51
|
Jiang Y, Zhao Y, Zhu X, Liu Y, Wu B, Guo Y, Liu B, Zhang X. Effects of autophagy on macrophage adhesion and migration in diabetic nephropathy. Ren Fail 2020; 41:682-690. [PMID: 31352855 PMCID: PMC6711118 DOI: 10.1080/0886022x.2019.1632209] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective: Macrophage infiltration in kidney is a major pathological feature of diabetic nephropathy (DN), which has been demonstrated associate with macrophages autophagy homeostasis. However, the relationships between autophagy and the infiltration response related of macrophages adhesion and migration are unknown. This study aims to investigate the impact of macrophages adhesion and migration by modulating autophagy. Methods: In vivo, rats were randomly distributed into control (NC) and DN groups. The pathological changes in renal tissue were assessed, and expression of CD68, LC3, P62 were analyzed. In vitro, RAW264.7 cells were divided into NC and high glucose (HG) groups. The capacity of macrophages adhesion migration and the expression of autophagy markers were observed with and without autophagy modulators (rapamycin, 3-methyladenine, chloroquine, and bafilomycin A1 for RAPA, 3-MA, CQ, BAFA). The macrophages autophagosome and the process of degradation and fusion of autophagosome-lysosome were observed by electron microscopy. Results: In vivo, renal injury is aggravated in diabetic rat compared with NC group. The autophagy level is inhibited in renal tissues of DN group with the increasing expression of CD68 and P62, while expression level of LC3 decreased (p < .05). In vitro, HG and 3-MA reduce the numbers of autophagosome of macrophages to inhibit autophagy level with decrease expression of LC3 and Beclin-1, but increase expression of P62, which promote the adhesion and migration capacity of macrophages (p < .05). Moreover, CQ and BAFA suppress autophagy level by inhibiting the process of autophagosome-lysosome degradation and fusion of macrophages, as well as the expression of LC3 and Beclin-1. We notice an increase expression of P62 by CQ and BAFA stimulation (p < .05). CQ and BAFA further facilitate the adhesion and migration capacity of macrophages. However, RAPA increases the numbers of macrophages autophagosome that inhibited by HG, resulting in a recovery of autophagy level with increase expression of LC3 and Beclin-1, whereas a reduction expression of P62, which lead to inhibition of adhesion and migration of macrophages induced by HG (p < .05) Conclusions: High glucose efficiently reduced the level of macrophage autophagy, following macrophages adhesion and migration enhanced when autophagy is suppressed. Activation of autophagosome improve the level of autophagy, but leading to a reduction of the macrophages adhesion and migration. While, inhibiting the process of degradation and fusion of autophagosome-lysosome suppress the level of autophagy and promote the macrophages adhesion and migration. These results indicate that high glucose may play an important role in macrophages adhesion and migration through modulating autophagy activities in diabetic nephropathy.
Collapse
Affiliation(s)
- Yuteng Jiang
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Yu Zhao
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Xiaodong Zhu
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Yuqiu Liu
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Beibei Wu
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Yinfeng Guo
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Bicheng Liu
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Xiaoliang Zhang
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| |
Collapse
|
52
|
Delaney JR, Patel CB, Bapat J, Jones CM, Ramos-Zapatero M, Ortell KK, Tanios R, Haghighiabyaneh M, Axelrod J, DeStefano JW, Tancioni I, Schlaepfer DD, Harismendy O, La Spada AR, Stupack DG. Autophagy gene haploinsufficiency drives chromosome instability, increases migration, and promotes early ovarian tumors. PLoS Genet 2020; 16:e1008558. [PMID: 31923184 PMCID: PMC6953790 DOI: 10.1371/journal.pgen.1008558] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/09/2019] [Indexed: 01/13/2023] Open
Abstract
Autophagy, particularly with BECN1, has paradoxically been highlighted as tumor promoting in Ras-driven cancers, but potentially tumor suppressing in breast and ovarian cancers. However, studying the specific role of BECN1 at the genetic level is complicated due to its genomic proximity to BRCA1 on both human (chromosome 17) and murine (chromosome 11) genomes. In human breast and ovarian cancers, the monoallelic deletion of these genes is often co-occurring. To investigate the potential tumor suppressor roles of two of the most commonly deleted autophagy genes in ovarian cancer, BECN1 and MAP1LC3B were knocked-down in atypical (BECN1+/+ and MAP1LC3B+/+) ovarian cancer cells. Ultra-performance liquid chromatography mass-spectrometry metabolomics revealed reduced levels of acetyl-CoA which corresponded with elevated levels of glycerophospholipids and sphingolipids. Migration rates of ovarian cancer cells were increased upon autophagy gene knockdown. Genomic instability was increased, resulting in copy-number alteration patterns which mimicked high grade serous ovarian cancer. We further investigated the causal role of Becn1 haploinsufficiency for oncogenesis in a MISIIR SV40 large T antigen driven spontaneous ovarian cancer mouse model. Tumors were evident earlier among the Becn1+/- mice, and this correlated with an increase in copy-number alterations per chromosome in the Becn1+/- tumors. The results support monoallelic loss of BECN1 as permissive for tumor initiation and potentiating for genomic instability in ovarian cancer.
