51
|
Günay KA, Silver JS, Chang TL, Bednarski OJ, Bannister KL, Rogowski CJ, Olwin BB, Anseth KS. Myoblast mechanotransduction and myotube morphology is dependent on BAG3 regulation of YAP and TAZ. Biomaterials 2021; 277:121097. [PMID: 34481290 DOI: 10.1016/j.biomaterials.2021.121097] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Skeletal muscle tissue is mechanically dynamic with changes in stiffness influencing function, maintenance, and regeneration. We modeled skeletal muscle mechanical changes in culture with dynamically stiffening hydrogels demonstrating that the chaperone protein BAG3 transduces matrix stiffness by redistributing YAP and TAZ subcellular localization in muscle progenitor cells. BAG3 depletion increases cytoplasmic retention of YAP and TAZ, desensitizing myoblasts to changes in hydrogel elastic moduli. Upon differentiation, muscle progenitors depleted of BAG3 formed enlarged, round myotubes lacking the typical cylindrical morphology. The aberrant morphology is dependent on YAP/TAZ signaling, which was sequestered in the cytoplasm in BAG3-depleted myotubes but predominately nuclear in cylindrical myotubes of control cells. Control progenitor cells induced to differentiate on soft (E' = 4 and 12 kPa) hydrogels formed circular myotubes similar to those observed in BAG3-depleted cells. Inhibition of the Hippo pathway partially restored myotube morphologies, permitting nuclear translocation of YAP and TAZ in BAG3-depleted myogenic progenitors. Thus, BAG3 is a critical mediator of dynamic stiffness changes in muscle tissue, coupling mechanical alterations to intracellular signals and inducing changes in gene expression that influence muscle progenitor cell morphology and differentiation.
Collapse
Affiliation(s)
- K Arda Günay
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Jason S Silver
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tze-Ling Chang
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Olivia J Bednarski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Kendra L Bannister
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Cameron J Rogowski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Bradley B Olwin
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
52
|
Gomes G, Bagri KM, de Andrade Rosa I, Jurberg AD, Mermelstein C, Costa ML. Activation of YAP regulates muscle fiber size in a PKC-dependent mechanism during chick in vitro myogenesis. J Muscle Res Cell Motil 2021; 43:73-86. [PMID: 34410584 DOI: 10.1007/s10974-021-09608-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022]
Abstract
The formation of skeletal muscle fibers is an intricate process controlled by a multitude of signaling pathways, including Wnt, Shh, and FGF. However, the role of the Hippo pathway during vertebrate myofiber formation has conflicting reports, which we decided to address in chick muscle cultures. We found that the transcriptional regulator Yes-associated protein (YAP) was highly concentrated within the nuclei of myoblasts. As cells differentiate into myotubes, YAP localization shifted to the cell cytoplasm in more mature myotubes. Treatment of cultures with XMU-MP-1 (XMU), a MST1/2 inhibitor, stimulated the nuclear localization of YAP in myoblasts and in myotubes, upregulated myogenin, and promoted myoblast fusion, ultimately resulting in the formation of large and fully striated multinucleated myotubes. The XMU-induced phenotype was blocked by the protein kinase C (PKC) inhibitor calphostin, which raises the possibility that the Hippo pathway controls the growth of skeletal muscle fibers through a PKC-dependent mechanism.
Collapse
Affiliation(s)
- Geyse Gomes
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kayo Moreira Bagri
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ivone de Andrade Rosa
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Arnon Dias Jurberg
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Faculdade de Medicina - Presidente Vargas, Universidade Estácio de Sá, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Manoel Luis Costa
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
53
|
Vrbský J, Vinarský V, Perestrelo AR, De La Cruz JO, Martino F, Pompeiano A, Izzi V, Hlinomaz O, Rotrekl V, Sudol M, Pagliari S, Forte G. Evidence for discrete modes of YAP1 signaling via mRNA splice isoforms in development and diseases. Genomics 2021; 113:1349-1365. [PMID: 33713822 DOI: 10.1016/j.ygeno.2021.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 01/02/2023]
Abstract
Yes-associated protein 1 (YAP1) is a transcriptional co-activator downstream of Hippo pathway. The pathway exerts crucial roles in organogenesis and its dysregulation is associated with the spreading of different cancer types. YAP1 gene encodes for multiple protein isoforms, whose specific functions are not well defined. We demonstrate the splicing of isoform-specific mRNAs is controlled in a stage- and tissue-specific fashion. We designed expression vectors encoding for the most-represented isoforms of YAP1 with either one or two WW domains and studied their specific signaling activities in YAP1 knock-out cell lines. YAP1 isoforms display both common and unique functions and activate distinct transcriptional programs, as the result of their unique protein interactomes. By generating TEAD-based transcriptional reporter cell lines, we demonstrate individual YAP1 isoforms display unique effects on cell proliferation and differentiation. Finally, we illustrate the complexity of the regulation of Hippo-YAP1 effector in physiological and in pathological conditions of the heart.
Collapse
Affiliation(s)
- Jan Vrbský
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic.
| | - Vladimir Vinarský
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic
| | - Ana Rubina Perestrelo
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Jorge Oliver De La Cruz
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic
| | - Fabiana Martino
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic; Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Antonio Pompeiano
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Valerio Izzi
- University of Oulu, FI-90014 Oulu, Finland; Finnish Cancer Institute, 00130 Helsinki, Finland
| | - Ota Hlinomaz
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Marius Sudol
- Department of Physiology, Yong Loo Li School of Medicine, Block MD9, 2 Medical Drive #04-01, 117597, Singapore; Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, 117411, Singapore; Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, New York 10029, United States of America
| | - Stefania Pagliari
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic.
| |
Collapse
|
54
|
YAP and TAZ Mediators at the Crossroad between Metabolic and Cellular Reprogramming. Metabolites 2021; 11:metabo11030154. [PMID: 33800464 PMCID: PMC7999074 DOI: 10.3390/metabo11030154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cell reprogramming can either refer to a direct conversion of a specialized cell into another or to a reversal of a somatic cell into an induced pluripotent stem cell (iPSC). It implies a peculiar modification of the epigenetic asset and gene regulatory networks needed for a new cell, to better fit the new phenotype of the incoming cell type. Cellular reprogramming also implies a metabolic rearrangement, similar to that observed upon tumorigenesis, with a transition from oxidative phosphorylation to aerobic glycolysis. The induction of a reprogramming process requires a nexus of signaling pathways, mixing a range of local and systemic information, and accumulating evidence points to the crucial role exerted by the Hippo pathway components Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ). In this review, we will first provide a synopsis of the Hippo pathway and its function during reprogramming and tissue regeneration, then we introduce the latest knowledge on the interplay between YAP/TAZ and metabolism and, finally, we discuss the possible role of YAP/TAZ in the orchestration of the metabolic switch upon cellular reprogramming.
Collapse
|
55
|
Silver JS, Günay KA, Cutler AA, Vogler TO, Brown TE, Pawlikowski BT, Bednarski OJ, Bannister KL, Rogowski CJ, Mckay AG, DelRio FW, Olwin BB, Anseth KS. Injury-mediated stiffening persistently activates muscle stem cells through YAP and TAZ mechanotransduction. SCIENCE ADVANCES 2021; 7:eabe4501. [PMID: 33712460 PMCID: PMC7954458 DOI: 10.1126/sciadv.abe4501] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/27/2021] [Indexed: 05/27/2023]
Abstract
The skeletal muscle microenvironment transiently remodels and stiffens after exercise and injury, as muscle ages, and in myopathic muscle; however, how these changes in stiffness affect resident muscle stem cells (MuSCs) remains understudied. Following muscle injury, muscle stiffness remained elevated after morphological regeneration was complete, accompanied by activated and proliferative MuSCs. To isolate the role of stiffness on MuSC behavior and determine the underlying mechanotransduction pathways, we cultured MuSCs on strain-promoted azide-alkyne cycloaddition hydrogels capable of in situ stiffening by secondary photocrosslinking of excess cyclooctynes. Using pre- to post-injury stiffness hydrogels, we found that elevated stiffness enhances migration and MuSC proliferation by localizing yes-associated protein 1 (YAP) and WW domain-containing transcription regulator 1 (WWTR1; TAZ) to the nucleus. Ablating YAP and TAZ in vivo promotes MuSC quiescence in postinjury muscle and prevents myofiber hypertrophy, demonstrating that persistent exposure to elevated stiffness activates mechanotransduction signaling maintaining activated and proliferating MuSCs.
Collapse
Affiliation(s)
- Jason S Silver
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - K Arda Günay
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Alicia A Cutler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Thomas O Vogler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tobin E Brown
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Bradley T Pawlikowski
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Olivia J Bednarski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Kendra L Bannister
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Cameron J Rogowski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Austin G Mckay
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Frank W DelRio
- Applied Chemicals and Materials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO, USA
| | - Bradley B Olwin
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
56
|
Connon CJ, Gouveia RM. Milliscale Substrate Curvature Promotes Myoblast Self-Organization and Differentiation. Adv Biol (Weinh) 2021; 5:e2000280. [PMID: 33852180 DOI: 10.1002/adbi.202000280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/23/2021] [Indexed: 11/06/2022]
Abstract
Biological tissues comprise complex structural environments known to influence cell behavior via multiple interdependent sensing and transduction mechanisms. Yet, and despite the predominantly nonplanar geometry of these environments, the impact of tissue-size (milliscale) curvature on cell behavior is largely overlooked or underestimated. This study explores how concave, hemicylinder-shaped surfaces 3-50 mm in diameter affect the migration, proliferation, orientation, and differentiation of C2C12 myoblasts. Notably, these milliscale cues significantly affect cell responses compared with planar substrates, with myoblasts grown on surfaces 7.5-15 mm in diameter showing prevalent migration and alignment parallel to the curvature axis. Moreover, surfaces within this curvature range promote myoblast differentiation and the formation of denser, more compact tissues comprising highly oriented multinucleated myotubes. Based on the similarity of effects, it is further proposed that myoblast susceptibility to substrate curvature depends on mechanotransduction signaling. This model thus supports the notion that cellular responses to substrate curvature and compliance share the same molecular pathways and that control of cell behavior can be achieved via modulation of either individual parameter or in combination. This correlation is relevant for elucidating how muscle tissue forms and heals, as well as for designing better biomaterials and more appropriate cell-surface interfaces.
