancer stem cells. Thus, VDAC1‐based peptides offer an innovative new conceptual framework for cancer therapy.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zohar Amsalem
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tasleem Arif
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexandra Zooravlov
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
70
|
Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimer's disease. Pharmacol Res 2018; 131:87-101. [DOI: 10.1016/j.phrs.2018.03.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
|
71
|
Morciano G, Marchi S, Morganti C, Sbano L, Bittremieux M, Kerkhofs M, Corricelli M, Danese A, Karkucinska-Wieckowska A, Wieckowski MR, Bultynck G, Giorgi C, Pinton P. Role of Mitochondria-Associated ER Membranes in Calcium Regulation in Cancer-Specific Settings. Neoplasia 2018; 20:510-523. [PMID: 29626751 PMCID: PMC5916088 DOI: 10.1016/j.neo.2018.03.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/25/2018] [Accepted: 03/01/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are highly specialized subcellular compartments that are shaped by ER subdomains juxtaposed to mitochondria but are biochemically distinct from pure ER and pure mitochondria. MAMs are enriched in enzymes involved in lipid synthesis and transport, channels for calcium transfer, and proteins with oncogenic/oncosuppressive functions that modulate cell signaling pathways involved in physiological and pathophysiological processes. The term "cancer" denotes a group of disorders that result from uncontrolled cell growth driven by a mixture of genetic and environmental components. Alterations in MAMs are thought to account for the onset as well as the progression and metastasis of cancer and have been a focus of investigation in recent years. In this review, we present the current state of the art regarding MAM-resident proteins and their relevance, alterations, and deregulating functions in different types of cancer from a cell biology and clinical perspective.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy; Cecilia Hospital, GVM Care & Research, E.S.: Health Science Foundation, Cotignola, Italy
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Claudia Morganti
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Luigi Sbano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Mart Bittremieux
- KU Leuven, Lab. Molecular and Cellular Signaling, Dept. Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Martijn Kerkhofs
- KU Leuven, Lab. Molecular and Cellular Signaling, Dept. Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Mariangela Corricelli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Alberto Danese
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | | | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Geert Bultynck
- KU Leuven, Lab. Molecular and Cellular Signaling, Dept. Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy.
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy; Cecilia Hospital, GVM Care & Research, E.S.: Health Science Foundation, Cotignola, Italy; CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.
| |
Collapse
|
72
|
Leggio L, Guarino F, Magrì A, Accardi-Gheit R, Reina S, Specchia V, Damiano F, Tomasello MF, Tommasino M, Messina A. Mechanism of translation control of the alternative Drosophila melanogaster Voltage Dependent Anion-selective Channel 1 mRNAs. Sci Rep 2018; 8:5347. [PMID: 29593233 PMCID: PMC5871876 DOI: 10.1038/s41598-018-23730-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/19/2018] [Indexed: 01/08/2023] Open
Abstract
The eukaryotic porin, also called the Voltage Dependent Anion-selective Channel (VDAC), is the main pore-forming protein of the outer mitochondrial membrane. In Drosophila melanogaster, a cluster of genes evolutionarily linked to VDAC is present on chromosome 2L. The main VDAC isoform, called VDAC1 (Porin1), is expressed from the first gene of the cluster. The porin1 gene produces two splice variants, 1A-VDAC and 1B-VDAC, with the same coding sequence but different 5' untranslated regions (UTRs). Here, we studied the influence of the two 5' UTRs, 1A-5' UTR and 1B-5' UTR, on transcription and translation of VDAC1 mRNAs. In porin-less yeast cells, transformation with a construct carrying 1A-VDAC results in the expression of the corresponding protein and in complementation of a defective cell phenotype, whereas the 1B-VDAC sequence actively represses VDAC expression. Identical results were obtained using constructs containing the two 5' UTRs upstream of the GFP reporter. A short region of 15 nucleotides in the 1B-5' UTR should be able to pair with an exposed helix of 18S ribosomal RNA (rRNA), and this interaction could be involved in the translational repression. Our data suggest that contacts between the 5' UTR and 18S rRNA sequences could modulate the translation of Drosophila 1B-VDAC mRNA. The evolutionary significance of this finding is discussed.
Collapse
Affiliation(s)
- L Leggio
- Department of Biological, University of Catania, Geological and Environmental Sciences, Catania, 95125, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - F Guarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy.,National Institute of Biostructures and Biosystems (INBB), Catania, Italy
| | - A Magrì
- Department of Biological, University of Catania, Geological and Environmental Sciences, Catania, 95125, Italy
| | - R Accardi-Gheit
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, 69372, France
| | - S Reina
- Department of Biological, University of Catania, Geological and Environmental Sciences, Catania, 95125, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - V Specchia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - F Damiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - M F Tomasello
- IBB-CNR, Institute of Biostructure and Bioimaging, Section of Catania, Via Paolo Gaifami, 18-95126, Catania, Italy
| | - M Tommasino
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, 69372, France
| | - A Messina
- Department of Biological, University of Catania, Geological and Environmental Sciences, Catania, 95125, Italy. .,National Institute of Biostructures and Biosystems (INBB), Catania, Italy.
| |
Collapse
|
73
|
Shteinfer-Kuzmine A, Arif T, Krelin Y, Tripathi SS, Paul A, Shoshan-Barmatz V. Mitochondrial VDAC1-based peptides: Attacking oncogenic properties in glioblastoma. Oncotarget 2018; 8:31329-31346. [PMID: 28412744 PMCID: PMC5458211 DOI: 10.18632/oncotarget.15455] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/21/2016] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM), a primary brain malignancy characterized by high morbidity, invasiveness, proliferation, relapse and mortality, is resistant to chemo- and radiotherapies and lacks effective treatment. GBM tumors undergo metabolic reprograming and develop anti-apoptotic defenses. We targeted GBM with a peptide derived from the mitochondrial protein voltage-dependent anion channel 1 (VDAC1), a key component of cell energy, metabolism and apoptosis regulation. VDAC1-based cell-penetrating peptides perturbed cell energy and metabolic homeostasis and induced apoptosis in several GBM and GBM-derived stem cell lines. We found that the peptides simultaneously attacked several oncogenic properties of human U-87MG cells introduced into sub-cutaneous xenograft mouse model, inhibiting tumor growth, invasion, and cellular metabolism, stemness and inducing apoptosis. Peptide-treated tumors showed decreased expression of all tested metabolism-related enzymes and transporters, and elevated levels of apoptotic proteins, such as p53, cytochrome c and caspases. Retro-Tf-D-LP4, containing the human transferrin receptor (TfR)-recognition sequence, crossed the blood-brain barrier (BBB) via the TfR that is highly expressed in the BBB to strongly inhibit tumor growth in an intracranial xenograft mouse model. In summary, the VDAC1-based peptides tested here offer a potentially affordable and innovative new conceptual therapeutic paradigm that might overcome GBM stemness and invasiveness and reduce relapse rates.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Tasleem Arif
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shambhoo Sharan Tripathi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Avijit Paul
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
74
|
Abstract
Most cancer cells perform glycolysis despite having sufficient oxygen. The specific metabolic pathways of cancer cells have become the focus of cancer treatment. Recently, accumulating evidence indicates oxidative phosphorylation (OXPHOS) and glycolysis can be regulated with each other. Thus, we suggest that the glycolysis of cancer cells is inhibited by restoring or improving OXPHOS in cancer cells. In our study, we found that oxaloacetate (OA) induced apoptosis in HepG2 cells in vivo and in vitro. Meanwhile, we found that OA induced a decrease in the energy metabolism of HepG2 cells. Further results showed that the expression and activity of glycolytic enzymes were decreased with OA treatment. Conversely, the expression and activity of enzymes involved in the TCA cycle and OXPHOS were increased with OA treatment. The results indicate that OA can inhibit glycolysis through enhancement of OXPHOS. In addition, OA‐mediated suppression of HIF1α, p‐Akt, and c‐myc led to a decrease in glycolysis level. Therefore, OA has the potential to be a novel anticancer drug.
