51
|
Guasto A, Cormier-Daire V. Signaling Pathways in Bone Development and Their Related Skeletal Dysplasia. Int J Mol Sci 2021; 22:4321. [PMID: 33919228 PMCID: PMC8122623 DOI: 10.3390/ijms22094321] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Bone development is a tightly regulated process. Several integrated signaling pathways including HH, PTHrP, WNT, NOTCH, TGF-β, BMP, FGF and the transcription factors SOX9, RUNX2 and OSX are essential for proper skeletal development. Misregulation of these signaling pathways can cause a large spectrum of congenital conditions categorized as skeletal dysplasia. Since the signaling pathways involved in skeletal dysplasia interact at multiple levels and have a different role depending on the time of action (early or late in chondrogenesis and osteoblastogenesis), it is still difficult to precisely explain the physiopathological mechanisms of skeletal disorders. However, in recent years, significant progress has been made in elucidating the mechanisms of these signaling pathways and genotype-phenotype correlations have helped to elucidate their role in skeletogenesis. Here, we review the principal signaling pathways involved in bone development and their associated skeletal dysplasia.
Collapse
Affiliation(s)
- Alessandra Guasto
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
| | - Valérie Cormier-Daire
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
- Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, Service de Génétique Clinique, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| |
Collapse
|
52
|
Shams R, Drasites KP, Zaman V, Matzelle D, Shields DC, Garner DP, Sole CJ, Haque A, Banik NL. The Pathophysiology of Osteoporosis after Spinal Cord Injury. Int J Mol Sci 2021; 22:3057. [PMID: 33802713 PMCID: PMC8002377 DOI: 10.3390/ijms22063057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) affects approximately 300,000 people in the United States. Most individuals who sustain severe SCI also develop subsequent osteoporosis. However, beyond immobilization-related lack of long bone loading, multiple mechanisms of SCI-related bone density loss are incompletely understood. Recent findings suggest neuronal impairment and disability may lead to an upregulation of receptor activator of nuclear factor-κB ligand (RANKL), which promotes bone resorption. Disruption of Wnt signaling and dysregulation of RANKL may also contribute to the pathogenesis of SCI-related osteoporosis. Estrogenic effects may protect bones from resorption by decreasing the upregulation of RANKL. This review will discuss the current proposed physiological and cellular mechanisms explaining osteoporosis associated with SCI. In addition, we will discuss emerging pharmacological and physiological treatment strategies, including the promising effects of estrogen on cellular protection.
Collapse
Affiliation(s)
- Ramsha Shams
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Department of Health and Human Performance, The Citadel, 171 Moultrie St., Charleston, SC 29409, USA; (D.P.G.); (C.J.S.)
| | - Kelsey P. Drasites
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Department of Health and Human Performance, The Citadel, 171 Moultrie St., Charleston, SC 29409, USA; (D.P.G.); (C.J.S.)
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
| | - Donald C. Shields
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
| | - Dena P. Garner
- Department of Health and Human Performance, The Citadel, 171 Moultrie St., Charleston, SC 29409, USA; (D.P.G.); (C.J.S.)
| | - Christopher J. Sole
- Department of Health and Human Performance, The Citadel, 171 Moultrie St., Charleston, SC 29409, USA; (D.P.G.); (C.J.S.)
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Narendra L. Banik
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
| |
Collapse
|
53
|
Yuan H, Li M, Feng X, Zhu E, Wang B. miR-142a-5p promoted osteoblast differentiation via targeting nuclear factor IA. J Cell Physiol 2021; 236:1810-1821. [PMID: 32700780 DOI: 10.1002/jcp.29963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022]
Abstract
miR-142a-5p plays critical roles in multiple biological processes and diseases, such as inflammation and tumorigenesis. However, it remains to be explored if and how miR-142a-5p contributes to osteoblast differentiation. In this study, our results showed that miR-142a-5p was highly expressed in bone tissue of mice and increased during osteogenesis in preosteoblast MC3T3-E1 cells. Supplementing miR-142a-5p activity using miR-142a-5p agomir promoted osteogenic differentiation in stromal cell line ST2 and preosteoblastic line MC3T3-E1. Conversely, miR-142a-5p antagomir, an inhibitor of endogenous miR-142a-5p, could reduce osteoblast differentiation in ST2 and MC3T3-E1 cells. Nuclear factor IA (NFIA), a site-specific transcriptional factor, was demonstrated to be directly targeted by miR-142a-5p. Overexpression of NFIA inhibited miR-142a-5p-mediated osteoblast differentiation in ST2 cells. Furthermore, mechanism explorations revealed that Wnt/β-catenin signaling transcriptionally regulated the expression of miR-142a-5p during osteogenic differentiation. β-catenin binds to the T-cell factor/lymphoid enhancer factor binding motif within the promoter of miR-142 and positively regulates its transcriptional activity. Our findings suggested that miR-142a-5p promoted osteoblast differentiation via targeting NFIA.