Collapse
Affiliation(s)
- Joe R. Delaney
- UC San Diego Moores Cancer Center, La Jolla, California, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego School of Medicine, La Jolla, California, United States of America
- Departments of Neurology, Neurobiology, and Cell Biology, and the Duke Center for Neurodegeneration & Neurotherapeutics, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Pediatrics and Division of Biological Sciences, UC San Diego School of Medicine, La Jolla, California, United States of America
| | - Chandni B. Patel
- UC San Diego Moores Cancer Center, La Jolla, California, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego School of Medicine, La Jolla, California, United States of America
| | - Jaidev Bapat
- UC San Diego Moores Cancer Center, La Jolla, California, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego School of Medicine, La Jolla, California, United States of America
- Department of Pediatrics and Division of Biological Sciences, UC San Diego School of Medicine, La Jolla, California, United States of America
| | - Christian M. Jones
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Maria Ramos-Zapatero
- UC San Diego Moores Cancer Center, La Jolla, California, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego School of Medicine, La Jolla, California, United States of America
- Department of Pediatrics and Division of Biological Sciences, UC San Diego School of Medicine, La Jolla, California, United States of America
| | - Katherine K. Ortell
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Ralph Tanios
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Mina Haghighiabyaneh
- UC San Diego Moores Cancer Center, La Jolla, California, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego School of Medicine, La Jolla, California, United States of America
| | - Joshua Axelrod
- UC San Diego Moores Cancer Center, La Jolla, California, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego School of Medicine, La Jolla, California, United States of America
| | - John W. DeStefano
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Isabelle Tancioni
- UC San Diego Moores Cancer Center, La Jolla, California, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego School of Medicine, La Jolla, California, United States of America
| | - David D. Schlaepfer
- UC San Diego Moores Cancer Center, La Jolla, California, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego School of Medicine, La Jolla, California, United States of America
| | - Olivier Harismendy
- UC San Diego Moores Cancer Center, La Jolla, California, United States of America
- Division of Biomedical Informatics, Department of Medicine, UC San Diego School of Medicine, La Jolla, California, United States of America
| | - Albert R. La Spada
- Departments of Neurology, Neurobiology, and Cell Biology, and the Duke Center for Neurodegeneration & Neurotherapeutics, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pediatrics and Division of Biological Sciences, UC San Diego School of Medicine, La Jolla, California, United States of America
| | - Dwayne G. Stupack
- UC San Diego Moores Cancer Center, La Jolla, California, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego School of Medicine, La Jolla, California, United States of America
| |
Collapse
|
53
|
Klimek C, Jahnke R, Wördehoff J, Kathage B, Stadel D, Behrends C, Hergovich A, Höhfeld J. The Hippo network kinase STK38 contributes to protein homeostasis by inhibiting BAG3-mediated autophagy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:1556-1566. [PMID: 31326538 PMCID: PMC6692498 DOI: 10.1016/j.bbamcr.2019.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/18/2019] [Accepted: 07/14/2019] [Indexed: 12/31/2022]
Abstract
Chaperone-assisted selective autophagy (CASA) initiated by the cochaperone Bcl2-associated athanogene 3 (BAG3) represents an important mechanism for the disposal of misfolded and damaged proteins in mammalian cells. Under mechanical stress, the cochaperone cooperates with the small heat shock protein HSPB8 and the cytoskeleton-associated protein SYNPO2 to degrade force-unfolded forms of the actin-crosslinking protein filamin. This is essential for muscle maintenance in flies, fish, mice and men. Here, we identify the serine/threonine protein kinase 38 (STK38), which is part of the Hippo signaling network, as a novel interactor of BAG3. STK38 was previously shown to facilitate cytoskeleton assembly and to promote mitophagy as well as starvation and detachment induced autophagy. Significantly, our study reveals that STK38 exerts an inhibitory activity on BAG3-mediated autophagy. Inhibition relies on a disruption of the functional interplay of BAG3 with HSPB8 and SYNPO2 upon binding of STK38 to the cochaperone. Of note, STK38 attenuates CASA independently of its kinase activity, whereas previously established regulatory functions of STK38 involve target phosphorylation. The ability to exert different modes of regulation on central protein homeostasis (proteostasis) machineries apparently allows STK38 to coordinate the execution of diverse macroautophagy pathways and to balance cytoskeleton assembly and degradation.
Collapse
Affiliation(s)
- Christina Klimek
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Ricarda Jahnke
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Judith Wördehoff
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Barbara Kathage
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Daniela Stadel
- Institute of Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Ludwig-Maximilians-University Munich, Feodor-Lynen Strasse 17, 81377 München, Germany
| | | | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| |
Collapse
|
54
|
Lino RLB, Dos Santos PK, Pisani GFD, Altei WF, Cominetti MR, Selistre-de-Araújo HS. Alphavbeta3 integrin blocking inhibits apoptosis and induces autophagy in murine breast tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118536. [PMID: 31465809 DOI: 10.1016/j.bbamcr.2019.118536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Integrins are cell receptors that mediate adhesion to the extracellular matrix (ECM) and regulate cell migration, a crucial process in tumor invasion. The αvβ3 integrin recognizes the arginine-glycine-aspartic acid (RGD) motif in ECM proteins and it can be antagonized by RGD-peptides, resulting in decreased cell migration and invasion. RGD-based drugs have shown disappointing results in clinical trials; however, the reasons for their lack of activity are still obscure. Aiming to contribute to a better understanding of the molecular consequences of integrin inhibition, we tested a recombinant RGD-disintegrin (DisBa-01) in two types of murine cell lines, breast tumor 4T1BM2 cells and L929 fibroblasts. Only tumor cells showed decreased motility and adhesion, as well as morphologic alterations upon DisBa-01 treatment (100 and 1000 nM). This result was attributed to the higher levels of αvβ3 integrin in 4T1BM2 cells compared to L929 fibroblasts making the former more sensitive to DisBa-01 blocking. DisBa-01 induced cell cycle arrest at the S phase in 4T1BM2 cells, but it did not induce apoptosis, which was consistent with the decrease in caspase-3, 8 and 9 expression at mRNA and protein levels. DisBa-01 increases PI3K, Beclin-1 and LC3B expression in tumor cells, indicators of autophagic induction. In conclusion, αvβ3 integrin blocking by DisBa-01 results in inhibition of adhesion and migration and in the activation of an autophagy program, allowing prolonged survival and avoiding immediate apoptotic death. These observations suggest new insights into the effects of RGD-based inhibitors considering their importance in drug development for human health.
Collapse
Affiliation(s)
- Rafael Luis Bressani Lino
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil
| | - Patty Karina Dos Santos
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil
| | - Graziéle Fernanda Deriggi Pisani
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil
| | - Wanessa Fernanda Altei
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil
| | - Marcia Regina Cominetti
- Department of Gerontology, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil
| | - Heloisa Sobreiro Selistre-de-Araújo
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil.
| |
Collapse
|
55
|
Cho HJ, Baek MO, Khaliq SA, Chon SJ, Son KH, Lee SH, Yoon MS. Microgravity inhibits decidualization via decreasing Akt activity and FOXO3a expression in human endometrial stromal cells. Sci Rep 2019; 9:12094. [PMID: 31431660 PMCID: PMC6702225 DOI: 10.1038/s41598-019-48580-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/08/2019] [Indexed: 12/28/2022] Open
Abstract
Decidualization is characterized by the differentiation of endometrial stromal cells (eSCs), which is critical for embryo implantation and maintenance of pregnancy. In the present study, we investigated the possible effect of simulated microgravity (SM) on the process of proliferation and in vitro decidualization using primary human eSCs. Exposure to SM for 36 h decreased the proliferation and migration of eSCs significantly, without inducing cell death and changes in cell cycle progression. The phosphorylation of Akt decreased under SM conditions in human eSCs, accompanied by a simultaneous decrease in the level of matrix metalloproteinase (MMP)-2 and FOXO3a. Treatment with Akti, an Akt inhibitor, decreased MMP-2 expression, but not FOXO3a expression. The decreased level of FOXO3a under SM conditions impeded autophagic flux by reducing the levels of autophagy-related genes. In addition, pre-exposure of eSCs to SM significantly inhibited 8-Br-cAMP induced decidualization, whereas restoration of the growth status under SM conditions by removing 8-Br-cAMP remained unchanged. Treatment of human eSCs with SC-79, an Akt activator, restored the reduced migration of eSCs and decidualization under SM conditions. In conclusion, exposure to SM inhibited decidualization in eSCs by decreasing proliferation and migration through Akt/MMP and FOXO3a/autophagic flux.
