51
|
Ben-Zvi T, Yayon A, Gertler A, Monsonego-Ornan E. Suppressors of cytokine signaling (SOCS) 1 and SOCS3 interact with and modulate fibroblast growth factor receptor signaling. J Cell Sci 2006; 119:380-7. [PMID: 16410555 DOI: 10.1242/jcs.02740] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fibroblast growth factor receptor (FGFR) signaling is transduced by the mitogen-activated protein kinase (MAPK) cascade and the signal transducers and activators of transcription (STATs). Suppressors of cytokine signaling (SOCS) proteins are expressed in response to cytokine-inducible stimulation of STAT phosphorylation, acting in a negative-feedback mechanism to hinder the activities of these receptors. However, there are no data concerning the role of SOCS proteins in the regulation of fibroblast growth factor receptor (FGFR) signaling. In the present study, we show that activation of FGFR in chondrocytes induces the expression of SOCS1 and SOCS3 mRNA, and that these proteins are constitutively associated with FGFR3, as demonstrated by co-immunoprecipitation studies. Transfection of cells with FGFR3-GFP and SOCS1-CFP revealed their colocalization, clustered prominently in the perinuclear cytosolic part of the cell. The effect of the interaction between FGFR3 and SOCS1 on receptor activity was investigated in a chondrocytic cell line overexpressing SOCS1. In these cells, STAT1 phosphorylation is repressed, MAPK phosphorylation is elevated and prolonged, and FGFR3 downregulation is attenuated. Expression of osteopontin (OPN), which is directly upregulated by FGF in chondrocytes, was stimulated by lower levels of FGF in cells expressing SOCS1 compared with parental cells. Blocking of MAPK phosphorylation by PD98059 decreased OPN expression in both cell types, but this decrease was more marked in cells expressing SOCS1. The presented results suggest a novel interaction between the SOCS1 and SOCS3 proteins and the FGFR3 signaling pathway.
Collapse
Affiliation(s)
- Tal Ben-Zvi
- Institute of Animal Science, The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | |
Collapse
|
52
|
Ceresa BP, Bahr SJ. rab7 Activity Affects Epidermal Growth Factor:Epidermal Growth Factor Receptor Degradation by Regulating Endocytic Trafficking from the Late Endosome. J Biol Chem 2006; 281:1099-106. [PMID: 16282324 DOI: 10.1074/jbc.m504175200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family. Ligand (epidermal growth factor or EGF) binding to the EGFR results in the coordinated activation and integration of biochemical signaling events to mediate cell growth, migration, and differentiation. One mechanism the cell utilizes to orchestrate these events is ligand-mediated endocytosis through the canonical clathrin-mediated endocytic pathway. Identification of proteins that regulate the intracellular movement of the EGF.EGFR complex is an important first step in dissecting how specificity of EGFR signaling is conferred. We examined the role of the small molecular weight guanine nucleotide-binding protein (G-protein) rab7 as a regulator of the distal stages of the endocytic pathway. Through the transient expression of activating and inactivating mutants of rab7 in HeLa cells, we have determined that rab7 activity directly correlates with the rate of radiolabeled EGF and EGFR degradation. Furthermore, when inhibitory mutants of rab7 are expressed, the internalized EGF.EGFR complex accumulates in high-density endosomes that are characteristic of the late endocytic pathway. Thus, we conclude that rab7 regulates the endocytic trafficking of the EGF.EGFR complex by regulating its lysosomal degradation.
Collapse
Affiliation(s)
- Brian P Ceresa
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, 73190, USA.
| | | |
Collapse
|
53
|
Row P, Clague M, Urbé S. Growth factors induce differential phosphorylation profiles of the Hrs-STAM complex: a common node in signalling networks with signal-specific properties. Biochem J 2005; 389:629-36. [PMID: 15828871 PMCID: PMC1180712 DOI: 10.1042/bj20050067] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) and STAM (signal-transducing adaptor molecule) form a heterodimeric complex that associates with endosomal membranes and is tyrosine-phosphorylated in response to a variety of growth factors including EGF (epidermal growth factor), HGF (hepatocyte growth factor) and PDGF (platelet-derived growth factor). Phosphorylation of the Hrs-STAM complex requires receptor endocytosis. We show that an intact UIM (ubiquitin interaction motif) within Hrs is a conserved requirement for Hrs phosphorylation downstream of both EGF and HGF stimulations. Consistent with this, expression of a dominant-negative form of the E3 ubiquitin ligase, c-Cbl, inhibits EGF- and HGF-dependent Hrs phosphorylation. Despite this conservation, kinase inhibitor profiles using PP1 (4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) and SU6656 indicate that distinct non-receptor tyrosine kinases couple EGF, HGF and PDGF stimulation with the tyrosine phosphorylation of the Hrs-STAM complex. Crucially, analysis with phospho-specific antibodies indicates that these kinases generate a signal-specific, combinatorial phosphorylation profile of the Hrs-STAM complex, with the potential of diversifying tyrosine kinase receptor signalling through a common element.
Collapse
Affiliation(s)
- Paula E. Row
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool L69 3BX, U.K
| | - Michael J. Clague
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool L69 3BX, U.K
| | - Sylvie Urbé
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool L69 3BX, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
54
|
Abstract
Ubiquitin plays a fundamental role not only in proteasome-mediated protein degradation but also in the targeting of membrane proteins for degradation inside the lysosome. Ubiquitination provides a key signal for endosomal sorting of membrane proteins into the MVB (multi-vesicular body), which delivers its cargo to the proteolytic interior of the lysosome. Attachment of single ubiquitin molecules, rather than ubiquitin chains, to one or multiple lysines of the cytoplasmic domains of many growth factor receptors, ion channels and other membrane transporters is sufficient to target these proteins to a complex sorting apparatus on the endosome. This machinery selects ubiquitinated proteins for lysosomal sorting through consecutive interactions with a variety of ubiquitin-binding domains. The major ubiquitin ligase (E3) responsible for ubiquitination in this pathway in yeast is the HECT [homologous to E6-AP (E6-associated protein) C-terminus]-ligase, Rsp5, whereas in mammalian cells the RING (really interesting new gene)-ligase Cbl has been implicated in the down-regulation of several RTKs (receptor tyrosine kinases). Ubiquitinated receptors can be rescued from degradation by the activity of DUBs (deubiquitinating enzymes), which may provide a proofreading mechanism that enhances the fidelity of this sorting and degradation process. DUBs also allow for recycling of the ubiquitin moieties from proteins prior to their final commitment to the MVB and lysosome interior.
Collapse
|
55
|
Haas AK, Fuchs E, Kopajtich R, Barr FA. A GTPase-activating protein controls Rab5 function in endocytic trafficking. Nat Cell Biol 2005; 7:887-93. [PMID: 16086013 DOI: 10.1038/ncb1290] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 06/28/2005] [Indexed: 11/09/2022]
Abstract
Rab-family GTPases are conserved regulators of membrane trafficking that cycle between inactive GDP-bound and activated GTP-bound states. A key determinant of Rab function is the lifetime of the GTP-bound state. As Rabs have a low intrinsic rate of GTP hydrolysis, this process is under the control of GTP-hydrolysis-activating proteins (GAPs). Due to the large number of Rabs and GAPs that are encoded by the human genome, it has proven difficult to assign specific functional relationships to these proteins. Here, we identify a Rab5-specific GAP (RabGAP-5), and show that RN-Tre (previously described as a Rab5 GAP) acts on Rab41. RabGAP-5 overexpression triggers a loss of the Rab5 effector EEA1 from endosomes and blocks endocytic trafficking. By contrast, depletion of RabGAP-5 results in increased endosome size, more endosome-associated EEA1, and disrupts the trafficking of EGF and LAMP1. RabGAP-5 therefore limits the amount of activated Rab5, and thereby regulates trafficking through endosomes.
Collapse
Affiliation(s)
- Alexander K Haas
- Max-Planck Institute of Biochemistry, Department of Cell Biology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
56
|
Tsacoumangos A, Tsacoumango A, Kil SJ, Ma L, Sönnichsen FD, Carlin C. A novel dileucine lysosomal-sorting-signal mediates intracellular EGF-receptor retention independently of protein ubiquitylation. J Cell Sci 2005; 118:3959-71. [PMID: 16105874 DOI: 10.1242/jcs.02527] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the main goals of this study was to understand the relationship between an epidermal growth factor (EGF) receptor dileucine (LL)-motif (679-LL) required for lysosomal sorting and the protein ubiquitin ligase CBL. We show that receptors containing 679-AA (di-alanine) substitutions that are defective for ligand-induced degradation nevertheless bind CBL and undergo reversible protein ubiquitylation similar to wild-type receptors. We also demonstrate that 679-LL but not CBL is required for EGF receptor downregulation by an endosomal membrane protein encoded by human adenoviruses that uncouples internalization from post-endocytic sorting to lysosomes. 679-LL is necessary for endosomal retention as well as degradation by the adenovirus protein, and is also transferable to reporter molecules. Using NMR spectroscopy, we show that peptides with wild-type 679-LL or mutant 679-AA sequences both exhibit alpha-helical structural propensities but that this structure is not stable in water. A similar analysis carried out in hydrophobic media showed that the alpha-helical structure of the wild-type peptide is stabilized by specific interactions mediated by side-chains in both leucine residues. This structure distinguishes 679-LL from other dileucine-based sorting-signals with obligatory amino-terminal acidic residues that are recognized in the form of an extended beta or beta-like conformation. Taken together, these data show that 679-LL is an alpha-helical stabilizing motif that regulates a predominant step during lysosomal sorting, involving intracellular retention under both sub-saturating and saturating conditions.