Collapse
Affiliation(s)
- Ye Kuang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Xiaoyun Han
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Mu Xu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Qing Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| |
Collapse
|
75
|
Bcl-2 inhibitors as anti-cancer therapeutics: The impact of and on calcium signaling. Cell Calcium 2018; 70:102-116. [DOI: 10.1016/j.ceca.2017.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 01/08/2023]
|
76
|
Kerkhofs M, Bittremieux M, Morciano G, Giorgi C, Pinton P, Parys JB, Bultynck G. Emerging molecular mechanisms in chemotherapy: Ca 2+ signaling at the mitochondria-associated endoplasmic reticulum membranes. Cell Death Dis 2018; 9:334. [PMID: 29491433 PMCID: PMC5832420 DOI: 10.1038/s41419-017-0179-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022]
Abstract
Inter-organellar communication often takes the form of Ca2+ signals. These Ca2+ signals originate from the endoplasmic reticulum (ER) and regulate different cellular processes like metabolism, fertilization, migration, and cell fate. A prime target for Ca2+ signals are the mitochondria. ER-mitochondrial Ca2+ transfer is possible through the existence of mitochondria-associated ER membranes (MAMs), ER structures that are in the proximity of the mitochondria. This creates a micro-domain in which the Ca2+ concentrations are manifold higher than in the cytosol, allowing for rapid mitochondrial Ca2+ uptake. In the mitochondria, the Ca2+ signal is decoded differentially depending on its spatiotemporal characteristics. While Ca2+ oscillations stimulate metabolism and constitute pro-survival signaling, mitochondrial Ca2+ overload results in apoptosis. Many chemotherapeutics depend on efficient ER-mitochondrial Ca2+ signaling to exert their function. However, several oncogenes and tumor suppressors present in the MAMs can alter Ca2+ signaling in cancer cells, rendering chemotherapeutics ineffective. In this review, we will discuss recent studies that connect ER-mitochondrial Ca2+ transfer, tumor suppressors and oncogenes at the MAMs, and chemotherapy.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Mart Bittremieux
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, E.S: Health Science Foundation, Cotignola, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, E.S: Health Science Foundation, Cotignola, Italy
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Jan B Parys
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium.
| |
Collapse
|
77
|
Pahima H, Reina S, Tadmor N, Dadon-Klein D, Shteinfer-Kuzmine A, Mazure NM, De Pinto V, Shoshan-Barmatz V. Hypoxic-induced truncation of voltage-dependent anion channel 1 is mediated by both asparagine endopeptidase and calpain 1 activities. Oncotarget 2018; 9:12825-12841. [PMID: 29560113 PMCID: PMC5849177 DOI: 10.18632/oncotarget.24377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/25/2018] [Indexed: 01/04/2023] Open
Abstract
The voltage-dependent anion channel 1 (VDAC1), an outer mitochondria membrane (OMM)
protein, serves as a mitochondrial gatekeeper, mediating the transport of
nucleotides, Ca2+ and other metabolites across the OMM. VDAC1 also
plays a central role in mitochondria-mediated apoptosis by facilitating the release
of apoptotic proteins and by association with both pro- and anti-apoptotic proteins.
Tumor cells, which are constantly exposed to hypoxic conditions, affect the cell via
the transcription factor hypoxia-inducible factor (HIF) that induces transcriptional
activity. In cultured cells and in lung cancer patients, hypoxia induces VDAC1
truncation at the C-terminus (VDAC1-ΔC). However, the molecular mechanisms
involved in VDAC1-ΔC formation are unknown. Here, we show that hypoxia-induced
VDAC1-ΔC formation is inhibited by the Ca2+ chelator
BAPTA-AM, by calpain inhibitor-1, by inhibitor of the asparagine endopeptidase (AEP)
and by si-RNA targeting HIF1-α or Ca2+-activated protease
calpain-1 expression but not that of calpain-2. Finally, VDAC1-ΔC expressed in
bacteria and reconstituted into a planar lipid bilayer exhibited decreased channel
conductance relative to the full-length protein, yet retained voltage-dependent
conductance. These findings suggest that hypoxia, acting via HIF-1α
expression, leads to VDAC1 cleavage involving the activation of calpain 1 and
AEP.