Collapse
Affiliation(s)
- Hye-Jeong Cho
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Mi-Ock Baek
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Sana Abdul Khaliq
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Seung Joo Chon
- Department of Obstetrics and Gynecology, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, Republic of Korea
| | - Sung Ho Lee
- Department of Thoracic and Cardiovascular Surgery, Korea University, Seoul, 02841, Republic of Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea. .,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea. .,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
56
|
Logan CM, Menko AS. Microtubules: Evolving roles and critical cellular interactions. Exp Biol Med (Maywood) 2019; 244:1240-1254. [PMID: 31387376 DOI: 10.1177/1535370219867296] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubules are cytoskeletal elements known as drivers of directed cell migration, vesicle and organelle trafficking, and mitosis. In this review, we discuss new research in the lens that has shed light into further roles for stable microtubules in the process of development and morphogenesis. In the lens, as well as other systems, distinct roles for characteristically dynamic microtubules and stabilized populations are coming to light. Understanding the mechanisms of microtubule stabilization and the associated microtubule post-translational modifications is an evolving field of study. Appropriate cellular homeostasis relies on not only one cytoskeletal element, but also rather an interaction between cytoskeletal proteins as well as other cellular regulators. Microtubules are key integrators with actin and intermediate filaments, as well as cell–cell junctional proteins and other cellular regulators including myosin and RhoGTPases to maintain this balance.Impact statementThe role of microtubules in cellular functioning is constantly expanding. In this review, we examine new and exciting fields of discovery for microtubule’s involvement in morphogenesis, highlight our evolving understanding of differential roles for stabilized versus dynamic subpopulations, and further understanding of microtubules as a cellular integrator.
Collapse
Affiliation(s)
- Caitlin M Logan
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A Sue Menko
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
57
|
Arun RP, Sivanesan D, Patra B, Varadaraj S, Verma RS. Simulated microgravity increases polyploid giant cancer cells and nuclear localization of YAP. Sci Rep 2019; 9:10684. [PMID: 31337825 PMCID: PMC6650394 DOI: 10.1038/s41598-019-47116-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Physical cues are vital in determining cellular fate in cancer. In vitro 3D culture do not replicate forces present in vivo. These forces including tumor interstitial fluid pressure and matrix stiffness behave as switches in differentiation and metastasis, which are intricate features of cancer stem cells (CSCs). Gravity determines the effect of these physical factors on cell fate and functions as evident from microgravity experiments on space and ground simulations. Here, we described the role of simulation of microgravity (SMG) using rotary cell culture system (RCCS) in increasing stemness in human colorectal cancer cell HCT116. We observed distinct features of cancer stem cells including CD133/CD44 dual positive cells and migration in SMG which was not altered by autophagy induction or inhibition. 3D and SMG increased autophagy, but the flux was staggered under SMG. Increased unique giant cancer cells housing complete nuclear localization of YAP were observed in SMG. This study highlights the role of microgravity in regulating stemness in CSC and importance of physical factors in determining the same.
Collapse
Affiliation(s)
- Raj Pranap Arun
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 TN, India
| | - Divya Sivanesan
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 TN, India
| | - Bamadeb Patra
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 TN, India
| | - Sudha Varadaraj
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 TN, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 TN, India.
| |
Collapse
|
58
|
Giovanini AF, Priesnitz TF, Til B, Reisdoerfer G, do Nascimento TCDL, Sobreiro B, de Siqueira AS, Pinheiro JDJV. Immunolocalization of IP3R and V-ATPase in Ameloblastomas. Head Neck Pathol 2019; 14:392-398. [PMID: 31183746 PMCID: PMC7235139 DOI: 10.1007/s12105-019-01044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/27/2019] [Indexed: 11/26/2022]
Abstract
The goal of this study was to investigate the immunolocalization of inositol 1,4,5-trisphosphate receptor (IP3R) and vacuolar ATPase (V-ATPase) in ameloblastomas with special attention to the invasive front. Thirty-seven cases of previously diagnosed formalin-fixed paraffin-embedded (FFPE) human ameloblastoma samples were selected for this study. The samples were grouped according to the predominant histologic pattern and comprised twelve plexiform, eighteen follicular, and seven unicystic ameloblastomas. Of the unicystic variants, six demonstrated purely luminal and intraluminal growth, and one displayed mural extension. One granular cell variant was included in the follicular ameloblastoma group. All specimens were evaluated for IP3R and V-ATPase expression by immunohistochemistry (IHC). IP3R was positive in columnar cells, similar to ameloblasts, and non-peripheral cells in all samples. In the area of tumor protrusion and front of invasion, membranous and cystoplasmic IP3R expression was observed. In contrast, areas adjacent to tumoral protrusion demonstrated only membranous staining patterns. V-ATPase was not expressed in peripheral columnar cells of the unicystic and granular cell variants of ameloblastoma; however, strong staining was present in these cells in plexiform ameloblastomas, follicular ameloblastomas, and areas of mural growth of unicystic ameloblastomas. In areas of tumor protrusion, reactivity for V-ATPase was observed with both membranous and cytoplasmic staining, while other areas showed only membranous V-ATPase. These findings suggest that concomitant immunolocalization of IP3R and V-ATPase, with both cytoplasmic and membranous expression in the peripheral columnar cells, may indicate the invasive potential of ameloblastomas. Furthermore, these results suggest the tumoral spread of ameloblastomas may be correlated with the autophagy process and channelopathy. The expression of these proteins could establish a baseline for future research and provide therapeutic targets for treatment of ameloblastomas.
Collapse
Affiliation(s)
- Allan Fernando Giovanini
- Medical School, Positivo University Curitiba, R Pedro Viriato Parigot de Souza, 5300 Campo Comprido, Curitiba, Paraná, 81280-330, Brazil.
