51
|
Gupta PK, Jaiswal AK, Asthana S, Dube A, Mishra PR. Antigen presenting cells targeting and stimulation potential of lipoteichoic acid functionalized lipo-polymerosome: a chemo-immunotherapeutic approach against intracellular infectious disease. Biomacromolecules 2015; 16:1073-87. [PMID: 25671728 DOI: 10.1021/bm5015156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antigen presenting cells (APC) are well-recognized therapeutic targets for intracellular infectious diseases, including visceral leishmaniasis. These targets have raised concerns regarding their potential for drug delivery due to overexpression of a variety of receptors for pathogen associated molecular pathways after infection. Since, lipoteichoic acid (LTA), a surface glycolipid of Gram-positive bacteria responsible for recognition of bacteria by APC receptors that also regulate their activation for pro-inflammatory cytokine secretion, provides additive and significant protection against parasite. Here, we report the nanoarchitechture of APC focused LTA functionalized amphotericin B encapsulated lipo-polymerosome (LTA-AmB-L-Psome) delivery system mediated by self-assembly of synthesized glycol chitosan-stearic acid copolymer (GC-SA) and cholesterol lipid, which can activate and target the chemotherapeutic agents to Leishmania parasite resident APC. Greater J774A and RAW264.7 macrophage internalization of FITC tagged LTA-AmB-L-Psome compared to core AmB-L-Psome was observed by FACSCalibur cytometer assessment. This was further confirmed by higher accumulation in macrophage rich liver, lung and spleen during biodistribution study. The LTA-AmB-L-Psome overcame encapsulated drug toxicity and significantly increased parasite growth inhibition beyond commercial AmB treatment in both in vitro (macrophage-amastigote system; IC50, 0.082 ± 0.009 μg/mL) and in vivo (Leishmania donovani infected hamsters; 89.25 ± 6.44% parasite inhibition) models. Moreover, LTA-AmB-L-Psome stimulated the production of protective cytokines like interferon-γ (IFN-γ), interleukin-12 (IL-12), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase and nitric oxide with down-regulation of disease susceptible cytokines, like transforming growth factor-β (TGF-β), IL-10, and IL-4. These data demonstrate the potential use of LTA-functionalized lipo-polymerosome as a biocompatible lucrative nanotherapeutic platform for overcoming toxicity and improving drug efficacy along with induction of robust APC immune responses for effective therapeutics of intracellular diseases.
Collapse
Affiliation(s)
- Pramod K Gupta
- †Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Anil K Jaiswal
- †Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Shalini Asthana
- †Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Anuradha Dube
- †Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Prabhat R Mishra
- †Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| |
Collapse
|
52
|
Forestier CL, Späth GF, Prina E, Dasari S. Simultaneous multi-parametric analysis of Leishmania and of its hosting mammal cells: A high content imaging-based method enabling sound drug discovery process. Microb Pathog 2014; 88:103-8. [PMID: 25448129 DOI: 10.1016/j.micpath.2014.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/18/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022]
Abstract
Leishmaniasis is a vector-borne disease for which only limited therapeutic options are available. The disease is ranked among the six most important tropical infectious diseases and represents the second-largest parasitic killer in the world. The development of new therapies has been hampered by the lack of technologies and methodologies that can be integrated into the complex physiological environment of a cell or organism and adapted to suitable in vitro and in vivo Leishmania models. Recent advances in microscopy imaging offer the possibility to assess the efficacy of potential drug candidates against Leishmania within host cells. This technology allows the simultaneous visualization of relevant phenotypes in parasite and host cells and the quantification of a variety of cellular events. In this review, we present the powerful cellular imaging methodologies that have been developed for drug screening in a biologically relevant context, addressing both high-content and high-throughput needs. Furthermore, we discuss the potential of intra-vital microscopy imaging in the context of the anti-leishmanial drug discovery process.
Collapse
Affiliation(s)
- Claire-Lise Forestier
- INSERM U1095, URMITE-UMR CNRS 7278, Infectiopole Sud, University of Aix-Marseille, Marseille, France.
| | - Gerald Frank Späth
- Institut Pasteur and CNRS URA2581, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur and CNRS URA2581, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Sreekanth Dasari
- INSERM U1095, URMITE-UMR CNRS 7278, Infectiopole Sud, University of Aix-Marseille, Marseille, France
| |
Collapse
|
53
|
Real F, Florentino PTV, Reis LC, Ramos-Sanchez EM, Veras PST, Goto H, Mortara RA. Cell-to-cell transfer of Leishmania amazonensis amastigotes is mediated by immunomodulatory LAMP-rich parasitophorous extrusions. Cell Microbiol 2014; 16:1549-64. [PMID: 24824158 PMCID: PMC4353215 DOI: 10.1111/cmi.12311] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 04/29/2014] [Accepted: 05/08/2014] [Indexed: 11/28/2022]
Abstract
The last step of Leishmania intracellular life cycle is the egress of amastigotes from the host cell and their uptake by adjacent cells. Using multidimensional live imaging of long-term-infected macrophage cultures we observed that Leishmania amazonensis amastigotes were transferred from cell to cell when the donor host macrophage delivers warning signs of imminent apoptosis. They were extruded from the macrophage within zeiotic structures (membrane blebs, an apoptotic feature) rich in phagolysosomal membrane components. The extrusions containing amastigotes were selectively internalized by vicinal macrophages and the rescued amastigotes remain viable in recipient macrophages. Host cell apoptosis induced by micro-irradiation of infected macrophage nuclei promoted amastigotes extrusion, which were rescued by non-irradiated vicinal macrophages. Using amastigotes isolated from LAMP1/LAMP2 knockout fibroblasts, we observed that the presence of these lysosomal components on amastigotes increases interleukin 10 production. Enclosed within host cell membranes, amastigotes can be transferred from cell to cell without full exposure to the extracellular milieu, what represents an important strategy developed by the parasite to evade host immune system.
Collapse
Affiliation(s)
- Fernando Real
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP)São Paulo, Brasil
| | - Pilar Tavares Veras Florentino
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP)São Paulo, Brasil
| | - Luiza Campos Reis
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São PauloSão Paulo, Brasil
| | - Eduardo M Ramos-Sanchez
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São PauloSão Paulo, Brasil
| | - Patricia Sampaio Tavares Veras
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT – DT), Fundação Oswaldo Cruz (FIOCRUZ)Bahia, Brasil
| | - Hiro Goto
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São PauloSão Paulo, Brasil
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São PauloSão Paulo, Brasil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP)São Paulo, Brasil
| |
Collapse
|
54
|
Mukherjee M, Basu Ball W, Das PK. Leishmania donovani activates SREBP2 to modulate macrophage membrane cholesterol and mitochondrial oxidants for establishment of infection. Int J Biochem Cell Biol 2014; 55:196-208. [PMID: 25218172 DOI: 10.1016/j.biocel.2014.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/11/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
Abstract
Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent transcriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host.
Collapse
Affiliation(s)
- Madhuchhanda Mukherjee
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Writoban Basu Ball
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|
55
|
Aebischer T. Leishmania spp. Proteome Data Sets: A Comprehensive Resource for Vaccine Development to Target Visceral Leishmaniasis. Front Immunol 2014; 5:260. [PMID: 24959165 PMCID: PMC4050426 DOI: 10.3389/fimmu.2014.00260] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/19/2014] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis is a neglected infectious disease caused primarily by Leishmania donovani and Leishmania infantum protozoan parasites. A significant number of infections take a fatal course. Drug therapy is available but still costly and parasites resistant to first line drugs are observed. Despite many years of trial no commercial vaccine is available to date. However, development of a cost effective, needle-independent vaccine remains a high priority. Reverse vaccinology has attracted much attention since the term has been coined and the approach tested by Rappuoli and colleagues. This in silico selection of antigens from genomic and proteomic data sets was also adapted to aim at developing an anti-Leishmania vaccine. Here, an analysis of the efforts is attempted and the challenges to be overcome by these endeavors are discussed. Strategies that led to successful identification of antigens will be illustrated. Furthermore, these efforts are viewed in the context of anticipated modes of action of effective anti-Leishmania immune responses to highlight possible advantages and shortcomings.
Collapse
Affiliation(s)
- Toni Aebischer
- Agents of Mycoses, Parasitoses and Mycobacterioses, Robert Koch-Institut , Berlin , Germany
| |
Collapse
|
56
|
An historical perspective on how advances in microscopic imaging contributed to understanding the Leishmania Spp. and Trypanosoma cruzi host-parasite relationship. BIOMED RESEARCH INTERNATIONAL 2014; 2014:565291. [PMID: 24877115 PMCID: PMC4022312 DOI: 10.1155/2014/565291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/10/2014] [Indexed: 12/15/2022]
Abstract
The literature has identified complex aspects of intracellular host-parasite relationships, which require systematic, nonreductionist approaches and spatial/temporal information. Increasing and integrating temporal and spatial dimensions in host cell imaging have contributed to elucidating several conceptual gaps in the biology of intracellular parasites. To access and investigate complex and emergent dynamic events, it is mandatory to follow them in the context of living cells and organs, constructing scientific images with integrated high quality spatiotemporal data. This review discusses examples of how advances in microscopy have challenged established conceptual models of the intracellular life cycles of Leishmania spp. and Trypanosoma cruzi protozoan parasites.
Collapse
|
57
|
Forestier CL. Imaging host-Leishmania interactions: significance in visceral leishmaniasis. Parasite Immunol 2014; 35:256-66. [PMID: 23772814 DOI: 10.1111/pim.12044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/04/2013] [Indexed: 01/12/2023]
Abstract
Leishmaniasis is a neglected disease that is associated with a spectrum of clinical manifestations ranging from self-healing cutaneous lesions to fatal visceral infections, which primarily depends on the parasite species. In visceral leishmaniasis (VL), as opposed to cutaneous leishmaniasis (CL), parasites that infect host cells at the sand fly bite site have the striking ability to disseminate to visceral organs where they proliferate and persist for long periods of time. Imaging the dynamics of the host-Leishmania interaction in VL provides a powerful approach to understanding the mechanisms underlying host cell invasion, Leishmania dissemination and persistence within visceral organs and, to dissecting the immune responses to infection. Therefore, by allowing the visualization of the critical steps involved in the pathogenesis of VL, state-of-the-art microscopy technologies have the great potential to aid in the identification of better intervention strategies for this devastating disease. In this review, we emphasize the current knowledge and the potential significance of imaging technologies in understanding the infection process of visceralizing Leishmania species. Then, we discuss how application of innovative microscopy technologies to the study of VL will provide rich opportunities for investigating host-parasite interactions at a previously unexplored level and elucidating visceral disease-promoting mechanisms.