Collapse
Affiliation(s)
- Hairui Yuan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Mengyue Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xue Feng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Endong Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Baoli Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
54
|
Ziemińska M, Sieklucka B, Pawlak K. Vitamin K and D Supplementation and Bone Health in Chronic Kidney Disease-Apart or Together? Nutrients 2021; 13:809. [PMID: 33804453 PMCID: PMC7999920 DOI: 10.3390/nu13030809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Vitamin K (VK) and vitamin D (VD) deficiency/insufficiency is a common feature of chronic kidney disease (CKD), leading to impaired bone quality and a higher risk of fractures. CKD patients, with disturbances in VK and VD metabolism, do not have sufficient levels of these vitamins for maintaining normal bone formation and mineralization. So far, there has been no consensus on what serum VK and VD levels can be considered sufficient in this particular population. Moreover, there are no clear guidelines how supplementation of these vitamins should be carried out in the course of CKD. Based on the existing results of preclinical studies and clinical evidence, this review intends to discuss the effect of VK and VD on bone remodeling in CKD. Although the mechanisms of action and the effects of these vitamins on bone are distinct, we try to find evidence for synergy between them in relation to bone metabolism, to answer the question of whether combined supplementation of VK and VD will be more beneficial for bone health in the CKD population than administering each of these vitamins separately.
Collapse
Affiliation(s)
- Marta Ziemińska
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, 15-222 Bialystok, Poland;
| |
Collapse
|
55
|
Khosla S. The microbiome adds to the complexity of parathyroid hormone action on bone. J Clin Invest 2020; 130:1615-1617. [PMID: 32125288 DOI: 10.1172/jci135712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Parathyroid hormone (PTH) has complex effects on bone, including stimulating bone formation and regulating the hematopoietic stem cell (HSC) niche. In the current issue of the JCI, Li et al. demonstrated that the microbiome, through the production of short-chain fatty acids and in particular, butyrate, is necessary for the ability of PTH to increase osteoblast numbers and stimulate bone formation. In addition to implications for the treatment of osteoporosis with PTH analogs, this pathway may be part of a broader mechanism through which the microbiome serves its key function of modulating the immune system.
Collapse
|
56
|
Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells 2020; 9:E2073. [PMID: 32927921 PMCID: PMC7564526 DOI: 10.3390/cells9092073] [Citation(s) in RCA: 655] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Bone remodeling is tightly regulated by a cross-talk between bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoblasts and osteoclasts communicate with each other to regulate cellular behavior, survival and differentiation through direct cell-to-cell contact or through secretory proteins. A direct interaction between osteoblasts and osteoclasts allows bidirectional transduction of activation signals through EFNB2-EPHB4, FASL-FAS or SEMA3A-NRP1, regulating differentiation and survival of osteoblasts or osteoclasts. Alternatively, osteoblasts produce a range of different secretory molecules, including M-CSF, RANKL/OPG, WNT5A, and WNT16, that promote or suppress osteoclast differentiation and development. Osteoclasts also influence osteoblast formation and differentiation through secretion of soluble factors, including S1P, SEMA4D, CTHRC1 and C3. Here we review the current knowledge regarding membrane bound- and soluble factors governing cross-talk between osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Jung-Min Kim
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (J.-M.K.); (C.L.); (Z.S.)
| | - Chujiao Lin
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (J.-M.K.); (C.L.); (Z.S.)
| | - Zheni Stavre
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (J.-M.K.); (C.L.); (Z.S.)
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (J.-M.K.); (C.L.); (Z.S.)