Collapse
Affiliation(s)
- Che J Connon
- Tissue Engineering Lab Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ricardo M Gouveia
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
57
|
Reichenbach M, Mendez P, da Silva Madaleno C, Ugorets V, Rikeit P, Boerno S, Jatzlau J, Knaus P. Differential Impact of Fluid Shear Stress and YAP/TAZ on BMP/TGF‐β Induced Osteogenic Target Genes. Adv Biol (Weinh) 2021; 5:e2000051. [DOI: 10.1002/adbi.202000051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/08/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Maria Reichenbach
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| | - Paul‐Lennard Mendez
- International Max Planck Research School for Biology and Computation Max Planck Institute for Molecular Genetics Ihnestr. 63 Berlin 14195 Germany
| | - Carolina da Silva Madaleno
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Vladimir Ugorets
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| | - Paul Rikeit
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Stefan Boerno
- Sequencing Core Facility Max Planck Institute for Molecular Genetics Ihnestr. 63 Berlin 14195 Germany
| | - Jerome Jatzlau
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Petra Knaus
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| |
Collapse
|
58
|
Hippo pathway effectors YAP and TAZ and their association with skeletal muscle ageing. J Physiol Biochem 2021; 77:63-73. [PMID: 33495890 DOI: 10.1007/s13105-021-00787-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
Skeletal muscle atrophy commonly occurs during ageing, thus pathways that regulate muscle mass may represent a potential therapeutic avenue for interventions. In this review, we explored the Hippo signalling pathway which plays an essential role in human oncogenesis and the pathway's influence on myogenesis and satellite cell functions, on supporting cells such as fibroblasts, and autophagy. YAP/TAZ was found to regulate both myoblast proliferation and differentiation, albeit with unique roles. Additionally, YAP/TAZ has different functions depending on the expressing cell type, making simple inference of their effects difficult. Studies in cancers have shown that the Hippo pathway influenced the autophagy pathway, although with mixed results. Most of the present researches on YAP/TAZ are focused on its oncogenicity and further studies are needed to translate these findings to physiological ageing. Taken together, the modulation of YAP/TAZ or the Hippo pathway in general may offer potential new strategies for the prevention or treatment of ageing.
Collapse
|
59
|
Lolo FN, Jiménez-Jiménez V, Sánchez-Álvarez M, Del Pozo MÁ. Tumor-stroma biomechanical crosstalk: a perspective on the role of caveolin-1 in tumor progression. Cancer Metastasis Rev 2021; 39:485-503. [PMID: 32514892 DOI: 10.1007/s10555-020-09900-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor stiffening is a hallmark of malignancy that actively drives tumor progression and aggressiveness. Recent research has shed light onto several molecular underpinnings of this biomechanical process, which has a reciprocal crosstalk between tumor cells, stromal fibroblasts, and extracellular matrix remodeling at its core. This dynamic communication shapes the tumor microenvironment; significantly determines disease features including therapeutic resistance, relapse, or metastasis; and potentially holds the key for novel antitumor strategies. Caveolae and their components emerge as integrators of different aspects of cell function, mechanotransduction, and ECM-cell interaction. Here, we review our current knowledge on the several pivotal roles of the essential caveolar component caveolin-1 in this multidirectional biomechanical crosstalk and highlight standing questions in the field.
Collapse
Affiliation(s)
- Fidel Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Víctor Jiménez-Jiménez
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Ángel Del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
60
|
Owens DJ, Messéant J, Moog S, Viggars M, Ferry A, Mamchaoui K, Lacène E, Roméro N, Brull A, Bonne G, Butler-Browne G, Coirault C. Lamin-Related Congenital Muscular Dystrophy Alters Mechanical Signaling and Skeletal Muscle Growth. Int J Mol Sci 2020; 22:ijms22010306. [PMID: 33396724 PMCID: PMC7795708 DOI: 10.3390/ijms22010306] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022] Open
Abstract
Laminopathies are a clinically heterogeneous group of disorders caused by mutations in the LMNA gene, which encodes the nuclear envelope proteins lamins A and C. The most frequent diseases associated with LMNA mutations are characterized by skeletal and cardiac involvement, and include autosomal dominant Emery–Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B, and LMNA-related congenital muscular dystrophy (LMNA-CMD). Although the exact pathophysiological mechanisms responsible for LMNA-CMD are not yet understood, severe contracture and muscle atrophy suggest that mutations may impair skeletal muscle growth. Using human muscle stem cells (MuSCs) carrying LMNA-CMD mutations, we observe impaired myogenic fusion with disorganized cadherin/β catenin adhesion complexes. We show that skeletal muscle from Lmna-CMD mice is unable to hypertrophy in response to functional overload, due to defective fusion of activated MuSCs, defective protein synthesis and defective remodeling of the neuromuscular junction. Moreover, stretched myotubes and overloaded muscle fibers with LMNA-CMD mutations display aberrant mechanical regulation of the yes-associated protein (YAP). We also observe defects in MuSC activation and YAP signaling in muscle biopsies from LMNA-CMD patients. These phenotypes are not recapitulated in closely related but less severe EDMD models. In conclusion, combining studies in vitro, in vivo, and patient samples, we find that LMNA-CMD mutations interfere with mechanosignaling pathways in skeletal muscle, implicating A-type lamins in the regulation of skeletal muscle growth.
Collapse
Affiliation(s)
- Daniel J. Owens
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Julien Messéant
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | | | - Mark Viggars
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Arnaud Ferry
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Université de Paris, 75006 Paris, France
| | - Kamel Mamchaoui
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France; (E.L.); (N.R.)
| | - Emmanuelle Lacène
- Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France; (E.L.); (N.R.)
| | - Norma Roméro
- Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France; (E.L.); (N.R.)
- APHP, Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, Institute of Myology, 75013 Paris, France
| | - Astrid Brull
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | - Gisèle Bonne
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | - Gillian Butler-Browne
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | - Catherine Coirault
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Correspondence: ; Tel.: +33-1-1-4216-5708
| |
Collapse
|
61
|
Knyazeva A, Khudiakov A, Vaz R, Muravyev A, Sukhareva K, Sejersen T, Kostareva A. FLNC Expression Level Influences the Activity of TEAD-YAP/TAZ Signaling. Genes (Basel) 2020; 11:genes11111343. [PMID: 33202721 PMCID: PMC7696573 DOI: 10.3390/genes11111343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Filamin C (FLNC), being one of the major actin-binding proteins, is involved in the maintenance of key muscle cell functions. Inherited skeletal muscle and cardiac disorders linked to genetic variants in FLNC have attracted attention because of their high clinical importance and possibility of genotype-phenotype correlations. To further expand on the role of FLNC in muscle cells, we focused on detailed alterations of muscle cell properties developed after the loss of FLNC. Using the CRISPR/Cas9 method we generated a C2C12 murine myoblast cell line with stably suppressed Flnc expression. FLNC-deficient myoblasts have a significantly higher proliferation rate combined with an impaired cell migration capacity. The suppression of Flnc expression leads to inability to complete myogenic differentiation, diminished expression of Myh1 and Myh4, alteration of transcriptional dynamics of myogenic factors, such as Mymk and Myog, and deregulation of Hippo signaling pathway. Specifically, we identified elevated basal levels of Hippo activity in myoblasts with loss of FLNC, and ineffective reduction of Hippo signaling activity during myogenic differentiation. The latter was restored by Flnc overexpression. In summary, we confirmed the role of FLNC in muscle cell proliferation, migration and differentiation, and demonstrated for the first time the direct link between Flnc expression and activity of TEAD-YAP\TAZ signaling. These findings support a role of FLNC in regulation of essential muscle processes relying on mechanical as well as signaling mechanisms.
Collapse
Affiliation(s)
- Anastasia Knyazeva
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (A.K.); (A.M.); (K.S.); (A.K.)
- Correspondence:
| | - Aleksandr Khudiakov
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (A.K.); (A.M.); (K.S.); (A.K.)
| | - Raquel Vaz
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden;
| | - Aleksey Muravyev
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (A.K.); (A.M.); (K.S.); (A.K.)
| | - Ksenia Sukhareva
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (A.K.); (A.M.); (K.S.); (A.K.)
- Graduate School of Life and Health Science, University of Verona, 10 37134 Verona, Italy
| | - Thomas Sejersen
- Department of Women’s and Children’s Health, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - Anna Kostareva
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia; (A.K.); (A.M.); (K.S.); (A.K.)
- Department of Women’s and Children’s Health, Karolinska Institute, 171 77 Stockholm, Sweden;
| |
Collapse
|
62
|
Reggiani F, Gobbi G, Ciarrocchi A, Sancisi V. YAP and TAZ Are Not Identical Twins. Trends Biochem Sci 2020; 46:154-168. [PMID: 32981815 DOI: 10.1016/j.tibs.2020.08.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Yes-associated protein (YAP) and TAZ (WW domain containing transcription regulator 1, or WWTR1) are paralog transcriptional regulators, able to integrate mechanical, metabolic, and signaling inputs to regulate cell growth and differentiation during development and neoplastic progression. YAP and TAZ hold common and distinctive structural features, reflecting only partially overlapping regulatory mechanisms. The two paralogs interact with both shared and specific transcriptional partners and control nonidentical transcriptional programs. Although most of the available literature considers YAP and TAZ as functionally redundant, they play distinctive or even contrasting roles in different contexts. The issue of their divergent roles is currently underexplored but holds fundamental implications for mechanistic and translational studies. Here, we aim to review the available literature on the biological functions of YAP and TAZ, highlighting differential roles that distinguish these two paralogues.
Collapse
Affiliation(s)
- Francesca Reggiani
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giulia Gobbi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
63
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. Role of YAP/TAZ in Cell Lineage Fate Determination and Related Signaling Pathways. Front Cell Dev Biol 2020; 8:735. [PMID: 32850847 PMCID: PMC7406690 DOI: 10.3389/fcell.2020.00735] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The penultimate effectors of the Hippo signaling pathways YAP and TAZ, are transcriptional co-activator proteins that play key roles in many diverse biological processes, ranging from cell proliferation, tumorigenesis, mechanosensing and cell lineage fate determination, to wound healing and regeneration. In this review, we discuss the regulatory mechanisms by which YAP/TAZ control stem/progenitor cell differentiation into the various major lineages that are of interest to tissue engineering and regenerative medicine applications. Of particular interest is the key role of YAP/TAZ in maintaining the delicate balance between quiescence, self-renewal, proliferation and differentiation of endogenous adult stem cells within various tissues/organs during early development, normal homeostasis and regeneration/healing. Finally, we will consider how increasing knowledge of YAP/TAZ signaling might influence the trajectory of future progress in regenerative medicine.
Collapse
Affiliation(s)
- Boon C. Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Faculty of Science and Technology, Sunway University, Subang Jaya, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Dominique Aubel
- IUTA Department Genie Biologique, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zürich, Basel, Switzerland
| | - Xuliang Deng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
64
|
Gao S, Chen SN, Di Nardo C, Lombardi R. Arrhythmogenic Cardiomyopathy and Skeletal Muscle Dystrophies: Shared Histopathological Features and Pathogenic Mechanisms. Front Physiol 2020; 11:834. [PMID: 32848821 PMCID: PMC7406798 DOI: 10.3389/fphys.2020.00834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a heritable cardiac disease characterized by fibrotic or fibrofatty myocardial replacement, associated with an increased risk of ventricular arrhythmias and sudden cardiac death. Originally described as a disease of the right ventricle, ACM is currently recognized as a biventricular entity, due to the increasing numbers of reports of predominant left ventricular or biventricular involvement. Research over the last 20 years has significantly advanced our knowledge of the etiology and pathogenesis of ACM. Several etiopathogenetic theories have been proposed; among them, the most attractive one is the dystrophic theory, based on the observation of similar histopathological features between ACM and skeletal muscle dystrophies (SMDs), such as progressive muscular degeneration, inflammation, and tissue replacement by fatty and fibrous tissue. This review will describe the pathophysiological and molecular similarities shared by ACM with SMDs.