Collapse
Affiliation(s)
- Amy Tsacoumangos
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | | | | | |
Collapse
|
57
|
Cutillas PR, Biber J, Marks J, Jacob R, Stieger B, Cramer R, Waterfield M, Burlingame AL, Unwin RJ. Proteomic analysis of plasma membrane vesicles isolated from the rat renal cortex. Proteomics 2005; 5:101-12. [PMID: 15593129 DOI: 10.1002/pmic.200400886] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.
Collapse
Affiliation(s)
- Pedro R Cutillas
- Ludwig Institute for Cancer Research, University College London Branch, London W1W 7BS, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Disbrow GL, Hanover JA, Schlegel R. Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J Virol 2005; 79:5839-46. [PMID: 15827198 PMCID: PMC1082759 DOI: 10.1128/jvi.79.9.5839-5846.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The human papillomavirus type 16 (HPV-16) E5 protein is a small, hydrophobic polypeptide that is expressed in virus-infected keratinocytes and alters receptor signaling pathways, apoptotic responses, and endosomal pH. Despite its ability to inhibit endosomal acidification, the HPV-16 E5 protein is found predominantly in the endoplasmic reticulum (ER), suggesting that its effect may be indirect and perhaps global. To determine whether E5 alters the pHs of additional intracellular compartments, we transduced human keratinocytes with a codon-optimized E5 vector and then quantified endosomal and trans-Golgi pHs using sensitive, compartment-specific, ratiometric pHluorin constructs. E5 protein increased endosomal pH from 5.9 to 6.9 but did not affect the normal trans-Golgi pH of 6.3. Confirming the lack of alteration in trans-Golgi pH, we observed no alterations in the acidification-dependent processing of the proH3 protein. C-terminal deletions of E5, which retained normal expression and localization in the ER, were defective for endosomal alkalization. Thus, E5 does not uniformly alkalinize intracellular compartments, and its C-terminal 10 amino acids appear to mediate interactions with critical ER targets that modulate proton pump function and/or localization.
Collapse
Affiliation(s)
- Gary L Disbrow
- Department of Pathology, Georgetown University Medical School, Basic Science Building, Room 113, 3900 Reservoir Rd., NW, Washington, DC 20057, USA
| | | | | |
Collapse
|
59
|
Abstract
The receptor for hepatocyte growth factor (HGF), Met, controls a programme of invasive growth that combines proliferation with various moto- and morphogenetic processes. This process is important for development and organ regeneration, but dysregulation in transformed tissues can contribute to cancer progression and metastasis. Acute stimulation of tissue culture cells with HGF leads to Met downregulation via degradation through an endocytic mechanism that also requires proteasome activity. Perturbation of Met trafficking on the endocytic pathway, either at the level of the internalisation step or during sorting at the early endosome, leads to altered signalling outputs. Ubiquitination of Met through the E3-ligase Cbl is required for receptor downregulation, and a mutant receptor defective in Cbl binding is able to transform cells. We discuss the hypothesis that some naturally occurring Met mutants implicated in cancer may transform cells owing to defects in their trafficking along the endosomal degradation pathway.
Collapse
Affiliation(s)
- D E Hammond
- Physiological Laboratory, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
60
|
Simpson JC, Griffiths G, Wessling-Resnick M, Fransen JAM, Bennett H, Jones AT. A role for the small GTPase Rab21 in the early endocytic pathway. J Cell Sci 2004; 117:6297-311. [PMID: 15561770 DOI: 10.1242/jcs.01560] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rab proteins comprise a family of monomeric GTPases that control cellular membrane traffic. Rab21 is a poorly characterised member with no known function. Human Rab21 cDNA from K562 cells was subcloned into GFP expression vectors to generate Rab21 and Rab21 mutants defective in either GTP hydrolysis (Rab21 Q78L) or binding (Rab21 T33N) for transfection studies in HeLa cells. Confocal fluorescence microscopy and ultrastructural studies revealed Rab21 to be predominantly localised to the early endocytic pathway, on vesicles containing earlyendosomal antigen 1 EEA1, transferrin receptor and internalised ligands. EEA1 was localised to enlarged endosomes in Rab21 wild-type expressing cells but the GTP hydrolysis and GDP binding mutants had unique phenotypes labelling tubular reticular structures and the trans-Golgi network, respectively. Early endosome localisation for Rab21 was confirmed in a hepatoma cell line that allowed analysis of the subcellular distribution of the endogenous protein. Comparison of the localisation of Rab21 with other Rabs revealed extensive colocalisation with early endocytic variants Rab4, Rab5, Rab17 and Rab22 but much less overlap with those associated with late endosomes, recycling endosomes and the early secretory pathway. Cells expressing Rab21 T33N had defects in endocytosis of transferrin and epidermal growth factor and failed to effectively deliver the latter ligand to late endosomes and lysosomes for degradation. Collectively, our data provide the first characterisation of Rab21 function in early endosome dynamics.
Collapse
Affiliation(s)
- Jeremy C Simpson
- Cell Biology and Biophysics Programme, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
During recent years, alterations in proteins of the endocytic pathway have been associated with tumors. Disrupted regulation of the endocytic pathway is a relatively unstudied mechanism of tumorigenesis, which can concomitantly disrupt several different signaling pathways to affect growth, differentiation and survival. Several endocytic proteins have been identified, either as part of tumor-associated translocations or to have the ability to transform cells. Here, we summarize the information known about huntingtin interacting protein 1 (HIP1), an endocytic protein with transforming properties that is involved in a cancer-causing translocation and which is overexpressed in a variety of human cancers. We describe the known normal functions of HIP1 in endocytosis and receptor trafficking, the evidence for its role as an oncoprotein and how HIP1 might be altered to promote tumorigenesis.
Collapse
Affiliation(s)
- Teresa S Hyun
- Department of Internal Medicine and Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
62
|
Hori K, Fostier M, Ito M, Fuwa TJ, Go MJ, Okano H, Baron M, Matsuno K. DrosophilaDeltex mediates Suppressor of Hairless-independent and late-endosomal activation of Notch signaling. Development 2004; 131:5527-37. [PMID: 15496440 DOI: 10.1242/dev.01448] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Notch (N) signaling is an evolutionarily conserved mechanism that regulates many cell-fate decisions. deltex (dx) encodes an E3-ubiquitin ligase that binds to the intracellular domain of N and positively regulates N signaling. However, the precise mechanism of Dx action is unknown. Here, we found that Dx was required and sufficient to activate the expression of gene targets of the canonical Su(H)-dependent N signaling pathway. Although Dx required N and a cis-acting element that overlaps with the Su(H)-binding site, Dx activated a target enhancer of N signaling, the dorsoventral compartment boundary enhancer of vestigial (vgBE), in a manner that was independent of the Delta (Dl)/Serrate (Ser) ligands- or Su(H). Dx caused N to be moved from the apical cell surface into the late-endosome, where it accumulated stably and co-localized with Dx. Consistent with this, the dx gene was required for the presence of N in the endocytic vesicles. Finally, blocking the N transportation from the plasma membrane to the late-endosome by a dominant-negative form of Rab5 inhibited the Dx-mediated activation of N signaling, suggesting that the accumulation of N in the late-endosome was required for the Dx-mediated Su(H)-independent N signaling.
Collapse
Affiliation(s)
- Kazuya Hori
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Plant membrane trafficking shares many features with other eukaryotic organisms, including the machinery for vesicle formation and fusion. However, the plant endomembrane system lacks an ER-Golgi intermediate compartment, has numerous Golgi stacks and several types of vacuoles, and forms a transient compartment during cell division. ER-Golgi trafficking involves bulk flow and efficient recycling of H/KDEL-bearing proteins. Sorting in the Golgi stacks separates bulk flow to the plasma membrane from receptor-mediated trafficking to the lytic vacuole. Cargo for the protein storage vacuole is delivered from the endoplasmic reticulum (ER), cis-Golgi, and trans-Golgi. Endocytosis includes recycling of plasma membrane proteins from early endosomes. Late endosomes appear identical with the multivesiculate prevacuolar compartment that lies on the Golgi-vacuole trafficking pathway. In dividing cells, homotypic fusion of Golgi-derived vesicles forms the cell plate, which expands laterally by targeted vesicle fusion at its margin, eventually fusing with the plasma membrane.