Collapse
Affiliation(s)
- C-L Forestier
- INSERM U1095, URMITE-UMR CNRS 7278, University of Aix-Marseille, Marseille, France.
| |
Collapse
|
58
|
Guimarães TT, Pinto MDCF, Lanza JS, Melo MN, do Monte-Neto RL, de Melo IM, Diogo EB, Ferreira VF, Camara CA, Valença WO, de Oliveira RN, Frézard F, da Silva Júnior EN. Potent naphthoquinones against antimony-sensitive and -resistant Leishmania parasites: Synthesis of novel α- and nor-α-lapachone-based 1,2,3-triazoles by copper-catalyzed azide–alkyne cycloaddition. Eur J Med Chem 2013; 63:523-30. [DOI: 10.1016/j.ejmech.2013.02.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 12/29/2022]
|
59
|
Peltan A, Briggs L, Matthews G, Sweeney ST, Smith DF. Identification of Drosophila gene products required for phagocytosis of Leishmania donovani. PLoS One 2012; 7:e51831. [PMID: 23272175 PMCID: PMC3521716 DOI: 10.1371/journal.pone.0051831] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 11/13/2012] [Indexed: 01/07/2023] Open
Abstract
The identity and function of host factors required for efficient phagocytosis and intracellular maintenance of the protozoan parasite Leishmania donovani are poorly understood. Utilising the phagocytic capability of Drosophila S2 cells, together with available tools for modulating gene expression by RNAi, we have developed an experimental system in which to identify host proteins of this type on a genome-wide scale. We have shown that L. donovani amastigotes can be phagocytosed by S2 cells, in which they replicate and are maintained in a compartment with features characteristic of mammalian phagolysosomes. Screening with dsRNAs from 1920 conserved metazoan genes has identified transcripts that, when reduced in expression, cause either increased or decreased phagocytosis. Focussing on genes in the latter class, RNAi-mediated knockdown of the small GTPase Rab5, the prenylated SNARE protein YKT6, one sub-unit of serine palmitoyltransferase (spt2/lace), the Rac1-associated protein Sra1 and the actin cytoskeleton regulatory protein, SCAR, all lead to a significant reduction in parasite phagocytosis. A role for the lace mammalian homologue in amastigote uptake by mammalian macrophages has been verified using the serine palmitoyltransferase inhibitor, myriocin. These observations suggest that this experimental approach has the potential to identify a large number of host effectors required for efficient parasite uptake and maintenance.
Collapse
Affiliation(s)
- Adam Peltan
- Centre for Immunology and Infection, University of York, York, United Kingdom
- Department of Biology, Hull-York Medical School, University of York, York, United Kingdom
| | - Laura Briggs
- Department of Biology, Hull-York Medical School, University of York, York, United Kingdom
| | - Gareth Matthews
- Centre for Immunology and Infection, University of York, York, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, Hull-York Medical School, University of York, York, United Kingdom
| | - Deborah F. Smith
- Centre for Immunology and Infection, University of York, York, United Kingdom
- Department of Biology, Hull-York Medical School, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
60
|
Pawlowic MC, Zhang K. Leishmania parasites possess a platelet-activating factor acetylhydrolase important for virulence. Mol Biochem Parasitol 2012; 186:11-20. [PMID: 22954769 DOI: 10.1016/j.molbiopara.2012.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 01/03/2023]
Abstract
Leishmania parasites are intracellular protozoans capable of salvaging and remodeling lipids from the host. To understand the role of lipid metabolism in Leishmania virulence, it is necessary to characterize the enzymes involved in the uptake and turnover of phospholipids. This study focuses on a putative phospholipase A2 (PLA2)/platelet-activating factor acetylhydrolase (PAF-AH) in Leishmania major. In mammals, PAF-AH is a subgroup of PLA2 catalyzing the hydrolysis/inactivation of platelet-activating factor (PAF), a potent mediator of many leukocyte functions. By immunofluorescence microscopy, L. major PLA2/PAF-AH is predominantly localized in the ER. While wild type L. major parasites are able to hydrolyze PAF, this activity is completely absent in the PLA2/PAF-AH-null mutants. Meanwhile, deletion of PLA2/PAF-AH had no significant effect on the turnover of common glycerophospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol. PLA2/PAF-AH is not required for the growth of L. major parasites in culture, or the production of GPI-anchored virulence factors. Nonetheless, it does play a key role in the mammalian host as the PLA2/PAF-AH null mutants exhibit attenuated virulence in BALB/c mice. In conclusion, these data suggest that Leishmania parasites possess a functional PAF-AH and the degradation of PAF or PAF-like lipids is an important step in infection.
Collapse
Affiliation(s)
- Mattie C Pawlowic
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | | |
Collapse
|
61
|
Canton J, Kima PE. Interactions of pathogen-containing compartments with the secretory pathway. Cell Microbiol 2012; 14:1676-86. [PMID: 22862745 DOI: 10.1111/cmi.12000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 02/03/2023]
Abstract
A subgroup of intracellular pathogens reside and replicate within membrane-bound compartments often termed pathogen-containing compartments (PCC). PCCs navigate around a wide range of host cell vesicles and organelles. In light of the perils of engaging with vesicles of the endocytic pathway, most PCCs modulate their interactions with endocytic vesicles while a few avoid those interactions. The secretory pathway constitutes another important grouping of vesicles and organelles in host cells. Although the negative consequences of engaging with the secretory pathway are not known, there is evidence that PCCs interact differentially with vesicles and organelles in this pathway as well. In this review, we consider three prokaryote pathogens and two protozoan parasites for which there is information on the interactions of their PCCs with the secretory pathway. Current understandings of the molecular interactions as well as the metabolic benefits that accompany those interactions are discussed. Not unexpectedly, our understanding of the extent of these interactions is variable. An underlying theme that is brought to the fore is that PCCs establish preferential interactions with distinct compartments of the secretory pathway.
Collapse
Affiliation(s)
- Johnathan Canton
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
62
|
Ueno N, Wilson ME. Receptor-mediated phagocytosis of Leishmania: implications for intracellular survival. Trends Parasitol 2012; 28:335-44. [PMID: 22726697 DOI: 10.1016/j.pt.2012.05.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 01/12/2023]
Abstract
The extracellular promastigote stage of Leishmania spp. is transmitted to mammals by a sand fly vector. Leishmania promastigotes ligate host macrophage receptors, triggering phagocytosis and subsequent internalization, a crucial step for survival. Parasites transform intracellularly to the amastigote stage. Many studies document different receptors detecting promastigotes and amastigotes, but the relative importance of each interaction is ill-defined. Recent studies suggest that the macrophage receptors utilized during phagocytosis impact the intracellular fate of the parasite. This review summarizes the receptors implicated in Leishmania phagocytosis over the past 30 years. It then proceeds to weigh the evidence for or against their potential roles in intracellular parasite trafficking.
Collapse
Affiliation(s)
- Norikiyo Ueno
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
63
|
França-Costa J, Wanderley JLM, Deolindo P, Zarattini JB, Costa J, Soong L, Barcinski MA, Barral A, Borges VM. Exposure of phosphatidylserine on Leishmania amazonensis isolates is associated with diffuse cutaneous leishmaniasis and parasite infectivity. PLoS One 2012; 7:e36595. [PMID: 22574191 PMCID: PMC3344919 DOI: 10.1371/journal.pone.0036595] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 04/11/2012] [Indexed: 12/21/2022] Open
Abstract
Diffuse cutaneous leishmaniasis (DCL) is a rare clinical manifestation of leishmaniasis, characterized by an inefficient parasite-specific cellular response and heavily parasitized macrophages. In Brazil, Leishmania (Leishmania) amazonensis is the main species involved in DCL cases. In the experimental model, recognition of phosphatidylserine (PS) molecules exposed on the surface of amastigotes forms of L. amazonensis inhibits the inflammatory response of infected macrophages as a strategy to evade the host immune surveillance. In this study, we examined whether PS exposure on L. amazonensis isolates from DCL patients operated as a parasite pathogenic factor and as a putative suppression mechanism of immune response during the infection. Peritoneal macrophages from F1 mice (BALB/c×C57BL/6) were infected with different L. amazonensis isolates from patients with localized cutaneous leishmaniasis (LCL) or DCL. DCL isolates showed higher PS exposure than their counterparts from LCL patients. In addition, PS exposure was positively correlated with clinical parameters of the human infection (number of lesions and time of disease) and with characteristics of the experimental infection (macrophage infection and anti-inflammatory cytokine induction). Furthermore, parasites isolated from DCL patients displayed an increased area in parasitophorous vacuoles (PV) when compared to those isolated from LCL patients. Thus, this study shows for the first time that a parasite factor (exposed PS) might be associated with parasite survival/persistence in macrophages and lesion exacerbation during the course of DCL, providing new insights regarding pathogenic mechanism in this rare chronic disease.