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
57
|
Bagchi DP, Nishii A, Li Z, DelProposto JB, Corsa CA, Mori H, Hardij J, Learman BS, Lumeng CN, MacDougald OA. Wnt/β-catenin signaling regulates adipose tissue lipogenesis and adipocyte-specific loss is rigorously defended by neighboring stromal-vascular cells. Mol Metab 2020; 42:101078. [PMID: 32919095 PMCID: PMC7554252 DOI: 10.1016/j.molmet.2020.101078] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/14/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Canonical Wnt/β-catenin signaling is a well-studied endogenous regulator of mesenchymal cell fate determination, promoting osteoblastogenesis and inhibiting adipogenesis. However, emerging genetic evidence in humans links a number of Wnt pathway members to body fat distribution, obesity, and metabolic dysfunction, suggesting that this pathway also functions in adipocytes. Recent studies in mice have uncovered compelling evidence that the Wnt signaling pathway plays important roles in adipocyte metabolism, particularly under obesogenic conditions. However, complexities in Wnt signaling and differences in experimental models and approaches have thus far limited our understanding of its specific roles in this context. METHODS To investigate roles of the canonical Wnt pathway in the regulation of adipocyte metabolism, we generated adipocyte-specific β-catenin (β-cat) knockout mouse and cultured cell models. We used RNA sequencing, ChIP sequencing, and molecular approaches to assess expression of Wnt targets and lipogenic genes. We then used functional assays to evaluate effects of β-catenin deficiency on adipocyte metabolism, including lipid and carbohydrate handling. In mice maintained on normal chow and high-fat diets, we assessed the cellular and functional consequences of adipocyte-specific β-catenin deletion on adipose tissues and systemic metabolism. RESULTS We report that in adipocytes, the canonical Wnt/β-catenin pathway regulates de novo lipogenesis (DNL) and fatty acid monounsaturation. Further, β-catenin mediates effects of Wnt signaling on lipid metabolism in part by transcriptional regulation of Mlxipl and Srebf1. Intriguingly, adipocyte-specific loss of β-catenin is sensed and defended by CD45-/CD31- stromal cells to maintain tissue-wide Wnt signaling homeostasis in chow-fed mice. With long-term high-fat diet, this compensatory mechanism is overridden, revealing that β-catenin deletion promotes resistance to diet-induced obesity and adipocyte hypertrophy and subsequent protection from metabolic dysfunction. CONCLUSIONS Taken together, our studies demonstrate that Wnt signaling in adipocytes is required for lipogenic gene expression, de novo lipogenesis, and lipid desaturation. In addition, adipose tissues rigorously defend Wnt signaling homeostasis under standard nutritional conditions, such that stromal-vascular cells sense and compensate for adipocyte-specific loss. These findings underscore the critical importance of this pathway in adipocyte lipid metabolism and adipose tissue function.
Collapse
Affiliation(s)
- Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Akira Nishii
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ziru Li
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Jennifer B DelProposto
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Callie A Corsa
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Hiroyuki Mori
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Julie Hardij
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Brian S Learman
- Department of Microbiology and Immunology, University of Buffalo, Buffalo, NY, USA.
| | - Carey N Lumeng
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
58
|
Bagchi DP, Li Z, Corsa CA, Hardij J, Mori H, Learman BS, Lewis KT, Schill RL, Romanelli SM, MacDougald OA. Wntless regulates lipogenic gene expression in adipocytes and protects against diet-induced metabolic dysfunction. Mol Metab 2020; 39:100992. [PMID: 32325263 PMCID: PMC7264081 DOI: 10.1016/j.molmet.2020.100992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Obesity is a key risk factor for many secondary chronic illnesses, including type 2 diabetes and cardiovascular disease. Canonical Wnt/β-catenin signaling is established as an important endogenous inhibitor of adipogenesis. This pathway is operative in mature adipocytes; however, its roles in this context remain unclear due to complexities of Wnt signaling and differences in experimental models. In this study, we used novel cultured cell and mouse models to investigate functional roles of Wnts secreted from adipocytes. METHODS We generated adipocyte-specific Wntless (Wls) knockout mice and cultured cell models to investigate molecular and metabolic consequences of disrupting Wnt secretion from mature adipocytes. To characterize Wls-deficient cultured adipocytes, we evaluated the expression of Wnt target and lipogenic genes and the downstream functional effects on carbohydrate and lipid metabolism. We also investigated the impact of adipocyte-specific Wls deletion on adipose tissues and global glucose metabolism in mice fed normal chow or high-fat diets. RESULTS Many aspects of the Wnt signaling apparatus are expressed and operative in mature adipocytes, including the Wnt chaperone Wntless. Deletion of Wntless in cultured adipocytes results in the inhibition of de novo lipogenesis and lipid monounsaturation, likely through repression of Srebf1 (SREBP1c) and Mlxipl (ChREBP) and impaired cleavage of immature SREBP1c into its active form. Adipocyte-specific Wls knockout mice (Wls-/-) have lipogenic gene expression in adipose tissues and isolated adipocytes similar to that of controls when fed a normal chow diet. However, closer investigation reveals that a subset of Wnts and downstream signaling targets are upregulated within stromal-vascular cells of Wls-/- mice, suggesting that adipose tissues defend loss of Wnt secretion from adipocytes. Interestingly, this compensation is lost with long-term high-fat diet challenges. Thus, after six months of a high-fat diet, Wls-/- mice are characterized by decreased adipocyte lipogenic gene expression, reduced visceral adiposity, and improved glucose homeostasis. CONCLUSIONS Taken together, these studies demonstrate that adipocyte-derived Wnts regulate de novo lipogenesis and lipid desaturation and coordinate the expression of lipogenic genes in adipose tissues. In addition, we report that Wnt signaling within adipose tissues is defended, such that a loss of Wnt secretion from adipocytes is sensed and compensated for by neighboring stromal-vascular cells. With chronic overnutrition, this compensatory mechanism is lost, revealing that Wls-/- mice are resistant to diet-induced obesity, adipocyte hypertrophy, and metabolic dysfunction.