Collapse
Affiliation(s)
- Shanshan Gao
- Division of Cardiology, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Suet Nee Chen
- Division of Cardiology, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Carlo Di Nardo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Raffaella Lombardi
- Division of Cardiology, Department of Medicine, University of Colorado, Aurora, CO, United States.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| |
Collapse
|
65
|
EDMD-Causing Emerin Mutant Myogenic Progenitors Exhibit Impaired Differentiation Using Similar Mechanisms. Cells 2020; 9:cells9061463. [PMID: 32549231 PMCID: PMC7349064 DOI: 10.3390/cells9061463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022] Open
Abstract
Mutations in the gene encoding emerin (EMD) cause Emery–Dreifuss muscular dystrophy (EDMD1), an inherited disorder characterized by progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. The skeletal muscle defects seen in EDMD are caused by failure of muscle stem cells to differentiate and regenerate the damaged muscle. However, the underlying mechanisms remain poorly understood. Most EDMD1 patients harbor nonsense mutations and have no detectable emerin protein. There are three EDMD-causing emerin mutants (S54F, Q133H, and Δ95–99) that localize correctly to the nuclear envelope and are expressed at wildtype levels. We hypothesized these emerin mutants would share in the disruption of key molecular pathways involved in myogenic differentiation. We generated myogenic progenitors expressing wildtype emerin and each EDMD1-causing emerin mutation (S54F, Q133H, Δ95–99) in an emerin-null (EMD−/y) background. S54F, Q133H, and Δ95–99 failed to rescue EMD−/y myogenic differentiation, while wildtype emerin efficiently rescued differentiation. RNA sequencing was done to identify pathways and networks important for emerin regulation of myogenic differentiation. This analysis significantly reduced the number of pathways implicated in EDMD1 muscle pathogenesis.
Collapse
|
66
|
Helmbacher F, Stricker S. Tissue cross talks governing limb muscle development and regeneration. Semin Cell Dev Biol 2020; 104:14-30. [PMID: 32517852 DOI: 10.1016/j.semcdb.2020.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
For decades, limb development has been a paradigm of three-dimensional patterning. Moreover, as the limb muscles and the other tissues of the limb's musculoskeletal system arise from distinct developmental sources, it has been a prime example of integrative morphogenesis and cross-tissue communication. As the limbs grow, all components of the musculoskeletal system (muscles, tendons, connective tissue, nerves) coordinate their growth and differentiation, ultimately giving rise to a functional unit capable of executing elaborate movement. While the molecular mechanisms governing global three-dimensional patterning and formation of the skeletal structures of the limbs has been a matter of intense research, patterning of the soft tissues is less understood. Here, we review the development of limb muscles with an emphasis on their interaction with other tissue types and the instructive roles these tissues play. Furthermore, we discuss the role of adult correlates of these embryonic accessory tissues in muscle regeneration.
Collapse
Affiliation(s)
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
67
|
Abstract
Individuals that maintain healthy skeletal tissue tend to live healthier, happier lives as proper muscle function enables maintenance of independence and actuation of autonomy. The onset of skeletal muscle decline begins around the age of 30, and muscle atrophy is associated with a number of serious morbidities and mortalities. Satellite cells are responsible for regeneration of skeletal muscle and enter a reversible non-dividing state of quiescence under homeostatic conditions. In response to injury, satellite cells are able to activate and re-enter the cell cycle, creating new cells to repair and create nascent muscle fibres while preserving a small population that can return to quiescence for future regenerative demands. However, in aged muscle, satellite cells that experience prolonged quiescence will undergo programmed cellular senescence, an irreversible non-dividing state that handicaps the regenerative capabilities of muscle. This review examines how periodic activation and cycling of satellite cells through exercise can mitigate senescence acquisition and myogenic decline.
Collapse
Affiliation(s)
- William Chen
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - David Datzkiw
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
68
|
Trentesaux C, Striedinger K, Pomerantz JH, Klein OD. From gut to glutes: The critical role of niche signals in the maintenance and renewal of adult stem cells. Curr Opin Cell Biol 2020; 63:88-101. [PMID: 32036295 PMCID: PMC7247951 DOI: 10.1016/j.ceb.2020.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Stem cell behavior is tightly regulated by spatiotemporal signaling from the niche, which is a four-dimensional microenvironment that can instruct stem cells to remain quiescent, self-renew, proliferate, or differentiate. In this review, we discuss recent advances in understanding the signaling cues provided by the stem cell niche in two contrasting adult tissues, the rapidly cycling intestinal epithelium and the slowly renewing skeletal muscle. Drawing comparisons between these two systems, we discuss the effects of niche-derived growth factors and signaling molecules, metabolic cues, the extracellular matrix and biomechanical cues, and immune signals on stem cells. We also discuss the influence of the niche in defining stem cell identity and function in both normal and pathophysiologic states.
Collapse
Affiliation(s)
- Coralie Trentesaux
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Katharine Striedinger
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Jason H Pomerantz
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA.
| |
Collapse
|
69
|
Owens DJ, Fischer M, Jabre S, Moog S, Mamchaoui K, Butler-Browne G, Coirault C. Lamin Mutations Cause Increased YAP Nuclear Entry in Muscle Stem Cells. Cells 2020; 9:cells9040816. [PMID: 32231000 PMCID: PMC7226749 DOI: 10.3390/cells9040816] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 01/17/2023] Open
Abstract
Mutations in the LMNA gene, encoding the nuclear envelope A-type lamins, are responsible for muscular dystrophies, the most severe form being the LMNA-related congenital muscular dystrophy (L-CMD), with severe defects in myonucleus integrity. We previously reported that L-CMD mutations compromise the ability of muscle stem cells to modulate the yes-associated protein (YAP), a pivotal factor in mechanotransduction and myogenesis. Here, we investigated the intrinsic mechanisms by which lamins influence YAP subcellular distribution, by analyzing different conditions affecting the balance between nuclear import and export of YAP. In contrast to wild type (WT) cells, LMNADK32 mutations failed to exclude YAP from the nucleus and to inactivate its transcriptional activity at high cell density, despite activation of the Hippo pathway. Inhibiting nuclear pore import abolished YAP nuclear accumulation in confluent mutant cells, thus showing persistent nuclear import of YAP at cell confluence. YAP deregulation was also present in congenital myopathy related to nesprin-1 KASH mutation, but not in cells expressing the LMNAH222P mutation, the adult form of lamin-related muscle dystrophy with reduced nuclear deformability. In conclusion, our data showed that L-CMD mutations increased YAP nuclear localization via an increased nuclear import and implicated YAP as a pathogenic contributor in muscle dystrophies caused by nuclear envelop defects.
Collapse
Affiliation(s)
- Daniel J. Owens
- INSERM UMRS_974, Centre for Research in Myology, Sorbonne Université, 75013 Paris, France; (D.J.O.); (M.F.); (S.J.); (G.B.-B.)
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Martina Fischer
- INSERM UMRS_974, Centre for Research in Myology, Sorbonne Université, 75013 Paris, France; (D.J.O.); (M.F.); (S.J.); (G.B.-B.)
| | - Saline Jabre
- INSERM UMRS_974, Centre for Research in Myology, Sorbonne Université, 75013 Paris, France; (D.J.O.); (M.F.); (S.J.); (G.B.-B.)
| | | | | | - Gillian Butler-Browne
- INSERM UMRS_974, Centre for Research in Myology, Sorbonne Université, 75013 Paris, France; (D.J.O.); (M.F.); (S.J.); (G.B.-B.)
| | - Catherine Coirault
- INSERM UMRS_974, Centre for Research in Myology, Sorbonne Université, 75013 Paris, France; (D.J.O.); (M.F.); (S.J.); (G.B.-B.)
- Correspondence: ; Tel.: +33-142-16-57-08
| |
Collapse
|
70
|
Yatsenko AS, Kucherenko MM, Xie Y, Aweida D, Urlaub H, Scheibe RJ, Cohen S, Shcherbata HR. Profiling of the muscle-specific dystroglycan interactome reveals the role of Hippo signaling in muscular dystrophy and age-dependent muscle atrophy. BMC Med 2020; 18:8. [PMID: 31959160 PMCID: PMC6971923 DOI: 10.1186/s12916-019-1478-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dystroglycanopathies are a group of inherited disorders characterized by vast clinical and genetic heterogeneity and caused by abnormal functioning of the ECM receptor dystroglycan (Dg). Remarkably, among many cases of diagnosed dystroglycanopathies, only a small fraction can be linked directly to mutations in Dg or its regulatory enzymes, implying the involvement of other, not-yet-characterized, Dg-regulating factors. To advance disease diagnostics and develop new treatment strategies, new approaches to find dystroglycanopathy-related factors should be considered. The Dg complex is highly evolutionarily conserved; therefore, model genetic organisms provide excellent systems to address this challenge. In particular, Drosophila is amenable to experiments not feasible in any other system, allowing original insights about the functional interactors of the Dg complex. METHODS To identify new players contributing to dystroglycanopathies, we used Drosophila as a genetic muscular dystrophy model. Using mass spectrometry, we searched for muscle-specific Dg interactors. Next, in silico analyses allowed us to determine their association with diseases and pathological conditions in humans. Using immunohistochemical, biochemical, and genetic interaction approaches followed by the detailed analysis of the muscle tissue architecture, we verified Dg interaction with some of the discovered factors. Analyses of mouse muscles and myocytes were used to test if interactions are conserved in vertebrates. RESULTS The muscle-specific Dg complexome revealed novel components that influence the efficiency of Dg function in the muscles. We identified the closest human homologs for Dg-interacting partners, determined their significant enrichment in disease-associations, and verified some of the newly identified Dg interactions. We found that Dg associates with two components of the mechanosignaling Hippo pathway: the WW domain-containing proteins Kibra and Yorkie. Importantly, this conserved interaction manages adult muscle size and integrity. CONCLUSIONS The results presented in this study provide a new list of muscle-specific Dg interactors, further analysis of which could aid not only in the diagnosis of muscular dystrophies, but also in the development of new therapeutics. To regulate muscle fitness during aging and disease, Dg associates with Kibra and Yorkie and acts as a transmembrane Hippo signaling receptor that transmits extracellular information to intracellular signaling cascades, regulating muscle gene expression.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Present Address: Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Institute of Physiology, Charité - University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Yuanbin Xie
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Present Address: University Medical Center, Centre for Anatomy, Institute of Neuroanatomy, Georg-August-University Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Dina Aweida
- Faculty of Biology, Technion, 32000, Haifa, Israel
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Research Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Bioanalytics Institute for Clinical Chemistry, University Medical Center Goettingen, Robert Koch Strasse 40, 37075, Göttingen, Germany
| | - Renate J Scheibe
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | | - Halyna R Shcherbata
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
71
|
Guan H, Zhao L, Liu H, Xie D, Liu Y, Zhang G, Mason DC, Zhang S, Li Y, Zhang H. Effects of intermittent pressure imitating rolling manipulation in traditional Chinese medicine on ultrastructure and metabolism in injured human skeletal muscle cells. Am J Transl Res 2020; 12:248-260. [PMID: 32051750 PMCID: PMC7013223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Skeletal muscle injuries can cause significant change in the ultrastructure and the metabolism of the skeletal muscle cells. Observation of the ultrastructure and measurements of the metabolism biomarkers such as total superoxide dismutase (T-SOD), malondialdehyde (MDA), and creatine kinase (CK) can be used to evaluate the degree of damage in human skeletal muscle injury. Rolling manipulation is the most popular myofascial release technique in Traditional Chinese Medicine. This study aimed to investigate the effects of intermittent pressure imitating rolling manipulation (IPIRM) of Traditional Chinese Medicine on ultrastructure and metabolism in the injured HSKMCs. Methods: In vitro techniques were used to culture HSKMCs, which were injured with high doses of dexamethasone sodium phosphate. Cells were divided into four groups-control normal group (CNG), control injured group (CIG), rolling manipulation group (RMG), and sine pressure group (SPG). RMG and SPG cells were cyclically exposed to 3.0 Kg (6.6 Pounds) of maximum force at a frequency of 2.0 Hz for 10 min in the Flexcell compression system for duration of 3 days continually. The cell ultrastructure, total superoxide dismutase (T-SOD) activity, malondialdehyde (MDA) content, and creatine kinase (CK) activity of the groups were assessed. Conclusion: These results suggest that the mechanical effects of rolling manipulation in TCM could not only improve the recovery of injured skeletal muscle cells by ameliorating organelles arrangement, reducing organelle swelling, and maintaining nuclear membrane integrity, but also ameliorate the functions of cellular metabolism by increasing T-SOD activity and decreasing MDA content and CK activity in injured skeletal muscle. Then the Hippo/Yap signal pathway was detected, and the proteins in each group were detected by Western Blot. The protein expression of upstream protein p-LATS1 and downstream protein p-Yap (Ser127) in each group was observed to explore the biomechanical mechanism of the method. The relative protein expression of p-LATS1 and p-Yap in (RMG) group was significantly higher than that in injured (CIG) group (P < 0.05). It was suggested that Hippo/Yap pathway was related to the stimulation of 3D human skeletal muscle cells, and the proliferation pathway of 3D human skeletal muscle cells could be opened by stimulation of three dimensional human skeletal muscle cells. It may be one of the biological mechanisms caused by the mechanical effects of manipulations in TCM.