Collapse
Affiliation(s)
- Jaqueline França-Costa
- Centro de Pesquisas Gonçalo Moniz/FIOCRUZ-BA, Salvador, Brasil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brasil
| | - João Luiz Mendes Wanderley
- Pólo Universitário Macaé, UFRJ, Rio de Janeiro, Brasil
- Divisão de Medicina Experimental, Instituto Nacional do Câncer, Rio de Janeiro, Brasil
| | - Poliana Deolindo
- Divisão de Medicina Experimental, Instituto Nacional do Câncer, Rio de Janeiro, Brasil
- Instituto Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Jessica B. Zarattini
- Divisão de Medicina Experimental, Instituto Nacional do Câncer, Rio de Janeiro, Brasil
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Jackson Costa
- Centro de Pesquisas Gonçalo Moniz/FIOCRUZ-BA, Salvador, Brasil
| | - Lynn Soong
- Departments of Microbiology & Immunology and Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Marcello André Barcinski
- Divisão de Medicina Experimental, Instituto Nacional do Câncer, Rio de Janeiro, Brasil
- Instituto Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz/FIOCRUZ-BA, Salvador, Brasil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brasil
| | - Valeria M. Borges
- Centro de Pesquisas Gonçalo Moniz/FIOCRUZ-BA, Salvador, Brasil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brasil
- * E-mail:
| |
Collapse
|
64
|
Ortíz-Estrada G, Luna-Castro S, Piña-Vázquez C, Samaniego-Barrón L, León-Sicairos N, Serrano-Luna J, de la Garza M. Iron-saturated lactoferrin and pathogenic protozoa: could this protein be an iron source for their parasitic style of life? Future Microbiol 2012; 7:149-64. [PMID: 22191452 DOI: 10.2217/fmb.11.140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Iron is an essential nutrient for the survival of pathogens inside a host. As a general strategy against microbes, mammals have evolved complex iron-withholding systems for efficiently decreasing the iron accessible to invaders. Pathogens that inhabit the respiratory, intestinal and genitourinary tracts encounter an iron-deficient environment on the mucosal surface, where ferric iron is chelated by lactoferrin, an extracellular glycoprotein of the innate immune system. However, parasitic protozoa have developed several mechanisms to obtain iron from host holo-lactoferrin. Tritrichomonas fetus, Trichomonas vaginalis, Toxoplasma gondii and Entamoeba histolytica express lactoferrin-binding proteins and use holo-lactoferrin as an iron source for growth in vitro; in some species, these binding proteins are immunogenic and, therefore, may serve as potential vaccine targets. Another mechanism to acquire lactoferrin iron has been reported in Leishmania spp. promastigotes, which use a surface reductase to recognize and reduce ferric iron to the accessible ferrous form. Cysteine proteases that cleave lactoferrin have been reported in E. histolytica. This review summarizes the available information on how parasites uptake and use the iron from lactoferrin to survive in hostile host environments.
Collapse
Affiliation(s)
- Guillermo Ortíz-Estrada
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. 14-740, México DF 07000, México
| | | | | | | | | | | | | |
Collapse
|
65
|
Real F, Mortara RA. The diverse and dynamic nature of Leishmania parasitophorous vacuoles studied by multidimensional imaging. PLoS Negl Trop Dis 2012; 6:e1518. [PMID: 22348167 PMCID: PMC3279510 DOI: 10.1371/journal.pntd.0001518] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 12/22/2011] [Indexed: 12/23/2022] Open
Abstract
An important area in the cell biology of intracellular parasitism is the customization of parasitophorous vacuoles (PVs) by prokaryotic or eukaryotic intracellular microorganisms. We were curious to compare PV biogenesis in primary mouse bone marrow-derived macrophages exposed to carefully prepared amastigotes of either Leishmania major or L. amazonensis. While tight-fitting PVs are housing one or two L. major amastigotes, giant PVs are housing many L. amazonensis amastigotes. In this study, using multidimensional imaging of live cells, we compare and characterize the PV biogenesis/remodeling of macrophages i) hosting amastigotes of either L. major or L. amazonensis and ii) loaded with Lysotracker, a lysosomotropic fluorescent probe. Three dynamic features of Leishmania amastigote-hosting PVs are documented: they range from i) entry of Lysotracker transients within tight-fitting, fission-prone L. major amastigote-housing PVs; ii) the decrease in the number of macrophage acidic vesicles during the L. major PV fission or L. amazonensis PV enlargement; to iii) the L. amazonensis PV remodeling after homotypic fusion. The high content information of multidimensional images allowed the updating of our understanding of the Leishmania species-specific differences in PV biogenesis/remodeling and could be useful for the study of other intracellular microorganisms. Leishmania parasites lodge in host cells within phagolysosome-like structures called parasitophorous vacuoles (PVs). Depending on the species, amastigote forms can be individually hosted within small, tight-fitting PVs or grouped within loose, spacious PVs. Using multidimensional live cell imaging, we examined the biogenesis of the two PV phenotypes in macrophages exposed to L. major (a representative of the tight PV phenotype) or L. amazonensis (an example of the loose PV phenotype) amastigotes. L. major PVs undergo fission as parasites divide; we demonstrate that in the course of fission there are transients of the lysosomotropic fluorescent probe Lysotracker. In contrast, during the course of amastigote population size expansion, L. amazonensis PVs do accumulate Lysotracker while increasing in diameter and volume. The large PVs fuse together, and the products of fusion undergo size and shape remodeling. The biogenesis/remodeling of the two types of Leishmania PVs is accompanied by a reduction in the number of macrophage acidic vesicles. The present imaging study adds new morphometric information to the cell biology of Leishmania amastigote intracellular parasitism.
Collapse
Affiliation(s)
- Fernando Real
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil.
| | | |
Collapse
|
66
|
Hsiao CHC, Ueno N, Shao JQ, Schroeder KR, Moore KC, Donelson JE, Wilson ME. The effects of macrophage source on the mechanism of phagocytosis and intracellular survival of Leishmania. Microbes Infect 2011; 13:1033-44. [PMID: 21723411 PMCID: PMC3185139 DOI: 10.1016/j.micinf.2011.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Revised: 03/28/2011] [Accepted: 05/30/2011] [Indexed: 02/08/2023]
Abstract
Leishmania spp. protozoa are obligate intracellular parasites that replicate in macrophages during mammalian infection. Efficient phagocytosis and survival in macrophages are important determinants of parasite virulence. Macrophage lines differ dramatically in their ability to sustain intracellular Leishmania infantum chagasi (Lic). We report that the U937 monocytic cell line supported the intracellular replication and cell-to-cell spread of Lic during 72 h after parasite addition, whereas primary human monocyte-derived macrophages (MDMs) did not. Electron microscopy and live cell imaging illustrated that Lic promastigotes anchored to MDMs via their anterior ends and were engulfed through symmetrical pseudopods. In contrast, U937 cells bound Lic in diverse orientations, and extended membrane lamellae to reorient and internalize parasites through coiling phagocytosis. Lic associated tightly with the parasitophorous vacuole (PV) membrane in both cell types. PVs fused with LAMP-1-expressing compartments 24 h after phagocytosis by MDMs, whereas U937 cell PVs remained LAMP-1 negative. The expression of one phagocytic receptor (CR3) was higher in MDMs than U937 cells, leading us to speculate that parasite uptake proceeds through dissimilar pathways between these cells. We hypothesize that the mechanism of phagocytosis differs between primary versus immortalized human macrophage cells, with corresponding differences in the subsequent intracellular fate of the parasite.
Collapse
Affiliation(s)
| | - Norikiyo Ueno
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - Jian Q. Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA 52242
| | | | - Kenneth C. Moore
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA 52242
| | - John E. Donelson
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Mary E. Wilson
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
- Veterans’ Affairs Medical Center, Iowa City, IA 52246
| |
Collapse
|
67
|
Forestier CL, Machu C, Loussert C, Pescher P, Späth GF. Imaging host cell-Leishmania interaction dynamics implicates parasite motility, lysosome recruitment, and host cell wounding in the infection process. Cell Host Microbe 2011; 9:319-30. [PMID: 21501831 DOI: 10.1016/j.chom.2011.03.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 10/04/2010] [Accepted: 03/14/2011] [Indexed: 12/25/2022]
Abstract
Leishmania donovani causes human visceral leishmaniasis. The parasite infectious cycle comprises extracellular flagellated promastigotes that proliferate inside the insect vector, and intracellular nonmotile amastigotes that multiply within infected host cells. Using primary macrophages infected with virulent metacyclic promastigotes and high spatiotemporal resolution microscopy, we dissect the dynamics of the early infection process. We find that motile promastigotes enter macrophages in a polarized manner through their flagellar tip and are engulfed into host lysosomal compartments. Persistent intracellular flagellar activity leads to reorientation of the parasite flagellum toward the host cell periphery and results in oscillatory parasite movement. The latter is associated with local lysosomal exocytosis and host cell plasma membrane wounding. These findings implicate lysosome recruitment followed by lysosome exocytosis, consistent with parasite-driven host cell injury, as key cellular events in Leishmania host cell infection. This work highlights the role of promastigote polarity and motility during parasite entry.
Collapse
|
68
|
Wenzel UA, Bank E, Florian C, Förster S, Zimara N, Steinacker J, Klinger M, Reiling N, Ritter U, van Zandbergen G. Leishmania major parasite stage-dependent host cell invasion and immune evasion. FASEB J 2011; 26:29-39. [PMID: 21908716 DOI: 10.1096/fj.11-184895] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Leishmania pathogenesis is primarily studied using the disease-inducing promastigote stage of Leishmania major. Despite many efforts, all attempts so far have failed to culture the disease-relevant multiplying amastigote stage of L. major. Here, we established a stably growing axenic L. major amastigote culture system that was characterized genetically, morphologically, and by stage-specific DsRed protein expression. We found parasite stage-specific disease development in resistant C57BL/6 mice. Human neutrophils, as first host cells for promastigotes, do not take up amastigotes. In human macrophages, we observed an amastigote-specific complement receptor 3-mediated, endocytotic entry mechanism, whereas promastigotes are taken up by complement receptor 1-mediated phagocytosis. Promastigote infection of macrophages induced the inflammatory mediators TNF, CCL3, and CCL4, whereas amastigote infection was silent and resulted in significantly increased parasite numbers: from 7.1 ± 1.4 (after 3 h) to 20.1 ± 7.9 parasites/cell (after 96 h). Our study identifies Leishmania stage-specific disease development, host cell preference, entry mechanism, and immune evasion. Since the amastigote stage is the disease-propagating form found in the infected mammalian host, the newly developed L. major axenic cultures will serve as an important tool in better understanding the amastigote-driven immune response in leishmaniasis.
