51
|
Composition, structure and function of the eukaryotic flagellum distal tip. Essays Biochem 2018; 62:815-828. [PMID: 30464008 PMCID: PMC6281473 DOI: 10.1042/ebc20180032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 01/13/2023]
Abstract
Cilia and flagella are long extensions commonly found on the surface of eukaryotic cells. In fact, most human cells have a flagellum, and failure to correctly form cilia leads to a spectrum of diseases gathered under the name ‘ciliopathies’. The cilium distal tip is where it grows and signals. Yet, out of the flagellar regions, the distal tip is probably the least intensively studied. In this review, we will summarise the current knowledge on the diverse flagellar tip structures, the dynamicity and signalling that occurs here and the proteins localising to this important cellular region.
Collapse
|
52
|
Bornens M. Cell polarity: having and making sense of direction-on the evolutionary significance of the primary cilium/centrosome organ in Metazoa. Open Biol 2018; 8:180052. [PMID: 30068565 PMCID: PMC6119866 DOI: 10.1098/rsob.180052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Cell-autonomous polarity in Metazoans is evolutionarily conserved. I assume that permanent polarity in unicellular eukaryotes is required for cell motion and sensory reception, integration of these two activities being an evolutionarily constrained function. Metazoans are unique in making cohesive multicellular organisms through complete cell divisions. They evolved a primary cilium/centrosome (PC/C) organ, ensuring similar functions to the basal body/flagellum of unicellular eukaryotes, but in different cells, or in the same cell at different moments. The possibility that this innovation contributed to the evolution of individuality, in being instrumental in the early specification of the germ line during development, is further discussed. Then, using the example of highly regenerative organisms like planarians, which have lost PC/C organ in dividing cells, I discuss the possibility that part of the remodelling necessary to reach a new higher-level unit of selection in multi-cellular organisms has been triggered by conflicts among individual cell polarities to reach an organismic polarity. Finally, I briefly consider organisms with a sensorimotor organ like the brain that requires exceedingly elongated polarized cells for its activity. I conclude that beyond critical consequences for embryo development, the conservation of cell-autonomous polarity in Metazoans had far-reaching implications for the evolution of individuality.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, PSL Research University, CNRS - UMR 144, 75005 Paris, France
| |
Collapse
|
53
|
Yang XX, Wong YH, Zhang Y, Zhang G, Qian PY. Exploring the regulatory role of nitric oxide (NO) and the NO-p38MAPK/cGMP pathway in larval settlement of the bryozoan Bugula neritina. BIOFOULING 2018; 34:545-556. [PMID: 29842799 DOI: 10.1080/08927014.2018.1470240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
The bryozoan Bugula neritina is a cosmopolitan marine fouling species that causes major fouling problems in sub-tropical waters. Settlement of B. neritina larvae can be triggered without an obvious external cue. Here, the negative regulatory role of nitric oxide (NO) during larval settlement of B. neritina was demonstrated to be mediated by cyclic guanosine monophosphate (cGMP). Although the regulatory role of the NO-p38 MAPK signaling axis in larval settlement was not evident, inhibition of nitric oxide synthase (NOS) led to the deactivation of p38 MAPK. Exclusive localization of NO and NO signaling components in sensory-related organs of the larvae is consistent with its signal transduction function in metamorphosis. Overall, this study provides new insights into the regulatory roles of the NO-p38MAPK/cGMP pathway in B. neritina settlement.
Collapse
Affiliation(s)
- Xiao-Xue Yang
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| | - Yue Him Wong
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| | - Yu Zhang
- b Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , PR China
| | - Gen Zhang
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| | - Pei-Yuan Qian
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| |
Collapse
|
54
|
Christie KR, Blake JA. Sensing the cilium, digital capture of ciliary data for comparative genomics investigations. Cilia 2018; 7:3. [PMID: 29713460 PMCID: PMC5907423 DOI: 10.1186/s13630-018-0057-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 04/03/2018] [Indexed: 01/03/2023] Open
Abstract
Background Cilia are specialized, hair-like structures that project from the cell bodies of eukaryotic cells. With increased understanding of the distribution and functions of various types of cilia, interest in these organelles is accelerating. To effectively use this great expansion in knowledge, this information must be made digitally accessible and available for large-scale analytical and computational investigation. Capture and integration of knowledge about cilia into existing knowledge bases, thus providing the ability to improve comparative genomic data analysis, is the objective of this work. Methods We focused on the capture of information about cilia as studied in the laboratory mouse, a primary model of human biology. The workflow developed establishes a standard for capture of comparative functional data relevant to human biology. We established the 310 closest mouse orthologs of the 302 human genes defined in the SYSCILIA Gold Standard set of ciliary genes. For the mouse genes, we identified biomedical literature for curation and used Gene Ontology (GO) curation paradigms to provide functional annotations from these publications. Results Employing a methodology for comprehensive capture of experimental data about cilia genes in structured, digital form, we established a workflow for curation of experimental literature detailing molecular function and roles of cilia proteins starting with the mouse orthologs of the human SYSCILIA gene set. We worked closely with the GO Consortium ontology development editors and the SYSCILIA Consortium to improve the representation of ciliary biology within the GO. During the time frame of the ontology improvement project, we have fully curated 134 of these 310 mouse genes, resulting in an increase in the number of ciliary and other experimental annotations. Conclusions We have improved the GO annotations available for mouse genes orthologous to the human genes in the SYSCILIA Consortium’s Gold Standard set. In addition, ciliary terminology in the GO itself was improved in collaboration with GO ontology developers and the SYSCILIA Consortium. These improvements to the GO terms for the functions and roles of ciliary proteins, along with the increase in annotations of the corresponding genes, enhance the representation of ciliary processes and localizations and improve access to these data during large-scale bioinformatic analyses. Electronic supplementary material The online version of this article (10.1186/s13630-018-0057-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karen R Christie
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Judith A Blake
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| |
Collapse
|
55
|
Peabody JE, Shei RJ, Bermingham BM, Phillips SE, Turner B, Rowe SM, Solomon GM. Seeing cilia: imaging modalities for ciliary motion and clinical connections. Am J Physiol Lung Cell Mol Physiol 2018; 314:L909-L921. [PMID: 29493257 DOI: 10.1152/ajplung.00556.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The respiratory tract is lined with multiciliated epithelial cells that function to move mucus and trapped particles via the mucociliary transport apparatus. Genetic and acquired ciliopathies result in diminished mucociliary clearance, contributing to disease pathogenesis. Recent innovations in imaging technology have advanced our understanding of ciliary motion in health and disease states. Application of imaging modalities including transmission electron microscopy, high-speed video microscopy, and micron-optical coherence tomography could improve diagnostics and be applied for precision medicine. In this review, we provide an overview of ciliary motion, imaging modalities, and ciliopathic diseases of the respiratory system including primary ciliary dyskinesia, cystic fibrosis, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Jacelyn E Peabody
- Department of Medicine, University of Alabama at Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ren-Jay Shei
- Department of Medicine, University of Alabama at Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| | | | - Scott E Phillips
- Department of Medicine, University of Alabama at Birmingham, Alabama
| | - Brett Turner
- Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Alabama
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Alabama.,Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - George M Solomon
- Department of Medicine, University of Alabama at Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
56
|
Sigg MA, Menchen T, Lee C, Johnson J, Jungnickel MK, Choksi SP, Garcia G, Busengdal H, Dougherty GW, Pennekamp P, Werner C, Rentzsch F, Florman HM, Krogan N, Wallingford JB, Omran H, Reiter JF. Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways. Dev Cell 2018; 43:744-762.e11. [PMID: 29257953 DOI: 10.1016/j.devcel.2017.11.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 09/18/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals. We demonstrated that candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein identified in the cilia of all three organisms. ENKUR localizes to motile cilia and is required for patterning the left-right axis in vertebrates. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to signaling, and uncovers a ciliary protein that underlies development and human disease.