Collapse
Affiliation(s)
- Huazong Guan
- Yueyang Hospital of Integrative Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine100 GanHe Road, Shanghai 200437, China
| | - Lijuan Zhao
- Yueyang Hospital of Integrative Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine100 GanHe Road, Shanghai 200437, China
| | - Howe Liu
- University of North Texas Health Science CenterFort Worth 76107, USA
| | - Dongyang Xie
- Yueyang Hospital of Integrative Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine100 GanHe Road, Shanghai 200437, China
| | - Yijie Liu
- Shanghai University of Traditional Chinese Medicine1200 Cai Lun Road, Zhangjiang Hi-TechPark, Pudong New Area, Shanghai, China
| | - Guohui Zhang
- Yueyang Hospital of Integrative Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine100 GanHe Road, Shanghai 200437, China
| | - David C Mason
- University of North Texas Health Science CenterFort Worth 76107, USA
| | - Shuyu Zhang
- Beijing University of Chinese MedicineNo. 11, Bei San Huan Dong Road, Beijing 100029, China
| | - Yafang Li
- Yueyang Hospital of Integrative Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine100 GanHe Road, Shanghai 200437, China
| | - Hong Zhang
- Yueyang Hospital of Integrative Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine100 GanHe Road, Shanghai 200437, China
| |
Collapse
|
72
|
Sun T, Diaz FJ. Ovulatory signals alter granulosa cell behavior through YAP1 signaling. Reprod Biol Endocrinol 2019; 17:113. [PMID: 31883523 PMCID: PMC6935177 DOI: 10.1186/s12958-019-0552-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The Hippo pathway plays critical roles in regulating cell proliferation, differentiation and survival among species. Hippo pathway proteins are expressed in the ovary and are involved in ovarian function. Deletion of Lats1 causes germ cell loss, ovarian stromal tumors and reduced fertility. Ovarian fragmentation induces nuclear YAP1 accumulation and increased follicular development. At ovulation, follicular cells stop proliferating and terminally differentiate, but the mechanisms controlling this transition are not completely known. Here we explore the role of Hippo signaling in mouse granulosa cells before and during ovulation. METHODS To assess the effect of oocytes on Hippo transcripts in cumulus cells, cumulus granulosa cells were cultured with oocytes and cumulus oocyte complexes (COCs) were cultured with a pSMAD2/3 inhibitor. Secondly, to evaluate the criticality of YAP1 on granulosa cell proliferation, mural granulosa cells were cultured with oocytes, YAP1-TEAD inhibitor verteporfin or both, followed by cell viability assay. Next, COCs were cultured with verteporfin to reveal its role during cumulus expansion. Media progesterone levels were measured using ELISA assay and Hippo transcripts and expansion signatures from COCs were assessed. Lastly, the effects of ovulatory signals (EGF in vitro and hCG in vivo) on Hippo protein levels and phosphorylation were examined. Throughout, transcripts were quantified by qRT-PCR and proteins were quantified by immunoblotting. Data were analyzed by student's t-test or one-way ANOVA followed by Tukey's post-hoc test or Dunnett's post-hoc test. RESULTS Our data show that before ovulation oocytes inhibit expression of Hippo transcripts and promote granulosa cell survival likely through YAP1. Moreover, the YAP1 inhibitor verteporfin, triggers premature differentiation as indicated by upregulation of expansion transcripts and increased progesterone production from COCs in vitro. In vivo, ovulatory signals cause an increase in abundance of Hippo transcripts and stimulate Hippo pathway activity as indicated by increased phosphorylation of the Hippo targets YAP1 and WWTR1 in the ovary. In vitro, EGF causes a transient increase in YAP1 phosphorylation followed by decreased YAP1 protein with only modest effects on WWTR1 in COCs. CONCLUSIONS Our results support a YAP1-mediated mechanism that controls cell survival and differentiation of granulosa cells during ovulation.
Collapse
Affiliation(s)
- Tianyanxin Sun
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Francisco J Diaz
- Center for Reproductive Biology and Health and Department of Animal Science, The Pennsylvania State University, 313 FRL Building, University Park, PA, 16802, USA.
| |
Collapse
|
73
|
Zhang L, Noguchi YT, Nakayama H, Kaji T, Tsujikawa K, Ikemoto-Uezumi M, Uezumi A, Okada Y, Doi T, Watanabe S, Braun T, Fujio Y, Fukada SI. The CalcR-PKA-Yap1 Axis Is Critical for Maintaining Quiescence in Muscle Stem Cells. Cell Rep 2019; 29:2154-2163.e5. [DOI: 10.1016/j.celrep.2019.10.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 09/06/2019] [Accepted: 10/14/2019] [Indexed: 01/07/2023] Open
|
74
|
Actomyosin contractility scales with myoblast elongation and enhances differentiation through YAP nuclear export. Sci Rep 2019; 9:15565. [PMID: 31664178 PMCID: PMC6820726 DOI: 10.1038/s41598-019-52129-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/10/2019] [Indexed: 01/14/2023] Open
Abstract
Skeletal muscle fibers are formed by the fusion of mononucleated myoblasts into long linear myotubes, which differentiate and reorganize into multinucleated myofibers that assemble in bundles to form skeletal muscles. This fundamental process requires the elongation of myoblasts into a bipolar shape, although a complete understanding of the mechanisms governing skeletal muscle fusion is lacking. To address this question, we consider cell aspect ratio, actomyosin contractility and the Hippo pathway member YAP as potential regulators of the fusion of myoblasts into myotubes. Using fibronectin micropatterns of different geometries and traction force microscopy, we investigated how myoblast elongation affects actomyosin contractility. Our findings indicate that cell elongation enhances actomyosin contractility in myoblasts, which regulate their actin network to their spreading area. Interestingly, we found that the contractility of cell pairs increased after their fusion and raise on elongated morphologies. Furthermore, our findings indicate that myoblast elongation modulates nuclear orientation and triggers cytoplasmic localization of YAP, increasing evidence that YAP is a key regulator of mechanotransduction in myoblasts. Taken together, our findings support a mechanical model where actomyosin contractility scales with myoblast elongation and enhances the differentiation of myoblasts into myotubes through YAP nuclear export.
Collapse
|
75
|
Schaub C, Rose M, Frasch M. Yorkie and JNK revert syncytial muscles into myoblasts during Org-1-dependent lineage reprogramming. J Cell Biol 2019; 218:3572-3582. [PMID: 31591186 PMCID: PMC6829659 DOI: 10.1083/jcb.201905048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
The formation and differentiation of syncytial muscles is typically considered an irreversible developmental process. Schaub et al. describe molecular events that dedifferentiate syncytial muscle into mononucleate myoblasts during a naturally occurring lineage reprogramming process. Lineage reprogramming has received increased research attention since it was demonstrated that lineage-restricted transcription factors can be used in vitro for direct reprogramming. Recently, we reported that the ventral longitudinal musculature of the adult Drosophila heart arises in vivo by direct lineage reprogramming from larval alary muscles, a process that starts with the dedifferentiation and fragmentation of syncytial muscle cells into mononucleate myoblasts and depends on Org-1 (Drosophila Tbx1). Here, we shed light on the events occurring downstream of Org-1 in this first step of transdifferentiation and show that alary muscle lineage-specific activation of Yorkie plays a key role in initiating the dedifferentiation and fragmentation of these muscles. An additional necessary input comes from active dJNK signaling, which contributes to the activation of Yorkie and furthermore activates dJun. The synergistic activities of the Yorkie/Scalloped and dJun/dFos transcriptional activators subsequently initiate alary muscle fragmentation as well as up-regulation of Myc and piwi, both crucial for lineage reprogramming.
Collapse
Affiliation(s)
- Christoph Schaub
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, Germany
| | - Marcel Rose
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, Germany
| | - Manfred Frasch
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, Germany
| |
Collapse
|
76
|
Stage differential effects of verteporfin on the differentiation of chick embryo wing bud mesenchymal cells. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
77
|
Wnt4 from the Niche Controls the Mechano-Properties and Quiescent State of Muscle Stem Cells. Cell Stem Cell 2019; 25:654-665.e4. [PMID: 31495781 DOI: 10.1016/j.stem.2019.08.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 04/19/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022]
Abstract
Satellite cells (SCs) reside in a dormant state during tissue homeostasis. The specific paracrine agents and niche cells that maintain SC quiescence remain unknown. We find that Wnt4 produced by the muscle fiber maintains SC quiescence through RhoA. Using cell-specific inducible genetics, we find that a Wnt4-Rho signaling axis constrains SC numbers and activation during tissue homeostasis in adult mice. Wnt4 activates Rho in quiescent SCs to maintain mechanical strain, restrict movement in the niche, and repress YAP. The induction of YAP upon disruption of RhoA is essential for SC activation under homeostasis. In the context of injury, the loss of Wnt4 from the niche accelerates SC activation and muscle repair, whereas overexpression of Wnt4 transitions SCs into a deeper state of quiescence and delays muscle repair. In conclusion, the SC pool undergoes dynamic transitions during early activation with changes in mechano-properties and cytoskeleton signaling preceding cell-cycle entry.