Collapse
Affiliation(s)
- Gerd Jurgens
- ZMBP, Entwicklungsgenetik, Universitat Tubingen, 72076 Tubingen, Germany.
| |
Collapse
|
64
|
Smythe E. Cell biology: light on pits. Nature 2004; 431:641-2. [PMID: 15470414 DOI: 10.1038/431641a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
65
|
Choi JH, Hong WP, Kim MJ, Kim JH, Ryu SH, Suh PG. Sorting nexin 16 regulates EGF receptor trafficking by phosphatidylinositol-3-phosphate interaction with the Phox domain. J Cell Sci 2004; 117:4209-18. [PMID: 15292396 DOI: 10.1242/jcs.01233] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sorting nexins (SNXs) containing the Phox (PX) domain are implicated in the regulation of membrane trafficking and sorting processes of epithelial growth factor receptor (EGFR). In this study, we investigated whether SNX16 regulates EGF-induced cell signaling by regulating EGFR trafficking. SNX16 is localized in early and recycling endosomes via its PX domain. Mutation of the PX domain disrupted the association between SNX16 and phosphatidylinositol 3-phosphate [PtdIns(3)P]. Treatment with wortmannin, a PtdIns 3-kinase inhibitor, abolished the endosomal localization of SNX16, suggesting that the intracellular localization of SNX16 is regulated by PtdIns 3-kinase activity. SNX16 was found to associate with EGFR after stimulation with EGF in COS-7 cells. Moreover, overexpression of SNX16 increased the rate of EGF-induced EGFR degradation and inhibited the EGF-induced up-regulation of ERK and serum response element (SRE). In addition, mutation in the PX domain significantly blocked the inhibitory effect of SNX16 on EGF-induced activation of ERK and SRE. From these results, we suggest that SNX16 directs the sorting of EGFR to the endosomal compartment and thus regulates EGF-induced cell signaling.
Collapse
Affiliation(s)
- Jang Hyun Choi
- Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hojadong, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
66
|
Mitchell H, Choudhury A, Pagano RE, Leof EB. Ligand-dependent and -independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol Biol Cell 2004; 15:4166-78. [PMID: 15229286 PMCID: PMC515349 DOI: 10.1091/mbc.e04-03-0245] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteins in the transforming growth factor-beta (TGF-beta) family recognize transmembrane serine/threonine kinases known as type I and type II receptors. Binding of TGF-beta to receptors results in receptor down-regulation and signaling. Whereas previous work has focused on activities controlling TGF-beta signaling, more recent studies have begun to address the trafficking properties of TGF-beta receptors. In this report, it is shown that receptors undergo recycling both in the presence and absence of ligand activation, with the rates of internalization and recycling being unaffected by ligand binding. Recycling occurs as receptors are most likely internalized through clathrin-coated pits, and then returned to the plasma membrane via a rab11-dependent, rab4-independent mechanism. Together, the results suggest a mechanism wherein activated TGF-beta receptors are directed to a distinct endocytic pathway for down-regulation and clathrin-dependent degradation after one or more rounds of recycling.
Collapse
Affiliation(s)
- Hugh Mitchell
- Thoracic Diseases Research Unit, Department of Biochemistry and Molecular Biology and Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
67
|
Dinneen JL, Ceresa BP. Expression of dominant negative rab5 in HeLa cells regulates endocytic trafficking distal from the plasma membrane. Exp Cell Res 2004; 294:509-22. [PMID: 15023538 DOI: 10.1016/j.yexcr.2003.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 10/24/2003] [Indexed: 12/27/2022]
Abstract
Ligand-mediated endocytosis is an important regulatory mechanism of epidermal growth factor (EGF) receptor (EGFR) signal transduction. Coordinated EGFR internalization and degradation function to regulate the spatial and temporal components of EGFR-effector interactions. In an effort to better understand the molecular mechanisms that control these events, we examined the role of rab5 in the endocytic trafficking of the EGFR. Rab5 is a 25-kDa guanine nucleotide binding protein that has previously been shown to be involved in the early stages of endocytic trafficking. Using adenovirally expressed dominant negative and constitutively active rab5 [rab5(S34N) and rab5(Q79L)] in cells with endogenous EGFRs, we have found that the guanine nucleotide binding state of rab5 has no bearing on the rate of EGFR endocytosis. However, expression of dominant negative rab5 affects downstream endocytic trafficking by slowing the ligand-induced disappearance of total cellular EGFR. Using confocal microscopy to examine EGF/EGFR and rab5 localization indicates that the activity of rab5 governs whether internalized EGF/EGFR and rab5 co-localize. Transferrin, which internalizes via a constitutively internalized cell surface receptor, co-sediments with rab5(WT), but not rab5(S34N) on sucrose gradients. Taken together, these data are consistent with rab5 functioning to regulate intracellular endocytic trafficking distal from the plasma membrane.
Collapse
Affiliation(s)
- Jennifer L Dinneen
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | |
Collapse
|
68
|
Murdaca J, Treins C, Monthouël-Kartmann MN, Pontier-Bres R, Kumar S, Van Obberghen E, Giorgetti-Peraldi S. Grb10 prevents Nedd4-mediated vascular endothelial growth factor receptor-2 degradation. J Biol Chem 2004; 279:26754-61. [PMID: 15060076 DOI: 10.1074/jbc.m311802200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
One of the cellular mechanisms used to prevent continuous and enhanced activation in response to growth factors is the internalization and degradation of their receptors. Little is known about the molecular mechanisms involved in vascular endothelial growth factor receptor-2 (VEGF-R2) degradation. In a previous work, we have shown that the adaptor protein Grb10 is a positive regulator of the VEGF signaling pathway. Indeed, VEGF stimulates Grb10 expression, and Grb10 overexpression induces an increase in the amount and the tyrosine phosphorylation of VEGF-R2. In the present manuscript, we demonstrate that Grb10 stimulates VEGF-R2 expression by inhibiting the Nedd4-mediated VEGF-R2 degradation. First, we show that proteasome inhibition by MG132 induces an increase in VEGF-R2 amount, and that VEGF-R2 is ubiquitinated in response to VEGF. Expression of Nedd4, a HECT domain-containing ubiquitin ligase, induces the disappearance of VEGF-R2 in cells, suggesting that Nedd4 is involved in VEGF-R2 degradation. To determine whether Nedd4 directly ubiquitinates VEGF-R2, we expressed a ubiquitin ligase-deficient mutant Nedd4C854S. In the presence of Nedd4C854S, VEGF-R2 is expressed and ubiquitinated. These results suggest that VEGF-R2 is ubiquitinated but that Nedd4 is not involved in this process. Finally, we show that Grb10 constitutively associates with Nedd4. Co-expression of Nedd4 and Grb10 restores the expression of VEGF-R2, suggesting that Grb10 inhibits the Nedd4-mediated degradation of VEGF-R2. In this study, we show that Grb10 acts as a positive regulator in VEGF-R2 signaling and protects VEGF-R2 from degradation by interacting with Nedd4, a component of the endocytic machinery.
Collapse
Affiliation(s)
- Joseph Murdaca
- INSERM U145, Institut Federatif de Recherche 50, Faculte de Medecine, 06107 Nice Cedex 2, France
| | | | | | | | | | | | | |
Collapse
|
69
|
|
70
|
Cho JY, Guo C, Torello M, Lunstrum GP, Iwata T, Deng C, Horton WA. Defective lysosomal targeting of activated fibroblast growth factor receptor 3 in achondroplasia. Proc Natl Acad Sci U S A 2003; 101:609-14. [PMID: 14699054 PMCID: PMC327195 DOI: 10.1073/pnas.2237184100] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mutations of fibroblast growth factor receptor 3 (FGFR3) are responsible for achondroplasia (ACH) and related dwarfing conditions in humans. The pathogenesis involves constitutive activation of FGFR3, which inhibits proliferation and differentiation of growth plate chondrocytes. Here we report that activating mutations in FGFR3 increase the stability of the receptor. Our results suggest that the mutations disrupt c-Cbl-mediated ubiquitination that serves as a targeting signal for lysosomal degradation and termination of receptor signaling. The defect allows diversion of actively signaling receptors from lysosomes to a recycling pathway where their survival is prolonged, and, as a result, their signaling capacity is increased. The lysosomal targeting defect is additive to other mechanisms proposed to explain the pathogenesis of ACH.