Collapse
Affiliation(s)
- Monika Abedin Sigg
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Tabea Menchen
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Chanjae Lee
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffery Johnson
- Gladstone Institute of Cardiovascular Disease and Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Melissa K Jungnickel
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Semil P Choksi
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Henriette Busengdal
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5008, Norway
| | - Gerard W Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Claudius Werner
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5008, Norway
| | - Harvey M Florman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nevan Krogan
- Gladstone Institute of Cardiovascular Disease and Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
57
|
Roncaglia P, van Dam TJP, Christie KR, Nacheva L, Toedt G, Huynen MA, Huntley RP, Gibson TJ, Lomax J. The Gene Ontology of eukaryotic cilia and flagella. Cilia 2017; 6:10. [PMID: 29177046 PMCID: PMC5688719 DOI: 10.1186/s13630-017-0054-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recent research into ciliary structure and function provides important insights into inherited diseases termed ciliopathies and other cilia-related disorders. This wealth of knowledge needs to be translated into a computational representation to be fully exploitable by the research community. To this end, members of the Gene Ontology (GO) and SYSCILIA Consortia have worked together to improve representation of ciliary substructures and processes in GO. METHODS Members of the SYSCILIA and Gene Ontology Consortia suggested additions and changes to GO, to reflect new knowledge in the field. The project initially aimed to improve coverage of ciliary parts, and was then broadened to cilia-related biological processes. Discussions were documented in a public tracker. We engaged the broader cilia community via direct consultation and by referring to the literature. Ontology updates were implemented via ontology editing tools. RESULTS So far, we have created or modified 127 GO terms representing parts and processes related to eukaryotic cilia/flagella or prokaryotic flagella. A growing number of biological pathways are known to involve cilia, and we continue to incorporate this knowledge in GO. The resulting expansion in GO allows more precise representation of experimentally derived knowledge, and SYSCILIA and GO biocurators have created 199 annotations to 50 human ciliary proteins. The revised ontology was also used to curate mouse proteins in a collaborative project. The revised GO and annotations, used in comparative 'before and after' analyses of representative ciliary datasets, improve enrichment results significantly. CONCLUSIONS Our work has resulted in a broader and deeper coverage of ciliary composition and function. These improvements in ontology and protein annotation will benefit all users of GO enrichment analysis tools, as well as the ciliary research community, in areas ranging from microscopy image annotation to interpretation of high-throughput studies. We welcome feedback to further enhance the representation of cilia biology in GO.
Collapse
Affiliation(s)
- Paola Roncaglia
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
- The Gene Ontology Consortium, http://geneontology.org
| | - Teunis J. P. van Dam
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Karen R. Christie
- The Gene Ontology Consortium, http://geneontology.org
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Lora Nacheva
- Fakultät Biowissenschaften, Universität Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Grischa Toedt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Martijn A. Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rachael P. Huntley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
- Present Address: Centre for Cardiovascular Genetics, University College London, London, WC1E 6JF UK
| | - Toby J. Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Jane Lomax
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
- The Gene Ontology Consortium, http://geneontology.org
- Present Address: SciBite Limited, BioData Innovation Centre, Wellcome Genome Campus, Cambridge, CB10 1DR UK
| |
Collapse
|
58
|
Bleich S, Müller CHG, Graf G, Hanke W. Flow generation by the corona ciliata in Chaetognatha - quantification and implications for current functional hypotheses. ZOOLOGY 2017; 125:79-86. [PMID: 29110920 DOI: 10.1016/j.zool.2017.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/28/2022]
Abstract
The corona ciliata of Chaetognatha (arrow worms) is a circular or elliptical groove lined by a rim from which multiple lines of cilia emanate, located dorsally on the head and/or trunk. Mechanoreception, chemosensation, excretion, respiration, and support of reproduction have been suggested to be its main functions. Here we provide the first experimental evidence that the cilia produce significant water flow, and the first visualisation and quantification of this flow. In Spadella cephaloptera, water is accelerated toward the corona ciliata from dorsal and anterior of the body in a funnel-shaped pattern, and expelled laterally and caudally from the corona, with part of the water being recirculated. Maximal flow speeds were approximately 140μms-1 in adult specimens. Volumetric flow rate was Q=0.0026μls-1. The funnel-shaped directional flow can possibly enable directional chemosensation. The flow measurements demonstrate that the corona ciliata is well suited as a multifunctional organ.
Collapse
Affiliation(s)
- Steffen Bleich
- Institute of Biological Sciences, Marine Biology, University of Rostock, Albert-Einstein-Straße 3, D-18059 Rostock, Germany
| | - Carsten H G Müller
- Zoological Institute and Museum, General and Systematic Zoology, Ernst-Moritz-Arndt-University, Anklamer Straße 20, D-17497 Greifswald, Germany
| | - Gerhard Graf
- Institute of Biological Sciences, Marine Biology, University of Rostock, Albert-Einstein-Straße 3, D-18059 Rostock, Germany
| | - Wolf Hanke
- Institute of Biological Sciences, Sensory & Cognitive Ecology, University of Rostock, Albert-Einstein-Straße 3, D-18059 Rostock, Germany.
| |
Collapse
|
59
|
Primary Cilium Formation and Ciliary Protein Trafficking Is Regulated by the Atypical MAP Kinase MAPK15 in Caenorhabditis elegans and Human Cells. Genetics 2017; 207:1423-1440. [PMID: 29021280 DOI: 10.1534/genetics.117.300383] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/05/2017] [Indexed: 11/18/2022] Open
Abstract
Motile and immotile (or primary) cilia are microtubule-based structures that mediate multiple cellular functions, including the transduction of environmental cues, developmental signaling, cellular motility, and modulation of fluid flow. Although their core architectures are similar, motile and primary cilia exhibit marked structural differences that underlie distinct functional properties. However, the extent to which ciliogenesis mechanisms are shared between these different cilia types is not fully described. Here, we report that the atypical MAP kinase MAPK15 (ERK7/8), implicated in the formation of vertebrate motile cilia, also regulates the formation of primary cilia in Caenorhabditis elegans sensory neurons and human cells. We find that MAPK15 localizes to a basal body subdomain with the ciliopathy protein BBS7 and to cell-cell junctions. MAPK15 also regulates the localization of ciliary proteins involved in cilium structure, transport, and signaling. Our results describe a primary cilia-related role for this poorly studied member of the MAPK family in vivo, and indicate a broad requirement for MAPK15 in the formation of multiple ciliary classes across species.
Collapse
|
60
|
Zhan D, Xiang W, Guo F, Ma Y. Basic fibroblast growth factor increases IFT88 expression in chondrocytes. Mol Med Rep 2017; 16:6590-6599. [PMID: 28901443 PMCID: PMC5865803 DOI: 10.3892/mmr.2017.7449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 07/11/2017] [Indexed: 11/06/2022] Open
Abstract
Intraflagellar transport protein 88 (IFT88) is protein crucial for the assembly and maintenance of primary cilia in chondrocytes. Primary cilia regulate mechanical and chemical signals in chondrocytes; however, the effects of cytokines on IFT88 expression and cilia formation and maintenance remain to be elucidated. Therefore, the role of basic fibroblast growth factor (bFGF) on IFT88 expression were examined in the ATDC5 murine chondrocytic line, in order to investigate the signaling pathways involved in this process. bFGF treatment upregulated IFT88 expression in a dose- and time-dependent manner in ATDC5 cells. The effects of bFGF on IFT88 protein expression were suppressed in the presence of the extracellular signal-regulated protein kinase (ERK) inhibitor PD0325901 and the FGF receptor inhibitor BGJ398. In addition, treatment with IFT88-trageting small interfering (si)RNA downregulated the protein expression of IFT88 and ERK, thus suggesting that the ERK signaling pathway may be involved in the regulation of IFT88 expression in ATDC5 cells. bFGF treatment increased the number of ciliated ATDC5 cells and primary cultured chondrocytes. Downregulation of IFT88 expression by PD0325901, BGJ398, or IFT88-targeting siRNA was revealed to reduce the number of ciliated cells. bFGF also upregulated the mRNA and protein expression of IFT88 in primary cultured chondrocytes. In conclusion, the findings of the present study suggested that bFGF may enhance the expression of IFT88, and promote primary cilia development, through the mitogen-activated protein kinase/ERK-mediated pathway in chondrocytes.