Collapse
Affiliation(s)
- Hadas Pahima
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Simona Reina
- Department of Biomedicine and Biotechnology, University of Catania and National Institute for Biomembranes and Biosystems, Section of Catania, Catania 95125, Italy.,Department of Biological, Geological and Environmental Sciences, University of Catania, Catania 95125, Italy
| | - Noa Tadmor
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Daniella Dadon-Klein
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nathalie M Mazure
- Institute for Research on Cancer and Aging of Nice, University of Nice Sophia-Antipolis, Centre Antoine Lacassagne, Nice 06189, France.,Present address: INSERM U1065, C3M, Nice 06204, France
| | - Vito De Pinto
- Department of Biomedicine and Biotechnology, University of Catania and National Institute for Biomembranes and Biosystems, Section of Catania, Catania 95125, Italy
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
78
|
García-Bartolomé A, Peñas A, Marín-Buera L, Lobo-Jarne T, Pérez-Pérez R, Morán M, Arenas J, Martín MA, Ugalde C. Respiratory chain enzyme deficiency induces mitochondrial location of actin-binding gelsolin to modulate the oligomerization of VDAC complexes and cell survival. Hum Mol Genet 2017; 26:2493-2506. [PMID: 28431142 DOI: 10.1093/hmg/ddx144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/11/2017] [Indexed: 11/14/2022] Open
Abstract
Despite considerable knowledge on the genetic basis of mitochondrial disorders, their pathophysiological consequences remain poorly understood. We previously used two-dimensional difference gel electrophoresis analyses to define a protein profile characteristic for respiratory chain complex III-deficiency that included a significant overexpression of cytosolic gelsolin (GSN), a cytoskeletal protein that regulates the severing and capping of the actin filaments. Biochemical and immunofluorescence assays confirmed a specific increase of GSN levels in the mitochondria from patients' fibroblasts and from transmitochondrial cybrids with complex III assembly defects. A similar effect was obtained in control cells upon treatment with antimycin A in a dose-dependent manner, showing that the enzymatic inhibition of complex III is sufficient to promote the mitochondrial localization of GSN. Mitochondrial subfractionation showed the localization of GSN to the mitochondrial outer membrane, where it interacts with the voltage-dependent anion channel protein 1 (VDAC1). In control cells, VDAC1 was present in five stable oligomeric complexes, which showed increased levels and a modified distribution pattern in the complex III-deficient cybrids. Downregulation of GSN expression induced cell death in both cell types, in parallel with the specific accumulation of VDAC1 dimers and the release of mitochondrial cytochrome c into the cytosol, indicating a role for GSN in the oligomerization of VDAC complexes and in the prevention of apoptosis. Our results demonstrate that respiratory chain complex III dysfunction induces the physiological upregulation and mitochondrial location of GSN, probably to promote cell survival responses through the modulation of the oligomeric state of the VDAC complexes.
Collapse
Affiliation(s)
- Alberto García-Bartolomé
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid U723, Spain
| | - Ana Peñas
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain
| | - Lorena Marín-Buera
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Teresa Lobo-Jarne
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid U723, Spain
| | - Rafael Pérez-Pérez
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid U723, Spain
| | - María Morán
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid U723, Spain
| | - Joaquín Arenas
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid U723, Spain
| | - Miguel A Martín
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid U723, Spain
| | - Cristina Ugalde
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid U723, Spain
| |
Collapse
|
79
|
ROS-mediated oligomerization of VDAC2 is associated with quinocetone-induced apoptotic cell death. Toxicol In Vitro 2017; 47:195-206. [PMID: 29229420 DOI: 10.1016/j.tiv.2017.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/13/2017] [Accepted: 12/05/2017] [Indexed: 01/11/2023]
Abstract
Quinocetone (QCT) has been approved and widely used as an animal feed additive in China since 2003. However, investigations indicate that QCT shows potential toxicity both in vitro and in vivo. Although voltage dependent anion channel 1 (VDAC1) involved in regulating QCT-induced apoptotic cell death has been established, the role of voltage dependent anion channel 2 (VDAC2) in QCT-induced toxicity remains unclear. In this study, we showed that QCT-induced cell death was coupled to VDAC2 oligomerization. Moreover, VDAC inhibitor 4, 4'-diisothiocyano stilbene-2, 2'-disulfonic acid (DIDS) alleviated QCT-induced cell death and VDAC2 oligomerization. Meanwhile, overexpression VDAC2 aggravated QCT-induced VDAC2 oligomerization. In addition, caspase inhibitor Z-VAD-FMK and reactive oxidative species (ROS) scavenger N-acetyl-l-cysteine (NAC) apparently blocked QCT-induced cell death and VDAC2 oligomerization. Finally, overexpression N-terminal truncated VDAC2 attenuated QCT-induced VDAC2 oligomerization but had no influence on its localization to mitochondria when comparing to the full length of VDAC2. Taken together, our results reveal that ROS-mediated VDAC2 oligomerization is associated with QCT-induced apoptotic cell death. The N-terminal region of VDAC2 is required for QCT-induced VDAC2 oligomerization.
Collapse
|
80
|
Shoshan-Barmatz V, Maldonado EN, Krelin Y. VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress. Cell Stress 2017; 1:11-36. [PMID: 30542671 PMCID: PMC6287957 DOI: 10.15698/cst2017.10.104] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review presents current knowledge related to VDAC1 as a multi-functional mitochondrial protein acting on both sides of the coin, regulating cell life and death, and highlighting these functions in relation to disease. It is now recognized that VDAC1 plays a crucial role in regulating the metabolic and energetic functions of mitochondria. The location of VDAC1 at the outer mitochondrial membrane (OMM) allows the control of metabolic cross-talk between mitochondria and the rest of the cell and also enables interaction of VDAC1 with proteins involved in metabolic and survival pathways. Along with regulating cellular energy production and metabolism, VDAC1 is also involved in the process of mitochondria-mediated apoptosis by mediating the release of apoptotic proteins and interacting with anti-apoptotic proteins. VDAC1 functions in the release of apoptotic proteins located in the mitochondrial intermembrane space via oligomerization to form a large channel that allows passage of cytochrome c and AIF and their release to the cytosol, subsequently resulting in apoptotic cell death. VDAC1 also regulates apoptosis via interactions with apoptosis regulatory proteins, such as hexokinase, Bcl2 and Bcl-xL, some of which are also highly expressed in many cancers. This review also provides insight into VDAC1 function in Ca2+ homeostasis, oxidative stress, and presents VDAC1 as a hub protein interacting with over 100 proteins. Such interactions enable VDAC1 to mediate and regulate the integration of mitochondrial functions with cellular activities. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Eduardo N Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC. USA
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
81
|
Sassano ML, van Vliet AR, Agostinis P. Mitochondria-Associated Membranes As Networking Platforms and Regulators of Cancer Cell Fate. Front Oncol 2017; 7:174. [PMID: 28868254 PMCID: PMC5563315 DOI: 10.3389/fonc.2017.00174] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/31/2017] [Indexed: 01/05/2023] Open
Abstract
The tight cross talk between two essential organelles of the cell, the endoplasmic reticulum (ER) and mitochondria, is spatially and functionally regulated by specific microdomains known as the mitochondria-associated membranes (MAMs). MAMs are hot spots of Ca2+ transfer between the ER and mitochondria, and emerging data indicate their vital role in the regulation of fundamental physiological processes, chief among them mitochondria bioenergetics, proteostasis, cell death, and autophagy. Moreover, and perhaps not surprisingly, it has become clear that signaling events regulated at the ER-mitochondria intersection regulate key processes in oncogenesis and in the response of cancer cells to therapeutics. ER-mitochondria appositions have been shown to dynamically recruit oncogenes and tumor suppressors, modulating their activity and protein complex formation, adapt the bioenergetic demand of cancer cells and to regulate cell death pathways and redox signaling in cancer cells. In this review, we discuss some emerging players of the ER-mitochondria contact sites in mammalian cells, the key processes they regulate and recent evidence highlighting the role of MAMs in shaping cell-autonomous and non-autonomous signals that regulate cancer growth.