Collapse
Affiliation(s)
- Jay Y Cho
- Research Center, Shriners Hospital for Children, and Departmentof Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Oksvold MP, Thien CBF, Widerberg J, Chantry A, Huitfeldt HS, Langdon WY. Serine mutations that abrogate ligand-induced ubiquitination and internalization of the EGF receptor do not affect c-Cbl association with the receptor. Oncogene 2003; 22:8509-18. [PMID: 14627991 DOI: 10.1038/sj.onc.1207117] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, we examined EGF-induced internalization, degradation and trafficking of the epidermal growth factor receptor (EGFR) mutated at serines 1046, 1047, 1057 and 1142 located in its cytoplasmic carboxy-terminal region. We found the serine-mutated EGFR to be inhibited in EGF-induced internalization and degradation in NIH3T3 cells. We therefore tested the hypothesis that these mutations affect ligand-induced c-Cbl association with the receptor, leading to inhibited receptor ubiquitination. EGF was unable to induce ubiquitination of the serine-mutated EGFR, yet EGF-induced phosphorylation of the c-Cbl-binding site at tyrosine 1045, and c-Cbl-EGFR association, was unaffected. To compare the relevance of these serine residues with tyrosine 1045 in their regulation of c-Cbl binding and receptor ubiquitination, we analysed an EGFR mutated at tyrosine 1045 (Y1045F). EGF-induced c-Cbl-EGFR binding was partially inhibited, and receptor ubiquitination was abrogated in cells expressing Y1045F-EGFR. In contrast, ligand-induced internalization and degradation of the Y1045F mutant was similar to that of wild-type EGFR. Together, our data indicate that the serine residues and tyrosine 1045 are essential for EGF-induced receptor ubiquitination, but only the serine residues are critical for EGFR internalization and degradation.
Collapse
Affiliation(s)
- Morten P Oksvold
- Department of Pathology, University of Western Australia, Queen Elizabeth II Medical Center, Nedlands, Western Australia 6009, Australia.
| | | | | | | | | | | |
Collapse
|
72
|
Wang Y, Pennock SD, Chen X, Kazlauskas A, Wang Z. Platelet-derived growth factor receptor-mediated signal transduction from endosomes. J Biol Chem 2003; 279:8038-46. [PMID: 14660565 DOI: 10.1074/jbc.m311494200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although accumulated evidence supports the concept of endosomal signaling of receptor tyrosine kinases, most results are generated from studies of epidermal growth factor receptor (EGFR). It is not clear whether the concept of endosomal signaling could be generally applied to the other receptor tyrosine kinases. For example, platelet-derived growth factor receptor (PDGFR) is very similar to EGFR in terms of both signaling and trafficking; however, little is known about the endosomal signaling of PDGFR. In this research, we applied the same approaches from our recent studies regarding EGFR endosomal signaling to investigate the endosomal signaling of PDGFR. We showed in this communication that we are able to establish a system that allows the specific activation of endosome-associated PDGFR without the activation of the plasma membrane-associated PDGFR and without disrupting the overall endocytosis pathway. By using this system, we showed that endosomal activation of PDGFR recruits various signaling proteins including Grb2, SHC, phospholipase C-gamma1, and the p85alpha subunit of phosphatidylinositol 3-kinase into endosomes and forms signaling complexes with PDGFR. We also showed that endosomal PDGFR signaling is sufficient to activate the major signaling pathways implicated in cell proliferation and survival. Moreover, we demonstrate that endosomal PDGFR signaling is sufficient to generate physiological output including cell proliferation and cell survival.
Collapse
Affiliation(s)
- Yi Wang
- Department of Cell Biology and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
73
|
Knowlton MN, Chan BMC, Kelly GM. The zebrafish band 4.1 member Mir is involved in cell movements associated with gastrulation. Dev Biol 2003; 264:407-29. [PMID: 14651927 DOI: 10.1016/j.ydbio.2003.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cellular processes rely on dynamic events occurring between the cortical cytoskeleton and plasma membrane. Members of the Band 4.1 superfamily, which are best known for their ability to tether the cytoskeleton to the plasma membrane, play prominent structural and regulatory roles that influence cell-cell and cell-substrate interactions, endo- and exocytosis, cell polarity, migration, proliferation, and differentiation. We have identified a new member of the zebrafish Band 4.1 superfamily, which is the homolog of human myosin regulatory light chain interacting protein (MIR), and have examined its role in embryonic development. Zebrafish Mir contains the conserved amino-terminal plasma membrane-binding FERM (Band 4.1/ezrin/radixin/moesin) domain as well as other putative protein-protein interacting domains, including a RING finger. Overall, zebrafish Mir is 71% identical to human MIR located at chromosome 6p23-p22.3, and maps on linkage group 19 to a region of synteny with human chromosome 6. In situ hybridization and RT-PCR revealed that mir is expressed maternally and ubiquitously throughout development. Blocking Mir translation using a mir-specific, morpholino-based, knock-down strategy or expressing Mir constructs lacking the RING finger domain disrupts gastrulation and leads to subsequent trunk and tail defects. In severe cases, morphants exogastrulate. The synergistic effect seen when two mir-specific morpholinos are used in conjunction reflects the specific knock-down of mir. In addition, morphant phenotypes induced by mir-specific morpholinos are rescued by overexpression of the full-length Mir. In situ hybridization analysis with mesodermal- and neural-specific markers shows that morphants exhibit a delay in cell movements associated with gastrulation, epiboly, convergence, and extension. A yeast two-hybrid analysis was performed to identify binding partners that may participate with Mir during gastrulation, and Annexin V, a calcium channel protein, was isolated. At early developmental stages, annexin V transcripts colocalize with mir, but after gastrulation, annexin V mRNA becomes localized to the distal tail region and an area in the olfactory placode. At the protein level, Mir colocalizes with Annexin V when expressed in COS cells. Together, these results indicate that Mir is essential for embryonic development and that its role in early embryonic development likely involves calcium-dependent mechanisms essential during the extensive cell movements associated with gastrulation.
Collapse
Affiliation(s)
- Michelle N Knowlton
- Department of Biology, Molecular Genetics Unit, University of Western Ontario, London, ON, Canada N6A 5B7
| | | | | |
Collapse
|
74
|
Tardif MR, Tremblay MJ. Presence of host ICAM-1 in human immunodeficiency virus type 1 virions increases productive infection of CD4+ T lymphocytes by favoring cytosolic delivery of viral material. J Virol 2003; 77:12299-309. [PMID: 14581566 PMCID: PMC254246 DOI: 10.1128/jvi.77.22.12299-12309.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although there is now convincing evidence that the infectivity of human immunodeficiency virus type 1 (HIV-1) is increased by incorporation of host intercellular adhesion molecule 1 (ICAM-1) in budding virions, the exact mechanism(s) through which ICAM-1 can so significantly affect HIV-1 biology remains obscure. To address this question, we focused our attention on the most proximal events in the virus life cycle. We made comparative analyses to estimate attachment and internalization of isogenic HIV-1 particles either lacking or bearing host-derived ICAM-1. Using attachment-and-entry assays and confocal fluorescence microscopy, we found that virus binding and uptake were both markedly enhanced by insertion of ICAM-1 within the virus envelope when PM1 lymphoid cells and primary human cells (i.e., peripheral blood lymphocytes and purified CD4(+) T cells) were used as targets. Moreover, ICAM-1-bearing virions entered cells with faster uptake kinetics than viruses devoid of ICAM-1. Experiments conducted with fully competent viruses further confirmed the positive effect of virion-anchored host ICAM-1 on HIV-1 replication. Interestingly, subcellular-fractionation assays revealed that ICAM-1 incorporation modifies the HIV-1 entry route by increasing the level of viral material released in the cytosol, a process of internalization known to be mediated mainly by pH-independent membrane fusion and to result in productive infection. A virion-based fusion assay confirmed that the acquisition of ICAM-1 increases the efficiency of productive HIV-1 entry in primary CD4(+) T lymphocytes. These observations provide new insights into how interactions other than those with gp120 and CD4-coreceptor complex can modulate the process of productive HIV-1 infection in CD4(+) T lymphocytes, a cell target highly relevant to HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Mélanie R Tardif
- Research Center in Infectious Diseases, CHUL Research Center, Quebec, Canada
| | | |
Collapse
|
75
|
Crimeen-Irwin B, Ellis S, Christiansen D, Ludford-Menting MJ, Milland J, Lanteri M, Loveland BE, Gerlier D, Russell SM. Ligand binding determines whether CD46 is internalized by clathrin-coated pits or macropinocytosis. J Biol Chem 2003; 278:46927-37. [PMID: 12958316 DOI: 10.1074/jbc.m308261200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD46 is a ubiquitous human cell surface receptor for the complement components C3b and C4b and for various pathogens, including the measles virus and human herpes virus 6. Ligand binding to CD46 affects (i) protection of autologous cells from complement attack by breakdown of complement components, (ii) intracellular signals that affect the regulation of immune cell function, (iii) antigen presentation, and (iv) down-regulation of cell surface CD46. Recent evidence indicates that CD46 signaling can link innate and acquired immune function. The molecular mechanisms for these processes and the importance of intracellular trafficking of the receptor have not yet been elucidated. We demonstrate here that, in nonlymphoid cells, CD46 is constitutively internalized via clathrin-coated pits, traffics to multivesicular bodies, and is recycled to the cell surface. However, cross-linking of CD46 at the cell surface, by either multivalent antibody or by measles virus, induces pseudopodia that engulf the ligand in a process similar to macropinocytosis, and leads to the degradation of cell surface CD46. Thus, we have elucidated two pathways for CD46 internalization, which are regulated by the valence of cross-linking of CD46 and which utilize either clathrin-coated pits or pseudopodial extension. This has important implications for CD46 signaling, antigen presentation, CD46 down-regulation, and engulfment of pathogens.