Collapse
Affiliation(s)
- Ulf Alexander Wenzel
- Division of Immunology, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Straße, Langen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
|
70
|
Abstract
More than 20 years ago, immunologists discovered that resistance and susceptibility to experimental infection with the intracellular protozoan Leishmania major was associated with the development of T-helper 1 (Th1)- and Th2-dominated immune responses, respectively. This infectious disease model was later used to identify and assess the role of key factors, such as interleukin-12 (IL-12) and IL-4, in Th1 and Th2 maturation. While infection by Leishmania remains a popular model for immunologists who wish to assess the role of their favorite molecule in T-cell differentiation, other investigators have tried to better understand how Leishmania interact with its insect and mammalian hosts. In this review, we discuss some of these new data with an emphasis on the early events that shape the immune response to Leishmania and on the immune evasion mechanisms that allow this parasite to avoid the development of sterilizing immunity and to secure its transmission to a new host.
Collapse
Affiliation(s)
- Evelyne Mougneau
- Institut National de la Santé et de la Recherche Médicale, University of Nice-Sophia Antipolis, Valbonne, France
| | | | | |
Collapse
|
71
|
Stage-specific pathways of Leishmania infantum chagasi entry and phagosome maturation in macrophages. PLoS One 2011; 6:e19000. [PMID: 21552562 PMCID: PMC3084250 DOI: 10.1371/journal.pone.0019000] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 03/23/2011] [Indexed: 11/30/2022] Open
Abstract
The life stages of Leishmania spp. include the infectious promastigote and the replicative intracellular amastigote. Each stage is phagocytosed by macrophages during the parasite life cycle. We previously showed that caveolae, a subset of cholesterol-rich membrane lipid rafts, facilitate uptake and intracellular survival of virulent promastigotes by macrophages, at least in part, by delaying parasitophorous vacuole (PV)-lysosome fusion. We hypothesized that amastigotes and promastigotes would differ in their route of macrophage entry and mechanism of PV maturation. Indeed, transient disruption of macrophage lipid rafts decreased the entry of promastigotes, but not amastigotes, into macrophages (P<0.001). Promastigote-containing PVs were positive for caveolin-1, and co-localized transiently with EEA-1 and Rab5 at 5 minutes. Amastigote-generated PVs lacked caveolin-1 but retained Rab5 and EEA-1 for at least 30 minutes or 2 hours, respectively. Coinciding with their conversion into amastigotes, the number of promastigote PVs positive for LAMP-1 increased from 20% at 1 hour, to 46% by 24 hours, (P<0.001, Chi square). In contrast, more than 80% of amastigote-initiated PVs were LAMP-1+ at both 1 and 24 hours. Furthermore, lipid raft disruption increased LAMP-1 recruitment to promastigote, but not to amastigote-containing compartments. Overall, our data showed that promastigotes enter macrophages through cholesterol-rich domains like caveolae to delay fusion with lysosomes. In contrast, amastigotes enter through a non-caveolae pathway, and their PVs rapidly fuse with late endosomes but prolong their association with early endosome markers. These results suggest a model in which promastigotes and amastigotes use different mechanisms to enter macrophages, modulate the kinetics of phagosome maturation, and facilitate their intracellular survival.
Collapse
|
72
|
Ndjamen B, Kang BH, Hatsuzawa K, Kima PE. Leishmania parasitophorous vacuoles interact continuously with the host cell's endoplasmic reticulum; parasitophorous vacuoles are hybrid compartments. Cell Microbiol 2010; 12:1480-94. [PMID: 20497181 DOI: 10.1111/j.1462-5822.2010.01483.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macrophages that express representative endoplasmic reticulum (ER) molecules tagged with green fluorescence protein were generated to assess the recruitment of ER molecules to Leishmania parasitophorous vacuoles (PVs). More than 90% of PVs harbouring Leishmania pifanoi or Leishmania donovani parasites recruited calnexin, to their PV membrane. An equivalent proportion of PVs also recruited the membrane-associated soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), Sec22b. Both ER molecules appeared to be recruited very early in the formation of nascent PVs. Electron microscopy analysis of infected Sec22b/YFP expressing cells confirmed that Sec22b was recruited to Leishmania PVs. In contrast to PVs, it was found that no more than 20% of phagosomes that harboured Zymosan particles recruited calnexin or Sec22b to their limiting phagosomal membrane. The retrograde pathway that ricin employs to access the cell cytosol was exploited to gain further insight into ER-PV interactions. Ricin was delivered to PVs in infected cells incubated with ricin. Incubation of cells with brefeldin A blocked the transfer of ricin to PVs. This implied that molecules that traffic to the ER are transferred to PVs. Moreover the results show that PVs are hybrid compartments that are composed of both host ER and endocytic pathway components.
Collapse
Affiliation(s)
- Blaise Ndjamen
- Department of Microbiology and Cell Science, University of Florida, Building 981, Box 110700, Gainesville, FL 32669, USA
| | | | | | | |
Collapse
|
73
|
Fusion between Leishmania amazonensis and Leishmania major parasitophorous vacuoles: live imaging of coinfected macrophages. PLoS Negl Trop Dis 2010; 4:e905. [PMID: 21151877 PMCID: PMC2998430 DOI: 10.1371/journal.pntd.0000905] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 11/03/2010] [Indexed: 12/14/2022] Open
Abstract
Protozoan parasites of the genus Leishmania alternate between flagellated, elongated extracellular promastigotes found in insect vectors, and round-shaped amastigotes enclosed in phagolysosome-like Parasitophorous Vacuoles (PVs) of infected mammalian host cells. Leishmania amazonensis amastigotes occupy large PVs which may contain many parasites; in contrast, single amastigotes of Leishmania major lodge in small, tight PVs, which undergo fission as parasites divide. To determine if PVs of these Leishmania species can fuse with each other, mouse macrophages in culture were infected with non-fluorescent L. amazonensis amastigotes and, 48 h later, superinfected with fluorescent L. major amastigotes or promastigotes. Fusion was investigated by time-lapse image acquisition of living cells and inferred from the colocalization of parasites of the two species in the same PVs. Survival, multiplication and differentiation of parasites that did or did not share the same vacuoles were also investigated. Fusion of PVs containing L. amazonensis and L. major amastigotes was not found. However, PVs containing L. major promastigotes did fuse with pre-established L. amazonensis PVs. In these chimeric vacuoles, L. major promastigotes remained motile and multiplied, but did not differentiate into amastigotes. In contrast, in doubly infected cells, within their own, unfused PVs metacyclic-enriched L. major promastigotes, but not log phase promastigotes - which were destroyed - differentiated into proliferating amastigotes. The results indicate that PVs, presumably customized by L. major amastigotes or promastigotes, differ in their ability to fuse with L. amazonensis PVs. Additionally, a species-specific PV was required for L. major destruction or differentiation – a requirement for which mechanisms remain unknown. The observations reported in this paper should be useful in further studies of the interactions between PVs to different species of Leishmania parasites, and of the mechanisms involved in the recognition and fusion of PVs. Many non-viral intracellular pathogens lodge within cell vesicles known as “parasitophorous vacuoles” (PVs), which exhibit a variety of pathogen-dependent functional and compositional phenotypes. PVs of the protozoan Leishmania are similar to the digestive organelles known as phagolysosomes. We asked if, in phagocytes infected with two different Leishmania species, would the two parasites be found in the same or in separate vacuoles? Of the species chosen, Leishmania amazonensis develops within large vacuoles which shelter many parasites; in contrast, Leishmania major lodges in small PVs containing one or two parasites. In the present experiments, the species and their life-cycle stages (extracellular promastigotes, and intracellular amastigotes) were distinguished by means of fluorescent markers, and the intracellular localization of the parasites was examined in living cells. We report here that, whereas L. major amastigotes remained within their individual vacuoles, L. major promastigotes were delivered to L. amazonensis vacuoles, in which they survived and multiplied but were unable to differentiate into amastigotes. A species-specific vacuole was thus required for L. major differentiation. The model should be useful in cellular and molecular studies of the biology of these parasites and of their parasitophorous vacuoles.
Collapse
|
74
|
Quintana E, Torres Y, Alvarez C, Rojas A, Forero ME, Camacho M. Changes in macrophage membrane properties during early Leishmania amazonensis infection differ from those observed during established infection and are partially explained by phagocytosis. Exp Parasitol 2010; 124:258-64. [PMID: 19854174 DOI: 10.1016/j.exppara.2009.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 10/14/2009] [Accepted: 10/19/2009] [Indexed: 12/01/2022]
Affiliation(s)
- Eduardo Quintana
- Laboratorio de Biofísica, Centro Internacional de Física, Bogotá, Colombia
| | | | | | | | | | | |
Collapse
|
75
|
Jain R, Ghoshal A, Mandal C, Shaha C. Leishmania cell surface prohibitin: role in host-parasite interaction. Cell Microbiol 2009; 12:432-52. [PMID: 19888987 DOI: 10.1111/j.1462-5822.2009.01406.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proteins selectively upregulated in infective parasitic forms could be critical for disease pathogenesis. A mammalian prohibitin orthologue is upregulated in infective metacyclic promastigotes of Leishmania donovani, a parasite that causes visceral leishmaniasis. Leishmania donovani prohibitin shares 41% similarity with mammalian prohibitin and 95-100% within the genus. Prohibitin is concentrated at the surface of the flagellar and the aflagellar pole, the aflagellar pole being a region through which host-parasite interactions occur. Prohibitin is attached to the membrane through a GPI anchor. Overexpression of wild-type prohibitin increases protein surface density resulting in parasites with higher infectivity. However, parasites overexpressing a mutant prohibitin with an amino acid substitution at the GPI anchor site to prevent surface expression through GPI-link show lesser surface expression and lower infective abilities. Furthermore, the presence of anti-prohibitin antibodies during macrophage-Leishmania interaction in vitro reduces infection. The cognate binding partner for Leishmania prohibitin on the host cell appears to be macrophage surface HSP70, siRNA mediated downregulation of which abrogates the capability of the macrophage to bind to parasites. Leishmania prohibitin is able to generate a strong humoral response in visceral leishmaniasis patients. The above observations suggest that prohibitin plays an important role in events leading to Leishmania-host interaction.