| | | | - Bruna Til
- Dentistry School, Positivo University Curitiba, Curitiba, Paraná, Brazil
| | - Gisele Reisdoerfer
- Dentistry School, Positivo University Curitiba, Curitiba, Paraná, Brazil
| | | | - Bernardo Sobreiro
- Medical School, Positivo University Curitiba, R Pedro Viriato Parigot de Souza, 5300 Campo Comprido, Curitiba, Paraná, 81280-330, Brazil
| | | | | |
Collapse
|
59
|
Sengupta A, Keswani T, Sarkar S, Ghosh S, Mukherjee S, Bhattacharyya A. Autophagic induction modulates splenic plasmacytoid dendritic cell mediated immune response in cerebral malarial infection model. Microbes Infect 2019; 21:475-484. [PMID: 31185303 DOI: 10.1016/j.micinf.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Splenic plasmacytoid dendritic cells (pDC) possess the capability to harbor live replicative Plasmodium parasite. Isolated splenic pDC from infected mice causes malaria when transferred to naïve mice. Incomplete autophagic degradation might cause poor antigen processing and poor immune response. Induction of autophagic flux by rapamycin treatment led to better prognosis by boosting pDC centered immune response against the pathogen. Splenic pDC from rapamycin-treated infected mice, caused less parasitemia in naïve mice. The downregulation of adhesion with unaltered phagocytic potential of the cells post autophagic induction restricted excessive parasite burden within them. Rapamycin-treated pDC played a better role in antigen presentation. They showed higher expression of co-stimulatory molecules CD80, CD86, DEC205, MHCI. Rapamycin-treated pDC induced CD28 expression on CD8+ T cells and suppressed FasL level. This cells also influenced differentiation of effector, memory T cell population. The increase in IL10: TNFα ratio, Treg: Th17 ratio and lowering of myeloid DC: plasmacytoid DC ratio was observed. It shifted the overaggressive inflammation mediated Th1 pathway that is reported to incur host damage, to a better well-balanced cytokine profile exhibiting Th2 pathway. Autophagic flux induction within pDC proved to be beneficial in combating malarial pathogenicity.
Collapse
Affiliation(s)
- Anirban Sengupta
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Tarun Keswani
- Basic and Clinical Immunology of Parasitic Diseases, Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre of Infection and Immunity Lille, F-59000 Lille, France, 1 Rue du Professeur Calmette, 59019, Lille, France.
| | - Samrat Sarkar
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Soubhik Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Saikat Mukherjee
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
60
|
Zhang J, Zhang C, Jiang X, Li L, Zhang D, Tang D, Yan T, Zhang Q, Yuan H, Jia J, Hu J, Zhang J, Huang Y. Involvement of autophagy in hypoxia-BNIP3 signaling to promote epidermal keratinocyte migration. Cell Death Dis 2019; 10:234. [PMID: 30850584 PMCID: PMC6408485 DOI: 10.1038/s41419-019-1473-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/06/2019] [Accepted: 02/22/2019] [Indexed: 12/24/2022]
Abstract
BNIP3 is an atypical BH3-only member of the Bcl-2 family with pro-death, pro-autophagic, and cytoprotective functions, depending on the type of stress and cellular context. Recently, we demonstrated that BNIP3 stimulates the migration of epidermal keratinocytes under hypoxia. In the present study found that autophagy and BNIP3 expression were concomitantly elevated in the migrating epidermis during wound healing in a hypoxia-dependent manner. Inhibition of autophagy through lysosome-specific chemicals (CQ and BafA1) or Atg5-targeted small-interfering RNAs greatly attenuated the hypoxia-induced cell migration, and knockdown of BNIP3 in keratinocytes significantly suppressed hypoxia-induced autophagy activation and cell migration, suggesting a positive role of BNIP3-induced autophagy in keratinocyte migration. Furthermore, these results indicated that the accumulation of reactive oxygen species (ROS) by hypoxia triggered the activation of p38 and JNK mitogen-activated protein kinase (MAPK) in human immortalized keratinocyte HaCaT cells. In turn, activated p38 and JNK MAPK mediated the activation of BNIP3-induced autophagy and the enhancement of keratinocyte migration. These data revealed a previously unknown mechanism that BNIP3-induced autophagy occurs through hypoxia-induced ROS-mediated p38 and JNK MAPK activation and supports the migration of epidermal keratinocytes during wound healing.
Collapse
Affiliation(s)
- Junhui Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Can Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xupin Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lingfei Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dongxia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Di Tang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tiantian Yan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Military Burn Center, the 990th (159th) Hospital of People's Liberation Army, Zhumadian, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongping Yuan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiezhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiongyu Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Endocrinology Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaping Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Plastic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
61
|
Velloso FJ, Campos AR, Sogayar MC, Correa RG. Proteome profiling of triple negative breast cancer cells overexpressing NOD1 and NOD2 receptors unveils molecular signatures of malignant cell proliferation. BMC Genomics 2019; 20:152. [PMID: 30791886 PMCID: PMC6385390 DOI: 10.1186/s12864-019-5523-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Background Triple negative breast cancer (TNBC) is a malignancy with very poor prognosis, due to its aggressive clinical characteristics and lack of response to receptor-targeted drug therapy. In TNBC, immune-related pathways are typically upregulated and may be associated with a better prognosis of the disease, encouraging the pursuit for immunotherapeutic options. A number of immune-related molecules have already been associated to the onset and progression of breast cancer, including NOD1 and NOD2, innate immune receptors of bacterial-derived components which activate pro-inflammatory and survival pathways. In the context of TNBC, overexpression of either NOD1or NOD2 is shown to reduce cell proliferation and increase clonogenic potential in vitro. To further investigate the pathways linking NOD1 and NOD2 signaling to tumorigenesis in TNBC, we undertook a global proteome profiling of TNBC-derived cells ectopically expressing each one of these NOD receptors. Results We have identified a total of 95 and 58 differentially regulated proteins in NOD1- and NOD2-overexpressing cells, respectively. We used bioinformatics analyses to identify enriched molecular signatures aiming to integrate the differentially regulated proteins into functional networks. These analyses suggest that overexpression of both NOD1 and NOD2 may disrupt immune-related pathways, particularly NF-κB and MAPK signaling cascades. Moreover, overexpression of either of these receptors may affect several stress response and protein degradation systems, such as autophagy and the ubiquitin-proteasome complex. Interestingly, the levels of several proteins associated to cellular adhesion and migration were also affected in these NOD-overexpressing cells. Conclusions Our proteomic analyses shed new light on the molecular pathways that may be modulating tumorigenesis via NOD1 and NOD2 signaling in TNBC. Up- and downregulation of several proteins associated to inflammation and stress response pathways may promote activation of protein degradation systems, as well as modulate cell-cycle and cellular adhesion proteins. Altogether, these signals seem to be modulating cellular proliferation and migration via NF-κB, PI3K/Akt/mTOR and MAPK signaling pathways. Further investigation of altered proteins in these pathways may provide more insights on relevant targets, possibly enabling the immunomodulation of tumorigenesis in the aggressive TNBC phenotype. Electronic supplementary material The online version of this article (10.1186/s12864-019-5523-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fernando J Velloso
- Cell and Molecular Therapy Center (NUCEL), Internal Medicine Department, School of Medicine, University of São Paulo (USP), São Paulo, SP, 05360-130, Brazil
| | - Alexandre R Campos
- SBP Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Mari C Sogayar
- Cell and Molecular Therapy Center (NUCEL), Internal Medicine Department, School of Medicine, University of São Paulo (USP), São Paulo, SP, 05360-130, Brazil
| | - Ricardo G Correa
- SBP Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
62
|
Li L, Zhang J, Zhang Q, Zhang D, Xiang F, Jia J, Wei P, Zhang J, Hu J, Huang Y. High Glucose Suppresses Keratinocyte Migration Through the Inhibition of p38 MAPK/Autophagy Pathway. Front Physiol 2019; 10:24. [PMID: 30745880 PMCID: PMC6360165 DOI: 10.3389/fphys.2019.00024] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Wound healing is delayed frequently in patients with diabetes. Proper keratinocyte migration is an essential step during re-epithelialization. Impaired keratinocyte migration is a critical underlying factor responsible for the deficiency of diabetic wound healing, which is mainly attributed to the hyperglycemic state. However, the underlying mechanisms remain largely unknown. Previously, we demonstrated a marked activation of p38/mitogen-activated protein kinase (MAPK) pathway in the regenerated migrating epidermis, which in turn promoted keratinocyte migration. In the present study, we find that p38/MAPK pathway is downregulated and accompanied by inactivation of autophagy under high glucose (HG) environment. In addition, we demonstrate that inactivation of p38/MAPK and autophagy result in the inhibition of keratinocyte migration under HG environment, and the activating p38/MAPK by MKK6(Glu) overexpression rescues cell migration through an autophagy-dependent way. Moreover, diabetic wound epidermis shows a significant inhibition of p38/MAPK and autophagy. Targeting these dysfunctions may provide novel therapeutic approaches.