Collapse
Affiliation(s)
- Daolu Zhan
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wei Xiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuanzheng Ma
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
61
|
Vöcking O, Kourtesis I, Tumu SC, Hausen H. Co-expression of xenopsin and rhabdomeric opsin in photoreceptors bearing microvilli and cilia. eLife 2017; 6:23435. [PMID: 28876222 PMCID: PMC5648526 DOI: 10.7554/elife.23435] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 09/01/2017] [Indexed: 12/22/2022] Open
Abstract
Ciliary and rhabdomeric opsins are employed by different kinds of photoreceptor cells, such as ciliary vertebrate rods and cones or protostome microvillar eye photoreceptors, that have specialized structures and molecular physiologies. We report unprecedented cellular co-expression of rhabdomeric opsin and a visual pigment of the recently described xenopsins in larval eyes of a mollusk. The photoreceptors bear both microvilli and cilia and express proteins that are orthologous to transporters in microvillar and ciliary opsin trafficking. Highly conserved but distinct gene structures suggest that xenopsins and ciliary opsins are of independent origin, irrespective of their mutually exclusive distribution in animals. Furthermore, we propose that frequent opsin gene loss had a large influence on the evolution, organization and function of brain and eye photoreceptor cells in bilaterian animals. The presence of xenopsin in eyes of even different design might be due to a common origin and initial employment of this protein in a highly plastic photoreceptor cell type of mixed microvillar/ciliary organization. Animal eyes have photoreceptor cells that contain light-sensitive molecules called opsins. Although all animal photoreceptor cells of this kind share a common origin, the cells found in different organisms can differ considerably. The photoreceptor cells in flies, squids and other invertebrates store a type of opsin called r-opsin in thin projections on the surface known as microvilli. On the other hand, the visual photoreceptor cells in human and other vertebrate eyes transport another type of opsin (known as c-opsin) into more prominent extensions called cilia. It has been suggested that the fly and vertebrate photoreceptor cells represent clearly distinct evolutionary lineages of cells, which diverged early in animal evolution. However, several organisms that are more closely related to flies than to vertebrates have eye photoreceptor cells with cilia. Do all eye photoreceptors with cilia have a common origin in evolution or did they emerge independently in vertebrates and certain invertebrates? The photoreceptor cells of a marine mollusc called Leptochiton asellus, are unusual because they bear both microvilli and cilia, suggesting they have intermediate characteristics between the two well-known types of photoreceptor cells. Previous studies have shown that these photoreceptor cells use r-opsin, but Vöcking et al. have now detected the presence of an additional opsin in the cells. This opsin is a member of the recently discovered xenopsin family of molecules. Further analyses support the findings of previous studies that suggested this type of opsin emerged early on in animal evolution, independently from c-opsin. Other invertebrates that have cilia on their eye photoreceptors also use xenopsin and not c-opsin. The findings of Vöcking et al. suggest that, in addition to c-opsin and r-opsin, xenopsin has also driven the evolution of photoreceptor cells in animals. Eye photoreceptor cells in invertebrates with cilia probably share a common origin with the microvilli photoreceptor cells that is distinct from that of vertebrate visual cells. The observation that two very different types of opsin can be produced within a single cell suggests that the molecular processes that respond to light in photoreceptor cells may be much more complex than previously anticipated. Further work on these processes may help us to understand how animal eyes work and how they are affected by disease.
Collapse
Affiliation(s)
- Oliver Vöcking
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.,Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Ioannis Kourtesis
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Sharat Chandra Tumu
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Harald Hausen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
62
|
The Lipid Raft Proteome of African Trypanosomes Contains Many Flagellar Proteins. Pathogens 2017; 6:pathogens6030039. [PMID: 28837104 PMCID: PMC5617996 DOI: 10.3390/pathogens6030039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
Lipid rafts are liquid-ordered membrane microdomains that form by preferential association of 3-β-hydroxysterols, sphingolipids and raft-associated proteins often having acyl modifications. We isolated lipid rafts of the protozoan parasite Trypanosoma brucei and determined the protein composition of lipid rafts in the cell. This analysis revealed a striking enrichment of flagellar proteins and several putative signaling proteins in the lipid raft proteome. Calpains and intraflagellar transport proteins, in particular, were found to be abundant in the lipid raft proteome. These findings provide additional evidence supporting the notion that the eukaryotic cilium/flagellum is a lipid raft-enriched specialized structure with high concentrations of sterols, sphingolipids and palmitoylated proteins involved in environmental sensing and cell signaling.
Collapse
|
63
|
Sterol targeting drugs reveal life cycle stage-specific differences in trypanosome lipid rafts. Sci Rep 2017; 7:9105. [PMID: 28831063 PMCID: PMC5567337 DOI: 10.1038/s41598-017-08770-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Cilia play important roles in cell signaling, facilitated by the unique lipid environment of a ciliary membrane containing high concentrations of sterol-rich lipid rafts. The African trypanosome Trypanosoma brucei is a single-celled eukaryote with a single cilium/flagellum. We tested whether flagellar sterol enrichment results from selective flagellar partitioning of specific sterol species or from general enrichment of all sterols. While all sterols are enriched in the flagellum, cholesterol is especially enriched. T. brucei cycles between its mammalian host (bloodstream cell), in which it scavenges cholesterol, and its tsetse fly host (procyclic cell), in which it both scavenges cholesterol and synthesizes ergosterol. We wondered whether the insect and mammalian life cycle stages possess chemically different lipid rafts due to different sterol utilization. Treatment of bloodstream parasites with cholesterol-specific methyl-β-cyclodextrin disrupts both membrane liquid order and localization of a raft-associated ciliary membrane calcium sensor. Treatment with ergosterol-specific amphotericin B does not. The opposite results were observed with ergosterol-rich procyclic cells. Further, these agents have opposite effects on flagellar sterol enrichment and cell metabolism in the two life cycle stages. These findings illuminate differences in the lipid rafts of an organism employing life cycle-specific sterols and have implications for treatment.
Collapse
|
64
|
Plattner H. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. J Eukaryot Microbiol 2017; 65:255-289. [PMID: 28719054 DOI: 10.1111/jeu.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+ -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional "inventions."
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P. O. Box M625, Konstanz, 78457, Germany
| |
Collapse
|
65
|
Lodh S, Yano J, Valentine MS, Van Houten JL. Voltage-gated calcium channels of Paramecium cilia. ACTA ACUST UNITED AC 2017; 219:3028-3038. [PMID: 27707864 DOI: 10.1242/jeb.141234] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/19/2016] [Indexed: 01/08/2023]
Abstract
Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca2+ entering the cilium through voltage-gated Ca2+ (CaV) channels that are found exclusively in the cilia. As ciliary Ca2+ levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the CaV channels causes cells to make a turn in their swimming paths. For 45 years, the physiological characteristics of the Paramecium ciliary CaV channels have been known, but the proteins were not identified until recently, when the P. tetraurelia ciliary membrane proteome was determined. Three CaVα1 subunits that were identified among the proteins were cloned and confirmed to be expressed in the cilia. We demonstrate using RNA interference that these channels function as the ciliary CaV channels that are responsible for the reversal of ciliary beating. Furthermore, we show that Pawn (pw) mutants of Paramecium that cannot swim backward for lack of CaV channel activity do not express any of the three CaV1 channels in their ciliary membrane, until they are rescued from the mutant phenotype by expression of the wild-type PW gene. These results reinforce the correlation of the three CaV channels with backward swimming through ciliary reversal. The PwB protein, found in endoplasmic reticulum fractions, co-immunoprecipitates with the CaV1c channel and perhaps functions in trafficking. The PwA protein does not appear to have an interaction with the channel proteins but affects their appearance in the cilia.
Collapse
Affiliation(s)
- Sukanya Lodh
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Junji Yano
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Megan S Valentine
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
66
|
Abstract
Motile and non-motile (primary) cilia are nearly ubiquitous cellular organelles. The dysfunction of cilia causes diseases known as ciliopathies. The number of reported ciliopathies (currently 35) is increasing, as is the number of established (187) and candidate (241) ciliopathy-associated genes. The characterization of ciliopathy-associated proteins and phenotypes has improved our knowledge of ciliary functions. In particular, investigating ciliopathies has helped us to understand the molecular mechanisms by which the cilium-associated basal body functions in early ciliogenesis, as well as how the transition zone functions in ciliary gating, and how intraflagellar transport enables cargo trafficking and signalling. Both basic biological and clinical studies are uncovering novel ciliopathies and the ciliary proteins involved. The assignment of these proteins to different ciliary structures, processes and ciliopathy subclasses (first order and second order) provides insights into how this versatile organelle is built, compartmentalized and functions in diverse ways that are essential for human health.
Collapse
|
67
|
May-Simera H, Nagel-Wolfrum K, Wolfrum U. Cilia - The sensory antennae in the eye. Prog Retin Eye Res 2017; 60:144-180. [PMID: 28504201 DOI: 10.1016/j.preteyeres.2017.05.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Cilia are hair-like projections found on almost all cells in the human body. Originally believed to function merely in motility, the function of solitary non-motile (primary) cilia was long overlooked. Recent research has demonstrated that primary cilia function as signalling hubs that sense environmental cues and are pivotal for organ development and function, tissue hoemoestasis, and maintenance of human health. Cilia share a common anatomy and their diverse functional features are achieved by evolutionarily conserved functional modules, organized into sub-compartments. Defects in these functional modules are responsible for a rapidly growing list of human diseases collectively termed ciliopathies. Ocular pathogenesis is common in virtually all classes of syndromic ciliopathies, and disruptions in cilia genes have been found to be causative in a growing number of non-syndromic retinal dystrophies. This review will address what is currently known about cilia contribution to visual function. We will focus on the molecular and cellular functions of ciliary proteins and their role in the photoreceptor sensory cilia and their visual phenotypes. We also highlight other ciliated cell types in tissues of the eye (e.g. lens, RPE and Müller glia cells) discussing their possible contribution to disease progression. Progress in basic research on the cilia function in the eye is paving the way for therapeutic options for retinal ciliopathies. In the final section we describe the latest advancements in gene therapy, read-through of non-sense mutations and stem cell therapy, all being adopted to treat cilia dysfunction in the retina.