Collapse
Affiliation(s)
- Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ziru Li
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Callie A Corsa
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Julie Hardij
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Hiroyuki Mori
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Brian S Learman
- Department of Microbiology and Immunology, University of Buffalo, Buffalo, NY, USA.
| | - Kenneth T Lewis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Rebecca L Schill
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Steven M Romanelli
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
59
|
Du T, Yan Z, Zhu S, Chen G, Wang L, Ye Z, Wang W, Zhu Q, Lu Z, Cao X. QKI deficiency leads to osteoporosis by promoting RANKL-induced osteoclastogenesis and disrupting bone metabolism. Cell Death Dis 2020; 11:330. [PMID: 32382069 PMCID: PMC7205892 DOI: 10.1038/s41419-020-2548-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/20/2022]
Abstract
Quaking (QKI), an RNA-binding protein, has been reported to exhibit numerous biological functions, such as mRNA regulation, cancer suppression, and anti-inflammation. However, little known about the effects of QKI on bone metabolism. In this study, we used a monocyte/macrophage-specific QKI knockout transgenic mouse model to investigate the effects of QKI deficiency on receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. The loss of QKI promoted the formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts (OCs) from bone marrow macrophages, and upregulated the expression of OC-specific markers, including TRAP (Acp5) and cathepsin K (Ctsk). The pro-osteoclastogenesis effect of QKI deficiency was achieved by amplifying the signaling cascades of the NF-κB and mitogen-activated protein kinase (MAPK) pathways; then, signaling upregulated the activation of nuclear factor of activated T cells c1 (NFATc1), which is considered to be the core transcription factor that regulates OC differentiation. In addition, QKI deficiency could inhibit osteoblast (OB) formation through the inflammatory microenvironment. Taken together, our data suggest that QKI deficiency promoted OC differentiation and disrupted bone metabolic balance, and eventually led to osteopenia under physiological conditions and aggravated the degree of osteoporosis under pathological conditions.
Collapse
Affiliation(s)
- Tianshu Du
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Zhao Yan
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Shu Zhu
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Guo Chen
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Zichen Ye
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Wenwen Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Qingsheng Zhu
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| | - Xiaorui Cao
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| |
Collapse
|
60
|
Schepper JD, Collins F, Rios-Arce ND, Kang HJ, Schaefer L, Gardinier JD, Raghuvanshi R, Quinn RA, Britton R, Parameswaran N, McCabe LR. Involvement of the Gut Microbiota and Barrier Function in Glucocorticoid-Induced Osteoporosis. J Bone Miner Res 2020; 35:801-820. [PMID: 31886921 DOI: 10.1002/jbmr.3947] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022]
Abstract
Glucocorticoids (GCs) are potent immune-modulating drugs with significant side effects, including glucocorticoid-induced osteoporosis (GIO). GCs directly induce osteoblast and osteocyte apoptosis but also alter intestinal microbiota composition. Although the gut microbiota is known to contribute to the regulation of bone density, its role in GIO has never been examined. To test this, male C57/Bl6J mice were treated for 8 weeks with GC (prednisolone, GC-Tx) in the presence or absence of broad-spectrum antibiotic treatment (ABX) to deplete the microbiota. Long-term ABX prevented GC-Tx-induced trabecular bone loss, showing the requirement of gut microbiota for GIO. Treatment of GC-Tx mice with a probiotic (Lactobacillus reuteri [LR]) prevented trabecular bone loss. Microbiota analyses indicated that GC-Tx changed the abundance of Verrucomicobiales and Bacteriodales phyla and random forest analyses indicated significant differences in abundance of Porphyromonadaceae and Clostridiales operational taxonomic units (OTUs) between groups. Furthermore, transplantation of GC-Tx mouse fecal material into recipient naïve, untreated WT mice caused bone loss, supporting a functional role for microbiota in GIO. We also report that GC caused intestinal barrier breaks, as evidenced by increased serum endotoxin level (2.4-fold), that were prevented by LR and ABX treatments. Enhancement of barrier function with a mucus supplement prevented both GC-Tx-induced barrier leakage and trabecular GIO. In bone, treatment with ABX, LR or a mucus supplement reduced GC-Tx-induced osteoblast and osteocyte apoptosis. GC-Tx suppression of Wnt10b in bone was restored by the LR and high-molecular-weight polymer (MDY) treatments as well as microbiota depletion. Finally, we identified that bone-specific Wnt10b overexpression prevented GIO. Taken together, our data highlight the previously unappreciated involvement of the gut microbiota and intestinal barrier function in trabecular GIO pathogenesis (including Wnt10b suppression and osteoblast and osteocyte apoptosis) and identify the gut as a novel therapeutic target for preventing GIO. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Fraser Collins