Collapse
|
78
|
Feng X, Wang Z, Wang F, Lu T, Xu J, Ma X, Li J, He L, Zhang W, Li S, Yang W, Zhang S, Ge G, Zhao Y, Hu P, Zhang L. Dual function of VGLL4 in muscle regeneration. EMBO J 2019; 38:e101051. [PMID: 31328806 DOI: 10.15252/embj.2018101051] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/17/2019] [Accepted: 06/28/2019] [Indexed: 01/07/2023] Open
Abstract
VGLL4 has previously been identified as a negative regulator of YAP. Here we show that VGLL4 regulates muscle regeneration in both YAP-dependent and YAP-independent manners at different stages. Knockout of VGLL4 in mice leads to smaller myofiber size and defective muscle contraction force. Furthermore, our studies reveal that knockout of VGLL4 results in increased muscle satellite cells proliferation and impaired myoblast differentiation, which ultimately leads to delayed muscle regeneration. Mechanistically, the results show that VGLL4 works as a conventional repressor of YAP at the proliferation stage of muscle regeneration. At the differentiation stage, VGLL4 acts as a co-activator of TEAD4 to promote MyoG transactivation and facilitate the initiation of differentiation in a YAP-independent manner. Moreover, VGLL4 stabilizes the protein-protein interactions between MyoD and TEAD4 to achieve efficient MyoG transactivation. Our findings define the dual roles of VGLL4 in regulating muscle regeneration at different stages and may open novel therapeutic perspectives for muscle regeneration.
Collapse
Affiliation(s)
- Xue Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zuoyun Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tiantian Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinjin Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xueyan Ma
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinhui Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lingli He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenxiang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Sheng Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenjun Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shu Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gaoxiang Ge
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ping Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
79
|
Kirby TJ. Mechanosensitive pathways controlling translation regulatory processes in skeletal muscle and implications for adaptation. J Appl Physiol (1985) 2019; 127:608-618. [PMID: 31295035 DOI: 10.1152/japplphysiol.01031.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability of myofibers to sense and respond appropriately to mechanical signals is one of the primary determinants of the skeletal muscle phenotype. In response to a change in mechanical load, muscle cells alter their protein metabolism, primarily through the regulation of protein synthesis rate. Protein synthesis rates are determined by both translation efficiency and translational capacity within the muscle. Translational capacity is strongly determined by the ribosome content of the muscle; thus the regulation of ribosomal biogenesis by mechanical inputs has been an area of recent interest. Despite the clear association between mechanical signals and changes in protein metabolism, the molecular pathways that link these events are still not fully elucidated. This review focuses on recent studies looking at how mechanosignaling impacts translational events. The role of impaired mechanotransduction in aging is discussed, as is the connection between age-dependent signaling defects and compromised ribosomal biogenesis during mechanical overload. Finally, emerging evidence suggests that the nucleus can act as a mechanosensitive element and that this mode of mechanotransduction may have an important role in skeletal muscle physiology and adaptation.
Collapse
Affiliation(s)
- Tyler J Kirby
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York
| |
Collapse
|
80
|
Figeac N, Mohamed AD, Sun C, Schönfelder M, Matallanas D, Garcia-Munoz A, Missiaglia E, Collie-Duguid E, De Mello V, Pobbati AV, Pruller J, Jaka O, Harridge SDR, Hong W, Shipley J, Vargesson N, Zammit PS, Wackerhage H. VGLL3 operates via TEAD1, TEAD3 and TEAD4 to influence myogenesis in skeletal muscle. J Cell Sci 2019; 132:jcs.225946. [PMID: 31138678 PMCID: PMC6633393 DOI: 10.1242/jcs.225946] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/03/2019] [Indexed: 12/21/2022] Open
Abstract
VGLL proteins are transcriptional co-factors that bind TEAD family transcription factors to regulate events ranging from wing development in fly, to muscle fibre composition and immune function in mice. Here, we characterise Vgll3 in skeletal muscle. We found that mouse Vgll3 was expressed at low levels in healthy muscle but that its levels increased during hypertrophy or regeneration; in humans, VGLL3 was highly expressed in tissues from patients with various muscle diseases, such as in dystrophic muscle and alveolar rhabdomyosarcoma. Interaction proteomics revealed that VGLL3 bound TEAD1, TEAD3 and TEAD4 in myoblasts and/or myotubes. However, there was no interaction with proteins from major regulatory systems such as the Hippo kinase cascade, unlike what is found for the TEAD co-factors YAP (encoded by YAP1) and TAZ (encoded by WWTR1). Vgll3 overexpression reduced the activity of the Hippo negative-feedback loop, affecting expression of muscle-regulating genes including Myf5, Pitx2 and Pitx3, and genes encoding certain Wnts and IGFBPs. VGLL3 mainly repressed gene expression, regulating similar genes to those regulated by YAP and TAZ. siRNA-mediated Vgll3 knockdown suppressed myoblast proliferation, whereas Vgll3 overexpression strongly promoted myogenic differentiation. However, skeletal muscle was overtly normal in Vgll3-null mice, presumably due to feedback signalling and/or redundancy. This work identifies VGLL3 as a transcriptional co-factor operating with the Hippo signal transduction network to control myogenesis. Summary: VGLL3 interacts with TEAD transcription factors to direct expression of crucial muscle regulatory genes and contribute to the control of skeletal myogenesis.
Collapse
Affiliation(s)
- Nicolas Figeac
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Abdalla D Mohamed
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environment and Health, Ingolstaedter Landstrasse 1, D-85764 Munich/Neuherberg, Germany
| | - Congshan Sun
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.,Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Martin Schönfelder
- Faculty of Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60, 80992 Munich, Germany
| | - David Matallanas
- Systems Biology Ireland, Conway Institute, Belfield; Dublin 4, Ireland
| | | | - Edoardo Missiaglia
- Institute of Pathology, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Elaina Collie-Duguid
- University of Aberdeen, Centre for Genome Enabled Biology and Medicine, 23 St Machar Drive, Aberdeen AB24 3RY, UK
| | - Vanessa De Mello
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ajaybabu V Pobbati
- Institute of Molecular and Cell Biology, A-STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Johanna Pruller
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Oihane Jaka
- Centre for Human and Applied Physiological Sciences, King's College London, London SE1 1UL, UK
| | - Stephen D R Harridge
- Centre for Human and Applied Physiological Sciences, King's College London, London SE1 1UL, UK
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A-STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Henning Wackerhage
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK .,Faculty of Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60, 80992 Munich, Germany
| |
Collapse
|
81
|
Usuki F, Fujimura M, Nakamura A, Nakano J, Okita M, Higuchi I. Local Vibration Stimuli Induce Mechanical Stress-Induced Factors and Facilitate Recovery From Immobilization-Induced Oxidative Myofiber Atrophy in Rats. Front Physiol 2019; 10:759. [PMID: 31281262 PMCID: PMC6595229 DOI: 10.3389/fphys.2019.00759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/31/2019] [Indexed: 01/22/2023] Open
Abstract
Muscle atrophy can be caused by unloading stress such as microgravity environments or cast immobilization. Therapies for such disuse muscle atrophy and their underlying mechanisms are incompletely understood. Here, we investigated the therapeutic effects of local vibration stimulation on immobilization-induced skeletal muscle atrophy. A rat model was made by placing the left hindlimb in a cast for 1 week, leading to oxidative myofiber atrophy without myopathic changes in soleus skeletal muscle. Vibration stimulus (90 Hz, 15 min) to the plantar fascia of the atrophic hindlimb was performed once a day using a hand-held vibration massager after removal of a cast at the end of the immobilization period. After 2 weeks, rats were dissected, and quantitative analysis of the cross-sectional areas of soleus myofibers was performed. The results revealed that vibration induced significant recovery from disuse muscle atrophy, compared with untreated immobilized samples. Furthermore, vibration treatment suppressed the fiber transition from slow to fast fiber types compared with vibration-untreated immobilized samples. Western blotting analyses of mechanical stress-induced factors revealed that the expression of mechano-growth factor (MGF), systemic insulin-like growth factor I, and the mechanotransduction protein, Yes-associated protein 1 (YAP1), was decreased in untreated immobilized soleus muscle, whereas vibration stimulation restored their expression. No change in the level of phosphorylation of YAP1Ser127 was observed, leading to no change in p-YAP1/YAP1 ratio in vibration-treated immobilized soleus muscle. The results indicate that vibration stimulus is effective to restore immobilization-induced inactivation of YAP1 pathway. Phosphorylation of ERK 1/2, but not AKT, was enhanced in vibration-treated immobilized soleus muscle. Furthermore, vibration stimuli restored immobilization-induced downregulation of the paired box transcription factor, PAX7, a critical factor for regenerative myogenesis in muscle satellite cells. Our results indicate that cyclic vibration stimuli are effective in activating satellite cells and facilitate recovery from immobilization-induced oxidative myofiber atrophy through upregulation of MGF and YAP1.
Collapse
Affiliation(s)
- Fusako Usuki
- Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto, Japan
| | - Masatake Fujimura
- Basic Medical Sciences, National Institute for Minamata Disease, Kumamoto, Japan
| | - Atsushi Nakamura
- Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto, Japan
| | - Jiro Nakano
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Minoru Okita
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Itsuro Higuchi
- Department of Physical Therapy, Faculty of Medicine, School of Health Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
82
|
Abstract
The Hippo signaling pathway is involved in tissue size regulation and tumorigenesis. Genetic deletion or aberrant expression of some Hippo pathway genes lead to enhanced cell proliferation, tumorigenesis, and cancer metastasis. Recently, multiple studies have identified a wide range of upstream regulators of the Hippo pathway, including mechanical cues and ligands of G protein-coupled receptors (GPCRs). Through the activation related G proteins and possibly rearrangements of actin cytoskeleton, GPCR signaling can potently modulate the phosphorylation states and activity of YAP and TAZ, two homologous oncogenic transcriptional co-activators, and major effectors of the Hippo pathway. Herein, we summarize the network, regulation, and functions of GPCR-Hippo signaling, and we will also discuss potential anti-cancer therapies targeting GPCR-YAP signaling.
Collapse
|
83
|
Iyer SR, Shah SB, Ward CW, Stains JP, Spangenburg EE, Folker ES, Lovering RM. Differential YAP nuclear signaling in healthy and dystrophic skeletal muscle. Am J Physiol Cell Physiol 2019; 317:C48-C57. [PMID: 30995108 DOI: 10.1152/ajpcell.00432.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mechanical forces regulate muscle development, hypertrophy, and homeostasis. Force-transmitting structures allow mechanotransduction at the sarcolemma, cytoskeleton, and nuclear envelope. There is growing evidence that Yes-associated protein (YAP) serves as a nuclear relay of mechanical signals and can induce a range of downstream signaling cascades. Dystrophin is a sarcolemma-associated protein, and its absence underlies the pathology in Duchenne muscular dystrophy. We tested the hypothesis that the absence of dystrophin in muscle would result in reduced YAP signaling in response to loading. Following in vivo contractile loading in muscles of healthy (wild-type; WT) mice and mice lacking dystrophin (mdx), we performed Western blots of whole and fractionated muscle homogenates to examine the ratio of phospho (cytoplasmic) YAP to total YAP and nuclear YAP, respectively. We show that in vivo contractile loading induced a robust increase in YAP expression and its nuclear localization in WT muscles. Surprisingly, in mdx muscles, active YAP expression was constitutively elevated and unresponsive to load. Results from qRT-PCR analysis support the hyperactivation of YAP in vivo in mdx muscles, as evidenced by increased gene expression of YAP downstream targets. In vitro assays of isolated myofibers plated on substrates with high stiffness showed YAP nuclear labeling for both genotypes, indicating functional YAP signaling in mdx muscles. We conclude that while YAP signaling can occur in the absence of dystrophin, dystrophic muscles have altered mechanotransduction, whereby constitutively active YAP results in a failure to respond to load, which could be attributed to the increased state of "pre-stress" with increased cytoskeletal and extracellular matrix stiffness.