Collapse
Affiliation(s)
- Maria Livia Sassano
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Alexander R. van Vliet
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| |
Collapse
|
82
|
Shoshan-Barmatz V, Krelin Y, Shteinfer-Kuzmine A, Arif T. Voltage-Dependent Anion Channel 1 As an Emerging Drug Target for Novel Anti-Cancer Therapeutics. Front Oncol 2017; 7:154. [PMID: 28824871 PMCID: PMC5534932 DOI: 10.3389/fonc.2017.00154] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 06/28/2017] [Indexed: 01/17/2023] Open
Abstract
Cancer cells share several properties, high proliferation potential, reprogramed metabolism, and resistance to apoptotic cues. Acquiring these hallmarks involves changes in key oncogenes and non-oncogenes essential for cancer cell survival and prosperity, and is accompanied by the increased energy requirements of proliferating cells. Mitochondria occupy a central position in cell life and death with mitochondrial bioenergetics, biosynthesis, and signaling are critical for tumorigenesis. Voltage-dependent anion channel 1 (VDAC1) is situated in the outer mitochondrial membrane (OMM) and serving as a mitochondrial gatekeeper. VDAC1 allowing the transfer of metabolites, fatty acid ions, Ca2+, reactive oxygen species, and cholesterol across the OMM and is a key player in mitochondrial-mediate apoptosis. Moreover, VDAC1 serves as a hub protein, interacting with diverse sets of proteins from the cytosol, endoplasmic reticulum, and mitochondria that together regulate metabolic and signaling pathways. The observation that VDAC1 is over-expressed in many cancers suggests that the protein may play a pivotal role in cancer cell survival. However, VDAC1 is also important in mitochondria-mediated apoptosis, mediating release of apoptotic proteins and interacting with anti-apoptotic proteins, such as B-cell lymphoma 2 (Bcl-2), Bcl-xL, and hexokinase (HK), which are also highly expressed in many cancers. Strategically located in a “bottleneck” position, controlling metabolic homeostasis and apoptosis, VDAC1 thus represents an emerging target for anti-cancer drugs. This review presents an overview on the multi-functional mitochondrial protein VDAC1 performing several functions and interacting with distinct sets of partners to regulate both cell life and death, and highlights the importance of the protein for cancer cell survival. We address recent results related to the mechanisms of VDAC1-mediated apoptosis and the potential of associated proteins to modulate of VDAC1 activity, with the aim of developing VDAC1-based approaches. The first strategy involves modification of cell metabolism using VDAC1-specific small interfering RNA leading to inhibition of cancer cell and tumor growth and reversed oncogenic properties. The second strategy involves activation of cancer cell death using VDAC1-based peptides that prevent cell death induction by anti-apoptotic proteins. Finally, we discuss the potential therapeutic benefits of treatments and drugs leading to enhanced VDAC1 expression or targeting VDAC1 to induce apoptosis.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yakov Krelin
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tasleem Arif
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
83
|
Camara AKS, Zhou Y, Wen PC, Tajkhorshid E, Kwok WM. Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target. Front Physiol 2017; 8:460. [PMID: 28713289 PMCID: PMC5491678 DOI: 10.3389/fphys.2017.00460] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/16/2017] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are the key source of ATP that fuels cellular functions, and they are also central in cellular signaling, cell division and apoptosis. Dysfunction of mitochondria has been implicated in a wide range of diseases, including neurodegenerative and cardiac diseases, and various types of cancer. One of the key proteins that regulate mitochondrial function is the voltage-dependent anion channel 1 (VDAC1), the most abundant protein on the outer membrane of mitochondria. VDAC1 is the gatekeeper for the passages of metabolites, nucleotides, and ions; it plays a crucial role in regulating apoptosis due to its interaction with apoptotic and anti-apoptotic proteins, namely members of the Bcl-2 family of proteins and hexokinase. Therefore, regulation of VDAC1 is crucial not only for metabolic functions of mitochondria, but also for cell survival. In fact, multiple lines of evidence have confirmed the involvement of VDAC1 in several diseases. Consequently, modulation or dysregulation of VDAC1 function can potentially attenuate or exacerbate pathophysiological conditions. Understanding the role of VDAC1 in health and disease could lead to selective protection of cells in different tissues and diverse diseases. The purpose of this review is to discuss the role of VDAC1 in the pathogenesis of diseases and as a potentially effective target for therapeutic management of various pathologies.
Collapse
Affiliation(s)
- Amadou K S Camara
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, United States.,Cardiovascular Center, Medical College of WisconsinMilwaukee, WI, United States
| | - YiFan Zhou
- Department of Assay Development, HD BiosciencesShanghai, China
| | - Po-Chao Wen
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, United States.,Cardiovascular Center, Medical College of WisconsinMilwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, WI, United States
| |
Collapse
|
84
|
Shoshan-Barmatz V, Krelin Y, Shteinfer-Kuzmine A. VDAC1 functions in Ca 2+ homeostasis and cell life and death in health and disease. Cell Calcium 2017; 69:81-100. [PMID: 28712506 DOI: 10.1016/j.ceca.2017.06.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 01/15/2023]
Abstract
In the outer mitochondrial membrane (OMM), the voltage-dependent anion channel 1 (VDAC1) serves as a mitochondrial gatekeeper, controlling the metabolic and energy cross-talk between mitochondria and the rest of the cell. VDAC1 also functions in cellular Ca2+ homeostasis by transporting Ca2+ in and out of mitochondria. VDAC1 has also been recognized as a key protein in mitochondria-mediated apoptosis, contributing to the release of apoptotic proteins located in the inter-membranal space (IMS) and regulating apoptosis via association with pro- and anti-apoptotic members of the Bcl-2 family of proteins and hexokinase. VDAC1 is highly Ca2+-permeable, transporting Ca2+ to the IMS and thus modulating Ca2+ access to Ca2+ transporters in the inner mitochondrial membrane. Intra-mitochondrial Ca2+ controls energy metabolism via modulating critical enzymes in the tricarboxylic acid cycle and in fatty acid oxidation. Ca2+ also determines cell sensitivity to apoptotic stimuli and promotes the release of pro-apoptotic proteins. However, the precise mechanism by which intracellular Ca2+ mediates apoptosis is not known. Here, the roles of VDAC1 in mitochondrial Ca2+ homeostasis are presented while emphasizing a new proposed mechanism for the mode of action of pro-apoptotic drugs. This view, proposing that Ca2+-dependent enhancement of VDAC1 expression levels is a major mechanism by which apoptotic stimuli induce apoptosis, position VDAC1 oligomerization at a molecular focal point in apoptosis regulation. The interactions of VDAC1 with many proteins involved in Ca2+ homeostasis or regulated by Ca2+, as well as VDAC-mediated control of cell life and death and the association of VDAC with disease, are also presented.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
85
|
Hosaka T, Okazaki M, Kimura-Someya T, Ishizuka-Katsura Y, Ito K, Yokoyama S, Dodo K, Sodeoka M, Shirouzu M. Crystal structural characterization reveals novel oligomeric interactions of human voltage-dependent anion channel 1. Protein Sci 2017; 26:1749-1758. [PMID: 28608415 DOI: 10.1002/pro.3211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/19/2022]
Abstract
Voltage-dependent anion channel 1 (VDAC1), which is located in the outer mitochondrial membrane, plays important roles in various cellular processes. For example, oligomerization of VDAC1 is involved in the release of cytochrome c to the cytoplasm, leading to apoptosis. However, it is unknown how VDAC1 oligomerization occurs in the membrane. In the present study, we determined high-resolution crystal structures of oligomeric human VDAC1 (hVDAC1) prepared by using an Escherichia coli cell-free protein synthesis system, which avoided the need for denaturation and refolding of the protein. Broad-range screening using a bicelle crystallization method produced crystals in space groups C222 and P221 21 , which diffracted to a resolution of 3.10 and 3.15 Å, respectively. Each crystal contained two hVDAC1 protomers in the asymmetric unit. Dimer within the asymmetrical unit of the crystal in space group C222 were oriented parallel, whereas those of the crystal in space group P221 21 were oriented anti-parallel. From a model of the crystal in space group C222, which we constructed by using crystal symmetry operators, a heptameric structure with eight patterns of interaction between protomers, including hydrophobic interactions with β-strands, hydrophilic interactions with loop regions, and protein-lipid interactions, was observed. It is possible that by having multiple patterns of interaction, VDAC1 can form homo- or hetero-oligomers not only with other VDAC1 protomers but also with other proteins such as VDAC2, VDAC3 and apoptosis-regulating proteins in the Bcl-2 family.