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Naiomy Deliz Rios-Arce
- Department of Physiology, Michigan State University, East Lansing, MI, USA.,Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI, USA
| | - Ho Jun Kang
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Laura Schaefer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Ruma Raghuvanshi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Robert Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
61
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part III - Further strategies for local and systemic modulation. Clin Hemorheol Microcirc 2020; 73:439-488. [PMID: 31177207 DOI: 10.3233/ch-199104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this third in a series of reviews on adjuvant drug-assisted bone healing, further approaches aiming at influencing the healing process are discussed. Local and systemic modulation of bone metabolism is pursued with use of a number of drugs with completely different indications, which are characterized by a pleiotropic spectrum of action. These include drugs used to treat lipid disorders (HMG-CoA reductase inhibitors), hypertension (ACE inhibitors), osteoporosis (bisphosphonates), cancer (proteasome inhibitors) and others. Potential applications to enhance bone healing are discussed.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
62
|
Rios-Arce ND, Dagenais A, Feenstra D, Coughlin B, Kang HJ, Mohr S, McCabe LR, Parameswaran N. Loss of interleukin-10 exacerbates early Type-1 diabetes-induced bone loss. J Cell Physiol 2020; 235:2350-2365. [PMID: 31538345 PMCID: PMC6899206 DOI: 10.1002/jcp.29141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023]
Abstract
Type-1 diabetes (T1D) increases systemic inflammation, bone loss, and risk for bone fractures. Levels of the anti-inflammatory cytokine interleukin-10 (IL-10) are decreased in T1D, however their role in T1D-induced osteoporosis is unknown. To address this, diabetes was induced in male IL-10 knockout (KO) and wild-type (WT) mice. Analyses of femur and vertebral trabecular bone volume fraction identified bone loss in T1D-WT mice at 4 and 12 weeks, which in T1D-IL-10-KO mice was further reduced at 4 weeks but not 12 weeks. IL-10 deficiency also increased the negative effects of T1D on cortical bone. Osteoblast marker osterix was decreased, while osteoclast markers were unchanged, suggesting that IL-10 promotes anabolic processes. MC3T3-E1 osteoblasts cultured under high glucose conditions displayed a decrease in osterix which was prevented by addition of IL-10. Taken together, our results suggest that IL-10 is important for promoting osteoblast maturation and reducing bone loss during early stages of T1D.
Collapse
Affiliation(s)
- Naiomy Deliz Rios-Arce
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan
| | - Andrew Dagenais
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Derrick Feenstra
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Brandon Coughlin
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Ho Jun Kang
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Susanne Mohr
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Laura R. McCabe
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Department of Radiology, Michigan State University, East Lansing, Michigan
- Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan
- These authors contributed equally to this work are co-senior and co-corresponding authors
| | - Narayanan Parameswaran
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan
- These authors contributed equally to this work are co-senior and co-corresponding authors
| |
Collapse
|
63
|
Inducible expression of Wnt7b promotes bone formation in aged mice and enhances fracture healing. Bone Res 2020; 8:4. [PMID: 32047703 PMCID: PMC6997361 DOI: 10.1038/s41413-019-0081-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/14/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
There remain unmet clinical needs for safe and effective bone anabolic therapies to treat aging-related osteoporosis and to improve fracture healing in cases of nonunion or delayed union. Wnt signaling has emerged as a promising target pathway for developing novel bone anabolic drugs. Although neutralizing antibodies against the Wnt antagonist sclerostin have been tested, Wnt ligands themselves have not been fully explored as a potential therapy. Previous work has demonstrated Wnt7b as an endogenous ligand upregulated during osteoblast differentiation, and that Wnt7b overexpression potently stimulates bone accrual in the mouse. The earlier studies however did not address whether Wnt7b could promote bone formation when specifically applied to aged or fractured bones. Here we have developed a doxycycline-inducible strategy where Wnt7b is temporally induced in the bones of aged mice or during fracture healing. We report that forced expression of Wnt7b for 1 month starting at 15 months of age greatly stimulated trabecular and endosteal bone formation, resulting in a marked increase in bone mass. We further tested the effect of Wnt7b on bone healing in a murine closed femur fracture model. Induced expression of Wnt7b at the onset of fracture did not affect the initial cartilage formation but promoted mineralization of the subsequent bone callus. Thus, targeted delivery of Wnt7b to aged bones or fracture sites may be explored as a potential therapy.