Collapse
Affiliation(s)
- Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
68
|
Piatti G, De Santi MM, Torretta S, Pignataro L, Soi D, Ambrosetti U. Cilia and Ear. Ann Otol Rhinol Laryngol 2017; 126:322-327. [PMID: 28290230 DOI: 10.1177/0003489417691299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the prevalence of otological complications derived from primary ciliary dyskinesia (PCD) in adulthood. METHODS Twenty-three patients with diagnosed PCD underwent medical history aimed at recording the presence of ear, nose, and throat manifestations (ENT) and any surgical treatments. The ENT objectivity was annotated, and then patients were subjected to audiometric test, tympanometry, registration of otoacoustic emission, and vestibular evaluation. RESULTS Otitis media with chronic middle ear effusion (OME) during childhood was reported in 52% of the subjects, no patient had undergone ear surgery, and only 2 patients had an episode of otitis in the last year. Eleven of 23 patients showed normal hearing, 11 had a conductive hearing impairment, and 1 showed a severe sensorineural hearing loss unrelated to the syndrome. The bilateral stapedial reflex was only found in all cases of normoacusia and type A tympanogram, distortion product otoacoustic emissions (DPOAE) were present in 8 patients, and no patient had vestibular alterations. CONCLUSION Our study confirms a very frequent prevalence of OME in PCD during childhood. Careful monitoring of otological complications of the syndrome is always desirable, also given the high presence in adults of other manifestations in the upper airways, such as chronic rhinosinusitis and nasal polyposis.
Collapse
Affiliation(s)
- Gioia Piatti
- 1 Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Division of Bronchopneumology, Milan, Italy
| | | | - Sara Torretta
- 3 Department of Clinical Sciences and Community Health, University of Milan, Division of Otolaryngology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Lombardia, Italy
| | - Lorenzo Pignataro
- 3 Department of Clinical Sciences and Community Health, University of Milan, Division of Otolaryngology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Lombardia, Italy
| | - Daniela Soi
- 4 Department of Clinical Sciences and Community Health, University of Milan, Division of Audiology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Lombardia, Italy
| | - Umberto Ambrosetti
- 4 Department of Clinical Sciences and Community Health, University of Milan, Division of Audiology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Lombardia, Italy
| |
Collapse
|
69
|
Pablo JL, DeCaen PG, Clapham DE. Progress in ciliary ion channel physiology. J Gen Physiol 2016; 149:37-47. [PMID: 27999145 PMCID: PMC5217089 DOI: 10.1085/jgp.201611696] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/06/2016] [Indexed: 11/20/2022] Open
Abstract
Mammalian cilia are ubiquitous appendages found on the apical surface of cells. Primary and motile cilia are distinct in both morphology and function. Most cells have a solitary primary cilium (9+0), which lacks the central microtubule doublet characteristic of motile cilia (9+2). The immotile primary cilia house unique signaling components and sequester several important transcription factors. In contrast, motile cilia commonly extend into the lumen of respiratory airways, fallopian tubes, and brain ventricles to move their contents and/or produce gradients. In this review, we focus on the composition of putative ion channels found in both types of cilia and in the periciliary membrane and discuss their proposed functions. Our discussion does not cover specialized cilia in photoreceptor or olfactory cells, which express many more ion channels.
Collapse
Affiliation(s)
- Juan Lorenzo Pablo
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115.,Department of Cardiology, Boston Children's Hospital, Boston, MA 02115.,Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - David E Clapham
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115 .,Department of Cardiology, Boston Children's Hospital, Boston, MA 02115.,Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
70
|
Expression and localization of forkhead box protein FOXJ1 in S100β-positive multiciliated cells of the rat pituitary. Med Mol Morphol 2016; 50:59-67. [PMID: 27660208 DOI: 10.1007/s00795-016-0148-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022]
Abstract
S100β-positive cells exist in the marginal cell layer (MCL) of the adenohypophysis and follicle structure in the parenchyma of anterior lobe (ALFS) in pituitary. They have multiple functions as phagocytes or cells that regulate hormone secretion. Majority of S100β-positive cells in the adenohypophysis express sex determining region Y-box 2 protein (SOX2), a stem cell marker; therefore, S100β/SOX2 double positive cells are also considered as one type of stem/progenitor cells. MCL and ALFS are consisting of morphologically two types of cells, i.e., multiciliated cells and non-ciliated cells. However, the relationship between the S100β-positive cells and multiciliated cells in the pituitary is largely unknown. In the present study, we first immunohistochemically verified the feature of multiciliated cells in MCL and ALFS. We then examined the expression patterns of FOXJ1, an essential expression factor for multiciliated cell-differentiation, and SOX2 in the S100β-positive multiciliated cells by in situ hybridization and immunohistochemistry. We identified anew the S100β/SOX2/FOXJ1 triple positive multiciliated cells, and revealed that they were dispersed throughout the MCL and ALFS. These results indicate that the MCL and ALFS are consisting of morphologically and functionally distinct two types of cells, i.e., S100β/SOX2 double positive non-ciliated cells and S100β/SOX2/FOXJ1 triple positive multiciliated cells.
Collapse
|
71
|
Abstract
Most motile and all non-motile (also known as primary) eukaryotic cilia possess microtubule-based axonemes that are assembled at the cell surface to form hair-like or more elaborate compartments endowed with motility and/or signaling functions. Such compartmentalized ciliogenesis depends on the core intraflagellar transport (IFT) machinery and the associated Bardet-Biedl syndrome complex (BBSome) for dynamic delivery of ciliary components. The transition zone (TZ), an ultrastructurally complex barrier or 'gate' at the base of cilia, also contributes to the formation of compartmentalized cilia. Yet, some ciliated protists do not have IFT components and, like some metazoan spermatozoa, use IFT-independent mechanisms to build axonemes exposed to the cytosol. Moreover, various ciliated protists lack TZ components, whereas Drosophila sperm surprisingly requires the activity of dynamically localized TZ proteins for cytosolic ciliogenesis. Here, we discuss the various ways eukaryotes use IFT and/or TZ proteins to generate the wide assortment of compartmentalized and cytosolic cilia observed in nature. Consideration of the different ciliogenesis pathways allows us to propose how three types of cytosol-exposed cilia (primary, secondary and tertiary), including cilia found in the human sperm proximal segment, are likely generated by evolutionary derivations of compartmentalized ciliogenesis.
Collapse
|
72
|
Loucks CM, Bialas NJ, Dekkers MPJ, Walker DS, Grundy LJ, Li C, Inglis PN, Kida K, Schafer WR, Blacque OE, Jansen G, Leroux MR. PACRG, a protein linked to ciliary motility, mediates cellular signaling. Mol Biol Cell 2016; 27:2133-44. [PMID: 27193298 PMCID: PMC4927285 DOI: 10.1091/mbc.e15-07-0490] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 05/09/2016] [Indexed: 01/15/2023] Open
Abstract
Cilia are cellular projections that can be motile to generate fluid flow or nonmotile to enable signaling. Both forms are based on shared components, and proteins involved in ciliary motility, like PACRG, may also function in ciliary signaling. Caenorhabditis elegans PACRG acts in a subset of nonmotile cilia to influence a learning behavior and promote longevity. Cilia are microtubule-based organelles that project from nearly all mammalian cell types. Motile cilia generate fluid flow, whereas nonmotile (primary) cilia are required for sensory physiology and modulate various signal transduction pathways. Here we investigate the nonmotile ciliary signaling roles of parkin coregulated gene (PACRG), a protein linked to ciliary motility. PACRG is associated with the protofilament ribbon, a structure believed to dictate the regular arrangement of motility-associated ciliary components. Roles for protofilament ribbon–associated proteins in nonmotile cilia and cellular signaling have not been investigated. We show that PACRG localizes to a small subset of nonmotile cilia in Caenorhabditis elegans, suggesting an evolutionary adaptation for mediating specific sensory/signaling functions. We find that it influences a learning behavior known as gustatory plasticity, in which it is functionally coupled to heterotrimeric G-protein signaling. We also demonstrate that PACRG promotes longevity in C. elegans by acting upstream of the lifespan-promoting FOXO transcription factor DAF-16 and likely upstream of insulin/IGF signaling. Our findings establish previously unrecognized sensory/signaling functions for PACRG and point to a role for this protein in promoting longevity. Furthermore, our work suggests additional ciliary motility-signaling connections, since EFHC1 (EF-hand containing 1), a potential PACRG interaction partner similarly associated with the protofilament ribbon and ciliary motility, also positively regulates lifespan.