Collapse
Affiliation(s)
- Lingfei Li
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junhui Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongxia Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Xiang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiezhi Jia
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Wei
- Endocrinology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiaping Zhang
- Department of Plastic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiongyu Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Endocrinology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuesheng Huang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
63
|
Li F, Li D, Liu H, Cao BB, Jiang F, Chen DN, Li JD. RNF216 Regulates the Migration of Immortalized GnRH Neurons by Suppressing Beclin1-Mediated Autophagy. Front Endocrinol (Lausanne) 2019; 10:12. [PMID: 30733708 PMCID: PMC6354547 DOI: 10.3389/fendo.2019.00012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022] Open
Abstract
RNF216, encoding an E3 ubiquitin ligase, has been identified as a causative gene for Gordon Holmes syndrome, characterized by ataxia, dementia, and hypogonadotropic hypogonadism. However, it is still elusive how deficiency in RNF216 leads to hypogonadotropic hypogonadism. In this study, by using GN11 immature GnRH neuronal cell line, we demonstrated an important role of RNF216 in the GnRH neuron migration. RNA interference of RNF216 inhibited GN11 cell migration, but had no effect on the proliferation of GN11 cells or GnRH expression. Knockdown of RNF216 increased the protein levels of its targets, Arc and Beclin1. RNAi of Beclin1, but not Arc, normalized the suppressive effect caused by RNF216 knockdown. As Beclin1 plays a critical role in the autophagy regulation, we further demonstrated that RNAi of RNF216 led to increase in autophagy, and autophagy inhibitor CQ and 3-MA rescued the GN11 cell migration deficit caused by RNF216 knockdown. We further demonstrated that pharmacological increase autophagy by rapamycin could suppress the GN11 cell migration. We thus have identified that RNF216 regulates the migration of GnRH neuron by suppressing Beclin1 mediated autophagy, and indicated a potential contribution of autophagy to the hypogonadotropic hypogonadism.
Collapse
Affiliation(s)
- Fangfang Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Dengfeng Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Huadie Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Bei-Bei Cao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Fang Jiang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Dan-Na Chen
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, China
- *Correspondence: Dan-Na Chen
| | - Jia-Da Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
- Jia-Da Li
| |
Collapse
|
64
|
Yan T, Jiang X, Lin G, Tang D, Zhang J, Guo X, Zhang D, Zhang Q, Jia J, Huang Y. Autophagy is required for the directed motility of keratinocytes driven by electric fields. FASEB J 2018; 33:3922-3935. [PMID: 30509146 DOI: 10.1096/fj.201801294r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endogenous wound electric fields (EFs), an important and fundamental occurrence of wound healing, profoundly influence the directed migration of keratinocytes. Although numerous studies have unveiled the signals responsible for EF-biased direction, the mechanisms by which EFs promote keratinocyte motility remains to be elucidated. In our study, EFs enhanced the directed migratory speed of keratinocytes by inducing autophagic activity, thereby facilitating skin barrier restoration. Initially, we found that electrical signals directed keratinocytes to the cathode with enhanced motility parameters [ i.e., trajectory distance, trajectory speed, displacement distance, and displacement speed ( Td/ t)] and more efficient migration (directionality and Td/ t along the x axis, among others). Meanwhile, EFs induced a time-dependent increase in autophagic activity in keratinocytes, with constant autophagic flux, accompanied by increased transcription of numerous autophagy-related genes. Deficiency in Atg5, a key protein necessary for autophagosome formation, led to significant reduction of autophagy, which was accompanied by a substantial reduction in EF-stimulated directed motility. These results demonstrated a causal relationship between autophagy and EF-directed migratory speed. In addition, both cell migration under normal conditions and EF-biased directionality were autophagy independent. Thus, our findings define autophagy as an important functional regulator of electrically enhanced directed motility, adding to a growing understanding of EFs.-Yan, T., Jiang, X., Lin, G., Tang, D., Zhang, J., Guo, X., Zhang, D., Zhang, Q., Jia, J., Huang, Y. Autophagy is required for the directed motility of keratinocytes driven by electric fields.
Collapse
Affiliation(s)
- Tiantian Yan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Military Burn Center, the 990th (159th) Hospital of the People's Liberation Army, Zhumadian, China
| | - Xupin Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guoan Lin
- Military Burn Center, the 990th (159th) Hospital of the People's Liberation Army, Zhumadian, China
| | - Di Tang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junhui Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaowei Guo
- Department of Burns and Plastic Surgery, the 205th Hospital of the People's Liberation Army, Jinzhou, China
| | - Dongxia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiezhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns, and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
65
|
Gao D, Tang T, Zhu J, Tang Y, Sun H, Li S. CXCL12 has therapeutic value in facial nerve injury and promotes Schwann cells autophagy and migration via PI3K-AKT-mTOR signal pathway. Int J Biol Macromol 2018; 124:460-468. [PMID: 30391592 DOI: 10.1016/j.ijbiomac.2018.10.212] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/06/2018] [Accepted: 10/30/2018] [Indexed: 01/10/2023]
Abstract
Facial nerve injury is a clinically common disease accompanied by demyelination of damaged nerves. The remyelination of damaged nerves and the unsatisfactory function recovery are problems that have been plaguing people for a long time. The role that CXCL12 plays after facial nerve injury remains unknown. Our experiments found that the expression of CXCL12 was up-regulated in the early stage of facial nerve injury and decreased after two weeks. Further research found that CXCL12 had no effect on Schwann cells proliferation, apoptosis and cell cycle, while significantly promoted Schwann cells migration. Treatment with CXCL12 decreased the phosphorylation of PI3K, AKT and mTOR, but increased autophagy marker LC3II/I. The CXCL12-induced Schwann cells migration was significantly attenuated by inhibition of autophagy and activation of PI3K pathway through pretreatment with 3-MA and IGF-1 respectively, and this effect was enhanced by PI3K pathway inhibitor LY294002. Animal experiment also confirmed that CXCL12 could improve facial nerve function and myelin regeneration. The findings of this study indicate that CXCL12 can promote the migration of Schwann cells and potentially become a key molecule in the repair of facial nerve injury.