Collapse
Affiliation(s)
- Blessing Crimeen-Irwin
- Peter MacCallum Cancer Centre, Trescowthick Research Laboratories, St. Andrew's Place, East Melbourne, Victoria 3002, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Nienaber JJ, Tachibana H, Naga Prasad SV, Esposito G, Wu D, Mao L, Rockman HA. Inhibition of receptor-localized PI3K preserves cardiac beta-adrenergic receptor function and ameliorates pressure overload heart failure. J Clin Invest 2003; 112:1067-79. [PMID: 14523044 PMCID: PMC198526 DOI: 10.1172/jci18213] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
beta-Adrenergic receptor (betaAR) downregulation and desensitization are hallmarks of the failing heart. However, whether abnormalities in betaAR function are mechanistically linked to the cause of heart failure is not known. We hypothesized that downregulation of cardiac betaARs can be prevented through inhibition of PI3K activity within the receptor complex, because PI3K is necessary for betaAR internalization. Here we show that in genetically modified mice, disrupting the recruitment of PI3K to agonist-activated betaARs in vivo prevents receptor downregulation in response to chronic catecholamine administration and ameliorates the development of heart failure with pressure overload. Disruption of PI3K/betaAR colocalization is required to preserve betaAR signaling, since deletion of a single PI3K isoform (PI3Kgamma knockout) is insufficient to prevent the recruitment of other PI3K isoforms and subsequent betaAR downregulation with catecholamine stress. These data demonstrate a specific role for receptor-localized PI3K in the regulation of betaAR turnover and show that abnormalities in betaAR function are associated with the development of heart failure. Thus, a strategy that blocks the membrane translocation of PI3K and leads to the inhibition of betaAR-localized PI3K activity represents a novel therapeutic approach to restore normal betaAR signaling and preserve cardiac function in the pressure overloaded failing heart.
Collapse
Affiliation(s)
- Jeffrey J Nienaber
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Wu H, Windmiller DA, Wang L, Backer JM. YXXM motifs in the PDGF-beta receptor serve dual roles as phosphoinositide 3-kinase binding motifs and tyrosine-based endocytic sorting signals. J Biol Chem 2003; 278:40425-8. [PMID: 12941951 DOI: 10.1074/jbc.c300225200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositide 3-kinases (PI 3-kinases) are important regulators of endocytic trafficking. Previous studies have shown that mutant human platelet-derived growth factor-beta receptors (PDGFR), which contain Phe in place of Tyr at the two p85/p110 PI 3-kinase binding sites (PDGFR-F/F), are defective for both p85 binding and ligand-stimulated degradation. This suggested that p85/p110 regulates PDGFR trafficking. However, more recent work has identified hVPS34, and not p85/p110, as the major PI 3-kinase regulating the movement of receptors through the endosomal system. To reconcile this discrepancy, we hypothesized that YXXM motifs in the PDGFR might play a second role as Tyr-based lysosomal sorting motifs (YXXPhi). To test this, we replaced both YXXM motifs with a motif from LAMP-1, YQTI. This mutant PDGFR (PDGFR-YQTI) still underwent PDGF-stimulated autophosphorylation but did not bind p85. In CHO cells, both wild-type and YQTI receptors showed PDGF-stimulated turnover, whereas F/F receptors did not. In addition, uptake and degradation of cell surface-labeled YXXM and YQTI receptors was fast relative to F/F receptors. We also constructed chimeras containing extracellular and membrane-spanning domains from CD25 (Tac) and cytoplasmic tails containing the YQTI motif, two YXXM motifs, or two mutant FXXM motifs. The YXXM and YQTI chimeras mediated lysosomal delivery of fluorescein isothiocyanate-labeled anti-CD25 antibodies, whereas the F/F chimera was defective. Thus, YQTI motifs can target PDGFR for degradation in the absence of p85/p110 binding, and the p85/p110 binding motifs from PDGFR are sufficient to target Tac chimeras to the lysosome. These data suggest that the YXXM motifs in the PDGFR serve two distinct functions: PI 3-kinase recruitment and lysosomal targeting.
Collapse
Affiliation(s)
- Haiyan Wu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
78
|
Hilgendorf A, Lindberg J, Ruzsics Z, Höning S, Elsing A, Löfqvist M, Engelmann H, Burgert HG. Two distinct transport motifs in the adenovirus E3/10.4-14.5 proteins act in concert to down-modulate apoptosis receptors and the epidermal growth factor receptor. J Biol Chem 2003; 278:51872-84. [PMID: 14506242 DOI: 10.1074/jbc.m310038200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenovirus (Ad) early transcription unit E3 encodes immunosubversive functions. The E3 transmembrane proteins 10.4 and 14.5 form a complex that down-regulates the epidermal growth factor receptor and apoptosis receptors from the cell surface by diverting them to endosomes/lysosomes for degradation. The latter process protects infected cells from ligand-induced apoptosis. The mechanism by which 10.4-14.5 mediate re-routing remains elusive. We examined the role of putative YXX Phi and dileucine (LL) transport motifs within Ad2 10.4-14.5 for target protein modulation. By generating stable E3 transfectants expressing 10.4-14.5 proteins with alanine substitutions in these motifs, we show that 3 of the 5 motifs are essential for functional activity. Whereas tyrosine 74 in 14.5 appears to be important for efficient 10.4-14.5 interaction, the 122YXX Phi motif in 14.5 and the dileucine motif Leu 87-Leu88 in 10.4 constitute genuine transport motifs: disruption of either motif abolished binding to the cellular adaptor proteins AP-1 and AP-2, as shown by surface plasmon resonance spectroscopy, and caused missorting, dramatically altering cell surface appearance and the intracellular location of viral proteins. Fluorescence-activated cell sorter analysis and immunofluorescence data provide evidence that Tyr122 in 14.5 is essential for rapid endocytosis of the 10.4-14.5 complex, whereas the 10.4LL motif acts down-stream and protects 10.4-14.5 from extensive degradation by rerouting it into a recycling pathway. Infection of primary cells with adenoviruses carrying the relevant point mutations confirmed the crucial role of these transport motifs for down-regulation of Fas, TRAIL-R1, TRAIL-R2, and epidermal growth factor receptor. Thus, two distinct transport motifs present in two proteins synergize for efficient target removal and immune evasion.
Collapse
Affiliation(s)
- Annette Hilgendorf
- Gene Centre of the Ludwig-Maximilians-University, Department of Virology, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Barbieri MA, Kong C, Chen PI, Horazdovsky BF, Stahl PD. The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis. J Biol Chem 2003; 278:32027-36. [PMID: 12783862 DOI: 10.1074/jbc.m304324200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.
Collapse
Affiliation(s)
- M Alejandro Barbieri
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110-7463, USA
| | | | | | | | | |
Collapse
|
80
|
Guy GR, Wong ESM, Yusoff P, Chandramouli S, Lo TL, Lim J, Fong CW. Sprouty: how does the branch manager work? J Cell Sci 2003; 116:3061-8. [PMID: 12829736 DOI: 10.1242/jcs.00652] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the discovery of the prototypical Sprouty (Spry) protein in Drosophila, there has been an effort to determine how these novel modulators of the Ras/MAP-kinase pathway function. A clue to their mechanism of action comes from the several highly conserved sequences within all the currently known Spry isoforms: an approximately 110-residue cysteine-rich sequence in the C-terminal half that directs Spry proteins to a concentration of signaling proteins at the plasma membrane; a small motif surrounding a tyrosine residue (Y55 in human Spry2) that is responsible for interaction with other proteins. In cultured mammalian cells, hSpry2 inhibits epidermal growth factor receptor (EGFR) endocytosis and subsequently sustains the activation of MAP kinase but negatively regulates the same pathway following stimulation of fibroblast growth factor receptors (FGFRs). Current evidence indicates that Cbl is a key protein that interacts directly with Spry2 following activation of receptor tyrosine kinases (RTKs). It appears to be the ability of Cbl to interact as an E3 ubiquitin ligase on specific target proteins and as a docking protein in other contexts that dictates the differential effects Spry2 has on the Ras/MAP-kinase pathway following EGFR and FGFR activation.