Collapse
Affiliation(s)
- Toshiaki Hosaka
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Masateru Okazaki
- Sodeoka Live Cell Chemisty Project, ERATO, JST, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tomomi Kimura-Someya
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshiko Ishizuka-Katsura
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Kaori Ito
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, Yokohama, Kanagawa, 230-0045, Japan
| | - Kosuke Dodo
- Sodeoka Live Cell Chemisty Project, ERATO, JST, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikiko Sodeoka
- Sodeoka Live Cell Chemisty Project, ERATO, JST, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikako Shirouzu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
86
|
Vervliet T, Clerix E, Seitaj B, Ivanova H, Monaco G, Bultynck G. Modulation of Ca 2+ Signaling by Anti-apoptotic B-Cell Lymphoma 2 Proteins at the Endoplasmic Reticulum-Mitochondrial Interface. Front Oncol 2017; 7:75. [PMID: 28516063 PMCID: PMC5413508 DOI: 10.3389/fonc.2017.00075] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are important regulators of cell death and cell survival. Mitochondrial Ca2+ levels are critically involved in both of these processes. On the one hand, excessive mitochondrial Ca2+ leads to Ca2+-induced mitochondrial outer membrane permeabilization and thus apoptosis. On the other hand, mitochondria need Ca2+ in order to efficiently fuel the tricarboxylic acid cycle and maintain adequate mitochondrial bioenergetics. For obtaining this Ca2+, the mitochondria are largely dependent on close contact sites with the endoplasmic reticulum (ER), the so-called mitochondria-associated ER membranes. There, the inositol 1,4,5-trisphosphate receptors are responsible for the Ca2+ release from the ER. It comes as no surprise that this Ca2+ release from the ER and the subsequent Ca2+ uptake at the mitochondria are finely regulated. Cancer cells often modulate ER-Ca2+ transfer to the mitochondria in order to promote cell survival and to inhibit cell death. Important regulators of these Ca2+ signals and the onset of cancer are the B-cell lymphoma 2 (Bcl-2) family of proteins. An increasing number of reports highlight the ability of these Bcl-2-protein family members to finely regulate Ca2+ transfer from ER to mitochondria both in healthy cells and in cancer. In this review, we focus on recent insights into the dynamic regulation of ER-mitochondrial Ca2+ fluxes by Bcl-2-family members and how this impacts cell survival, cell death and mitochondrial energy production.
Collapse
Affiliation(s)
- Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Eva Clerix
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Bruno Seitaj
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
87
|
Shoshan-Barmatz V, De S, Meir A. The Mitochondrial Voltage-Dependent Anion Channel 1, Ca 2+ Transport, Apoptosis, and Their Regulation. Front Oncol 2017; 7:60. [PMID: 28443244 PMCID: PMC5385329 DOI: 10.3389/fonc.2017.00060] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/17/2017] [Indexed: 01/08/2023] Open
Abstract
In the outer mitochondrial membrane, the voltage-dependent anion channel 1 (VDAC1) functions in cellular Ca2+ homeostasis by mediating the transport of Ca2+ in and out of mitochondria. VDAC1 is highly Ca2+-permeable and modulates Ca2+ access to the mitochondrial intermembrane space. Intramitochondrial Ca2+ controls energy metabolism by enhancing the rate of NADH production via modulating critical enzymes in the tricarboxylic acid cycle and fatty acid oxidation. Mitochondrial [Ca2+] is regarded as an important determinant of cell sensitivity to apoptotic stimuli and was proposed to act as a "priming signal," sensitizing the organelle and promoting the release of pro-apoptotic proteins. However, the precise mechanism by which intracellular Ca2+ ([Ca2+]i) mediates apoptosis is not known. Here, we review the roles of VDAC1 in mitochondrial Ca2+ homeostasis and in apoptosis. Accumulated evidence shows that apoptosis-inducing agents act by increasing [Ca2+]i and that this, in turn, augments VDAC1 expression levels. Thus, a new concept of how increased [Ca2+]i activates apoptosis is postulated. Specifically, increased [Ca2+]i enhances VDAC1 expression levels, followed by VDAC1 oligomerization, cytochrome c release, and subsequently apoptosis. Evidence supporting this new model suggesting that upregulation of VDAC1 expression constitutes a major mechanism by which apoptotic stimuli induce apoptosis with VDAC1 oligomerization being a molecular focal point in apoptosis regulation is presented. A new proposed mechanism of pro-apoptotic drug action, namely Ca2+-dependent enhancement of VDAC1 expression, provides a platform for developing a new class of anticancer drugs modulating VDAC1 levels via the promoter and for overcoming the resistance of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Soumasree De
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Meir
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
88
|
Li Q, Qiao P, Chen X, Wang J, Bian L, Zheng X. Affinity chromatographic methodologies based on immobilized voltage dependent anion channel isoform 1 and application in protein-ligand interaction analysis and bioactive compounds screening from traditional medicine. J Chromatogr A 2017; 1495:31-45. [PMID: 28342583 DOI: 10.1016/j.chroma.2017.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/11/2022]
Abstract
Voltage dependent anion channel isoform 1 (VDAC-1) serves as an attractive target of anti-cancer drugs by mediating the entry and exit of metabolites between cytoplasm and mitochondria. This work reports on the preparation of a VDAC-1-based bioaffinity chromatographic stationary phase by linking the protein on lecithin modified microspheres. An assay of chromatographic methods including frontal analysis, zonal elution, injection dependent analysis and nonlinear chromatography were utilized to investigate the bindings of ATP, NADH and NADPH to VDAC-1. Electrostatic interactions were found to be main forces during these bindings. The calculated association constants of the three ligands to VDAC-1 showed good agreements between diverse chromatographic methods. Validated application of the stationary phase was performed by screening anti-cancer compounds of Rheum officinale Baill. using high performance affinity chromatography coupled with electrospray ionization-quadrupole time of flight mass spectrometry. Chrysophanol, emodin, rhein, aloe-emodin and catechin were identified as the bioactive components of the herb. These compounds targeted VDAC-1 through Thr207 and the N-terminal region of the protein. Taken together, the current stationary phase was possible to become a promising tool for protein-ligand interaction analysis and anti-cancer drug screening from complex matrices.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Pan Qiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiu Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Liujiao Bian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