Collapse
Affiliation(s)
- Catrina M Loucks
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Nathan J Bialas
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | - Denise S Walker
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Laura J Grundy
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - P Nick Inglis
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Katarzyna Kida
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gert Jansen
- Department of Cell Biology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
73
|
Stiff T, Casar Tena T, O'Driscoll M, Jeggo PA, Philipp M. ATR promotes cilia signalling: links to developmental impacts. Hum Mol Genet 2016; 25:1574-87. [PMID: 26908596 PMCID: PMC4805311 DOI: 10.1093/hmg/ddw034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/05/2016] [Indexed: 01/18/2023] Open
Abstract
Mutations in ATR(ataxia telangiectasia and RAD3-related) cause Seckel syndrome (ATR-SS), a microcephalic primordial dwarfism disorder. Hitherto, the clinical manifestation of ATR deficiency has been attributed to its canonical role in DNA damage response signalling following replication fork stalling/collapse. Here, we show that ATR regulates cilia-dependent signalling in a manner that can be uncoupled from its function during replication. ATR-depleted or patient-derived ATR-SS cells form cilia of slightly reduced length but are dramatically impaired in cilia-dependent signalling functions, including growth factor and Sonic hedgehog signalling. To better understand the developmental impact of ATR loss of function, we also used zebrafish as a model. Zebrafish embryos depleted of Atr resembled ATR-SS morphology, showed a modest but statistically significant reduction in cilia length and other morphological features indicative of cilia dysfunction. Additionally, they displayed defects in left-right asymmetry including ambiguous expression of southpaw, incorrectly looped hearts and randomized localization of internal organs including the pancreas, features typically conferred by cilia dysfunction. Our findings reveal a novel role for ATR in cilia signalling distinct from its canonical function during replication and strengthen emerging links between cilia function and development.
Collapse
Affiliation(s)
- Tom Stiff
- Double Strand Break Repair Laboratory and
| | - Teresa Casar Tena
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK and
| | | | - Melanie Philipp
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
74
|
Kumar D, Blaby-Haas CE, Merchant SS, Mains RE, King SM, Eipper BA. Early eukaryotic origins for cilia-associated bioactive peptide-amidating activity. J Cell Sci 2016; 129:943-56. [PMID: 26787743 DOI: 10.1242/jcs.177410] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/13/2016] [Indexed: 01/15/2023] Open
Abstract
Ciliary axonemes and basal bodies were present in the last eukaryotic common ancestor and play crucial roles in sensing and responding to environmental cues. Peptidergic signaling, generally considered a metazoan innovation, is essential for organismal development and homeostasis. Peptidylglycine α-amidating monooxygenase (PAM) is crucial for the last step of bioactive peptide biosynthesis. However, identification of a complete PAM-like gene in green algal genomes suggests ancient evolutionary roots for bioactive peptide signaling. We demonstrate that the Chlamydomonas reinhardtii PAM gene encodes an active peptide-amidating enzyme (CrPAM) that shares key structural and functional features with the mammalian enzyme, indicating that components of the peptide biosynthetic pathway predate multicellularity. In addition to its secretory pathway localization, CrPAM localizes to cilia and tightly associates with the axonemal superstructure, revealing a new axonemal enzyme activity. This localization pattern is conserved in mammals, with PAM present in both motile and immotile sensory cilia. The conserved ciliary localization of PAM adds to the known signaling capabilities of the eukaryotic cilium and provides a potential mechanistic link between peptidergic signaling and endocrine abnormalities commonly observed in ciliopathies.
Collapse
Affiliation(s)
- Dhivya Kumar
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | - Crysten E Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095-1569, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | - Betty A Eipper
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3401, USA Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| |
Collapse
|
75
|
Loss of the BBSome perturbs endocytic trafficking and disrupts virulence of Trypanosoma brucei. Proc Natl Acad Sci U S A 2015; 113:632-7. [PMID: 26721397 DOI: 10.1073/pnas.1518079113] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cilia (eukaryotic flagella) are present in diverse eukaryotic lineages and have essential motility and sensory functions. The cilium's capacity to sense and transduce extracellular signals depends on dynamic trafficking of ciliary membrane proteins. This trafficking is often mediated by the Bardet-Biedl Syndrome complex (BBSome), a protein complex for which the precise subcellular distribution and mechanisms of action are unclear. In humans, BBSome defects perturb ciliary membrane protein distribution and manifest clinically as Bardet-Biedl Syndrome. Cilia are also important in several parasites that cause tremendous human suffering worldwide, yet biology of the parasite BBSome remains largely unexplored. We examined BBSome functions in Trypanosoma brucei, a flagellated protozoan parasite that causes African sleeping sickness in humans. We report that T. brucei BBS proteins assemble into a BBSome that interacts with clathrin and is localized to membranes of the flagellar pocket and adjacent cytoplasmic vesicles. Using BBS gene knockouts and a mouse infection model, we show the T. brucei BBSome is dispensable for flagellar assembly, motility, bulk endocytosis, and cell viability but required for parasite virulence. Quantitative proteomics reveal alterations in the parasite surface proteome of BBSome mutants, suggesting that virulence defects are caused by failure to maintain fidelity of the host-parasite interface. Interestingly, among proteins altered are those with ubiquitination-dependent localization, and we find that the BBSome interacts with ubiquitin. Collectively, our data indicate that the BBSome facilitates endocytic sorting of select membrane proteins at the base of the cilium, illuminating BBSome roles at a critical host-pathogen interface and offering insights into BBSome molecular mechanisms.
Collapse
|
76
|
Waqas MY, Liu T, Yang P, Ahmed N, Zhang Q, Hu L, Hong C, Chen Q. Morphological and ultrastructural study of the efferent ductules in the Chinese soft-shelled turtle Pelodiscus sinensis. ACTA ACUST UNITED AC 2015; 325:122-31. [PMID: 26700193 DOI: 10.1002/jez.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/24/2015] [Accepted: 12/04/2015] [Indexed: 11/07/2022]
Abstract
Comparative study of the turtle excurrent duct system increases our understanding the evolution of sperm motility and fertility maintenance in higher vertebrates. Therefore, in this study we observed the histology and ultrastructure organization of efferent ductules in the Pelodiscus sinensis using light and transmission electron microscopy. The efferent ductules are extra- testicular and 22-28 in number originate from rete testis. The epithelium is entirely composed of two types of cells, the predominant non-ciliated and ciliated cells. The ciliated cells have long cilia that protrude into the lumen to form a meshwork. These cells associated with clusters of mitochondria in the supranuclear cytoplasm and possess coated vesicles, vacuole, intracellular spaces, and junction complexes. Ciliated cells in the proximal portion of the ductules contain an endocytic apparatus with coated pits and tubules in the apical cytoplasm. Interdigitations and lipid droplets are predominantly present around the nuclei of these cells. The non-ciliated cells have clusters of mitochondria present in both the supranuclear and perinuclear cytoplasm whereas, the nuclei of these cells are lightly stained. Moreover, the contour of the epithelium towards lumen is irregular as it has a deep indentation. The apical cytoplasm goes deep into the lumen to form cytoplasmic processes. This is the first study to describe the detailed features of efferent ductules in Pelodiscus sinensis with, special focus on the morphology of ciliated cells, as these cells are involved in the mixing of luminal fluid and transport of spermatozoa towards the distal region.
Collapse
Affiliation(s)
- Muhammad Yasir Waqas
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Tengfei Liu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Ping Yang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Nisar Ahmed
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Qian Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Lisi Hu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Chen Hong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Qiusheng Chen
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
77
|
Landfear SM, Tran KD, Sanchez MA. Flagellar membrane proteins in kinetoplastid parasites. IUBMB Life 2015; 67:668-76. [PMID: 26599841 DOI: 10.1002/iub.1411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/06/2022]
Abstract
All kinetoplastid parasites, including protozoa such as Leishmania species, Trypanosoma brucei, and Trypanosoma cruzi that cause devastating diseases in humans and animals, are flagellated throughout their life cycles. Although flagella were originally thought of primarily as motility organelles, flagellar functions in other critical processes, especially in sensing and signal transduction, have become more fully appreciated in the recent past. The flagellar membrane is a highly specialized subdomain of the surface membrane, and flagellar membrane proteins are likely to be critical components for all the biologically important roles of flagella. In this review, we summarize recent discoveries relevant to flagellar membrane proteins in these parasites, including the identification of such proteins, investigation of their biological functions, and mechanisms of selective trafficking to the flagellar membrane. Prospects for future investigations and current unsolved problems are highlighted.
Collapse
Affiliation(s)
- Scott M Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| | - Khoa D Tran
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| | - Marco A Sanchez
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| |
Collapse
|
78
|
Kharon1 null mutants of Leishmania mexicana are avirulent in mice and exhibit a cytokinesis defect within macrophages. PLoS One 2015; 10:e0134432. [PMID: 26266938 PMCID: PMC4534133 DOI: 10.1371/journal.pone.0134432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/10/2015] [Indexed: 01/21/2023] Open
Abstract
In a variety of eukaryotes, flagella play important roles both in motility and as sensory organelles that monitor the extracellular environment. In the parasitic protozoan Leishmania mexicana, one glucose transporter isoform, LmxGT1, is targeted selectively to the flagellar membrane where it appears to play a role in glucose sensing. Trafficking of LmxGT1 to the flagellar membrane is dependent upon interaction with the KHARON1 protein that is located at the base of the flagellar axoneme. Remarkably, while Δkharon1 null mutants are viable as insect stage promastigotes, they are unable to survive as amastigotes inside host macrophages. Although Δkharon1 promastigotes enter macrophages and transform into amastigotes, these intracellular parasites are unable to execute cytokinesis and form multinucleate cells before dying. Notably, extracellular axenic amastigotes of Δkharon1 mutants replicate and divide normally, indicating a defect in the mutants that is only exhibited in the intra-macrophage environment. Although the flagella of Δkharon1 amastigotes adhere to the phagolysomal membrane of host macrophages, the morphology of the mutant flagella is often distorted. Additionally, these null mutants are completely avirulent following injection into BALB/c mice, underscoring the critical role of the KHARON1 protein for viability of intracellular amastigotes and disease in the animal model of leishmaniasis.