Collapse
Affiliation(s)
- Graeme R Guy
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117 609, Republic of Singapore.
| | | | | | | | | | | | | |
Collapse
|
81
|
Pennock S, Wang Z. Stimulation of cell proliferation by endosomal epidermal growth factor receptor as revealed through two distinct phases of signaling. Mol Cell Biol 2003; 23:5803-15. [PMID: 12897150 PMCID: PMC166318 DOI: 10.1128/mcb.23.16.5803-5815.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strong evidence indicates that endosome-localized epidermal growth factor receptor (EGFR) plays an important role in cell signaling. However, elimination of endosomal signaling does not attenuate EGF-induced physiological outcomes, arguing against physiological relevance. Recently we established a system to specifically activate endosome-associated EGFR in the absence of any plasma membrane activation of EGFR and showed that endosomal EGFR signaling is sufficient to support cell survival. However, this pure endosomal signaling of EGFR does not stimulate cell proliferation, because EGFR only remained activated for less than 2 h following its stimulation at endosomes, while DNA synthesis generally requires growth factor exposure for 8 h or more. Here we report that the prolonged requirement for EGF to stimulate epithelial cell proliferation can be substituted for with two short pulses of EGF. By combining the two short pulses of EGF stimulation with our previously established method to generate endosomal EGFR signaling, we are able to generate two pulses of endosomal EGFR signaling. In this way, we demonstrated that two pulses of endosomal EGFR signaling are sufficient to stimulate cell proliferation. The first pulse of EGFR signaling induces exit from quiescence into G(1) phase and appears to render cells responsive to subsequent mitogenic stimulus. This second pulse, required several hours later, drives cells through the restriction point of late G(1) and into S phase. We further showed that the two pulses of endosomal EGFR signaling engaged cell cycle machinery the same way as the two pulses of standard EGFR signaling. Moreover, two pulses of endosomal EGFR signaling stimulated downstream signaling cascades in a similar way to the two pulses of standard EGFR activation. The data therefore demonstrate that signals transduced from internalized EGFR, with or without a contribution from the plasma membrane, fully satisfy the physiological requirements for S-phase entry.
Collapse
Affiliation(s)
- Steven Pennock
- Department of Cell Biology and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
82
|
Tanzi GO, Piefer AJ, Bates P. Equine infectious anemia virus utilizes host vesicular protein sorting machinery during particle release. J Virol 2003; 77:8440-7. [PMID: 12857913 PMCID: PMC165230 DOI: 10.1128/jvi.77.15.8440-8447.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A final step in retrovirus assembly, particle release from the cell, is modulated by a small motif in the Gag protein known as a late domain. Recently, human immunodeficiency virus type 1 (HIV-1) and Moloney murine leukemia virus (M-MuLV) were shown to require components of the cellular vacuolar protein sorting (VPS) machinery for efficient viral release. HIV-1 interacts with the VPS pathway via an association of HIV-1 Gag with TSG101, a component of the cellular complexes involved in VPS. Equine infectious anemia virus (EIAV) is unique among enveloped viruses studied to date because it utilizes a novel motif, YPDL in Gag, as a late domain. Our analysis of EIAV assembly demonstrates that EIAV Gag release is blocked by inhibition of the VPS pathway. However, in contrast to HIV-1, EIAV Gag release is insensitive to TSG101 depletion and EIAV particles do not contain significant levels of TSG101. Finally, we demonstrate that fusing EIAV Gag directly with another cellular component of the VPS machinery, VPS28, can restore efficient release of an EIAV Gag late-domain mutant. These results provide evidence that retroviruses can interact with the cellular VPS machinery in several different ways to accomplish particle release.
Collapse
Affiliation(s)
- Giancarlo O Tanzi
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | | | |
Collapse
|
83
|
Zeng H, Zhao D, Yang S, Datta K, Mukhopadhyay D. Heterotrimeric G alpha q/G alpha 11 proteins function upstream of vascular endothelial growth factor (VEGF) receptor-2 (KDR) phosphorylation in vascular permeability factor/VEGF signaling. J Biol Chem 2003; 278:20738-45. [PMID: 12670961 DOI: 10.1074/jbc.m209712200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) functions by activating two receptor-tyrosine kinases, Flt-1 (VEGF receptor (VEGFR)-1) and KDR (VEGFR-2), both of which are selectively expressed on primary vascular endothelium. KDR is responsible for VPF/VEGF-stimulated endothelial cell proliferation and migration, whereas Flt-1 down-modulates KDR-mediated endothelial cell proliferation. Our most recent works show that pertussis toxin-sensitive G proteins and Gbetagamma subunits are required for Flt-1-mediated down-regulation of human umbilical vein endothelial cell (HUVEC) proliferation and that Gq/11 proteins are required for KDR-mediated RhoA activation and HUVEC migration. In this study, we demonstrate that Gq/11 proteins are also required for VPF/VEGF-stimulated HUVEC proliferation. Our results further indicate that Gq/11 proteins specifically mediate KDR signaling such as intracellular Ca2+ mobilization rather than Flt-1-induced CDC42 activation and that a Gq/11 antisense oligonucleotide completely inhibits MAPK phosphorylation induced by KDR but has no effect on Flt-1-induced MAPK activation. More importantly, we demonstrate that Gq/11 proteins interact with KDR in vivo, and the interaction of Gq/11 proteins with KDR does not require KDR tyrosine phosphorylation. Surprisingly, the Gq/11 antisense oligonucleotide completely inhibits VPF/VEGF-stimulated KDR phosphorylation. Expression of a constitutively active mutant of G11 but not Gq can cause phosphorylation of KDR and MAPK. In addition, a Gbetagamma minigene, hbetaARK1(495), inhibits VPF/VEGF-stimulated HUVEC proliferation, MAPK phosphorylation, and intracellular Ca2+ mobilization but has no effect on KDR phosphorylation. Taken together, this study demonstrates that Gq/11 proteins mediate KDR tyrosine phosphorylation and KDR-mediated HUVEC proliferation through interaction with KDR.
Collapse
Affiliation(s)
- Huiyan Zeng
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
84
|
Kholodenko BN. Four-dimensional organization of protein kinase signaling cascades: the roles of diffusion, endocytosis and molecular motors. J Exp Biol 2003; 206:2073-82. [PMID: 12756289 DOI: 10.1242/jeb.00298] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extracellular signals received by membrane receptors are processed, encoded and transferred to the nucleus via phosphorylation and spatial relocation of protein members of multiple component pathways, such as mitogen activated protein kinase (MAPK) cascades. The receptor-induced membrane recruitment of the cytoplasmic protein SOS results in the activation of the Ras/MAPK cascade. It has been suggested that the membrane recruitment of signaling proteins causes an increase in the diffusion-limited rates. We have recently shown that this increase is too small to be responsible for enhanced signal transduction. Instead we demonstrate that the function of membrane localization is to increase the number (or average lifetime) of complexes between signaling partners. A hallmark of signaling pathways is the spatial separation of activation and deactivation mechanisms; e.g. a protein can be phosphorylated at the cell surface by a membrane-bound kinase and dephosphorylated in the cytosol by a cytosolic phosphatase. Given the measured values of protein diffusion coefficients and of phosphatase and kinase activities, the spatial separation is shown to result in precipitous phospho-protein gradients. When information transfer is hampered by slow protein diffusion and rapid dephosphorylation, phospho-protein trafficking within endocytic vesicles may be an efficient way to deliver messages to physiologically relevant locations. The proposed mechanism explains recent observations that various inhibitors of endocytosis can inhibit MAPK activation. Additional mechanisms facilitating the relay of signals from cell-surface receptors to the nucleus can involve the assembly of protein kinases on a scaffolding protein and active transport of signaling complexes by molecular motors. We also discuss long-range signaling within a cell, such as survival signaling in neurons. We hypothesize that ligand-independent waves of receptor activation or/and traveling waves of phosphorylated kinases emerge to spread the signals over long distances.