Collapse
|
64
|
Senile Osteoporosis: The Involvement of Differentiation and Senescence of Bone Marrow Stromal Cells. Int J Mol Sci 2020; 21:ijms21010349. [PMID: 31948061 PMCID: PMC6981793 DOI: 10.3390/ijms21010349] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
Senile osteoporosis has become a worldwide bone disease with the aging of the world population. It increases the risk of bone fracture and seriously affects human health. Unlike postmenopausal osteoporosis which is linked to menopause in women, senile osteoporosis is due to aging, hence, affecting both men and women. It is commonly found in people with more than their 70s. Evidence has shown that with age increase, bone marrow stromal cells (BMSCs) differentiate into more adipocytes rather than osteoblasts and undergo senescence, which leads to decreased bone formation and contributes to senile osteoporosis. Therefore, it is necessary to uncover the molecular mechanisms underlying the functional changes of BMSCs. It will benefit not only for understanding the senile osteoporosis development, but also for finding new therapies to treat senile osteoporosis. Here, we review the recent advances of the functional alterations of BMSCs and the related mechanisms during senile osteoporosis development. Moreover, the treatment of senile osteoporosis by aiming at BMSCs is introduced.
Collapse
|
65
|
Three-dimensional spheroids of mesenchymal stem/stromal cells promote osteogenesis by activating stemness and Wnt/β-catenin. Biochem Biophys Res Commun 2019; 523:458-464. [PMID: 31882121 DOI: 10.1016/j.bbrc.2019.12.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent and self-renewal cells that are widely used in regenerative medicine. The culture of three-dimensional (3D) spheroid MSCs more accurately mimics the biological microenvironment. However, it is unclear which key molecules are responsible for the cell fate control of MSCs during 3D spheroid formation and their impact on the functional characteristics of these stem cells. Furthermore, it remains unclear what effects 3D spheroid MSC transplantation has on new bone formation compared with that of 2D monolayer MSCs. We assessed whether the osteogenerative potential of 3D spheroid MSCs is greater than that of 2D monolayer MSCs in vitro. In addition, to elucidate the ability of 3D spheroid MSCs to regenerate bone, we examined the effects of transplanting wild-type (WT) or knockout (KO) spheroid MSCs on new bone formation in mice calvarial defect model in vitro. The 3D spheroid MSC culture dramatically upregulated into stemness markers compared with the 2D monolayer MSC culture. In contrast, BMP-2 significantly increased the osteogenesis-related molecules in the 3D spheroid MSCs but, in turn, downregulated the stemness markers. BMP-2 activated Smad1/5 together with Wnt/β-catenin in 3D spheroid MSCs. Transplantation of these MSCs into aged mice with calvarial defects promoted new bone formation compared with that of 2D monolayer MSCs. In contrast, transplantation of 3D or 2D β-catenin knockout MSCs induced little new bone formation. The 3D spheroid MSC culture had higher stemness compared with the 2D monolayer MSC culture. The culture of 3D spheroid MSCs rapidly promoted osteoblastogenesis and bone formation through synergistic activation of the Wnt/β-catenin pathway in vitro. The transformation of 3D spheroid, but not 2D monolayer, MSCs promoted new bone regeneration in vivo. These results indicate that transplantation of 3D spheroid MSCs in regeneration therapy contributes to a shorter regenerative healing process, including new bone formation.