Collapse
|
79
|
Collén J. Win some, lose some: genome evolution in red algae. JOURNAL OF PHYCOLOGY 2015; 51:621-623. [PMID: 26986786 DOI: 10.1111/jpy.12324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Jonas Collén
- Sorbonne Universites, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff Cedex, F-29688, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff Cedex, F-29688, France
| |
Collapse
|
80
|
Microtubule-depolymerizing kinesins in the regulation of assembly, disassembly, and length of cilia and flagella. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:241-65. [PMID: 26008787 DOI: 10.1016/bs.ircmb.2015.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Defects in ciliary assembly, maintenance, and signaling are associated with various human diseases and developmental disorders, termed ciliopathies. Eukaryotic flagella and cilia (interchangeable terms) are microtubule-based organelles. Thus, microtubule dynamics and microtubule-dependent transport are predicted to affect the structural integrity and functionality of cilia profoundly. Kinesin-2 is well known for its role in intraflagellar transport to transport ciliary precursors and signaling molecules. Recently, microtubule-depolymerizing kinesins found in kinesin-8, -13, and -14A families have emerged as regulators of cilia. We first discuss ciliary kinesins identified in the flagellar or ciliary proteome, and then focus on the function and regulation of microtubule-depolymerizing kinesins. Lastly, we review the recent advances of microtubule-depolymerizing kinesins in controlling ciliary assembly, disassembly, and length.
Collapse
|
81
|
Sinigaglia C, Busengdal H, Lerner A, Oliveri P, Rentzsch F. Molecular characterization of the apical organ of the anthozoan Nematostella vectensis. Dev Biol 2015; 398:120-33. [PMID: 25478911 PMCID: PMC4300403 DOI: 10.1016/j.ydbio.2014.11.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/16/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023]
Abstract
Apical organs are sensory structures present in many marine invertebrate larvae where they are considered to be involved in their settlement, metamorphosis and locomotion. In bilaterians they are characterised by a tuft of long cilia and receptor cells and they are associated with groups of neurons, but their relatively low morphological complexity and dispersed phylogenetic distribution have left their evolutionary relationship unresolved. Moreover, since apical organs are not present in the standard model organisms, their development and function are not well understood. To provide a foundation for a better understanding of this structure we have characterised the molecular composition of the apical organ of the sea anemone Nematostella vectensis. In a microarray-based comparison of the gene expression profiles of planulae with either a wildtype or an experimentally expanded apical organ, we identified 78 evolutionarily conserved genes, which are predominantly or specifically expressed in the apical organ of Nematostella. This gene set comprises signalling molecules, transcription factors, structural and metabolic genes. The majority of these genes, including several conserved, but previously uncharacterized ones, are potentially involved in different aspects of the development or function of the long cilia of the apical organ. To demonstrate the utility of this gene set for comparative analyses, we further analysed the expression of a subset of previously uncharacterized putative orthologs in sea urchin larvae and detected expression for twelve out of eighteen of them in the apical domain. Our study provides a molecular characterization of the apical organ of Nematostella and represents an informative tool for future studies addressing the development, function and evolutionary history of apical organ cells.
Collapse
Affiliation(s)
- Chiara Sinigaglia
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5008 Bergen, Norway
| | - Henriette Busengdal
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5008 Bergen, Norway
| | - Avi Lerner
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5008 Bergen, Norway.
| |
Collapse
|
82
|
Jansen V, Alvarez L, Balbach M, Strünker T, Hegemann P, Kaupp UB, Wachten D. Controlling fertilization and cAMP signaling in sperm by optogenetics. eLife 2015; 4. [PMID: 25601414 PMCID: PMC4298566 DOI: 10.7554/elife.05161] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/22/2014] [Indexed: 12/18/2022] Open
Abstract
Optogenetics is a powerful technique to control cellular activity by light. The light-gated Channelrhodopsin has been widely used to study and manipulate neuronal activity in vivo, whereas optogenetic control of second messengers in vivo has not been examined in depth. In this study, we present a transgenic mouse model expressing a photoactivated adenylyl cyclase (bPAC) in sperm. In transgenic sperm, bPAC mimics the action of the endogenous soluble adenylyl cyclase (SACY) that is required for motility and fertilization: light-stimulation rapidly elevates cAMP, accelerates the flagellar beat, and, thereby, changes swimming behavior of sperm. Furthermore, bPAC replaces endogenous adenylyl cyclase activity. In mutant sperm lacking the bicarbonate-stimulated SACY activity, bPAC restored motility after light-stimulation and, thereby, enabled sperm to fertilize oocytes in vitro. We show that optogenetic control of cAMP in vivo allows to non-invasively study cAMP signaling, to control behaviors of single cells, and to restore a fundamental biological process such as fertilization. DOI:http://dx.doi.org/10.7554/eLife.05161.001 Tiny hair-like structures called cilia on the outside of cells play many important roles, including detecting physical and chemical signals from the environment. Special cilia—called flagella—help cells to move around and perhaps the most well-known of these are sperm flagella, which propel sperm in their quest to fertilize the egg. A chemical messenger called cAMP is essential for the movement of sperm flagella. When a sperm cell enters the female reproductive tract, an enzyme called SACY is activated. Within seconds, SACY produces cAMP and, thereby, causes the flagella to beat faster so that the sperm cell speeds toward the egg. cAMP also controls sperm maturation, which is needed to penetrate the egg. However, the precise details of the role of cAMP in sperm cells are not clear. Here, Jansen et al. have investigated this role using a cutting-edge technique—called optogenetics—that was originally developed to study brain cells in living organisms. Jansen et al. genetically engineered a mouse so that exposing sperm to blue light activates a light-sensitive enzyme called bPAC that increases cAMP levels in sperm. In these mice, the activation of bPAC by light accelerated the beating of the flagella so the sperm moved faster, in a way that was similar to the effects that are normally observed after the activation of the SACY enzyme. In mice lacking among other things the SACY enzyme—whose sperm cells are unable to move or fertilize an egg—activating the light-sensitive bPAC enzyme restored sperm motility and enabled the sperm to fertilize an egg. These results show that optogenetics may be a useful tool for studying how flagella and other types of cilia work. DOI:http://dx.doi.org/10.7554/eLife.05161.002
Collapse
Affiliation(s)
- Vera Jansen
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Luis Alvarez
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Melanie Balbach
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Timo Strünker
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, Berlin, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Dagmar Wachten
- Minerva Research Group Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany
| |
Collapse
|
83
|
Abstract
Cilia are highly conserved for their structure and also for their sensory functions. They serve as antennae for extracellular information. Whether the cilia are motile or not, they respond to environmental mechanical and chemical stimuli and signal to the cell body. The information from extracellular stimuli is commonly converted to electrical signals through the repertoire of ion-conducting channels in the ciliary membrane resulting in changes in concentrations of ions, especially Ca2+, in the cilia. These changes, in turn, affect motility and signaling pathways in the cilia and cell body to carry on the signal transduction. We review here the activities of ion channels in cilia from protists to vertebrates.
Collapse
Affiliation(s)
- Steven J Kleene
- Department of Molecular and Cellular Physiology University of Cincinnati Cincinnati, OH 45267-0576 USA 1-513-558-6099 (phone) 1-513-558-5738 (fax)
| | - Judith L Van Houten
- Department of Biology University of Vermont Burlington, VT 05405, USA 1-802-656-0452 (phone) 1-802-656-2914 (FAX)
| |
Collapse
|
84
|
Moran J, McKean PG, Ginger ML. Eukaryotic Flagella: Variations in Form, Function, and Composition during Evolution. Bioscience 2014. [DOI: 10.1093/biosci/biu175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
85
|
Abstract
Cilia are force-generating and -sensing organelles that serve as mechanical interfaces between the cell and the extracellular environment. Cilia are present in tissues that adaptively respond to mechanical loading and fluid flow, and defects in ciliary function can lead to diseases affecting these tissues. As might be expected for a mechanical interface, the formation of cilia is, itself, regulated by mechanical forces, and these links between mechanics and ciliary formation are providing new entry points for dissecting the regulatory pathways of ciliogenesis.