Collapse
Affiliation(s)
- Boris N Kholodenko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
85
|
Windmiller DA, Backer JM. Distinct phosphoinositide 3-kinases mediate mast cell degranulation in response to G-protein-coupled versus FcepsilonRI receptors. J Biol Chem 2003; 278:11874-8. [PMID: 12529321 DOI: 10.1074/jbc.m211787200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositide (PI) 3-kinases are critical regulators of mast cell degranulation. The Class IA PI 3-kinases p85/p110beta and p85/p110delta but not p85/p110alpha are required for antigen-mediated calcium flux in RBL-2H3 cells (Smith, A. J., Surviladze, Z., Gaudet, E. A., Backer, J. M., Mitchell, C. A., and Wilson, B. S. et al., (2001) J. Biol. Chem. 276, 17213-17220). We now examine the role of Class IA PI 3-kinases isoforms in degranulation itself, using a single-cell degranulation assay that measures the binding of fluorescently tagged annexin V to phosphatidylserine in the outer leaflet of the plasma membrane of degranulated mast cells. Consistent with previous data, antibodies against p110delta and p110beta blocked FcepsilonR1-mediated degranulation in response to FcepsilonRI ligation. However, antigen-stimulated degranulation was also inhibited by antibodies against p110alpha, despite the fact that these antibodies have no effect on antigen-induced calcium flux. These data suggest that p110alpha mediates a calcium-independent signal during degranulation. In contrast, only p110beta was required for enhancement of antigen-stimulated degranulation by adenosine, which augments mast cell-mediated airway inflammation in asthma. Finally, we examined carbachol-stimulated degranulation in RBL2H3 cells stably expressing the M1 muscarinic receptor (RBL-2H3-M1 cells). Surprisingly, carbachol-stimulated degranulation was blocked by antibody-mediated inhibition of the Class III PI 3-kinase hVPS34 or by titration of its product with FYVE domains. Antibodies against Class IA PI 3-kinases had no effect. These data demonstrate: (a) a calcium-independent role for p110alpha in antigen-stimulated degranulation; (b) a requirement for p110beta in adenosine receptor signaling; and (c) a requirement for hVPS34 during M1 muscarinic receptor signaling. Elucidation of the intersections between these distinct pathways will lead to new insights into mast cell degranulation.
Collapse
Affiliation(s)
- David A Windmiller
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
86
|
Hammond DE, Carter S, McCullough J, Urbé S, Vande Woude G, Clague MJ. Endosomal dynamics of Met determine signaling output. Mol Biol Cell 2003; 14:1346-54. [PMID: 12686592 PMCID: PMC153105 DOI: 10.1091/mbc.e02-09-0578] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Proteasomal activity is required for Met receptor degradation after acute stimulation with hepatocyte growth factor (HGF). Inhibition of proteasomal activity with lactacystin leads to a block in the endocytic trafficking of Met such that the receptor fails to reach late endosomes/lysosomes, where degradation by acid-dependent proteases takes place (). In this article, we have biochemically determined Met internalization rates from the cell surface and shown that lactacystin does not inhibit the initial HGF-dependent internalization step of Met. Instead, it promotes the recycling pathway from early endosomes at the expense of sorting to late endosomes, thereby ensuring rapid return of internalized Met to the cell surface. We have used this perturbation of Met endosomal sorting by lactacystin to examine the consequences for HGF-dependent signaling outputs. In control cells HGF-dependent receptor autophosphorylation reaches a maximal level over 5-10 min but then attenuates over the ensuing 50 min. Furthermore, Met dephosphorylation can be kinetically dissociated from Met degradation. In lactacystin-treated cells, we observe a failure of Met dephosphorylation as well as Met degradation. Elements of the mitogen-activated protein kinase cascade, downstream of receptor activation, show a normal kinetic profile of phosphorylation, indicating that the mitogen-activated protein kinase pathway can attenuate in the face of sustained receptor activation. The HGF-dependent phosphorylation of a receptor substrate that is localized to clathrin-coated regions of sorting endosomes, Hrs, is dramatically reduced by lactacystin treatment. Reduction of cellular Hrs levels by short interfering RNA modestly retards Met degradation and markedly prevents the attenuation of Met phosphorylation. HGF-dependent Hrs phosphorylation and Met dephosphorylation may provide signatures for retention of the receptor in coated regions of the endosome implicated in sorting to lysosomes.
Collapse
Affiliation(s)
- Dean E Hammond
- Physiological Laboratory, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | | | | | | | | | | |
Collapse
|
87
|
Dasgupta S, Kelly RB. Internalization signals in synaptotagmin VII utilizing two independent pathways are masked by intramolecular inhibitions. J Cell Sci 2003; 116:1327-37. [PMID: 12615974 DOI: 10.1242/jcs.00290] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The synaptotagmin family of membrane proteins has been implicated in both exocytosis and endocytosis. Synaptotagmin I, a protein containing two tandem C2 domains (the C2A and the C2B) in its cytoplasmic tail, is involved in regulated exocytosis of synaptic vesicles as well as compensatory endocytosis. A related family member, synaptotagmin VII, is involved in multiple forms of regulated exocytosis of lysosomes and secretory granules. In this study we show that the cytoplasmic C2 domains in synaptotagmin VII contain unique internalization signals and regulators of these signals. The C-terminal portion of the C2B is internalized in much the same way as the corresponding region of synaptotagmin I. This signal is tryptophan-based and dynamin and eps15 dependent. In contrast, the C2A contains an unusual internalization signal that is not seen in the C2A of synaptotagmin I. This signal is not based on the homologous tryptophan in its C-terminus. Moreover, internalization of the C2A domain is both dynamin and eps15 independent. Finally, the C2B domain of synaptotagmin VII contains an inhibitory motif that prevents internalization. Endocytic trafficking of synaptotagmin VII is thus governed by these two latent internalization signals, which are concealed by intramolecular inhibition. We propose that endocytosis of synaptotagmin VII is regulated in this way to allow it to couple the processes of regulated exocytosis and compensatory endocytosis.
Collapse
Affiliation(s)
- Shoumita Dasgupta
- Department of Biochemistry and Biophysics, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California, 94143-2140, USA
| | | |
Collapse
|
88
|
Grimes ML, Miettinen HM. Receptor tyrosine kinase and G-protein coupled receptor signaling and sorting within endosomes. J Neurochem 2003; 84:905-18. [PMID: 12603816 DOI: 10.1046/j.1471-4159.2003.01603.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mark L Grimes
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT 59812-4824, USA.
| | | |
Collapse
|
89
|
Abstract
The use of various synthetic lipids and polymers to deliver DNA for gene therapy applications has been the subject of intense examination for the last 15 years. Our understanding of the processes involved in the delivery of DNA, although still limited, can be described in terms of specific physical and chemical barriers encountered along the delivery pathway. Successful engagement of this pathway involves avoiding inactivation in the extracellular compartment and initial favorable interactions with the cell surface. Internalization of the delivery system by endocytosis results in a poorly defined endosomal trafficking process which, if not escaped, leads to degradation of the therapeutic DNA in lysosomes. For the small fraction of material that is able to escape this vesicular trafficking pathway, the cytosol provides additional physical and metabolic barriers to further trafficking to the nucleus. Finally, nuclear uptake has been demonstrated to be a significant barrier to gene delivery. In this review, we outline in greater detail the various processes involved in each step and describe various formulation variables that have been explored to overcome these delivery barriers to nonviral gene delivery.
Collapse
Affiliation(s)
- Christopher M Wiethoff
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
90
|
Cormont M, Metón I, Mari M, Monzo P, Keslair F, Gaskin C, McGraw TE, Le Marchand-Brustel Y. CD2AP/CMS regulates endosome morphology and traffic to the degradative pathway through its interaction with Rab4 and c-Cbl. Traffic 2003; 4:97-112. [PMID: 12559036 DOI: 10.1034/j.1600-0854.2003.40205.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The small GTPase Rab4 is involved in endocytosis through sorting and recycling early endosomes. To better understand the role of Rab4 in regulation of vesicular trafficking, we searched for effectors that specifically interact with Rab4-Q67L, the GTP-bound form of Rab4. We cloned an ubiquitous 80-kDa protein, identical to CD2-associated protein/Cas ligand with multiple SH3 domains (CD2AP/CMS), that interacts with Rab4-Q67L in the yeast two-hybrid system and in vitro. CD2AP/CMS expressed in mammalian cells was localized to punctate structures and along actin filaments. None of the known markers of early endosomes [Early Endosomes Antigen 1 (EEA1), Rab5 and Rab11] colocalized with the CD2AP/CMS-positive vesicles. However, coexpression of Rab4-Q67L with CD2AP/CMS induces a significant enlargement of EEA1-positive early endosomes. Rab4, CD2AP/CMS and Rab7 colocalized in these modified endosomes. Coexpression of c-Cbl and CD2AP/CMS also resulted in an enlargement of early endosomes. Using various truncated forms of CD2AP/CMS, we demonstrate that early endosomes enlargement requires that CD2AP/CMS interacts with both Rab4 and c-Cbl. The expression of a truncated form of CD2AP/CMS that retains the ability to interact with Rab4 but not c-Cbl inhibits ligand-induced PDGF receptor degradation. We propose that CD2AP/CMS, through interactions with Rab4 and c-Cbl, controls early endosome morphology and may play a role in traffic between early and late endosomes, and thus in the degradative pathway.