Collapse
Affiliation(s)
- Dekun Gao
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Tianchi Tang
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jin Zhu
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yinda Tang
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Hui Sun
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
66
|
Liu Y, Hu Y, Wang L, Xu C. Expression of transcriptional factor EB (TFEB) in differentiating spermatogonia potentially promotes cell migration in mouse seminiferous epithelium. Reprod Biol Endocrinol 2018; 16:105. [PMID: 30360758 PMCID: PMC6202848 DOI: 10.1186/s12958-018-0427-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Spermatogenesis is a complex process involving the self-renewal and differentiation of spermatogonia into mature spermatids in the seminiferous tubules. During spermatogenesis, germ cells migrate from the basement membrane to cross the blood-testis barrier (BTB) and finally reach the luminal side of the seminiferous epithelium. However, the mechanism for regulating the migration of germ cells remains unclear. In this study, we focused on the expression and function of transcriptional factor EB (TFEB), a master regulator of lysosomal biogenesis, autophagy and endocytosis, in spermatogenesis. METHODS The expression pattern of the TFEB in mouse testes were investigated by Western blotting and immunohistochemistry analyses. Either undifferentiated spermatogonia or differentiating spermatogonia were isolated from testes using magnetic-activated cell sorting based on specific cell surface markers. Differentiation of spermatogonia was induced with 100 nM retinoic acid (RA). shRNA was used to knock down TFEB in cells. TFEB expression was detected by immunofluorescence, qRT-PCR, and Western blotting. Cell migration was determined by both transwell migration assay and wound healing assay applied to a cell line of immortalized spermatogonia, GC-1 cells. RESULTS During testicular development, TFEB expression was rapidly increased in the testes at the period of 7 days post-partum (dpp) to 14 dpp, whereas in adult testis, it was predominantly localized in the nucleus of spermatogonia at stages VI to VIII of the seminiferous epithelial cycle. Accordingly, TFEB was observed to be mainly expressed in differentiating spermatogonia and was activated for nuclear translocation by RA treatment. Moreover, knockdown of TFEB expression by RNAi did not affect spermatogonial differentiation, but significantly reduced cell migration in GC-1 cells. CONCLUSION These findings imply that regionally distinct expression and activation of TFEB was strongly associated with RA signaling, and therefore may promote cell migration across the BTB and transport along the seminiferous epithelium.
Collapse
Affiliation(s)
- Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory for Reproductive Medicine, Shanghai, 200025, China.
| | - Yanqin Hu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory for Reproductive Medicine, Shanghai, 200025, China
| | - Li Wang
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory for Reproductive Medicine, Shanghai, 200025, China
| | - Chen Xu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory for Reproductive Medicine, Shanghai, 200025, China.
| |
Collapse
|
67
|
Oxidative stress-modulating drugs have preferential anticancer effects - involving the regulation of apoptosis, DNA damage, endoplasmic reticulum stress, autophagy, metabolism, and migration. Semin Cancer Biol 2018; 58:109-117. [PMID: 30149066 DOI: 10.1016/j.semcancer.2018.08.010] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023]
Abstract
To achieve preferential effects against cancer cells but less damage to normal cells is one of the main challenges of cancer research. In this review, we explore the roles and relationships of oxidative stress-mediated apoptosis, DNA damage, ER stress, autophagy, metabolism, and migration of ROS-modulating anticancer drugs. Understanding preferential anticancer effects in more detail will improve chemotherapeutic approaches that are based on ROS-modulating drugs in cancer treatments.
Collapse
|
68
|
McAtee CO, Booth C, Elowsky C, Zhao L, Payne J, Fangman T, Caplan S, Henry MD, Simpson MA. Prostate tumor cell exosomes containing hyaluronidase Hyal1 stimulate prostate stromal cell motility by engagement of FAK-mediated integrin signaling. Matrix Biol 2018; 78-79:165-179. [PMID: 29753676 DOI: 10.1016/j.matbio.2018.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/28/2018] [Accepted: 05/08/2018] [Indexed: 01/22/2023]
Abstract
The hyaluronidase Hyal1 is clinically and functionally implicated in prostate cancer progression and metastasis. Elevated Hyal1 accelerates vesicular trafficking in prostate tumor cells, thereby enhancing their metastatic potential in an autocrine manner through increased motility and proliferation. In this report, we found Hyal1 protein is a component of exosomes produced by prostate tumor cell lines overexpressing Hyal1. We investigated the role of exosomally shed Hyal1 in modulating tumor cell autonomous functions and in modifying the behavior of prostate stromal cells. Catalytic activity of Hyal1 was necessary for enrichment of Hyal1 in the exosome fraction, which was associated with increased presence of LC3BII, an autophagic marker, in the exosomes. Hyal1-positive exosome contents were internalized from the culture medium by WPMY-1 prostate stromal fibroblasts. Treatment of prostate stromal cells with tumor exosomes did not affect proliferation, but robustly stimulated their migration in a manner dependent on Hyal1 catalytic activity. Increased motility of exosome-treated stromal cells was accompanied by enhanced adhesion to a type IV collagen matrix, as well as increased FAK phosphorylation and integrin engagement through dynamic membrane residence of β1 integrins. The presence of Hyal1 in tumor-derived exosomes and its ability to impact the behavior of stromal cells suggests cell-cell communication via exosomes is a novel mechanism by which elevated Hyal1 promotes prostate cancer progression.