Collapse
Affiliation(s)
- Rohit Jain
- Cell Death and Differentiation Research Laboratory, National Institute of Immunology, New Delhi-110067, India
| | | | | | | |
Collapse
|
76
|
Thomson R, Samanovic M, Raper J. Activity of trypanosome lytic factor: a novel component of innate immunity. Future Microbiol 2009; 4:789-96. [PMID: 19722834 DOI: 10.2217/fmb.09.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Trypanosome lytic factors (TLFs) are high-density lipoproteins and components of primate innate immunity. TLFs are characterized by their ability to kill extracellular protozoon parasites of the genus Trypanosoma. Two subspecies of Trypanosoma brucei have evolved resistance to TLFs and can consequently infect humans, resulting in the disease African sleeping sickness. The unique protein components of TLFs are a hemoglobin-binding protein, haptoglobin-related protein and a pore-forming protein, apoL-I. The recent advances in our understanding of the roles that these proteins play in the mechanism of TLF-mediated lysis are highlighted in this article. In light of recent data, which demonstrate that TLFs can ameliorate infection by the intracellular pathogen Leishmania, we also discuss the broader function of TLFs as components of innate immunity.
Collapse
Affiliation(s)
- Russell Thomson
- Medical Parasitology, New York University Langone Medical Center, 341 East 25th Street, New York, NY 10010, USA.
| | | | | |
Collapse
|
77
|
Lang T, Lecoeur H, Prina E. Imaging Leishmania development in their host cells. Trends Parasitol 2009; 25:464-73. [DOI: 10.1016/j.pt.2009.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 06/10/2009] [Accepted: 07/07/2009] [Indexed: 12/13/2022]
|
78
|
Gomez MA, Contreras I, Hallé M, Tremblay ML, McMaster RW, Olivier M. Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases. Sci Signal 2009; 2:ra58. [PMID: 19797268 DOI: 10.1126/scisignal.2000213] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
With more than 12 million people affected worldwide, 2 million new cases occurring per year, and the rapid emergence of drug resistance and treatment failure, leishmaniasis is an infectious disease for which research on drug and vaccine development, host-pathogen, and vector-parasite interactions are current international priorities. Upon Leishmania-macrophage interaction, activation of the protein tyrosine phosphatase (PTP) SHP-1 rapidly leads to the down-regulation of Janus kinase and mitogen-activated protein kinase signaling, resulting in the attenuation of host innate inflammatory responses and of various microbicidal macrophage functions. We report that, in addition to SHP-1, the PTPs PTP1B and TCPTP are activated and posttranslationally modified in infected macrophages, and we identify an essential role for PTP1B in the in vivo progression of Leishmania infection. The mechanism underlying PTP modulation involves the proteolytic activity of the Leishmania surface protease GP63. Access of GP63 to macrophage PTP1B, TCPTP, and SHP-1 is mediated in part by a lipid raft-dependent mechanism, resulting in PTP cleavage and stimulation of phosphatase activity. Collectively, our data present a mechanism of cleavage-dependent activation of macrophage PTPs by an obligate intracellular pathogen and show that internalization of GP63, a key Leishmania virulence factor, into host macrophages is a strategy the parasite uses to interact and survive within its host.
Collapse
Affiliation(s)
- Maria Adelaida Gomez
- Department of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
79
|
Diniz MC, Costa MP, Pacheco ACL, Kamimura MT, Silva SC, Carneiro LDG, Sousa APL, Soares CEA, Souza CSF, de Oliveira DM. Actin-interacting and flagellar proteins in Leishmania spp.: Bioinformatics predictions to functional assignments in phagosome formation. Genet Mol Biol 2009; 32:652-65. [PMID: 21637533 PMCID: PMC3036044 DOI: 10.1590/s1415-47572009000300033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 05/25/2009] [Indexed: 11/22/2022] Open
Abstract
Several motile processes are responsible for the movement of proteins into and within the flagellar membrane, but little is known about the process by which specific proteins (either actin-associated or not) are targeted to protozoan flagellar membranes. Actin is a major cytoskeleton protein, while polymerization and depolymerization of parasite actin and actin-interacting proteins (AIPs) during both processes of motility and host cell entry might be key events for successful infection. For a better understanding the eukaryotic flagellar dynamics, we have surveyed genomes, transcriptomes and proteomes of pathogenic Leishmania spp. to identify pertinent genes/proteins and to build in silico models to properly address their putative roles in trypanosomatid virulence. In a search for AIPs involved in flagellar activities, we applied computational biology and proteomic tools to infer from the biological meaning of coronins and Arp2/3, two important elements in phagosome formation after parasite phagocytosis by macrophages. Results presented here provide the first report of Leishmania coronin and Arp2/3 as flagellar proteins that also might be involved in phagosome formation through actin polymerization within the flagellar environment. This is an issue worthy of further in vitro examination that remains now as a direct, positive bioinformatics-derived inference to be presented.
Collapse
Affiliation(s)
- Michely C Diniz
- Núcleo Tarcísio Pimenta de Pesquisa Genômica e Bioinformática, Universidade Estadual do Ceará, Fortaleza, CE Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Gaur U, Showalter M, Hickerson S, Dalvi R, Turco SJ, Wilson ME, Beverley SM. Leishmania donovani lacking the Golgi GDP-Man transporter LPG2 exhibit attenuated virulence in mammalian hosts. Exp Parasitol 2009; 122:182-91. [PMID: 19328787 PMCID: PMC2720449 DOI: 10.1016/j.exppara.2009.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 03/03/2009] [Accepted: 03/06/2009] [Indexed: 12/24/2022]
Abstract
Surface phosophoglycans such as lipophosphoglycan (LPG) or proteophosphoglycan (PPG) and glycosylinositol phospholipids (GIPLs) modulate essential interactions between Leishmania and mammalian macrophages. Phosphoglycan synthesis depends on the Golgi GDP-mannose transporter encoded by LPG2. LPG2-null (lpg2(-)) Leishmania major cannot establish macrophage infections or induce acute pathology, whereas lpg2(-)Leishmania mexicana retain virulence. lpg2(-)Leishmania donovani has been reported to survive poorly in cultured macrophages but in vivo survival has not been explored. Herein we discovered that, similar to lpg2(-)L. major, lpg2(-)L. donovani promastigotes exhibited diminished virulence in mice, but persisted at consistently low levels. lpg2(-)L. donovani promastigotes could not establish infection in macrophages and could not transiently inhibit phagolysosomal fusion. Furthermore, lpg2(-) promastigotes of L. major, L. donovani and L. mexicana were highly susceptible to complement-mediated lysis. We conclude that phosphoglycan assembly and expression mediated by L. donovani LPG2 are important for promastigote and amastigote virulence, unlike L. mexicana but similar to L. major.
Collapse
Affiliation(s)
- Upasna Gaur
- Departments of Internal Medicine, Epidemiology and Microbiology, University of Iowa and the Veterans Affairs Medical Center, Iowa City IA 52242 USA
| | - Melissa Showalter
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis MO 63110 USA
| | - Suzanne Hickerson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis MO 63110 USA
| | - Rahul Dalvi
- Departments of Internal Medicine, Epidemiology and Microbiology, University of Iowa and the Veterans Affairs Medical Center, Iowa City IA 52242 USA
| | - Salvatore J. Turco
- Department of Biochemistry, University of Kentucky Medical Center, College of Medicine, Lexington, 40536 USA
| | - Mary E. Wilson
- Departments of Internal Medicine, Epidemiology and Microbiology, University of Iowa and the Veterans Affairs Medical Center, Iowa City IA 52242 USA
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis MO 63110 USA
| |
Collapse
|
81
|
Identification of macrosialin (CD68) on the surface of host macrophages as the receptor for the intercellular adhesive molecule (ICAM-L) of Leishmania amazonensis. Int J Parasitol 2009; 39:1539-50. [PMID: 19540239 DOI: 10.1016/j.ijpara.2009.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 11/23/2022]
Abstract
The intercellular adhesive molecule, ICAM-L, of Leishmania amazonensis is known to block the attachment as well as internalisation of Leishmania for infection in host macrophages. We employed monoclonal antibodies (mAb) to the surface molecules of a macrophage to block the attachment of ICAM-L to the macrophage surface and identified that CD68 macrosialin is likely the receptor molecule on the macrophage for ICAM-L. We then demonstrated physical interaction between ICAM-L and macrosialin by co-immunoprecipitation of macrosialin with ICAM-L or vice versa. Finally, macrosialin is expressed in macrosialin-negative murine fibroblast cell line NCTC clone 2555 and demonstrates that both ICAM-L and promastigotes of L. amazonensis can bind to the CD68 transfectant. We thus conclude that CD68 macrosialin is the receptor on host macrophages for ICAM-L. Also, involvement of ICAM-L-macrosialin interaction in other Leishmania species and other mammalian macrophages were demonstrated, indicating the biological relevance of this ligand-receptor interaction.
Collapse
|
82
|
Osorio y Fortéa J, de La Llave E, Regnault B, Coppée JY, Milon G, Lang T, Prina E. Transcriptional signatures of BALB/c mouse macrophages housing multiplying Leishmania amazonensis amastigotes. BMC Genomics 2009; 10:119. [PMID: 19302708 PMCID: PMC2666765 DOI: 10.1186/1471-2164-10-119] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 03/20/2009] [Indexed: 12/14/2022] Open
Abstract
Background Mammal macrophages (MΦ) display a wide range of functions which contribute to surveying and maintaining tissue integrity. One such function is phagocytosis, a process known to be subverted by parasites like Leishmania (L). Indeed, the intracellular development of L. amazonensis amastigote relies on the biogenesis and dynamic remodelling of a phagolysosome, termed the parasitophorous vacuole, primarily within dermal MΦ. Results Using BALB/c mouse bone marrow-derived MΦ loaded or not with amastigotes, we analyzed the transcriptional signatures of MΦ 24 h later, when the amastigote population was growing. Total RNA from MΦ cultures were processed and hybridized onto Affymetrix Mouse430_2 GeneChips®, and some transcripts were also analyzed by Real-Time quantitative PCR (RTQPCR). A total of 1,248 probe-sets showed significant differential expression. Comparable fold-change values were obtained between the Affymetrix technology and the RTQPCR method. Ingenuity Pathway Analysis software® pinpointed the up-regulation of the sterol biosynthesis pathway (p-value = 1.31e-02) involving several genes (1.95 to 4.30 fold change values), and the modulation of various genes involved in polyamine synthesis and in pro/counter-inflammatory signalling. Conclusion Our findings suggest that the amastigote growth relies on early coordinated gene expression of the MΦ lipid and polyamine pathways. Moreover, these MΦ hosting multiplying L. amazonensis amastigotes display a transcriptional profile biased towards parasite-and host tissue-protective processes.