89
|
Atlante A, de Bari L, Bobba A, Amadoro G. A disease with a sweet tooth: exploring the Warburg effect in Alzheimer's disease. Biogerontology 2017; 18:301-319. [PMID: 28314935 DOI: 10.1007/s10522-017-9692-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Abstract
After more than 80 years from the revolutionary discoveries of Otto Warburg, who observed high glucose dependency, with increased glycolysis and lactate production regardless of oxygen availability in most cancer cells, the 'Warburg effect' returns to the fore in neuronal cells affected by Alzheimer's disease (AD). Indeed, it seems that, in the mild phase of AD, neuronal cells "prefer" to use the energetically inefficient method of burning glucose by glycolysis, as in cancer, proving to become resistant to β-amyloid (Aβ)-dependent apoptosis. However, in the late phase, while most AD brain cells die in response to Aβ toxicity, only small populations of neurons, exhibiting increased glucose uptake and glycolytic flux, are able to survive as they are resistant to Aβ. Here we draw an overview on the metabolic shift for glucose utilization from oxidative phosphorylation to glycolysis, focusing on the hypothesis that, as extreme attempt to oppose the impending death, mitochondria-whose dysfunction and central role in Aβ toxicity is an AD hallmark-are sent into quiescence, this likely contributing to activate mechanisms of resistance to Aβ-dependent apoptosis. Finally, the attempt turns out fruitless since the loss of the adaptive advantage afforded by elevated aerobic glycolysis exacerbates the pathophysiological processes associated with AD, making the brain susceptible to Aβ-induced neurotoxicity and leading to cell death and dementia. The understanding of how certain nerve cells become resistant to Aβ toxicity, while the majority dies, is an attractive challenge toward the identification of novel possible targets for AD therapy.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes and Bioenergetics (IBBE), National Research Council (CNR), Via G. Amendola 165/A, 70126, Bari, Italy.
| | - Lidia de Bari
- Institute of Biomembranes and Bioenergetics (IBBE), National Research Council (CNR), Via G. Amendola 165/A, 70126, Bari, Italy
| | - Antonella Bobba
- Institute of Biomembranes and Bioenergetics (IBBE), National Research Council (CNR), Via G. Amendola 165/A, 70126, Bari, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
| |
Collapse
|
90
|
Mazure NM. VDAC in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:665-673. [PMID: 28283400 DOI: 10.1016/j.bbabio.2017.03.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/21/2017] [Accepted: 03/03/2017] [Indexed: 12/23/2022]
Abstract
The voltage-dependent anion channel (VDAC) is a pore located at the outer membrane of the mitochondrion. It allows the entry and exit of numerous ions and metabolites between the cytosol and the mitochondrion. Flux through the pore occurs in an active way: first, it depends on the open or closed state and second, on the negative or positive charges of the different ion species passing through the pore. The flux of essential metabolites, such as ATP, determines the functioning of the mitochondria to a noxious stimulus. Moreover, VDAC acts as a platform for many proteins and in so doing supports glycolysis and prevents apoptosis by interacting with hexokinase, or members of the Bcl-2 family, respectively. VDAC is thus involved in the choice the cells make to survive or die, which is particularly relevant to cancer cells. For these reasons, VDAC has become a potential therapeutic target to fight cancer but also other diseases in which mitochondrial metabolism is modified. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- N M Mazure
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284, INSERM U1081, University of Nice, France; CNRS GDR 3697 Micronit, France.
| |
Collapse
|
91
|
Bing Z, Tian J, Zhang J, Li X, Wang X, Yang K. An Integrative Model of miRNA and mRNA Expression Signature for Patients of Breast Invasive Carcinoma with Radiotherapy Prognosis. Cancer Biother Radiopharm 2017; 31:253-60. [PMID: 27610468 DOI: 10.1089/cbr.2016.2059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Radiotherapy is widely used in breast cancer treatment. The radiotherapy for breast invasive carcinoma (BRCA) presents challenges with the complex clinical factors, and too many genes have been found to be associated with BRCA radiotherapy prognosis. The aim of this study was to construct an integrative model to combine the clinical data and RNA expression data (including microRNA and mRNA) to predict the survival durations of BRCA patients with radiotherapy. Also, the authors try to find the key regulation pairs between mRNA and miRNA from prediction. They collected mRNA and microRNA expression profiles and gathered the corresponding clinical data of 73 BRCA patients with radiotherapy from The Cancer Genome Atlas (TCGA). According to an integrative model from univariate Cox regression between RNA expression and patient survival, they classified the patients with radiotherapy into low-risk and high-risk groups. The results showed that nine mRNAs were considered as protective genes and five miRNAs and eight mRNAs were considered as high-risk genes. Moreover, the high-risk group has a significantly shorter survival time in comparison with the low-risk group by the log-rank test (p = 0.0039). The reliability of the gene signature was validated by an independent data set from the Gene Expression Omnibus (GEO). Furthermore, three pairs of miRNA-mRNA, closely associated to survival, were identified. These findings and method may prove valuable for improving the clinical management of BRCA patients with radiotherapy.