Collapse
Affiliation(s)
- Hiroaki Ishikawa
- Hiroaki Ishikawa and Wallace F. Marshall are affiliated with the Department of Biochemistry and Biophysics at the University of California San Francisco
| | - Wallace F Marshall
- Hiroaki Ishikawa and Wallace F. Marshall are affiliated with the Department of Biochemistry and Biophysics at the University of California San Francisco
| |
Collapse
|
86
|
Friesen CR, Uhrig EJ, Mason RT. Females remate more frequently when mated with sperm-deficient males. ACTA ACUST UNITED AC 2014; 321:603-9. [PMID: 25366702 DOI: 10.1002/jez.1892] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 01/31/2023]
Abstract
Polyandry is a source of sexual conflict and males often try to limit female promiscuity. Consequently, male manipulation of receptivity via antiaphrodisiacs and copulatory plugs that prevent female remating can be a source of sexual conflict. This sexual conflict may be intensified when females must remate for fertility insurance. Male red-sided garter snakes produce a large, gelatinous copulatory plug that has been proposed to 1) physically prevent remating and 2) contain an antiaphrodisiac that reduces female receptivity. These males may become sperm depleted because of their dissociated reproductive pattern. If a female mates with a sperm deficient male and is also rendered unreceptive to further mating, then this represents a serious conflict. We tested whether female remating frequency is affected when females are mated with a male that produces a sperm-less copulatory plug. We show that females are significantly more likely to remate after mating with vasectomized males than intact males, even though vasectomized males still produce a copulatory plug. These results suggest that the ejaculate material of the plug does not contain an antiaphrodisiac. Instead, females may use sperm as a cue for post-copulatory mate assessment and seek to remate for the direct benefit of fertility insurance if they have mated with sperm-depleted males.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Biological Sciences, University of Sydney, Sydney, Australia; Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| | | | | |
Collapse
|
87
|
Choksi SP, Babu D, Lau D, Yu X, Roy S. Systematic discovery of novel ciliary genes through functional genomics in the zebrafish. Development 2014; 141:3410-9. [PMID: 25139857 PMCID: PMC4199137 DOI: 10.1242/dev.108209] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cilia are microtubule-based hair-like organelles that play many important roles in development and physiology, and are implicated in a rapidly expanding spectrum of human diseases, collectively termed ciliopathies. Primary ciliary dyskinesia (PCD), one of the most prevalent of ciliopathies, arises from abnormalities in the differentiation or motility of the motile cilia. Despite their biomedical importance, a methodical functional screen for ciliary genes has not been carried out in any vertebrate at the organismal level. We sought to systematically discover novel motile cilia genes by identifying the genes induced by Foxj1, a winged-helix transcription factor that has an evolutionarily conserved role as the master regulator of motile cilia biogenesis. Unexpectedly, we find that the majority of the Foxj1-induced genes have not been associated with cilia before. To characterize these novel putative ciliary genes, we subjected 50 randomly selected candidates to a systematic functional phenotypic screen in zebrafish embryos. Remarkably, we find that over 60% are required for ciliary differentiation or function, whereas 30% of the proteins encoded by these genes localize to motile cilia. We also show that these genes regulate the proper differentiation and beating of motile cilia. This collection of Foxj1-induced genes will be invaluable for furthering our understanding of ciliary biology, and in the identification of new mutations underlying ciliary disorders in humans.
Collapse
Affiliation(s)
- Semil P Choksi
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Deepak Babu
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673 NUS Graduate School of Integrative Sciences and Engineering, Centre for Life Sciences, 28 Medical Drive, Singapore 117456
| | - Doreen Lau
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Xianwen Yu
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673 NUS Graduate School of Integrative Sciences and Engineering, Centre for Life Sciences, 28 Medical Drive, Singapore 117456 Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119288
| |
Collapse
|
88
|
|
89
|
Krock BL, Perkins BD. The Par-PrkC polarity complex is required for cilia growth in zebrafish photoreceptors. PLoS One 2014; 9:e104661. [PMID: 25144710 PMCID: PMC4140697 DOI: 10.1371/journal.pone.0104661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/13/2014] [Indexed: 01/09/2023] Open
Abstract
Specification and development of the apical membrane in epithelial cells requires the function of polarity proteins, including Pard3 and an atypical protein kinase C (PrkC). Many epithelial cells possess microtubule-based organelles, known as cilia, that project from their apical surface and the membrane surrounding the cilium is contiguous with the apical cell membrane. Although cilia formation in cultured cells required Pard3, the in vivo requirement for Pard3 in cilia development remains unknown. The vertebrate photoreceptor outer segment represents a highly specialized cilia structure in which to identify factors necessary for apical and ciliary membrane formation. Pard3 and PrkC localized to distinct domains within vertebrate photoreceptors. Using partial morpholino knockdown, photo-morpholinos, and pharmacological approaches, the function of Pard3 and PrkC were found to be required for the formation of both the apical and ciliary membrane of vertebrate photoreceptors. Inhibition of Pard3 or PrkC activity significantly reduced the size of photoreceptor outer segments and resulted in mislocalization of rhodopsin. Suppression of Pard3 or PrkC also led to a reduction in cilia size and cilia number in Kupffer's Vesicle, which resulted in left-right asymmetry defects. Thus, the Par-PrkC complex functions in cilia formation in vivo and this likely reflects a general role in specifying non-ciliary and ciliary compartments of the apical domain.
Collapse
Affiliation(s)
- Bryan L. Krock
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Brian D. Perkins
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| |
Collapse
|
90
|
Abstract
Trypanosoma brucei is a pathogenic unicellular eukaryote that infects humans and other mammals in sub-Saharan Africa. A central feature of trypanosome biology is the single flagellum of the parasite, which is an essential and multifunctional organelle that facilitates cell propulsion, controls cell morphogenesis and directs cytokinesis. Moreover, the flagellar membrane is a specialized subdomain of the cell surface that mediates attachment to host tissues and harbours multiple virulence factors. In this Review, we discuss the structure, assembly and function of the trypanosome flagellum, including canonical roles in cell motility as well as novel and emerging roles in cell morphogenesis and host-parasite interactions.
Collapse
Affiliation(s)
- Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
91
|
Cooperative binding of the outer arm-docking complex underlies the regular arrangement of outer arm dynein in the axoneme. Proc Natl Acad Sci U S A 2014; 111:9461-6. [PMID: 24979786 DOI: 10.1073/pnas.1403101111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Outer arm dynein (OAD) in cilia and flagella is bound to the outer doublet microtubules every 24 nm. Periodic binding of OADs at specific sites is important for efficient cilia/flagella beating; however, the molecular mechanism that specifies OAD arrangement remains elusive. Studies using the green alga Chlamydomonas reinhardtii have shown that the OAD-docking complex (ODA-DC), a heterotrimeric complex present at the OAD base, functions as the OAD docking site on the doublet. We find that the ODA-DC has an ellipsoidal shape ∼24 nm in length. In mutant axonemes that lack OAD but retain the ODA-DC, ODA-DC molecules are aligned in an end-to-end manner along the outer doublets. When flagella of a mutant lacking ODA-DCs are supplied with ODA-DCs upon gamete fusion, ODA-DC molecules first bind to the mutant axonemes in the proximal region, and the occupied region gradually extends toward the tip, followed by binding of OADs. This and other results indicate that a cooperative association of the ODA-DC underlies its function as the OAD-docking site and is the determinant of the 24-nm periodicity.
Collapse
|
92
|
Insect stage-specific receptor adenylate cyclases are localized to distinct subdomains of the Trypanosoma brucei Flagellar membrane. EUKARYOTIC CELL 2014; 13:1064-76. [PMID: 24879126 DOI: 10.1128/ec.00019-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing evidence indicates that the Trypanosoma brucei flagellum (synonymous with cilium) plays important roles in host-parasite interactions. Several studies have identified virulence factors and signaling proteins in the flagellar membrane of bloodstream-stage T. brucei, but less is known about flagellar membrane proteins in procyclic, insect-stage parasites. Here we report on the identification of several receptor-type flagellar adenylate cyclases (ACs) that are specifically upregulated in procyclic T. brucei parasites. Identification of insect stage-specific ACs is novel, as previously studied ACs were constitutively expressed or confined to bloodstream-stage parasites. We show that procyclic stage-specific ACs are glycosylated, surface-exposed proteins that dimerize and possess catalytic activity. We used gene-specific tags to examine the distribution of individual AC isoforms. All ACs examined localized to the flagellum. Notably, however, while some ACs were distributed along the length of the flagellum, others specifically localized to the flagellum tip. These are the first transmembrane domain proteins to be localized specifically at the flagellum tip in T. brucei, emphasizing that the flagellum membrane is organized into specific subdomains. Deletion analysis reveals that C-terminal sequences are critical for targeting ACs to the flagellum, and sequence comparisons suggest that differential subflagellar localization might be specified by isoform-specific C termini. Our combined results suggest insect stage-specific roles for a subset of flagellar adenylate cyclases and support a microdomain model for flagellar cyclic AMP (cAMP) signaling in T. brucei. In this model, cAMP production is compartmentalized through differential localization of individual ACs, thereby allowing diverse cellular responses to be controlled by a common signaling molecule.