Collapse
|
66
|
Metavarayuth K, Maturavongsadit P, Chen X, Sitasuwan P, Lu L, Su J, Wang Q. Nanotopographical Cues Mediate Osteogenesis of Stem Cells on Virus Substrates through BMP-2 Intermediate. NANO LETTERS 2019; 19:8372-8380. [PMID: 31296009 DOI: 10.1021/acs.nanolett.9b02001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent studies have demonstrated rapid osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) on substrates with plant virus modified nanotopographical cues as a promising strategy for bone repair; however, the mechanisms remain unclear. We hypothesized that the highly structurally ordered virus coat proteins, responsible for targeting specific cellular components, are critical for the osteogenesis promotion. In this study, hybrid viral gold nanorods were prepared to explore the effects of highly ordered arranged virus coat proteins on osteogenic differentiation of BMSCs. The results herein indicate that it is the nanotopographical cues modified by structurally ordered virus nanoparticles, not the chemical properties of virus surface, that mediate osteogenesis. Bone morphogenetic protein 2 (BMP-2) expression is significantly increased and serves as a modulator that mediates the osteogenic differentiation in response to the viral particle coatings. After BMP-2 is inhibited by Noggin, the osteogenesis promoting effects are significantly compromised, demonstrated by lower alkaline phosphatase activity and calcium sequestration. This study reveals that plant virus modified nanotopographical substrates promote osteogenic differentiation of BMSCs through increasing BMP-2 autocrine. It provides key insights to engineering functional materials for rapid bone repair.
Collapse
Affiliation(s)
- Kamolrat Metavarayuth
- Department of Chemistry and Biochemistry , University of South Carolina , 631 Sumter Street , Columbia , South Carolina 29208 , United States
| | - Panita Maturavongsadit
- Joint Department of Biomedical Engineering , University of North Carolina at Chapel Hill and North Carolina State University , Chapel Hill , North Carolina 27599 , United States
| | - Xiao Chen
- Department of Orthopedics Trauma , Changhai Hospital, Second Military Medical University , Shanghai 200433 , China
| | - Pongkwan Sitasuwan
- Department of Chemistry and Biochemistry , University of South Carolina , 631 Sumter Street , Columbia , South Carolina 29208 , United States
| | - Lin Lu
- Department of Chemistry and Biochemistry , University of South Carolina , 631 Sumter Street , Columbia , South Carolina 29208 , United States
| | - Jiacan Su
- Department of Orthopedics Trauma , Changhai Hospital, Second Military Medical University , Shanghai 200433 , China
| | - Qian Wang
- Department of Chemistry and Biochemistry , University of South Carolina , 631 Sumter Street , Columbia , South Carolina 29208 , United States
| |
Collapse
|
67
|
The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int J Mol Sci 2019; 20:ijms20225525. [PMID: 31698687 PMCID: PMC6888566 DOI: 10.3390/ijms20225525] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Wnt, a secreted glycoprotein, has an approximate molecular weight of 40 kDa, and it is a cytokine involved in various biological phenomena including ontogeny, morphogenesis, carcinogenesis, and maintenance of stem cells. The Wnt signaling pathway can be classified into two main pathways: canonical and non-canonical. Of these, the canonical Wnt signaling pathway promotes osteogenesis. Sclerostin produced by osteocytes is an inhibitor of this pathway, thereby inhibiting osteogenesis. Recently, osteoporosis treatment using an anti-sclerostin therapy has been introduced. In this review, the basics of Wnt signaling, its role in bone metabolism and its involvement in skeletal disorders have been covered. Furthermore, the clinical significance and future scopes of Wnt signaling in osteoporosis, osteoarthritis, rheumatoid arthritis and neoplasia are discussed.
Collapse
|
68
|
Sims NA, Martin TJ. Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms. Annu Rev Physiol 2019; 82:507-529. [PMID: 31553686 DOI: 10.1146/annurev-physiol-021119-034425] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bone remodeling is essential for the repair and replacement of damaged and old bone. The major principle underlying this process is that osteoclast-mediated resorption of a quantum of bone is followed by osteoblast precursor recruitment; these cells differentiate to matrix-producing osteoblasts, which form new bone to replace what was resorbed. Evidence from osteopetrotic syndromes indicate that osteoclasts not only resorb bone, but also provide signals to promote bone formation. Osteoclasts act upon osteoblast lineage cells throughout their differentiation by facilitating growth factor release from resorbed matrix, producing secreted proteins and microvesicles, and expressing membrane-bound factors. These multiple mechanisms mediate the coupling of bone formation to resorption in remodeling. Additional interactions of osteoclasts with osteoblast lineage cells, including interactions with canopy and reversal cells, are required to achieve coordination between bone formation and resorption during bone remodeling.