Collapse
Affiliation(s)
- José Osorio y Fortéa
- Institut Pasteur, Unité d'Immunophysiologie et Parasitisme Intracellulaire, Département de Parasitologie et Mycologie, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
83
|
Samanovic M, Molina-Portela MP, Chessler ADC, Burleigh BA, Raper J. Trypanosome lytic factor, an antimicrobial high-density lipoprotein, ameliorates Leishmania infection. PLoS Pathog 2009; 5:e1000276. [PMID: 19165337 PMCID: PMC2622765 DOI: 10.1371/journal.ppat.1000276] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 12/17/2008] [Indexed: 11/19/2022] Open
Abstract
Innate immunity is the first line of defense against invading microorganisms. Trypanosome Lytic Factor (TLF) is a minor sub-fraction of human high-density lipoprotein that provides innate immunity by completely protecting humans from infection by most species of African trypanosomes, which belong to the Kinetoplastida order. Herein, we demonstrate the broader protective effects of human TLF, which inhibits intracellular infection by Leishmania, a kinetoplastid that replicates in phagolysosomes of macrophages. We show that TLF accumulates within the parasitophorous vacuole of macrophages in vitro and reduces the number of Leishmania metacyclic promastigotes, but not amastigotes. We do not detect any activation of the macrophages by TLF in the presence or absence of Leishmania, and therefore propose that TLF directly damages the parasite in the acidic parasitophorous vacuole. To investigate the physiological relevance of this observation, we have reconstituted lytic activity in vivo by generating mice that express the two main protein components of TLFs: human apolipoprotein L-I and haptoglobin-related protein. Both proteins are expressed in mice at levels equivalent to those found in humans and circulate within high-density lipoproteins. We find that TLF mice can ameliorate an infection with Leishmania by significantly reducing the pathogen burden. In contrast, TLF mice were not protected against infection by the kinetoplastid Trypanosoma cruzi, which infects many cell types and transiently passes through a phagolysosome. We conclude that TLF not only determines species specificity for African trypanosomes, but can also ameliorate an infection with Leishmania, while having no effect on T. cruzi. We propose that TLFs are a component of the innate immune system that can limit infections by their ability to selectively damage pathogens in phagolysosomes within the reticuloendothelial system. Innate immunity (present from birth) is the first line of defense against microorganisms and provides an initial barrier against disease. Here we show that a minor sub-fraction of human high-density lipoprotein (the good cholesterol), known as Trypanosome Lytic Factor (TLF), not only kills the parasite Trypanosoma brucei, but is also a more broadly acting antimicrobial component of the innate immune system in humans. As TLF is activated under acidic conditions, we evaluated the activity of TLF against the intracellular parasite Leishmania, which infects and grows within acidic compartments of macrophages, cells in our blood that normally destroy invading microorganisms. Here we show that TLF acts directly on Leishmania parasites, causing them to swell, thereby decreasing their infectivity. Furthermore, microscopy of macrophages infected with Leishmania reveal that TLF is taken up and delivered to the same compartment as Leishmania, concomitant with a reduction in the intracellular parasite number. Finally, we made mice that expressed the genes for human TLF; these mice reduced the pathogen burden and thereby controlled the Leishmania infection better than unmodified mice. In contrast, TLF mice were not protected from infection by Trypanosoma cruzi, a related parasite, which transiently passes through acidic compartments within cells.
Collapse
Affiliation(s)
- Marie Samanovic
- Medical Parasitology, New York University Langone Medical Center, New York, New York, United States of America
| | - Maria Pilar Molina-Portela
- Medical Parasitology, New York University Langone Medical Center, New York, New York, United States of America
| | - Anne-Danielle C. Chessler
- Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Barbara A. Burleigh
- Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jayne Raper
- Medical Parasitology, New York University Langone Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
84
|
Nicoletti S, Seifert K, Gilbert IH. N-(2-hydroxypropyl)methacrylamide-amphotericin B (HPMA-AmB) copolymer conjugates as antileishmanial agents. Int J Antimicrob Agents 2008; 33:441-8. [PMID: 19097763 PMCID: PMC2669511 DOI: 10.1016/j.ijantimicag.2008.10.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/07/2008] [Accepted: 10/09/2008] [Indexed: 11/02/2022]
Abstract
Leishmaniasis is a major health problem in many parts of the world, caused by various species of Leishmania. Amastigotes are the clinically relevant form of the parasite in the human host and reside in the parasitophorous vacuole within macrophages. Polymer-drug conjugates have been used for lysosomotropic drug delivery and have already shown potential in anticancer and antileishmanial chemotherapy. We synthesised N-(2-hydroxypropyl)methacrylamide-amphotericin B (HPMA-AmB) copolymer conjugates in which the AmB was attached to the polymer through a degradable GlyPheLeuGly linker. Antileishmanial activity was assessed in vitro against intracellular amastigotes in host macrophages [murine peritoneal exudate macrophages (PEMs), murine bone marrow-derived macrophages (BMMs) and differentiated THP-1 cells]. The most potent copolymers had 50% effective concentration (EC(50)) values of 0.03 microg/mL AmB equivalent against Leishmania donovani amastigotes in PEMs and BMMs and an EC(50) of 0.57 microg/mL AmB equivalent against L. donovani in THP-1 cells. This activity was comparable with free AmB (EC(50)=0.03-0.07 microg/mL against L. donovani in PEMs and BMMs and 0.24-0.42 microg/mL against amastigotes in THP-1 cells) and Fungizone (EC(50)=0.04-0.07 microg/mL against amastigotes in PEMs). Conjugates also showed potent in vivo activity with ca. 50% inhibition of parasite burden at 1mg/kg body weight.
Collapse
Affiliation(s)
- Salvatore Nicoletti
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
85
|
Abstract
Whereas bacterial pathogens take over the control of their host cell actin cytoskeleton by delivering an array of protein effectors through specialized secretion systems, promastigotes of the protozoan parasite Leishmania donovani rely entirely upon a cell surface glycolipid to achieve this feat. Here, we review recent evidence that L. donovani promastigotes subvert host macrophage actin dynamics during the establishment of infection and we discuss the potential mechanisms involved.
Collapse
|
86
|
Ng LG, Hsu A, Mandell MA, Roediger B, Hoeller C, Mrass P, Iparraguirre A, Cavanagh LL, Triccas JA, Beverley SM, Scott P, Weninger W. Migratory dermal dendritic cells act as rapid sensors of protozoan parasites. PLoS Pathog 2008; 4:e1000222. [PMID: 19043558 PMCID: PMC2583051 DOI: 10.1371/journal.ppat.1000222] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 10/29/2008] [Indexed: 11/19/2022] Open
Abstract
Dendritic cells (DC), including those of the skin, act as sentinels for intruding microorganisms. In the epidermis, DC (termed Langerhans cells, LC) are sessile and screen their microenvironment through occasional movements of their dendrites. The spatio-temporal orchestration of antigen encounter by dermal DC (DDC) is not known. Since these cells are thought to be instrumental in the initiation of immune responses during infection, we investigated their behavior directly within their natural microenvironment using intravital two-photon microscopy. Surprisingly, we found that, under homeostatic conditions, DDC were highly motile, continuously crawling through the interstitial space in a Galpha(i) protein-coupled receptor-dependent manner. However, within minutes after intradermal delivery of the protozoan parasite Leishmania major, DDC became immobile and incorporated multiple parasites into cytosolic vacuoles. Parasite uptake occurred through the extension of long, highly dynamic pseudopods capable of tracking and engulfing parasites. This was then followed by rapid dendrite retraction towards the cell body. DDC were proficient at discriminating between parasites and inert particles, and parasite uptake was independent of the presence of neutrophils. Together, our study has visualized the dynamics and microenvironmental context of parasite encounter by an innate immune cell subset during the initiation of the immune response. Our results uncover a unique migratory tissue surveillance program of DDC that ensures the rapid detection of pathogens.