Collapse
Affiliation(s)
- Zhitong Bing
- 1 Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University , Lanzhou, China .,2 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province , Lanzhou, China .,3 Institute of Modern Physics of Chinese Academy of Sciences , Lanzhou, China
| | - Jinhui Tian
- 1 Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University , Lanzhou, China .,2 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province , Lanzhou, China
| | - Jingyun Zhang
- 1 Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University , Lanzhou, China .,2 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province , Lanzhou, China
| | - Xiuxia Li
- 1 Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University , Lanzhou, China .,2 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province , Lanzhou, China
| | - Xiaohu Wang
- 4 Gansu Provincial Cancer Hospital , Lanzhou, China
| | - Kehu Yang
- 1 Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University , Lanzhou, China .,2 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province , Lanzhou, China
| |
Collapse
|
92
|
Kerkhofs M, Giorgi C, Marchi S, Seitaj B, Parys JB, Pinton P, Bultynck G, Bittremieux M. Alterations in Ca 2+ Signalling via ER-Mitochondria Contact Site Remodelling in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:225-254. [PMID: 28815534 DOI: 10.1007/978-981-10-4567-7_17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inter-organellar contact sites establish microdomains for localised Ca2+-signalling events. One of these microdomains is established between the ER and the mitochondria. Importantly, the so-called mitochondria-associated ER membranes (MAMs) contain, besides structural proteins and proteins involved in lipid exchange, several Ca2+-transport systems, mediating efficient Ca2+ transfer from the ER to the mitochondria. These Ca2+ signals critically control several mitochondrial functions, thereby impacting cell metabolism, cell death and survival, proliferation and migration. Hence, the MAMs have emerged as critical signalling hubs in physiology, while their dysregulation is an important factor that drives or at least contributes to oncogenesis and tumour progression. In this book chapter, we will provide an overview of the role of the MAMs in cell function and how alterations in the MAM composition contribute to oncogenic features and behaviours.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Bruno Seitaj
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Jan B Parys
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Geert Bultynck
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium.
| | - Mart Bittremieux
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
93
|
Shoshan-Barmatz V, De S. Mitochondrial VDAC, the Na +/Ca 2+ Exchanger, and the Ca 2+ Uniporter in Ca 2+ Dynamics and Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:323-347. [PMID: 29594867 DOI: 10.1007/978-3-319-55858-5_13] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrial Ca2+ uptake and release play pivotal roles in cellular physiology by regulating intracellular Ca2+ signaling, energy metabolism, and cell death. Ca2+ transport across the inner and outer mitochondrial membranes (IMM, OMM, respectively), is mediated by several proteins, including the voltage-dependent anion channel 1 (VDAC1) in the OMM, and the mitochondrial Ca2+ uniporter (MCU) and Na+-dependent mitochondrial Ca2+ efflux transporter, (the NCLX), both in the IMM. By transporting Ca2+ across the OMM to the mitochondrial inner-membrane space (IMS), VDAC1 allows Ca2+ access to the MCU, facilitating transport of Ca2+ to the matrix, and also from the IMS to the cytosol. Intra-mitochondrial Ca2+ controls energy production and metabolism by modulating critical enzymes in the tricarboxylic acid (TCA) cycle and fatty acid oxidation. Thus, by transporting Ca2+, VDAC1 plays a fundamental role in regulating mitochondrial Ca2+ homeostasis, oxidative phosphorylation, and Ca2+ crosstalk among mitochondria, cytoplasm, and the endoplasmic reticulum (ER). VDAC1 has also been recognized as a key protein in mitochondria-mediated apoptosis, and apoptosis stimuli induce overexpression of the protein in a Ca2+-dependent manner. The overexpressed VDAC1 undergoes oligomerization leading to the formation of a channel, through which apoptogenic agents can be released. Here, we review the roles of VDAC1 in mitochondrial Ca2+ homeostasis, in apoptosis, and in diseases associated with mitochondria dysfunction.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Soumasree De
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
94
|
Abstract
Mitochondria are the "power house" of a cell continuously generating ATP to ensure its proper functioning. The constant production of ATP via oxidative phosphorylation demands a large electrochemical force that drives protons across the highly selective and low-permeable mitochondrial inner membrane. Besides the conventional role of generating ATP, mitochondria also play an active role in calcium signaling, generation of reactive oxygen species (ROS), stress responses, and regulation of cell-death pathways. Deficiencies in these functions result in several pathological disorders like aging, cancer, diabetes, neurodegenerative and cardiovascular diseases. A plethora of ion channels and transporters are present in the mitochondrial inner and outer membranes which work in concert to preserve the ionic equilibrium of a cell for the maintenance of cell integrity, in physiological as well as pathophysiological conditions. For, e.g., mitochondrial cation channels KATP and BKCa play a significant role in cardioprotection from ischemia-reperfusion injury. In addition to the cation channels, mitochondrial anion channels are equally essential, as they aid in maintaining electro-neutrality by regulating the cell volume and pH. This chapter focusses on the information on molecular identity, structure, function, and physiological relevance of mitochondrial chloride channels such as voltage dependent anion channels (VDACs), uncharacterized mitochondrial inner membrane anion channels (IMACs), chloride intracellular channels (CLIC) and the aspects of forthcoming chloride channels.
Collapse
Affiliation(s)
- Devasena Ponnalagu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Room 8154, Mail Stop 488, Philadelphia, PA, 19102-1192, USA
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Room 8154, Mail Stop 488, Philadelphia, PA, 19102-1192, USA.
| |
Collapse
|
95
|
The novel heart-specific RING finger protein 207 is involved in energy metabolism in cardiomyocytes. J Mol Cell Cardiol 2016; 100:43-53. [DOI: 10.1016/j.yjmcc.2016.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 11/22/2022]
|
96
|
Wu CH, Lin YW, Wu TF, Ko JL, Wang PH. Clinical implication of voltage-dependent anion channel 1 in uterine cervical cancer and its action on cervical cancer cells. Oncotarget 2016; 7:4210-25. [PMID: 26716410 PMCID: PMC4826200 DOI: 10.18632/oncotarget.6704] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/29/2015] [Indexed: 11/25/2022] Open
Abstract
Two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry were performed to investigate the influence of human nonmetastatic clone 23 type 1 (nm23-H1), a metastasis-associated gene on proteomic alterations in cancer cells of the uterine cervix. It was validated by RT-PCR and Western blot analysis. The expression of voltage-dependent anion channel 1 (VDAC1) was increased in nm23-H1 gene silenced SiHa or CaSki cervical cancer cells. The clinical implication was shown that cervical cancer tissues with positive VDAC1 immunoreactivity exhibited deep stromal invasion (>10 mm in depth) and large tumor size (> 4 cm in diameter). Cervical cancer patients with positive VDAC1 immunoreactivity displayed higher recurrence and poorer overall survival than those with negative VDAC1. Silencing of VDAC1 reduced cell proliferation and migratory ability. Mitochondrial membrane potential was decreased and reactive oxygen species generation was increased in the VDAC1 gene-silenced cervical cancer cells. Cell cycle progression and autophagy were not changed in VDAC1 silencing cells. The cytotoxicity of cisplatin was significantly enhanced by knockdown of cellular VDAC1 and the compounds that interfere with hexokinase binding to VDAC. Therapeutic strategies may be offered using VDAC1 as a target to reduce cell growth and migration, enhance the synergistic therapeutic efficacy of cisplatin and reduce cisplatin dose-limiting toxicity.