Collapse
|
93
|
Piatti G, De Santi MM, Brogi M, Castorina P, Ambrosetti U. Emerging ciliopathies: are respiratory cilia compromised in Usher syndrome? Am J Otolaryngol 2014; 35:340-6. [PMID: 24602455 DOI: 10.1016/j.amjoto.2014.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/26/2014] [Indexed: 01/19/2023]
Abstract
PURPOSE Usher syndrome is a ciliopathy involving photoreceptors and cochlear hair cells (sensory cilia): since sensory and motor ciliopathies can overlap, we analysed the respiratory cilia (motile) in 17 patients affected by Usher syndrome and 18 healthy control subject. PATIENTS AND METHODS We studied the mucociliary transport time with the saccharine test, ciliary motility and ultrastructure of respiratory cilia obtained by nasal brushing; we also recorded the classical respiratory function values by spirometry. RESULTS All enrolled subjects showed normal respiratory function values. The mean mucociliary transport time with saccharine was 22.33 ± 17.96 min, which is in the range of normal values. The mean ciliary beat frequency of all subjects was 8.81 ± 2.18 Hz, which is a value approaching the lower physiological limit. None of the classical ciliary alterations characterizing the "ciliary primary dyskinesia" was detected, although two patients showed alterations in number and arrangement of peripheral microtubules and one patient had abnormal ciliary roots. CONCLUSIONS Respiratory cilia in Usher patients don't seem to have evident ultrastructural alterations, as expected, but the fact that the ciliary motility appeared slightly reduced could emphasize that a rigid distinction between sensory and motor ciliopathies may not reflect what really occurs.
Collapse
Affiliation(s)
- G Piatti
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Italy.
| | - M M De Santi
- Department of Human Pathology and Oncology, University of Siena, Italy
| | - M Brogi
- Department of Human Pathology and Oncology, University of Siena, Italy
| | - P Castorina
- Department of Clinical Sciences and Community, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Italy
| | - U Ambrosetti
- Department of Clinical Sciences and Community, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Italy
| |
Collapse
|
94
|
Choksi SP, Lauter G, Swoboda P, Roy S. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 2014; 141:1427-41. [DOI: 10.1242/dev.074666] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cilia play many essential roles in fluid transport and cellular locomotion, and as sensory hubs for a variety of signal transduction pathways. Despite having a conserved basic morphology, cilia vary extensively in their shapes and sizes, ultrastructural details, numbers per cell, motility patterns and sensory capabilities. Emerging evidence indicates that this diversity, which is intimately linked to the different functions that cilia perform, is in large part programmed at the transcriptional level. Here, we review our understanding of the transcriptional control of ciliary biogenesis, highlighting the activities of FOXJ1 and the RFX family of transcriptional regulators. In addition, we examine how a number of signaling pathways, and lineage and cell fate determinants can induce and modulate ciliogenic programs to bring about the differentiation of distinct cilia types.
Collapse
Affiliation(s)
- Semil P. Choksi
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Gilbert Lauter
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| |
Collapse
|
95
|
Nordgren TM, Wyatt TA, Sweeter J, Bailey KL, Poole JA, Heires AJ, Sisson JH, Romberger DJ. Motile cilia harbor serum response factor as a mechanism of environment sensing and injury response in the airway. Am J Physiol Lung Cell Mol Physiol 2014; 306:L829-39. [PMID: 24610937 DOI: 10.1152/ajplung.00364.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nonmotile primary cilia are recognized as important sensory organelles during development and normal biological functioning. For example, recent work demonstrates that transcriptional regulators of the sonic hedgehog signaling pathway localize to primary cilia and participate in sensing and transducing signals regarding the cellular environment. In contrast, motile cilia are traditionally viewed as mechanical machinery, vital for the movement of solutes and clearance of bacteria and debris, but not participants in cellular sensing and signaling mechanisms. Recently, motile cilia were found to harbor receptors responsible for sensing and responding to environmental stimuli. However, no transcription factors are known to be regulated by cilia localization as a sensing mechanism in vertebrates. Using a mouse model of organic dust-induced airway inflammation, we found that the transcription factor serum response factor (SRF) localizes to motile cilia of airway epithelial cells and alters its localization in response to inflammatory stimuli. Furthermore, inhibition of SRF signaling using the small molecule CCG-1423 reduces organic dust-induced IL-8 release from bronchial epithelial cells and stimulates cilia beat frequency in ciliated mouse tracheal epithelial cells. Immunohistochemical analyses reveal that SRF localizes to the cilia of mouse brain ependymal and ovarian epithelial cells as well. These data reveal a novel mechanism by which a transcription factor localizes to motile cilia and modulates cell activities including cilia motility and inflammation response. These data challenge current dogma regarding motile cilia functioning and may lead to significant contributions in understanding motile ciliary signaling dynamics, as well as mechanisms involving SRF-mediated responses to inflammation and injury.
Collapse
|
96
|
Bush A, Hogg C. Primary ciliary dyskinesia: recent advances in epidemiology, diagnosis, management and relationship with the expanding spectrum of ciliopathy. Expert Rev Respir Med 2014; 6:663-82. [DOI: 10.1586/ers.12.60] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
97
|
Barker AR, Thomas R, Dawe HR. Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development. Organogenesis 2013; 10:96-107. [PMID: 24322779 DOI: 10.4161/org.27375] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ciliopathies are a group of related inherited diseases characterized by malformations in organ development. The diseases affect multiple organ systems, with kidney, skeleton, and brain malformations frequently observed. Research over the last decade has revealed that these diseases are due to defects in primary cilia, essential sensory organelles found on most cells in the human body. Here we discuss the genetic and cell biological basis of one of the most severe ciliopathies, Meckel-Gruber syndrome, and explain how primary cilia contribute to the development of the affected organ systems.
Collapse
Affiliation(s)
- Amy R Barker
- College of Life and Environmental Sciences; University of Exeter; Exeter, UK
| | - Rhys Thomas
- College of Life and Environmental Sciences; University of Exeter; Exeter, UK
| | - Helen R Dawe
- College of Life and Environmental Sciences; University of Exeter; Exeter, UK
| |
Collapse
|
98
|
Werner-Peterson R, Sloboda RD. Methylation of Structural Components of the Axoneme Occurs During Flagellar Disassembly. Biochemistry 2013; 52:8501-9. [DOI: 10.1021/bi4011623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rita Werner-Peterson
- Department
of Biological
Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Roger D. Sloboda
- Department
of Biological
Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
99
|
Abstract
Cilia and flagella are surface-exposed, finger-like organelles whose core consists of a microtubule (MT)-based axoneme that grows from a modified centriole, the basal body. Cilia are found on the surface of many eukaryotic cells and play important roles in cell motility and in coordinating a variety of signaling pathways during growth, development, and tissue homeostasis. Defective cilia have been linked to a number of developmental disorders and diseases, collectively called ciliopathies. Cilia are dynamic organelles that assemble and disassemble in tight coordination with the cell cycle. In most cells, cilia are assembled during growth arrest in a multistep process involving interaction of vesicles with appendages present on the distal end of mature centrioles, and addition of tubulin and other building blocks to the distal tip of the basal body and growing axoneme; these building blocks are sorted through a region at the cilium base known as the ciliary necklace, and then transported via intraflagellar transport (IFT) along the axoneme toward the tip for assembly. After assembly, the cilium frequently continues to turn over and incorporate tubulin at its distal end in an IFT-dependent manner. Prior to cell division, the cilia are usually resorbed to liberate centrosomes for mitotic spindle pole formation. Here, we present an overview of the main cytoskeletal structures associated with cilia and centrioles with emphasis on the MT-associated appendages, fibers, and filaments at the cilium base and tip. The composition and possible functions of these structures are discussed in relation to cilia assembly, disassembly, and length regulation.
Collapse
Affiliation(s)
- Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
100
|
Localization of primary cilia in mouse retina. Acta Histochem 2013; 115:789-94. [PMID: 23608602 DOI: 10.1016/j.acthis.2013.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/22/2022]
Abstract
The primary cilia are considered as "cellular antennae" that sense and interchange information with the extracellular environment. Nearly all mammalian cells have a single primary cilium. In the retina, the outer segment of the photoreceptor is known to be a specialized form of primary cilium, but studies on cilia in other layers of the retina are scarce. In this study, we investigated the expression of primary cilia in the whole thickness of the mouse retina using immunofluorescence with three different ciliary markers: Arl13b, acetylated α-tubulin and adenylyl cyclase III. Our results show positive reactions in the photoreceptor layer, outer plexiform layer and ganglion cell layer, which might suggest the possible presence of primary cilia in these areas, but we could not directly prove the strand-like shape of cilia in those areas. In the outer plexiform layer, all three markers showed intense staining along the neuronal synapses, which suggests that the neuronal processes themselves might share the features of cilia.
Collapse
|