Collapse
Affiliation(s)
- Mireille Cormont
- Inserm U568, IFR 50, Faculty of Medicine, University of Nice, 06107 Nice cedex 02, France.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Sieczkarski SB, Brown HA, Whittaker GR. Role of protein kinase C betaII in influenza virus entry via late endosomes. J Virol 2003; 77:460-9. [PMID: 12477851 PMCID: PMC140583 DOI: 10.1128/jvi.77.1.460-469.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Many viruses take advantage of receptor-mediated endocytosis in order to enter target cells. We have utilized influenza virus and Semliki Forest virus (SFV) to define a role for protein kinase C betaII (PKCbetaII) in endocytic trafficking. We show that specific PKC inhibitors prevent influenza virus infection, suggesting a role for classical isoforms of PKC. We also examined virus entry in cells overexpressing dominant-negative forms of PKCalpha and -beta. Cells expressing a phosphorylation-deficient form of PKCbetaII (T500V), but not an equivalent mutant form of PKCalpha, inhibited successful influenza virus entry-with the virus accumulating in late endosomes. SFV, however, believed to enter cells from the early endosome, was unaffected by PKCbetaII T500V expression. We also examined the trafficking of two cellular ligands, transferrin and epidermal growth factor (EGF). PKCbetaII T500V expression specifically blocked EGF receptor trafficking and degradation, without affecting transferrin receptor recycling. As with influenza virus, in PKCbetaII kinase-dead cells, EGF receptor was trapped in a late endosome compartment. Our findings suggest that PKCbetaII is an important regulator of a late endosomal sorting event needed for influenza virus entry and infection.
Collapse
Affiliation(s)
- Sara B Sieczkarski
- Microbiology and Immunology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
92
|
Wang Y, Pennock S, Chen X, Wang Z. Internalization of inactive EGF receptor into endosomes and the subsequent activation of endosome-associated EGF receptors. Epidermal growth factor. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pl17. [PMID: 12464704 DOI: 10.1126/stke.2002.161.pl17] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Despite intensive efforts to understand cell signaling from endosomes, there is no direct evidence demonstrating that endosomal signaling is sufficient to activate signal transduction pathways or that endosomal signaling can produce biological responses. The lack of breakthrough is due in part to the inability to generate endosomal signals in isolation from plasma membrane signals. In this Protocol, we describe a system in which epidermal growth factor (EGF) receptor (EGFR) is specifically activated when it is endocytosed into endosomes. We treated cells with EGF in the presence of AG1478, a specific EGFR tyrosine kinase inhibitor, and monensin, which blocks recycling of EGFR. This treatment led to the internalization of nonactivated EGF-EGFR complex into endosomes. The endosome-associated EGFR was then activated by removing AG1478 and monensin. During this procedure, we did not observe any detectable surface EGFR phosphorylation. We also achieved specific activation of endosome-associated EGFR without using monensin. Specific activation of endosome-associated EGFR provides a unique tool to study endosomal signaling of EGFR. This method may also be applied to other receptor tyrosine kinases to study whether they, too, can signal from endosomes.
Collapse
Affiliation(s)
- Yi Wang
- Department of Cell Biology and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | | | |
Collapse
|
93
|
Wang Y, Pennock S, Chen X, Wang Z. Internalization of Inactive EGF Receptor into Endosomes and the Subsequent Activation of Endosome-Associated EGF Receptors. Sci Signal 2002. [DOI: 10.1126/scisignal.1612002pl17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
94
|
Abstract
The receptor tyrosine kinase (RTK) signaling network plays a central role in regulating cellular differentiation, proliferation, and survival in all metazoan animals. Excessive or continuous activation of the RTK pathway has been linked to carcinogenesis in mammals, underscoring the importance of preventing uncontrolled signaling. This review will focus on the inhibitory mechanisms that keep RTK-mediated signals in check, with emphasis on conserved principles discerned from studies using Drosophila as a model system. Two general strategies of inhibition will be discussed. The first, threshold regulation, postulates that an effective way of antagonizing RTK signaling is to erect and maintain high threshold barriers that prevent inappropriate responses to moderate signaling levels. Activation of the pathway above this level overcomes the inhibitory blocks and shifts the balance to allow a positive flow of inductive information. A second layer of negative regulation involving induction of negative feedback loops that limit the extent, strength, or duration of the signal prevents runaway signaling in response to the high levels of activation required to surmount the threshold barriers. Such autoinhibitory mechanisms attenuate signaling at critical points throughout the network, from the receptor to the downstream effectors.
Collapse
Affiliation(s)
- Ilaria Rebay
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, USA.
| |
Collapse
|
95
|
Sun CX, Robb VA, Gutmann DH. Protein 4.1 tumor suppressors: getting a FERM grip on growth regulation. J Cell Sci 2002; 115:3991-4000. [PMID: 12356905 DOI: 10.1242/jcs.00094] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Members of the Protein 4.1 superfamily have highly conserved FERM domains that link cell surface glycoproteins to the actin cytoskeleton. Within this large and constantly expanding superfamily, at least five subgroups have been proposed. Two of these subgroups, the ERM and prototypic Protein 4.1 molecules, include proteins that function as tumor suppressors. The ERM subgroup member merlin/schwannomin is inactivated in the tumor-predisposition syndrome neurofibromatosis 2 (NF2), and the prototypic 4.1 subgroup member, Protein 4.1B, has been implicated in the molecular pathogenesis of breast, lung and brain cancers. This review focuses on what is known of mechanisms of action and critical protein interactions that may mediate the unique growth inhibitory signals of these two Protein 4.1 tumor suppressors. On the basis of insights derived from studying the NF2 tumor suppressor, we propose a model for merlin growth regulation in which CD44 links growth signals from plasma membrane to the nucleus by interacting with ERM proteins and merlin.
Collapse
Affiliation(s)
- Chun-Xiao Sun
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
96
|
Wang Y, Pennock S, Chen X, Wang Z. Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol 2002; 22:7279-90. [PMID: 12242303 PMCID: PMC139821 DOI: 10.1128/mcb.22.20.7279-7290.2002] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In spite of intensified efforts to understand cell signaling from endosomes, there is no direct evidence demonstrating that endosomal signaling is sufficient to activate signal transduction pathways and no evidence to demonstrate that endosomal signaling is able to produce a biological outcome. The lack of breakthrough is due in part to the lack of means to generate endosomal signals without plasma membrane signaling. In this paper, we report the establishment of a system to specifically activate epidermal growth factor (EGF) receptor (EGFR) when it endocytoses into endosomes. We treated cells with EGF in the presence of AG-1478, a specific EGFR tyrosine kinase inhibitor, and monensin, which blocks the recycling of EGFR. This treatment led to the internalization of nonactivated EGF-EGFR complexes into endosomes. The endosome-associated EGFR was then activated by removing AG-1478 and monensin. During this procedure we did not observe any surface EGFR phosphorylation. We also achieved specific activation of endosome-associated EGFR without using monensin. By using this system, we provided original evidence demonstrating that (i) the endosome can serve as a nucleation site for the formation of signaling complexes, (ii) endosomal EGFR signaling is sufficient to activate the major signaling pathways leading to cell proliferation and survival, and (iii) endosomal EGFR signaling is sufficient to suppress apoptosis induced by serum withdrawal.
Collapse
Affiliation(s)
- Yi Wang
- Department of Cell Biology and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
97
|
Li Y, Chin LS, Levey AI, Li L. Huntingtin-associated protein 1 interacts with hepatocyte growth factor-regulated tyrosine kinase substrate and functions in endosomal trafficking. J Biol Chem 2002; 277:28212-21. [PMID: 12021262 DOI: 10.1074/jbc.m111612200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Huntingtin-associated protein 1 (HAP1) is a novel protein of unknown function with a higher binding affinity for the mutant form of Huntington's disease protein huntingtin. Here we report that HAP1 interacts with hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), a mammalian homologue of yeast vacuolar protein sorting protein Vps27p involved in the endosome-to-lysosome trafficking. This novel interaction was identified in a yeast two-hybrid screen using full-length Hrs as bait, and confirmed by in vitro binding assays and co-immunoprecipitation experiments. Deletion analysis reveals that the association of HAP1 with Hrs is mediated via a coiled-coil interaction between the central coiled-coil domains of both proteins. Immunofluorescence and subcellular fractionation studies show that HAP1 co-localizes with Hrs on early endosomes. Like Hrs, overexpression of HAP1 causes the formation of enlarged early endosomes, and inhibits the degradation of internalized epidermal growth factor receptors. Whereas overexpression of HAP1 does not affect either constitutive or ligand-induced receptor-mediated endocytosis, it potently blocks the trafficking of endocytosed epidermal growth factor receptors from early endosomes to late endosomes. These findings implicate, for the first time, the involvement of HAP1 in the regulation of vesicular trafficking from early endosomes to the late endocytic compartments.
Collapse
Affiliation(s)
- Yankun Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322-3090, USA
| | | | | | | |
Collapse
|