Collapse
Affiliation(s)
- Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine , Baltimore, Maryland
| | - Sameer B Shah
- Department of Orthopaedic Surgery, University of California San Diego , La Jolla, California.,Department of Bioengineering, University of California San Diego , La Jolla, California
| | - Christopher W Ward
- Department of Orthopaedics, University of Maryland School of Medicine , Baltimore, Maryland
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine , Baltimore, Maryland
| | - Espen E Spangenburg
- Department of Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University , Greenville, North Carolina
| | - Eric S Folker
- Department of Biology, Boston College , Chestnut Hill, Massachusetts
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine , Baltimore, Maryland.,Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
84
|
Zhang GM, Zhang TT, An SY, El-Samahy M, Yang H, Wan YJ, Meng FX, Xiao SH, Wang F, Lei ZH. Expression of Hippo signaling pathway components in Hu sheep male reproductive tract and spermatozoa. Theriogenology 2019; 126:239-248. [DOI: 10.1016/j.theriogenology.2018.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/16/2018] [Accepted: 12/14/2018] [Indexed: 01/06/2023]
|
85
|
Dingare C, Niedzwetzki A, Klemmt PA, Godbersen S, Fuentes R, Mullins MC, Lecaudey V. The Hippo pathway effector Taz is required for cell morphogenesis and fertilization in zebrafish. Development 2018; 145:dev.167023. [PMID: 30327325 DOI: 10.1242/dev.167023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022]
Abstract
Hippo signaling is a critical pathway that integrates extrinsic and intrinsic mechanical cues to regulate organ size. Despite its essential role in organogenesis, little is known about its role in cell fate specification and differentiation. Here, we unravel a novel and unexpected role of the Hippo pathway effector Taz (wwtr1) in controlling the size, shape and fate of a unique cell in the zebrafish ovary. We show that wwtr1 mutant females are infertile. In teleosts, fertilization occurs through the micropyle, a funnel-like opening in the chorion, formed by a unique enlarged follicle cell, the micropylar cell (MC). We describe here, for the first time, the mechanism that underlies the differentiation of the MC. Our genetic analyses show that Taz is essential for MC fate acquisition and subsequent micropyle formation in zebrafish. We identify Taz as the first bona fide MC marker and show that Taz is specifically and strongly enriched in the MC precursor. Altogether, we performed the first genetic and molecular characterization of the MC and propose that Taz is a key regulator of MC fate.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Chaitanya Dingare
- Institute of Cell Biology and Neuroscience, Department of Developmental Biology of Vertebrates, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany.,Developmental Biology, Institute for Biology I, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Alina Niedzwetzki
- Institute of Cell Biology and Neuroscience, Department of Developmental Biology of Vertebrates, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Petra A Klemmt
- Institute of Cell Biology and Neuroscience, Department of Developmental Biology of Vertebrates, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Svenja Godbersen
- Developmental Biology, Institute for Biology I, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Ricardo Fuentes
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Virginie Lecaudey
- Institute of Cell Biology and Neuroscience, Department of Developmental Biology of Vertebrates, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany .,Developmental Biology, Institute for Biology I, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
86
|
Puts R, Rikeit P, Ruschke K, Knaus P, Schreivogel S, Raum K. Functional regulation of YAP mechanosensitive transcriptional coactivator by Focused Low-Intensity Pulsed Ultrasound (FLIPUS) enhances proliferation of murine mesenchymal precursors. PLoS One 2018; 13:e0206041. [PMID: 30365513 PMCID: PMC6203358 DOI: 10.1371/journal.pone.0206041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 10/05/2018] [Indexed: 12/02/2022] Open
Abstract
Yes-associated protein (YAP) acts as a mechanotransducer in determining the cell fate of murine C2C12 mesenchymal precursors as investigated after stimulation with ultrasound. We applied Focused Low-Intensity Pulsed Ultrasound (FLIPUS) at a sound frequency of 3.6 MHz, 100 Hz pulse repetition frequency (PRF), 27.8% duty cycle (DC), and 44.5 mW/cm2 acoustic intensity ISATA for 5 minutes and evaluated early cellular responses. FLIPUS decreased the level of phosphorylated YAP on Serine 127, leading to higher levels of active YAP in the nucleus. This in turn enhanced the expression of YAP-target genes associated with actin nucleation and stabilization, cytokinesis, and cell cycle progression. FLIPUS enhanced proliferation of C2C12 cells, whereas silencing of YAP expression abolished the beneficial effects of ultrasound. The expression of the transcription factor MyoD, defining cellular myogenic differentiation, was inhibited by mechanical stimulation. This study shows that ultrasound exposure regulates YAP functioning, which in turn improves the cell proliferative potential, critical for tissue regeneration process.
Collapse
Affiliation(s)
- Regina Puts
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité–Berlin University of Medicine, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité–Berlin University of Medicine, Berlin, Germany
- * E-mail:
| | - Paul Rikeit
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité–Berlin University of Medicine, Berlin, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Karen Ruschke
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Petra Knaus
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité–Berlin University of Medicine, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité–Berlin University of Medicine, Berlin, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Sophie Schreivogel
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité–Berlin University of Medicine, Berlin, Germany
- Julius Wolff Institute, Charité–Berlin University of Medicine, Berlin, Germany
| | - Kay Raum
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité–Berlin University of Medicine, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité–Berlin University of Medicine, Berlin, Germany
| |
Collapse
|
87
|
Mohamed AD, Shah N, Hettmer S, Vargesson N, Wackerhage H. Analysis of the relationship between the KRAS G12V oncogene and the Hippo effector YAP1 in embryonal rhabdomyosarcoma. Sci Rep 2018; 8:15674. [PMID: 30353028 PMCID: PMC6199242 DOI: 10.1038/s41598-018-33852-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/27/2018] [Indexed: 01/09/2023] Open
Abstract
Persistent hyperactivity of the Hippo effector YAP in activated satellite cells is sufficient to cause embryonal rhabdomyosarcoma (ERMS) in mice. In humans, YAP is abundant and nuclear in the majority of ERMS cases, and high YAP expression is associated with poor survival. However, YAP1 is rarely mutated in human ERMS. Instead, the most common mutations in ERMS are oncogenic RAS mutations. First, to compare YAP1 S127A and KRAS G12V-driven rhabdomyosarcomas, we re-analysed gene expression microarray datasets from mouse rhabdomyosarcomas caused by these genes. This revealed that only 20% of the up or downregulated genes are identical, suggesting substantial differences in gene expression between YAP and KRAS-driven rhabdomyosarcomas. As oncogenic RAS has been linked to YAP in other types of cancer, we also tested whether KRAS G12V alone or in combination with loss of p53 and p16 activates YAP in myoblasts. We found that neither KRAS G12V alone nor KRAS G12V combined with loss of p53 and p16 activated Yap or Yap/Taz-Tead1-4 transcriptional activity in C2C12 myoblasts or U57810 cells. In conclusion, whilst oncogenic KRAS mutation might activate Yap in other cell types, we could find no evidence for this in myoblasts because the expression of KRAS G12V expression did not change Yap/Taz activity in myoblasts and there was a limited overlap in gene expression between KRAS G12V and YAP1 S127A-driven tumours.
Collapse
Affiliation(s)
- Abdalla D Mohamed
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Foresterhill, Aberdeen, AB25 2ZD, Scotland.
- Institute of Developmental Genetics Helmholtz Zentrum München, German Research Center for Environment and Health Ingolstaedter Landstrasse 1, D-85764, Munich, Neuherberg, Germany.
| | - Nupur Shah
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Foresterhill, Aberdeen, AB25 2ZD, Scotland
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University Medical Center Freiburg, Freiburg, Germany
| | - Neil Vargesson
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Foresterhill, Aberdeen, AB25 2ZD, Scotland
| | - Henning Wackerhage
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Foresterhill, Aberdeen, AB25 2ZD, Scotland
- Technical University of Munich, Faculty of Sport and Health Sciences, Georg-Brauchle Ring 60-62, 80992, Munich, Germany
| |
Collapse
|
88
|
Vita GL, Polito F, Oteri R, Arrigo R, Ciranni AM, Musumeci O, Messina S, Rodolico C, Di Giorgio RM, Vita G, Aguennouz M. Hippo signaling pathway is altered in Duchenne muscular dystrophy. PLoS One 2018; 13:e0205514. [PMID: 30304034 PMCID: PMC6179272 DOI: 10.1371/journal.pone.0205514] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/26/2018] [Indexed: 01/18/2023] Open
Abstract
Hippo signaling pathway is considered a key regulator of tissue homeostasis, cell proliferation, apoptosis and it is involved in cancer development. In skeletal muscle, YAP, a downstream target of the Hippo pathway, is an important player in myoblast proliferation, atrophy/hypertrophy regulation, and in mechano-trasduction, transferring mechanical signals into transcriptional responses. We studied components of Hippo pathway in muscle specimens from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy, limb-girdle muscular dystrophy type 2A and type 2B and healthy subjects. Only DMD muscles had decreased YAP1 protein expression, increased LATS1/2 kinase activity, low Survivin mRNA expression and high miR-21 expression. In light of our novel results, a schematic model is postulated: low levels of YOD1 caused by increased inhibition by miR-21 lead to an increase of LATS1/2 activity which in turn augments phosphorylation of YAP. Reduced amount of active YAP, which is also a target of increased miR-21, causes decreased nuclear expression of YAP-mediated target genes. Since it is known that YAP has beneficial roles in promoting tissue repair and regeneration after injury so that its activation may be therapeutically useful, our results suggest that some components of Hippo pathway could become novel therapeutic targets for DMD treatment.