Collapse
Affiliation(s)
- Caitlin O McAtee
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Christine Booth
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Christian Elowsky
- Morrison Microscopy Facility, University of Nebraska, Lincoln, NE, United States
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine; Iowa City, IA, United States
| | - Jeremy Payne
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Teresa Fangman
- Morrison Microscopy Facility, University of Nebraska, Lincoln, NE, United States
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States; Fred and Pamela Buffett Cancer Center, Omaha, NE, United States
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine; Iowa City, IA, United States
| | - Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
69
|
Xie S, Yang Y, Lin X, Zhou J, Li D, Liu M. Characterization of a novel EB1 acetylation site important for the regulation of microtubule dynamics and cargo recruitment. J Cell Physiol 2018; 233:2581-2589. [PMID: 28777446 DOI: 10.1002/jcp.26133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/03/2017] [Indexed: 01/20/2023]
Abstract
Microtubule plus ends undergo highly dynamic modifications to regulate different aspects of cellular activities. Most microtubule plus-end tracking proteins (+TIPs) are recruited to the microtubule ends by the master loading factor, end-binding protein 1 (EB1). These proteins coordinately regulate microtubule dynamics and cellular plasticity. Acetylation is known to modulate EB1 function; however, the molecular details of EB1 acetylation remain largely unclear. We mapped the acetylation pattern of EB1 and identified several previously uncharacterized sites of EB1 acetylation. We examined the effects of lysine-212 (K212) acetylation and found that acetylation of this site accelerates autophagy-mediated EB1 degradation. By time-lapse microscopy, we found that the acetylation-deficient K212R mutant increased the percentage of fast-growing and long-lived microtubules. Although K212 acetylation did not affect microtubule stability in vitro and the association of EB1 with microtubules, the K212R mutant significantly promoted microtubule regrowth in cells. Coimmunoprecipitation assays further revealed that the K212 site was critical for the recruitment of different +TIP cargoes. These data thus uncover a critical role for a novel EB1 acetylation site in regulating the dynamic structure of microtubules.
Collapse
Affiliation(s)
- Songbo Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Yang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaochen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
70
|
Guo H, Chitiprolu M, Roncevic L, Javalet C, Hemming FJ, Trung MT, Meng L, Latreille E, Tanese de Souza C, McCulloch D, Baldwin RM, Auer R, Côté J, Russell RC, Sadoul R, Gibbings D. Atg5 Disassociates the V 1V 0-ATPase to Promote Exosome Production and Tumor Metastasis Independent of Canonical Macroautophagy. Dev Cell 2018; 43:716-730.e7. [PMID: 29257951 DOI: 10.1016/j.devcel.2017.11.018] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 10/29/2017] [Accepted: 11/20/2017] [Indexed: 01/08/2023]
Abstract
Autophagy and autophagy-related genes (Atg) have been attributed prominent roles in tumorigenesis, tumor growth, and metastasis. Extracellular vesicles called exosomes are also implicated in cancer metastasis. Here, we demonstrate that exosome production is strongly reduced in cells lacking Atg5 and Atg16L1, but this is independent of Atg7 and canonical autophagy. Atg5 specifically decreases acidification of late endosomes where exosomes are produced, disrupting the acidifying V1V0-ATPase by removing a regulatory component, ATP6V1E1, into exosomes. The effect of Atg5 on exosome production promotes the migration and in vivo metastasis of orthotopic breast cancer cells. These findings uncover mechanisms controlling exosome release and identify means by which autophagy-related genes can contribute to metastasis in autophagy-independent pathways.
Collapse
Affiliation(s)
- Huishan Guo
- Department of Cellular and Molecular Medicine, University of Ottawa, 3131 Roger Guindon Hall, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Maneka Chitiprolu
- Department of Cellular and Molecular Medicine, University of Ottawa, 3131 Roger Guindon Hall, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Luc Roncevic
- Department of Cellular and Molecular Medicine, University of Ottawa, 3131 Roger Guindon Hall, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Charlotte Javalet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, 38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, 38042 Grenoble, France
| | - Fiona J Hemming
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, 38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, 38042 Grenoble, France
| | - My Tran Trung
- Department of Cellular and Molecular Medicine, University of Ottawa, 3131 Roger Guindon Hall, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Lingrui Meng
- Department of Cellular and Molecular Medicine, University of Ottawa, 3131 Roger Guindon Hall, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Elyse Latreille
- Department of Cellular and Molecular Medicine, University of Ottawa, 3131 Roger Guindon Hall, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | | | - Danielle McCulloch
- Department of Cellular and Molecular Medicine, University of Ottawa, 3131 Roger Guindon Hall, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - R Mitchell Baldwin
- Department of Cellular and Molecular Medicine, University of Ottawa, 3131 Roger Guindon Hall, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Rebecca Auer
- Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, University of Ottawa, 3131 Roger Guindon Hall, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Ryan Charles Russell
- Department of Cellular and Molecular Medicine, University of Ottawa, 3131 Roger Guindon Hall, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Rémy Sadoul
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, 38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, 38042 Grenoble, France
| | - Derrick Gibbings
- Department of Cellular and Molecular Medicine, University of Ottawa, 3131 Roger Guindon Hall, 451 Smyth Road, Ottawa K1H 8M5, Canada; Ottawa Institute for System Biology, University of Ottawa, Ottawa K1H 8M5, Canada.
| |
Collapse
|
71
|
Cai X, Sughrue ME. Glioblastoma: new therapeutic strategies to address cellular and genomic complexity. Oncotarget 2017; 9:9540-9554. [PMID: 29507709 PMCID: PMC5823664 DOI: 10.18632/oncotarget.23476] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/08/2017] [Indexed: 01/19/2023] Open
Abstract
Glioblastoma (GBM) is the most invasive and devastating primary brain tumor with a median overall survival rate about 18 months with aggressive multimodality therapy. Its unique characteristics of heterogeneity, invasion, clonal populations maintaining stem cell-like cells and recurrence, have limited responses to a variety of therapeutic approaches, and have made GBM the most difficult brain cancer to treat. A great effort and progress has been made to reveal promising molecular mechanisms to target therapeutically. Especially with the emerging of new technologies, the mechanisms underlying the pathology of GBM are becoming more clear. The purpose of this review is to summarize the current knowledge of molecular mechanisms of GBM and highlight the novel strategies and concepts for the treatment of GBM.
Collapse
Affiliation(s)
- Xue Cai
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael E Sughrue
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
72
|
Persistent inhibition of pore-based cell migration by sub-toxic doses of miuraenamide, an actin filament stabilizer. Sci Rep 2017; 7:16407. [PMID: 29180826 PMCID: PMC5703899 DOI: 10.1038/s41598-017-16759-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/16/2017] [Indexed: 12/30/2022] Open
Abstract
Opposed to tubulin-binding agents, actin-binding small molecules have not yet become part of clinical tumor treatment, most likely due to the fear of general cytotoxicity. Addressing this problem, we investigated the long-term efficacy of sub-toxic doses of miuraenamide, an actin filament stabilizing natural compound, on tumor cell (SKOV3) migration. No cytotoxic effects or persistent morphological changes occurred at a concentration of miuraenamide of 20 nM. After 72 h treatment with this concentration, nuclear stiffness was increased, causing reduced migration through pores in a Boyden chamber, while cell migration and chemotaxis per se were unaltered. A concomitant time-resolved proteomic approach showed down regulation of a protein cluster after 56 h treatment. This cluster correlated best with the Wnt signaling pathway. A further analysis of the actin associated MRTF/SRF signaling showed a surprising reduction of SRF-regulated proteins. In contrast to acute effects of actin-binding compounds on actin at high concentrations, long-term low-dose treatment elicits much more subtle but still functionally relevant changes beyond simple destruction of the cytoskeleton. These range from biophysical parameters to regulation of protein expression, and may help to better understand the complex biology of actin, as well as to initiate alternative regimes for the testing of actin-targeting drugs.