Collapse
Affiliation(s)
- Chih-Hsien Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Wen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Fan Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
97
|
The multiple assemblies of VDAC: from conformational heterogeneity to β-aggregation and amyloid formation. Biochem Soc Trans 2016; 44:1531-1540. [PMID: 27911736 DOI: 10.1042/bst20160114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 01/10/2023]
Abstract
From their cellular localisation, to their atomic structure and their involvement in mitochondrial-driven cell death, voltage-dependent anion channels (VDACs) have challenged the scientific community with enigmas and paradoxes for over four decades. VDACs form active monomer channels in lipid bilayers, but they can also organise in multimeric assemblies. What induces, regulates and/or controls the monomer-multimer dynamics at the cellular level is not known. However, these state transitions appear to be relevant for mitochondria in making life or death decisions and for driving developmental processes. This review starts with a general introduction on VDACs and continues by examining VDAC oligomerisation/aggregation in light of recent discussions on VDAC-β-amyloid interactions and their involvement in Alzheimer's disease.
Collapse
|
98
|
Ben-Hail D, Begas-Shvartz R, Shalev M, Shteinfer-Kuzmine A, Gruzman A, Reina S, De Pinto V, Shoshan-Barmatz V. Novel Compounds Targeting the Mitochondrial Protein VDAC1 Inhibit Apoptosis and Protect against Mitochondrial Dysfunction. J Biol Chem 2016; 291:24986-25003. [PMID: 27738100 DOI: 10.1074/jbc.m116.744284] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/10/2016] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is thought to play a critical role in several pathological processes, such as neurodegenerative diseases (i.e. Parkinson's and Alzheimer's diseases) and various cardiovascular diseases. Despite the fact that apoptotic mechanisms are well defined, there is still no substantial therapeutic strategy to stop or even slow this process. Thus, there is an unmet need for therapeutic agents that are able to block or slow apoptosis in neurodegenerative and cardiovascular diseases. The outer mitochondrial membrane protein voltage-dependent anion channel 1 (VDAC1) is a convergence point for a variety of cell survival and death signals, including apoptosis. Recently, we demonstrated that VDAC1 oligomerization is involved in mitochondrion-mediated apoptosis. Thus, VDAC1 oligomerization represents a prime target for agents designed to modulate apoptosis. Here, high-throughput compound screening and medicinal chemistry were employed to develop compounds that directly interact with VDAC1 and prevent VDAC1 oligomerization, concomitant with an inhibition of apoptosis as induced by various means and in various cell lines. The compounds protected against apoptosis-associated mitochondrial dysfunction, restoring dissipated mitochondrial membrane potential, and thus cell energy and metabolism, decreasing reactive oxidative species production, and preventing detachment of hexokinase bound to mitochondria and disruption of intracellular Ca2+ levels. Thus, this study describes novel drug candidates with a defined mechanism of action that involves inhibition of VDAC1 oligomerization, apoptosis, and mitochondrial dysfunction. The compounds VBIT-3 and VBIT-4 offer a therapeutic strategy for treating different diseases associated with enhanced apoptosis and point to VDAC1 as a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Danya Ben-Hail
- From the Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Racheli Begas-Shvartz
- From the Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Moran Shalev
- From the Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- From the Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Arie Gruzman
- the Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel, and
| | - Simona Reina
- the Departments of Biomedicine and Biotechnology and.,Chemical Sciences, National Institute for Biomembranes and Biosystems, Section of Catania, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Vito De Pinto
- the Departments of Biomedicine and Biotechnology and
| | - Varda Shoshan-Barmatz
- From the Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel,
| |
Collapse
|
99
|
Peruzzo R, Biasutto L, Szabò I, Leanza L. Impact of intracellular ion channels on cancer development and progression. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2016; 45:685-707. [PMID: 27289382 PMCID: PMC5045486 DOI: 10.1007/s00249-016-1143-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Cancer research is nowadays focused on the identification of possible new targets in order to try to develop new drugs for curing untreatable tumors. Ion channels have emerged as "oncogenic" proteins, since they have an aberrant expression in cancers compared to normal tissues and contribute to several hallmarks of cancer, such as metabolic re-programming, limitless proliferative potential, apoptosis-resistance, stimulation of neo-angiogenesis as well as cell migration and invasiveness. In recent years, not only the plasma membrane but also intracellular channels and transporters have arisen as oncological targets and were proposed to be associated with tumorigenesis. Therefore, the research is currently focusing on understanding the possible role of intracellular ion channels in cancer development and progression on one hand and, on the other, on developing new possible drugs able to modulate the expression and/or activity of these channels. In a few cases, the efficacy of channel-targeting drugs in reducing tumors has already been demonstrated in vivo in preclinical mouse models.
Collapse
Affiliation(s)
| | - Lucia Biasutto
- CNR Institute of Neuroscience, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
- CNR Institute of Neuroscience, Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
100
|
Moza Jalali B, Likszo P, Skarzynski DJ. Proteomic and network analysis of pregnancy-induced changes in the porcine endometrium on Day 12 of gestation. Mol Reprod Dev 2016; 83:827-841. [PMID: 27612325 DOI: 10.1002/mrd.22733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
Abstract
Conceptus attachment is a time-sensitive process that requires a synchronized uterine environment created by molecular changes in the endometrium in response to ovarian hormones and conceptus signals. Porcine conceptuses undergo rapid elongation and differentiation, and secrete estrogens that serve as maternal-recognition-of-pregnancy signals during the peri-implantation period (Days 11-12). Pregnancy-induced proteomic changes in the porcine endometrium were measured during this period using two-dimensional differential gel electrophoresis of endometrial protein lysates from Day-12 pregnant versus non-pregnant animals (n = 4 each). Forty-four differentially abundant proteins in the pregnant endometrium were identified by mass spectrometry. The pregnant endometrium was associated with a unique protein profile, revealed by principal component analysis. A pregnancy-dependent increase in the abundance of serpins, cofilin, annexin A2, aldose reductase, cyclophilin, protein disulphide isomerase A3, and peroxiredoxin 1 was observed. Western blotting for some of the selected proteins confirmed their enrichment during pregnancy. Ingenuity pathway analysis identified several functions specifically over-represented among the differentially abundant proteins in the pregnant endometrium, including calcium signaling, angiogenesis, leukocyte migration, and cell movement. Interleukin-1 beta and beta-estradiol were identified as upstream regulators of several high-abundance proteins from pregnancy. Therefore, signals from porcine conceptuses, such as estrogens, interleukin 1B, and epidermal growth factor, either alone or in coordination with other factors, prepare the uterus for implantation. Mol. Reprod. Dev. 83: 827-841, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Beenu Moza Jalali
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Pawel Likszo
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Dariusz J Skarzynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|