Collapse
Affiliation(s)
- Gian Luca Vita
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy
| | - Francesca Polito
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Rosaria Oteri
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Roberto Arrigo
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Anna Maria Ciranni
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Sonia Messina
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmelo Rodolico
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Rosa Maria Di Giorgio
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Vita
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - M’Hammed Aguennouz
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
89
|
Brown TE, Silver JS, Worrell BT, Marozas IA, Yavitt FM, Günay KA, Bowman CN, Anseth KS. Secondary Photocrosslinking of Click Hydrogels To Probe Myoblast Mechanotransduction in Three Dimensions. J Am Chem Soc 2018; 140:11585-11588. [PMID: 30183266 DOI: 10.1021/jacs.8b07551] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Muscle cells sense the mechanical properties of their microenvironment, and these properties can change in response to injury or disease. Hydrogels with dynamic material properties can be used to study the effect of such varying mechanical signals. Here, we report the ability of azadibenzocyclooctyne to undergo a cytocompatible, photoinitiated crosslinking reaction. This reaction is exploited as a strategy for on-demand stiffening of three-dimensional cell scaffolds formed through an initial strain-promoted azide-alkyne cycloaddition. Myoblasts encapsulated in these networks respond to increased matrix stiffness through decreased cell spreading and nuclear localization of Yes-associated protein 1 (YAP). However, when the photocrosslinking reaction is delayed to allow cell spreading, elongated myoblasts display increased YAP nuclear localization.
Collapse
Affiliation(s)
- Tobin E Brown
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80303 , United States
- BioFrontiers Institute , University of Colorado , Boulder , Colorado 80303 , United States
| | - Jason S Silver
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80303 , United States
- BioFrontiers Institute , University of Colorado , Boulder , Colorado 80303 , United States
| | - Brady T Worrell
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80303 , United States
| | - Ian A Marozas
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80303 , United States
- BioFrontiers Institute , University of Colorado , Boulder , Colorado 80303 , United States
| | - F Max Yavitt
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80303 , United States
- BioFrontiers Institute , University of Colorado , Boulder , Colorado 80303 , United States
| | - Kemal Arda Günay
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80303 , United States
- BioFrontiers Institute , University of Colorado , Boulder , Colorado 80303 , United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80303 , United States
- BioFrontiers Institute , University of Colorado , Boulder , Colorado 80303 , United States
- Department of Materials Science and Engineering , University of Colorado , Boulder , Colorado 80303 , United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80303 , United States
- BioFrontiers Institute , University of Colorado , Boulder , Colorado 80303 , United States
| |
Collapse
|
90
|
Totaro A, Castellan M, Di Biagio D, Piccolo S. Crosstalk between YAP/TAZ and Notch Signaling. Trends Cell Biol 2018; 28:560-573. [PMID: 29665979 PMCID: PMC6992418 DOI: 10.1016/j.tcb.2018.03.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 12/29/2022]
Abstract
How the behavior of cells in living tissues is orchestrated according to tissue needs, size, and developmental stage is still poorly understood. Advances in these directions are essential to understand morphogenesis, 'self-organization' phenomena, to build new tissues for regenerative medicine or to reverse the changes in deranged organs, such as in cancer or in genetic disorders. This review outlines a new scenario by which the crosstalk between the Yes-associated protein/transcriptional coactivator with PDZ-binding motif (YAP/TAZ) transcription factors and Notch signaling influences cell self-renewal, stem cell differentiation, cell fate decisions, epithelial-stromal interactions, inflammation, morphogenesis, and large-scale gene oscillations.
Collapse
Affiliation(s)
- Antonio Totaro
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy.
| | - Martina Castellan
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Daniele Di Biagio
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy; IFOM - the FIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milano MI, Italy.
| |
Collapse
|
91
|
Li L, Fan CM. A CREB-MPP7-AMOT Regulatory Axis Controls Muscle Stem Cell Expansion and Self-Renewal Competence. Cell Rep 2018; 21:1253-1266. [PMID: 29091764 DOI: 10.1016/j.celrep.2017.10.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/27/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle regeneration requires resident muscle stem cells, termed satellite cells (SCs). SCs are largely quiescent during homeostasis yet become activated upon injury to supply myonuclei and self-renewed SCs. Molecular mechanisms underlying the competence of SCs to proliferate and self-renew in response to injury remain unclear. Here, we show that CREB activity establishes proliferative potential during SC quiescence. SCs with inhibited CREB activity remain quiescent and positioned in their niche, but upon injury, they cannot enter or maintain a proliferative state for expansion and self-renewal. We demonstrate mechanistically that Mpp7 is a CREB target and its functional mediator. MPP7 loss affects the level and sub-cellular localization of AMOT and YAP1 in quiescent SCs. Furthermore, MPP7 and AMOT are required for YAP1 nuclear accumulation, and the three are individually required for a proliferative state in myoblasts. We propose that the CREB-MPP7-AMOT-YAP1 axis establishes the competence of quiescent SCs to expand and self-renew, thereby preserving stem cell function.
Collapse
Affiliation(s)
- Lydia Li
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Chen-Ming Fan
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA.
| |
Collapse
|
92
|
Brooks MJ, Hajira A, Mohamed JS, Alway SE. Voluntary wheel running increases satellite cell abundance and improves recovery from disuse in gastrocnemius muscles from mice. J Appl Physiol (1985) 2018; 124:1616-1628. [PMID: 29470148 PMCID: PMC6032091 DOI: 10.1152/japplphysiol.00451.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 01/18/2018] [Accepted: 02/21/2018] [Indexed: 02/04/2023] Open
Abstract
Reloading of atrophied muscles after hindlimb suspension unloading (HSU) can induce injury and prolong recovery. Low-impact exercise, such as voluntary wheel running, has been identified as a nondamaging rehabilitation therapy in rodents, but its effects on muscle function, morphology, and satellite cell activity after HSU are unclear. This study tested the hypothesis that low-impact wheel running would increase satellite cell proliferation and improve recovery of muscle structure and function after HSU in mice. Young adult male and female C57BL/6 mice ( n = 6/group) were randomly placed into five groups. These included HSU without recovery (HSU), normal ambulatory recovery for 14 days after HSU (HSU+NoWR), and voluntary wheel running recovery for 14 days after HSU (HSU+WR). Two control groups were used: nonsuspended mouse cage controls (Control) and voluntary wheel running controls (ControlWR). Satellite cell activation was evaluated by providing mice 5-bromo-2'-deoxyuridine (BrdU) in their drinking water. As expected, HSU significantly reduced in vivo maximal force, decreased in vivo fatigability, and decreased type I and IIa myosin heavy chain (MHC) abundance in plantarflexor muscles. HSU+WR mice significantly improved plantarflexor fatigue resistance, increased type I and IIa MHC abundance, increased fiber cross-sectional area, and increased the percentage of type I and IIA muscle fibers in the gastrocnemius muscle. HSU+WR mice also had a significantly greater percentage of BrdU-positive and Pax 7-positive nuclei inside muscle fibers and a greater MyoD-to-Pax 7 protein ratio compared with HSU+NoWR mice. The mechanotransduction protein Yes-associated protein (YAP) was elevated with reloading after HSU, but HSU+WR mice had lower levels of the inactive phosphorylated YAPserine127, which may have contributed to increased satellite cell activation with reloading after HSU. These results indicate that voluntary wheel running increased YAP signaling and satellite cell activity after HSU and this was associated with improved recovery. NEW & NOTEWORTHY Although satellite cell involvement in muscle remodeling has been challenged, the data in this study suggest that voluntary wheel running increased satellite cell activity and suppressed Yes-associated protein (YAP) protein relative to no wheel running and this was associated with improved muscle recovery of force, fatigue resistance, expression of type I myosin heavy chain, and greater fiber cross-sectional area after disuse.
Collapse
Affiliation(s)
- Matthew J Brooks
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Ameena Hajira
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Junaith S Mohamed
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine , Morgantown, West Virginia
- Department of Physical Therapy, College of Health Professions and Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center , Memphis, Tennessee
| |
Collapse
|
93
|
|
94
|
Watt KI, Goodman CA, Hornberger TA, Gregorevic P. The Hippo Signaling Pathway in the Regulation of Skeletal Muscle Mass and Function. Exerc Sport Sci Rev 2018; 46:92-96. [PMID: 29346163 PMCID: PMC6319272 DOI: 10.1249/jes.0000000000000142] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Hippo signaling pathway regulates the activity of the proteins Yes-associated protein (Yap) and transcriptional co-activator with PDZ-binding motif (Taz) to control tissue growth in many different cell types. Previously, we demonstrated that Yap is a critical regulator of skeletal muscle mass. We hypothesize that alterations in Yap and Taz activity modulate the anabolic adaptations of skeletal muscle to resistance exercise.
Collapse
Affiliation(s)
- Kevin I. Watt
- Baker Heart and Diabetes Institute, Victoria, 3004, Australia
- Department of Diabetes, Monash University, Victoria, 3004, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Washington, USA
| | - Craig A. Goodman
- College of Health & Biomedicine, Victoria University, Melbourne, Victoria 8001, Australia
- Institute for Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
- Australian Institute of Musculoskeletal Science (AIMSS),Victoria University, St Albans, Victoria 3021, Australia
| | - Troy A. Hornberger
- Dept of Comparative Bioscience, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Paul Gregorevic
- Dept of Physiology, The University of Melbourne, Victoria, Australia, 3010
- Dept of Biochemistry and Molecular Biology, Monash University, Victoria, Australia, 3800
- Dept of Neurology, The University of Washington School of Medicine, Seattle, Washington, USA 98195
| |
Collapse
|
95
|
Deel MD, Slemmons KK, Hinson AR, Genadry KC, Burgess BA, Crose LES, Kuprasertkul N, Oristian KM, Bentley RC, Linardic CM. The Transcriptional Coactivator TAZ Is a Potent Mediator of Alveolar Rhabdomyosarcoma Tumorigenesis. Clin Cancer Res 2018. [PMID: 29514840 DOI: 10.1158/1078-0432.ccr-17-1207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Alveolar rhabdomyosarcoma (aRMS) is a childhood soft tissue sarcoma driven by the signature PAX3-FOXO1 (P3F) fusion gene. Five-year survival for aRMS is <50%, with no improvement in over 4 decades. Although the transcriptional coactivator TAZ is oncogenic in carcinomas, the role of TAZ in sarcomas is poorly understood. The aim of this study was to investigate the role of TAZ in P3F-aRMS tumorigenesis.Experimental Design: After determining from publicly available datasets that TAZ is upregulated in human aRMS transcriptomes, we evaluated whether TAZ is also upregulated in our myoblast-based model of P3F-initiated tumorigenesis, and performed IHC staining of 63 human aRMS samples from tissue microarrays. Using constitutive and inducible RNAi, we examined the impact of TAZ loss of function on aRMS oncogenic phenotypes in vitro and tumorigenesis in vivo Finally, we performed pharmacologic studies in aRMS cell lines using porphyrin compounds, which interfere with TAZ-TEAD transcriptional activity.Results: TAZ is upregulated in our P3F-initiated aRMS model, and aRMS cells and tumors have high nuclear TAZ expression. In vitro, TAZ suppression inhibits aRMS cell proliferation, induces apoptosis, supports myogenic differentiation, and reduces aRMS cell stemness. TAZ-deficient aRMS cells are enriched in G2-M phase of the cell cycle. In vivo, TAZ suppression attenuates aRMS xenograft tumor growth. Preclinical studies show decreased aRMS xenograft tumor growth with porphyrin compounds alone and in combination with vincristine.Conclusions: TAZ is oncogenic in aRMS sarcomagenesis. While P3F is currently not therapeutically tractable, targeting TAZ could be a promising novel approach in aRMS. Clin Cancer Res; 24(11); 2616-30. ©2018 AACR.