Collapse
|
73
|
Bah A, Vergne I. Macrophage Autophagy and Bacterial Infections. Front Immunol 2017; 8:1483. [PMID: 29163544 PMCID: PMC5681717 DOI: 10.3389/fimmu.2017.01483] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/23/2017] [Indexed: 12/25/2022] Open
Abstract
Autophagy is a well-conserved lysosomal degradation pathway that plays key roles in bacterial infections. One of the most studied is probably xenophagy, the selective capture and degradation of intracellular bacteria by lysosomes. However, the impact of autophagy goes beyond xenophagy and involves intensive cross-talks with other host defense mechanisms. In addition, autophagy machinery can have non-canonical functions such as LC3-associated phagocytosis. In this review, we intend to summarize the current knowledge on the many functions of autophagy proteins in cell defenses with a focus on bacteria–macrophage interaction. We also present the strategies developed by pathogens to evade or to exploit this machinery in order to establish a successful infection. Finally, we discuss the opportunities and challenges of autophagy manipulation in improving therapeutics and vaccines against bacterial pathogens.
Collapse
Affiliation(s)
- Aïcha Bah
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS-Université de Toulouse, Toulouse, France
| | - Isabelle Vergne
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS-Université de Toulouse, Toulouse, France
| |
Collapse
|
74
|
Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov 2017; 16:487-511. [PMID: 28529316 DOI: 10.1038/nrd.2017.22] [Citation(s) in RCA: 639] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy is central to the maintenance of organismal homeostasis in both physiological and pathological situations. Accordingly, alterations in autophagy have been linked to clinically relevant conditions as diverse as cancer, neurodegeneration and cardiac disorders. Throughout the past decade, autophagy has attracted considerable attention as a target for the development of novel therapeutics. However, such efforts have not yet generated clinically viable interventions. In this Review, we discuss the therapeutic potential of autophagy modulators, analyse the obstacles that have limited their development and propose strategies that may unlock the full therapeutic potential of autophagy modulation in the clinic.
Collapse
|
75
|
Coly PM, Gandolfo P, Castel H, Morin F. The Autophagy Machinery: A New Player in Chemotactic Cell Migration. Front Neurosci 2017; 11:78. [PMID: 28261054 PMCID: PMC5311050 DOI: 10.3389/fnins.2017.00078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/03/2017] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a highly conserved self-degradative process that plays a key role in diverse cellular processes such as stress response or differentiation. A growing body of work highlights the direct involvement of autophagy in cell migration and cancer metastasis. Specifically, autophagy has been shown to be involved in modulating cell adhesion dynamics as well as epithelial-to-mesenchymal transition. After providing a general overview of the mechanisms controlling autophagosome biogenesis and cell migration, we discuss how chemotactic G protein-coupled receptors, through the repression of autophagy, may orchestrate membrane trafficking and compartmentation of specific proteins at the cell front in order to support the critical steps of directional migration.
Collapse
Affiliation(s)
- Pierre-Michaël Coly
- Normandie Univ, UNIROUEN, Institut National de la Santé et de la Recherche Médicale (INSERM), DC2NRouen, France; Institute for Research and Innovation in BiomedicineRouen, France
| | - Pierrick Gandolfo
- Normandie Univ, UNIROUEN, Institut National de la Santé et de la Recherche Médicale (INSERM), DC2NRouen, France; Institute for Research and Innovation in BiomedicineRouen, France
| | - Hélène Castel
- Normandie Univ, UNIROUEN, Institut National de la Santé et de la Recherche Médicale (INSERM), DC2NRouen, France; Institute for Research and Innovation in BiomedicineRouen, France
| | - Fabrice Morin
- Normandie Univ, UNIROUEN, Institut National de la Santé et de la Recherche Médicale (INSERM), DC2NRouen, France; Institute for Research and Innovation in BiomedicineRouen, France
| |
Collapse
|
76
|
Grewal T, Hoque M, Conway JRW, Reverter M, Wahba M, Beevi SS, Timpson P, Enrich C, Rentero C. Annexin A6-A multifunctional scaffold in cell motility. Cell Adh Migr 2017; 11:288-304. [PMID: 28060548 DOI: 10.1080/19336918.2016.1268318] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Annexin A6 (AnxA6) belongs to a highly conserved protein family characterized by their calcium (Ca2+)-dependent binding to phospholipids. Over the years, immunohistochemistry, subcellular fractionations, and live cell microscopy established that AnxA6 is predominantly found at the plasma membrane and endosomal compartments. In these locations, AnxA6 acts as a multifunctional scaffold protein, recruiting signaling proteins, modulating cholesterol and membrane transport and influencing actin dynamics. These activities enable AnxA6 to contribute to the formation of multifactorial protein complexes and membrane domains relevant in signal transduction, cholesterol homeostasis and endo-/exocytic membrane transport. Hence, AnxA6 has been implicated in many biological processes, including cell proliferation, survival, differentiation, inflammation, but also membrane repair and viral infection. More recently, we and others identified roles for AnxA6 in cancer cell migration and invasion. This review will discuss how the multiple scaffold functions may enable AnxA6 to modulate migratory cell behavior in health and disease.
Collapse
Affiliation(s)
- Thomas Grewal
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Monira Hoque
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - James R W Conway
- b The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Sydney , NSW , Australia
| | - Meritxell Reverter
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| | - Mohamed Wahba
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Syed S Beevi
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Paul Timpson
- b The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Sydney , NSW , Australia
| | - Carlos Enrich
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| | - Carles Rentero
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| |
Collapse
|
77
|
Vlahakis A, Debnath J. The Interconnections between Autophagy and Integrin-Mediated Cell Adhesion. J Mol Biol 2016; 429:515-530. [PMID: 27932295 DOI: 10.1016/j.jmb.2016.11.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 12/25/2022]
Abstract
Autophagy is a cellular degradation process integral for promoting cellular adaptation during metabolic stress while also functioning as a cellular homeostatic mechanism. Mounting evidence also demonstrates that autophagy is induced upon loss of integrin-mediated cell attachments to the surrounding extracellular matrix (ECM). Analogous to its established cytoprotective role during nutrient starvation, autophagy protects cells from detachment-induced cell death, termed anoikis. Here, we review the significance of autophagy as an anoikis resistance pathway, focusing on the intracellular signals associated with integrins that modulate the autophagy response and dictate the balance between cell death and survival following loss of cell-matrix contact. In addition, we highlight recent studies demonstrating that autophagy functions in the upstream regulation of integrin-mediated cell adhesion via the control of focal adhesion remodeling, and discuss how these emerging interconnections between integrin-mediated adhesion pathways and autophagy influence cancer progression and metastasis.
Collapse
Affiliation(s)
- Ariadne Vlahakis
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|