Collapse
Affiliation(s)
- Lai Guan Ng
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | - Alice Hsu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael A. Mandell
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ben Roediger
- The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | - Christoph Hoeller
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Paulus Mrass
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Amaya Iparraguirre
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Lois L. Cavanagh
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | - James A. Triccas
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wolfgang Weninger
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
- Discipline of Dermatology, University of Sydney, Camperdown, New South Wales, Australia
- * E-mail:
| |
Collapse
|
87
|
Lippuner C, Paape D, Paterou A, Brand J, Richardson M, Smith AJ, Hoffmann K, Brinkmann V, Blackburn C, Aebischer T. Real‐time imaging ofLeishmania mexicana‐infected early phagosomes: a study using primary macrophages generated from green fluorescent protein‐Rab5 transgenic mice. FASEB J 2008; 23:483-91. [DOI: 10.1096/fj.08-108712] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christoph Lippuner
- Department of Molecular BiologyMax‐Planck‐Institute for Infection BiologyBerlinGermany
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie und BiotechnologieAlbert‐Ludwigs‐Universität FreiburgGermany
| | - Daniel Paape
- Department of Molecular BiologyMax‐Planck‐Institute for Infection BiologyBerlinGermany
- Marie Curie Team Pathogen Habitats, Institute of Immunology and Infection ResearchUniversity of Edinburgh, EdinburghUK
| | - Athina Paterou
- Marie Curie Team Pathogen Habitats, Institute of Immunology and Infection ResearchUniversity of Edinburgh, EdinburghUK
| | - Janko Brand
- Department of Molecular BiologyMax‐Planck‐Institute for Infection BiologyBerlinGermany
| | | | - Andrew J. Smith
- Institute for Stem Cell ResearchUniversity of EdinburghEdinburghUK
| | - Kirstin Hoffmann
- Department of Molecular BiologyMax‐Planck‐Institute for Infection BiologyBerlinGermany
| | - Volker Brinkmann
- Central Microscopy UnitMax‐Planck‐Institute for Infection BiologyBerlinGermany
| | - Clare Blackburn
- Institute for Stem Cell ResearchUniversity of EdinburghEdinburghUK
| | - Toni Aebischer
- Department of Molecular BiologyMax‐Planck‐Institute for Infection BiologyBerlinGermany
- Marie Curie Team Pathogen Habitats, Institute of Immunology and Infection ResearchUniversity of Edinburgh, EdinburghUK
| |
Collapse
|
88
|
The Leishmania infantum cytosolic SIR2-related protein 1 (LiSIR2RP1) is an NAD+-dependent deacetylase and ADP-ribosyltransferase. Biochem J 2008; 415:377-86. [DOI: 10.1042/bj20080666] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proteins of the SIR2 (Silent Information Regulator 2) family are characterized by a conserved catalytic domain that exerts unique NAD+-dependent deacetylase activity on histones and various other cellular substrates. Previous reports from us have identified a Leishmania infantum gene encoding a cytosolic protein termed LiSIR2RP1 (Leishmania infantum SIR2-related protein 1) that belongs to the SIR2 family. Targeted disruption of one LiSIR2RP1 gene allele led to decreased amastigote virulence, in vitro as well as in vivo. In the present study, attempts were made for the first time to explore and characterize the enzymatic functions of LiSIR2RP1. The LiSIR2RP1 exhibited robust NAD+-dependent deacetylase and ADP-ribosyltransferase activities. Moreover, LiSIR2RP1 is capable of deacetylating tubulin, either in dimers or, when present, in taxol-stabilized microtubules or in promastigote and amastigote extracts. Furthermore, the immunostaining of parasites revealed a partial co-localization of α-tubulin and LiSIR2RP1 with punctate labelling, seen on the periphery of both promastigote and amastigote stages. Isolated parasite cytoskeleton reacted with antibodies showed that part of LiSIR2RP1 is associated to the cytoskeleton network of both promastigote and amastigote forms. Moreover, the Western blot analysis of the soluble and insoluble fractions of the detergent of promastigote and amastigote forms revealed the presence of α-tubulin in the insoluble fraction, and the LiSIR2RP1 distributed in both soluble and insoluble fractions of promastigotes as well as amastigotes. Collectively, the results of the present study demonstrate that LiSIR2RP1 is an NAD+-dependent deacetylase that also exerts an ADP-ribosyltransferase activity. The fact that tubulin could be among the targets of LiSIR2RP1 may have significant implications during the remodelling of the morphology of the parasite and its interaction with the host cell.
Collapse
|
89
|
Leishmania (L.) amazonensis: fusion between parasitophorous vacuoles in infected bone-marrow derived mouse macrophages. Exp Parasitol 2008; 119:15-23. [PMID: 18346736 DOI: 10.1016/j.exppara.2007.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 10/02/2007] [Accepted: 12/11/2007] [Indexed: 11/20/2022]
Abstract
[Leishmania(L.)] amazonensis amastigotes reside in macrophages within spacious parasitophorous vacuoles (PVs) which may contain numerous parasites. After sporadic fusion events were detected by time-lapse cinemicrography, PV fusion was examined in two different models. In single infections, it was inferred from the reduction in PV numbers per cell. In a reinfection model, macrophages infected with unlabeled amastigotes were reinfected with GFP-transfected- or carboxyfluorescein diacetate succinimidyl ester-labeled parasites, and fusion was detected by the colocalization of labeled and unlabeled amastigotes in the same PVs. The main findings were: (1) as expected, fusion frequency increased with the multiplicity of infection; (2) most fusion events took place in the first 24h of infection or reinfection, prior to the multiplication of incoming parasites; (3) resident and incoming parasites multiplied at similar rates in fused PVs. The model should be useful in studies of parasite and host cell factors and mechanisms involved in PV fusogenicity.
Collapse
|
90
|
Osorio y Fortéa J, Prina E, de La Llave E, Lecoeur H, Lang T, Milon G. Unveiling pathways used by Leishmania amazonensis amastigotes to subvert macrophage function. Immunol Rev 2007; 219:66-74. [PMID: 17850482 DOI: 10.1111/j.1600-065x.2007.00559.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This article provides a summary and discussion of properties of Leishmania amazonensis-loaded mouse macrophages. It illustrates how high-throughput analysis is expected to contribute to deciphering features displayed by macrophages when they are subverted as host cells for replicating Leishmania amastigotes. Firstly, we discuss features of mouse mononuclear phagocytes in steady-state conditions, including the phagocytosis of apoptotic cells. Secondly, we discuss results from ongoing investigations aimed at characterizing transcriptional signatures displayed by BALB/c mouse bone marrow-derived macrophages housing replicating L. amazonensis amastigotes. After a brief presentation on the feasibility of high-throughput microscopy relying on our robust culture system, we share some perspectives on the perpetuation of L. amazonensis in their hosts. Within this latter context, a novel question is formulated and its relevance is discussed: do the Leishmania amastigotes that persist within the mammalian dermis reach a non-replicating developmental stage? If so, is this developmental stage the only one displaying the features required for further development as promastigotes within the sand fly gut lumen?
Collapse
Affiliation(s)
- José Osorio y Fortéa
- Département de Parasitologie et Mycologie, Unité d'Immunophysiologie et Parasitisme Intracellulaire, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
91
|
|
92
|
Ortiz D, Sanchez MA, Pierce S, Herrmann T, Kimblin N, Archie Bouwer HG, Landfear SM. Molecular genetic analysis of purine nucleobase transport in Leishmania major. Mol Microbiol 2007; 64:1228-43. [PMID: 17542917 DOI: 10.1111/j.1365-2958.2007.05730.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leishmania major and all other parasitic protozoa are unable to synthesize purines de novo and are therefore reliant upon uptake of preformed purines from their hosts via nucleobase and nucleoside transporters. L. major expresses two nucleobase permeases, NT3 that is a high affinity transporter for purine nucleobases and NT4 that is a low affinity transporter for adenine. nt3((-/-)) null mutant promastigotes were unable to replicate in medium containing 10 microM hypoxanthine, guanine, or xanthine and replicated slowly in 10 microM adenine due to residual low affinity uptake of that purine. The NT3 transporter mediated the uptake of the anti-leishmanial drug allopurinol, and the nt3((-/-)) mutants were resistant to killing by this drug. Expression of the NT3 permease was profoundly downregulated at the protein but not the mRNA level in stationary phase compared with logarithmic phase promastigotes. The nt4((-/-)) null mutant was quantitatively impaired in survival within murine bone marrow-derived macrophages. Extensive efforts to generate an nt3((-/-))/nt4((-/-)) dual null mutant were not successful, suggesting that one of the two nucleobase permeases must be retained for robust growth of the parasite. The phenotypes of these null mutants underscore the importance of purine nucleobase transporters in the Leishmania life cycle and pharmacology.
Collapse
Affiliation(s)
- Diana Ortiz
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Rodriguez-Contreras D, Feng X, Keeney KM, Archie Bouwer HG, Landfear SM. Phenotypic characterization of a glucose transporter null mutant in Leishmania mexicana. Mol Biochem Parasitol 2007; 153:9-18. [PMID: 17306380 PMCID: PMC2062483 DOI: 10.1016/j.molbiopara.2007.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 12/22/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
Glucose is a major source of energy and carbon in promastigotes of Leishmania mexicana, and its uptake is mediated by three glucose transporters whose genes are encoded within a single cluster. A null mutant in which the glucose transporter gene cluster was deleted by homologous gene replacement was generated previously and shown to grow more slowly than wild type promastigotes but not to be viable as amastigotes in primary tissue culture macrophages or in axenic culture. Further phenotypic characterization demonstrates that the null mutant is unable to import glucose, mannose, fructose, or galactose and that each of the three glucose transporter isoforms, LmGT1, LmGT2, and LmGT3, is capable of transporting each of these hexoses. Complementation of the null mutant with each isoform is able to restore growth in each of the four hexoses to wild type levels. Null mutant promastigotes are reduced in size to about 2/3 the volume of wild type parasites. In addition, the null mutants are significantly more sensitive to oxidative stress than their wild type counterparts. These results underscore the importance of glucose transporters in the parasite life cycle and suggest reasons for their non-viability in the disease-causing amastigote stage.