Collapse
Affiliation(s)
- Michael D Deel
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Katherine K Slemmons
- Department of Pharmacology & Cancer Biology, School of Medicine, Duke University, Durham, North Carolina
| | - Ashley R Hinson
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Katia C Genadry
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Breanne A Burgess
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Lisa E S Crose
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | | | - Kristianne M Oristian
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Rex C Bentley
- Department of Pathology, School of Medicine, Duke University, Durham, North Carolina
| | - Corinne M Linardic
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina. .,Department of Pharmacology & Cancer Biology, School of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
96
|
Ye S, Lawlor MA, Rivera-Reyes A, Egolf S, Chor S, Pak K, Ciotti GE, Lee AC, Marino GE, Shah J, Niedzwicki D, Weber K, Park PMC, Alam MZ, Grazioli A, Haldar M, Xu M, Perry JA, Qi J, Eisinger-Mathason TSK. YAP1-Mediated Suppression of USP31 Enhances NFκB Activity to Promote Sarcomagenesis. Cancer Res 2018; 78:2705-2720. [PMID: 29490948 DOI: 10.1158/0008-5472.can-17-4052] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/01/2018] [Accepted: 02/22/2018] [Indexed: 12/26/2022]
Abstract
To date, no consistent oncogenic driver mutations have been identified in most adult soft tissue sarcomas; these tumors are thus generally insensitive to existing targeted therapies. Here we investigated alternate mechanisms underlying sarcomagenesis to identify potential therapeutic interventions. Undifferentiated pleomorphic sarcoma (UPS) is an aggressive tumor frequently found in skeletal muscle where deregulation of the Hippo pathway and aberrant stabilization of its transcriptional effector yes-associated protein 1 (YAP1) increases proliferation and tumorigenesis. However, the downstream mechanisms driving this deregulation are incompletely understood. Using autochthonous mouse models and whole genome analyses, we found that YAP1 was constitutively active in some sarcomas due to epigenetic silencing of its inhibitor angiomotin (AMOT). Epigenetic modulators vorinostat and JQ1 restored AMOT expression and wild-type Hippo pathway signaling, which induced a muscle differentiation program and inhibited sarcomagenesis. YAP1 promoted sarcomagenesis by inhibiting expression of ubiquitin-specific peptidase 31 (USP31), a newly identified upstream negative regulator of NFκB signaling. Combined treatment with epigenetic modulators effectively restored USP31 expression, resulting in decreased NFκB activity. Our findings highlight a key underlying molecular mechanism in UPS and demonstrate the potential impact of an epigenetic approach to sarcoma treatment.Significance: A new link between Hippo pathway signaling, NFκB, and epigenetic reprogramming is highlighted and has the potential for therapeutic intervention in soft tissue sarcomas. Cancer Res; 78(10); 2705-20. ©2018 AACR.
Collapse
Affiliation(s)
- Shuai Ye
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Matthew A Lawlor
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adrian Rivera-Reyes
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shaun Egolf
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Susan Chor
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Koreana Pak
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Gabrielle E Ciotti
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Avery C Lee
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Gloria E Marino
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jennifer Shah
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - David Niedzwicki
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kristy Weber
- Department of Orthopedic Surgery, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Paul M C Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Md Zahidul Alam
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Alison Grazioli
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Malay Haldar
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Mousheng Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jennifer A Perry
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - T S Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
97
|
Carraro U. Exciting perspectives for Translational Myology in the Abstracts of the 2018Spring PaduaMuscleDays: Giovanni Salviati Memorial - Chapter III - Abstracts of March 16, 2018. Eur J Transl Myol 2018; 28:7365. [PMID: 30057727 PMCID: PMC6047881 DOI: 10.4081/ejtm.2018.7365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 11/23/2022] Open
Abstract
Myologists working in Padua (Italy) were able to continue a half-century tradition of studies of skeletal muscles, that started with a research on fever, specifically if and how skeletal muscle contribute to it by burning bacterial toxin. Beside main publications in high-impact-factor journals by Padua myologists, I hope to convince readers (and myself) of the relevance of the editing Basic and Applied Myology (BAM), retitled from 2010 European Journal of Translational Myology (EJTM), of the institution of the Interdepartmental Research Center of Myology of the University of Padova (CIR-Myo), and of a long series of International Conferences organized in Euganei Hills and Padova, that is, the PaduaMuscleDays. The 2018Spring PaduaMuscleDays (2018SpPMD), were held in Euganei Hills and Padua (Italy), in March 14-17, and were dedicated to Giovanni Salviati. The main event of the “Giovanni Salviati Memorial”, was held in the Aula Guariento, Accademia Galileiana di Scienze, Lettere ed Arti of Padua to honor a beloved friend and excellent scientist 20 years after his premature passing. Using the words of Prof. Nicola Rizzuto, we all share his believe that Giovanni “will be remembered not only for his talent and originality as a biochemist, but also for his unassuming and humanistic personality, a rare quality in highly successful people like Giovanni. The best way to remember such a person is to gather pupils and colleagues, who shared with him the same scientific interests and ask them to discuss recent advances in their own fields, just as Giovanni have liked to do”. Since Giovanni’s friends sent many abstracts still influenced by their previous collaboration with him, all the Sessions of the 2018SpPMD reflect both to the research aims of Giovanni Salviati and the traditional topics of the PaduaMuscleDays, that is, basics and applications of physical, molecular and cellular strategies to maintain or recover functions of skeletal muscles. The translational researches summarized in the 2018SpPMD Abstracts are at the appropriate high level to attract approval of Ethical Committees, the interest of International Granting Agencies and approval for publication in top quality, international journals. The abstracts of the March 16, 2018 Padua Muscle Day are listed in this chapter III. All 2018SpPMD Abstracts are indexed at the end of the Chapter IV.
Collapse
Affiliation(s)
- Ugo Carraro
- Laboratory of Translational Myology, Department of Biomedical Sciences, University of Padova.,A&C M-C Foundation for Translational Myology, Padova.,IRCCS Fondazione Ospedale San Camillo, Venezia-Lido, Italy
| |
Collapse
|
98
|
Ardestani A, Maedler K. The Hippo Signaling Pathway in Pancreatic β-Cells: Functions and Regulations. Endocr Rev 2018; 39:21-35. [PMID: 29053790 DOI: 10.1210/er.2017-00167] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/12/2017] [Indexed: 12/17/2022]
Abstract
Hippo signaling is an evolutionarily conserved pathway that critically regulates development and homeostasis of various tissues in response to a wide range of extracellular and intracellular signals. As an emerging important player in many diseases, the Hippo pathway is also involved in the pathophysiology of diabetes on the level of the pancreatic islets. Multiple lines of evidence uncover the importance of Hippo signaling in pancreas development as well as in the regulation of β-cell survival, proliferation, and regeneration. Hippo therefore represents a potential target for therapeutic agents designed to improve β-cell function and survival in diabetes. In this review, we summarize recent data on the regulation of the Hippo signaling pathway in the pancreas/in pancreatic islets, its functions on β-cell homeostasis in physiology and pathophysiology, and its contribution toward diabetes progression. The current knowledge related to general mechanisms of action and the possibility of exploiting the Hippo pathway for therapeutic approaches to block β-cell failure in diabetes is highlighted.
Collapse
Affiliation(s)
- Amin Ardestani
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| |
Collapse
|
99
|
Li CY, Li X, Liu Z, Ni W, Zhang X, Hazi W, Ma Q, Zhang Y, Cao Y, Qi J, Yao Y, Feng L, Wang D, Hou X, Yu S, Liu L, Zhang M, Hu S. Identification and characterization of long non-coding RNA in prenatal and postnatal skeletal muscle of sheep. Genomics 2018; 111:133-141. [PMID: 29366530 DOI: 10.1016/j.ygeno.2018.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/14/2017] [Accepted: 01/15/2018] [Indexed: 11/28/2022]
Abstract
lncRNAs are a class of transcriptional RNA molecules of >200 nucleotides in length. However, the overall expression pattern and function of lncRNAs in sheep muscle is not clear. Here, we identified 1566 lncRNAs and 404 differentially expressed lncRNAs in sheep muscle from prenatal (110 days of fetus) and postnatal (2 to 3 years old of adult sheep) developmental stages by using RNA-seq technology. Several lncRNAs were identified by using RT-PCR and DNA sequencing. The expression levels of several lncRNAs were confirmed by qRT-PCR. We analyzed the effect of lncRNAs that act cis to the target genes. lncRNA targeting genes were involved in signaling pathways associated with growth and development of muscle by GO and KEGG enrichment analysis. Through our study, we provide a comprehensive expression profile of muscle lncRNAs in sheep, which provides valuable resources for further understanding genetic regulation of muscle growth and development from the perspective of lncRNA.
Collapse
Affiliation(s)
- Cun-Yuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhijin Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Xiangyu Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wureli Hazi
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Qiman Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yunfeng Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yang Cao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jiangjiao Qi
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yang Yao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lin Feng
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Dawei Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoxu Hou
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shuting Yu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Li Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Mengdan Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
100
|
Foster CT, Gualdrini F, Treisman R. Mutual dependence of the MRTF-SRF and YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics. Genes Dev 2018; 31:2361-2375. [PMID: 29317486 PMCID: PMC5795783 DOI: 10.1101/gad.304501.117] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
In this study, Foster et al. demonstrate that activation of the MRTF–SRF signaling pathway occurs in cancer-associated fibroblasts (CAFs) and is required for their proinvasive and contractile activity. The investigators also identify shared and specific direct genomic targets for MRTF–SRF and YAP–TEAD and show that MRTF and YAP are independently regulated by cytoskeletal dynamics and that this is the basis for their mutual dependence. Both the MRTF–SRF and the YAP–TEAD transcriptional regulatory networks respond to extracellular signals and mechanical stimuli. We show that the MRTF–SRF pathway is activated in cancer-associated fibroblasts (CAFs). The MRTFs are required in addition to the YAP pathway for CAF contractile and proinvasive properties. We compared MRTF–SRF and YAP–TEAD target gene sets and identified genes directly regulated by one pathway, the other, or both. Nevertheless, the two pathways exhibit mutual dependence. In CAFs, expression of direct MRTF–SRF genomic targets is also dependent on YAP–TEAD activity, and, conversely, YAP–TEAD target gene expression is also dependent on MRTF–SRF signaling. In normal fibroblasts, expression of activated MRTF derivatives activates YAP, while activated YAP derivatives activate MRTF. Cross-talk between the pathways requires recruitment of MRTF and YAP to DNA via their respective DNA-binding partners (SRF and TEAD) and is therefore indirect, arising as a consequence of activation of their target genes. In both CAFs and normal fibroblasts, we found that YAP–TEAD activity is sensitive to MRTF–SRF-induced contractility, while MRTF–SRF signaling responds to YAP–TEAD-dependent TGFβ signaling. Thus, the MRF–SRF and YAP–TEAD pathways interact indirectly through their ability to control cytoskeletal dynamics.
Collapse
Affiliation(s)
- Charles T Foster
- Signalling and Transcription Group, Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Francesco Gualdrini
- Signalling and Transcription Group, Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Richard Treisman
- Signalling and Transcription Group, Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|