Collapse
Affiliation(s)
- Dayana Rodriguez-Contreras
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Xiuhong Feng
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Kristie M. Keeney
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - H. G. Archie Bouwer
- Immunology Research, Early A. Chiles Research Institute and Veterans Affairs Medical Center, Portland, Oregon 97239, USA
| | - Scott M. Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon 97239, USA
- *Corresponding author. Tel: +1 503 494 2426; fax: +1 503 494 6862 E-mail address: (S.M. Landfear)
| |
Collapse
|
94
|
Huynh C, Sacks DL, Andrews NW. A Leishmania amazonensis ZIP family iron transporter is essential for parasite replication within macrophage phagolysosomes. ACTA ACUST UNITED AC 2006; 203:2363-75. [PMID: 17000865 PMCID: PMC2118100 DOI: 10.1084/jem.20060559] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infection of mammalian hosts with Leishmania amazonensis depends on the remarkable ability of these parasites to replicate within macrophage phagolysosomes. A critical adaptation for survival in this harsh environment is an efficient mechanism for gaining access to iron. In this study, we identify and characterize LIT1, a novel L. amazonensis membrane protein with extensive similarity to IRT1, a ZIP family ferrous iron transporter from Arabidopsis thaliana. The ability of LIT1 to promote iron transport was demonstrated after expression in yeast and in L. amazonensis LIT1-null amastigotes. Endogenous LIT1 was only detectable in amastigotes replicating intracellularly, and its intracellular expression was accelerated under conditions predicted to result in iron deprivation. Although L. amazonensis lacking LIT1 grew normally in axenic culture and had no defects differentiating into infective forms, replication within macrophages was abolished. Consistent with an essential role for LIT1 in intracellular growth as amastigotes, Δlit1 parasites were avirulent. After inoculation into highly susceptible mice, no lesions were detected, even after extensive periods of time. Despite the absence of pathology, viable Δlit1 parasites were recovered from the original sites of inoculation, indicating that L. amazonensis can persist in vivo independently of the ability to grow in macrophages. Our findings highlight the essential role played by intracellular iron acquisition in Leishmania virulence and identify this pathway as a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Chau Huynh
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
95
|
Körner U, Fuss V, Steigerwald J, Moll H. Biogenesis of Leishmania major-harboring vacuoles in murine dendritic cells. Infect Immun 2006; 74:1305-12. [PMID: 16428780 PMCID: PMC1360340 DOI: 10.1128/iai.74.2.1305-1312.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In mammalian hosts, Leishmania sp. parasites are obligatory intracellular organisms that invade macrophages and dendritic cells (DC), where they reside in endocytic organelles termed parasitophorous vacuoles (PV). Most of the present knowledge of the characteristics of PV harboring Leishmania sp. is derived from studies with infected macrophages. Since DC play a key role in host resistance to leishmaniasis, there is a need to understand the properties and biogenesis of PV in Leishmania sp.-infected DC. Therefore, we determined the acquisition of endosomal and lysosomal molecules by Leishmania major-containing compartments in DC at different maturation stages, using fluorescence labeling and confocal microscopy. The results show that newly formed phagosomes in DC rapidly develop into late endosomal compartments. However, the small GTPase Rab7, which regulates late fusion processes, was found only in PV of mature bone marrow-derived DC (BMDC); it was absent in immature BMDC, suggesting an arrest of their PV biogenesis at the stage of late endosomes. Indeed, fusion assays with endocytic tracers demonstrated that the fusion activity of L. major-harboring PV toward lysosomes is higher in mature BMDC than in immature BMDC. The inhibition of PV-lysosome fusion in DC is dependent upon the viability and life cycle stage of the parasite, because live promastigotes blocked the fusion almost completely, whereas killed organisms and amastigotes induced a considerable level of fusion activity. The differences in the fusion competences of immature and mature DC may be relevant for their distinct functional activities in the uptake, transport, and presentation of parasite antigens.
Collapse
Affiliation(s)
- Ulrich Körner
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | |
Collapse
|
96
|
Oliveira DM, Gouveia JJS, Diniz NB, Pacheco ACL, Vasconcelos EJR, Diniz MC, Viana DA, Ferreira TD, Albuquerque MC, Fortier DC, Maia ARS, Costa LAC, Melo JOP, da Silva MC, Walter CA, Faria JO, Tome AR, Gomes MJN, Oliveira SMP, Araújo-Filho R, Costa RB, Maggioni R. Pathogenomics analysis of Leishmania spp.: flagellar gene families of putative virulence factors. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2005; 9:173-93. [PMID: 15969649 DOI: 10.1089/omi.2005.9.173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The trypanosomatid flagellar apparatus contains conventional and unique features, whose roles in infectivity are still enigmatic. Although the flagellum and the flagellar pocket are critical organelles responsible for all vesicular trafficking between the cytoplasm and cell surface, still very little is known about their roles in pathogenesis and how molecules get to and from the flagellar pocket. The ongoing analysis of the genome sequences and proteome profiles of Leishmania major and L infantum, Trypanosoma cruzi, T. brucei, and T. gambiensi ( www.genedb.org ), coupled with our own work on L. chagasi (as part of the Brazilian Northeast Genome Program- www.progene.ufpe.br ), prompted us to scrutinize flagellar genes and proteins of Leishmania spp. promastigotes that could be virulence factors in leishmaniasis. We have identified some overlooked parasite factors such as the MNUDC-1 (a protein involved in nuclear development and genomic fusion) and SQS (an enzyme of sterol biosynthesis), among the described flagellar gene families. A database concerning the results of this work, as well as of other studies of Leishmania and its organelles, is available at http://nugen.lcc.uece.br/LPGate . It will serve as a convenient bioinformatics resource on genomics and pathology of the etiological agents of leishmaniasis.
Collapse
Affiliation(s)
- Diana M Oliveira
- Núcleo de Genômica e Bioinformática, Faculdade de Veterinária, Universidade Estadual do Ceara (UECE), Campus do Itaperi, Fortaleza, Ceara, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Lodge R, Descoteaux A. Modulation of phagolysosome biogenesis by the lipophosphoglycan of Leishmania. Clin Immunol 2005; 114:256-65. [PMID: 15721836 DOI: 10.1016/j.clim.2004.07.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 07/22/2004] [Indexed: 11/19/2022]
Abstract
Promastigotes of the protozoan parasite Leishmania are inoculated into the mammalian host by an infected sandfly and are phagocytosed by macrophages. There, they differentiate into amastigotes, which replicate in phagolysosomes. A family of glycoconjugates, the phosphoglycans (PGs), plays an important role in the ability of promastigotes to survive the potentially microbicidal consequences of phagocytosis. Lipophosphoglycan (LPG), an abundant promastigote surface glycolipid, has received considerable attention over the past several years. Of interest for this review, lipophosphoglycan confers upon Leishmania donovani promastigotes the ability to inhibit phagolysosome biogenesis. This inhibition correlates with an accumulation of periphagosomal F-actin, which may potentially form a physical barrier that prevents L. donovani promastigote-harboring phagosomes from interacting with late endosomes and lysosomes. Thus, similar to several other pathogens, Leishmania promastigotes hijack the host cell's cytoskeleton early during the infection process. Here, we review this phenomenon and discuss the potential underlying mechanisms.
Collapse
Affiliation(s)
- Robert Lodge
- INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval QC, Canada H7V 1B7
| | | |
Collapse
|
98
|
Antoine JC, Prina E, Courret N, Lang T. Leishmania spp.: on the interactions they establish with antigen-presenting cells of their mammalian hosts. ADVANCES IN PARASITOLOGY 2005; 58:1-68. [PMID: 15603761 DOI: 10.1016/s0065-308x(04)58001-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identification of macrophages as host cells for the mammalian stage of Leishmania spp. traces back to about 40 years ago, but many questions concerning the ways these parasites establish themselves in these cells, which are endowed with potent innate microbicidal mechanisms, are still unanswered. It is known that microbicidal activities of macrophages can be enhanced or induced by effector T lymphocytes following the presentation of antigens via MHC class I or class II molecules expressed at the macrophage plasma membrane. However, Leishmania spp. have evolved mechanisms to evade or to interfere with antigen presentation processes, allowing parasites to partially resist these T cell-mediated immune responses. Recently, the presence of Leishmania amastigotes within dendritic cells has been reported suggesting that they could also be host cells for these parasites. Dendritic cells have been described as the only cells able to induce the activation of naive T lymphocytes. However, certain Leishmania species infect dendritic cells without inducing their maturation and impair the migration of these cells, which could delay the onset of the adaptive immune responses as both processes are required for naive T cell activation. This review examines how Leishmania spp. interact with these two cell types, macrophages and dendritic cells, and describes some of the strategies used by Leishmania spp. to survive in these inducible or constitutive antigen-presenting cells.
Collapse
Affiliation(s)
- Jean-Claude Antoine
- Unité d'Immunophysiologie et Parasitisme Intracellulaire, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France.
| | | | | | | |
Collapse
|
99
|
Coelho Neto J, Agero U, Oliveira DCP, Gazzinelli RT, Mesquita ON. Real-time measurements of membrane surface dynamics on macrophages and the phagocytosis of Leishmania parasites. Exp Cell Res 2005; 303:207-17. [PMID: 15652336 DOI: 10.1016/j.yexcr.2004.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 08/18/2004] [Indexed: 11/25/2022]
Abstract
Defocusing microscopy was used for real-time observation and quantification of membrane surface dynamics in murine bone marrow macrophages. Small random membrane fluctuations (SRMF), possibly metabolic driven, were detected uniformly over all membrane surface. Morphological and dynamical parameters of ruffles, such as shape, dimensions, and velocity of propagation, were analyzed. Optical tweezers were used to promote phagocytosis of single Leishmania amazonensis amastigotes by selected macrophages. Analysis of ruffling activity on the macrophages before and during phagocytosis of the parasites indicated that increased ruffling response near forming phagosomes, most likely induced by the parasite, accelerates phagocytosis. The effects of temperature decrease on the dynamics of membrane surface fluctuations and on the phagocytosis of parasites were used to determine the overall activation energies involved in these processes. The values obtained support the existence of strong correlation between membrane motility and phagocytic capacity.
Collapse
Affiliation(s)
- José Coelho Neto
- Departamento de Física, ICEx, Universidade Federal de Minas Gerais, CEP 30123-970, Belo Horizonte, Minas Gerais, Brasil.
| | | | | | | | | |
Collapse
|
100
|
de Souza W. Microscopy and cytochemistry of the biogenesis of the parasitophorous vacuole. Histochem Cell Biol 2005; 123:1-18. [PMID: 15685438 DOI: 10.1007/s00418-004-0746-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 11/23/2004] [Indexed: 10/25/2022]
Abstract
Some parasitic protozoa are able to penetrate into host cells where they multiply. The process of penetration involves steps such as attachment to the host cell surface, internalization of the protozoan through an endocytic process with the formation of a parasitophorous vacuole (PV), and the subsequent interaction of the protozoan with the membrane lining the PV. This review analyzes the biogenesis of the PV from a morphological and cytochemical perspective. Special emphasis is given to (a) the localization of plasma membrane-associated enzymes such as Na(+)-K(+)-ATPase, Ca(2+)-ATPase, 5'-nucleotidase, and NAD(P)H-oxidase, (b) glycoconjugates, detected using labeled lectins, (c) anionic sites, detected using cationic particles, and (d) integral membrane proteins, using freeze-fracture replicas, and lipids during the formation of the PV containing Trypanosoma cruzi, Leishmania, Toxoplasma gondii, and Plasmodium.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, CCS-Bloco G, 21941-900, Rio de Janeiro, Brazil.
| |
Collapse
|