Collapse
Affiliation(s)
- Natalie A Sims
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; , .,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - T John Martin
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; , .,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| |
Collapse
|
69
|
Zaiss MM, Jones RM, Schett G, Pacifici R. The gut-bone axis: how bacterial metabolites bridge the distance. J Clin Invest 2019; 129:3018-3028. [PMID: 31305265 DOI: 10.1172/jci128521] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome is a key regulator of bone health that affects postnatal skeletal development and skeletal involution. Alterations in microbiota composition and host responses to the microbiota contribute to pathological bone loss, while changes in microbiota composition that prevent, or reverse, bone loss may be achieved by nutritional supplements with prebiotics and probiotics. One mechanism whereby microbes influence organs of the body is through the production of metabolites that diffuse from the gut into the systemic circulation. Recently, short-chain fatty acids (SCFAs), which are generated by fermentation of complex carbohydrates, have emerged as key regulatory metabolites produced by the gut microbiota. This Review will focus on the effects of SCFAs on the musculoskeletal system and discuss the mechanisms whereby SCFAs regulate bone cells.
Collapse
Affiliation(s)
- Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, USA.,Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
70
|
Zhou J, Gao YH, Zhu BY, Shao JL, Ma HP, Xian CJ, Chen KM. Sinusoidal Electromagnetic Fields Increase Peak Bone Mass in Rats by Activating Wnt10b/β-Catenin in Primary Cilia of Osteoblasts. J Bone Miner Res 2019; 34:1336-1351. [PMID: 30779853 DOI: 10.1002/jbmr.3704] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Extremely low-frequency electromagnetic fields have been considered a potential candidate for the prevention and treatment of osteoporosis; however, their action mechanism and optimal magnetic flux density (intensity) parameter are still elusive. The present study found that 50-Hz sinusoidal electromagnetic fields (SEMFs) at 1.8 mT increased the peak bone mass of young rats by increasing bone formation. Gene array expression studies with femoral bone samples showed that SEMFs increased the expression levels of collagen-1α1 and Wnt10b, a critical ligand of the osteogenic Wnt/β-catenin pathway. Consistently, SEMFs promoted osteogenic differentiation and maturation of rat calvarial osteoblasts (ROBs) in vitro through activating the Wnt10b/β-catenin pathway. This osteogenesis-promoting effect of SEMFs via Wnt10b/β-catenin signaling was found to depend on the functional integrity of primary cilia in osteoblasts. When the primary cilia were abrogated by small interfering RNA (siRNA) targeting IFT88, the ability of SEMFs to promote the osteogenic differentiation of ROBs through activating Wnt10b/β-catenin signaling was blocked. Although the knockdown of Wnt10b expression with RNA interference had no effect on primary cilia, it significantly suppressed the promoting effect of SEMFs on osteoblastic differentiation/maturation. Wnt10b was normally localized at the bases of primary cilia, but it disappeared (or was released) from the cilia upon SEMF treatment. Interestingly, primary cilia were elongated to different degrees by different intensities of 50-Hz SEMFs, with the window effect observed at 1.8 mT, and the expression level of Wnt10b increased in accord with the lengths of primary cilia. These results indicate that 50-Hz 1.8-mT SEMFs increase the peak bone mass of growing rats by promoting osteogenic differentiation/maturation of osteoblasts, which is mediated, at least in part, by Wnt10b at the primary cilia and the subsequent activation of Wnt/β-catenin signaling. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jian Zhou
- Institute of Orthopaedics, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| | - Yu-Hai Gao
- Institute of Orthopaedics, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| | - Bao-Ying Zhu
- Institute of Orthopaedics, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| | - Jia-Le Shao
- Institute of Orthopaedics, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| | - Hui-Ping Ma
- Department of Pharmacy, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, CPLA, Lanzhou 730050, People's Republic of China
| |
Collapse
|
71
|
Pierce JL, Ding KH, Xu J, Sharma AK, Yu K, Del Mazo Arbona N, Rodriguez-Santos Z, Bernard P, Bollag WB, Johnson MH, Hamrick MW, Begun DL, Shi XM, Isales CM, McGee-Lawrence ME. The glucocorticoid receptor in osteoprogenitors regulates bone mass and marrow fat. J Endocrinol 2019; 243:JOE-19-0230.R1. [PMID: 31370004 PMCID: PMC6938567 DOI: 10.1530/joe-19-0230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
Excess fat within bone marrow is associated with lower bone density. Metabolic stressors such as chronic caloric restriction (CR) can exacerbate marrow adiposity, and increased glucocorticoid signaling and adrenergic signaling are implicated in this phenotype. The current study tested the role of glucocorticoid signaling in CR-induced stress by conditionally deleting the glucocorticoid receptor (GR) in bone marrow osteoprogenitors (Osx1-Cre) of mice subjected to CR and ad libitum diets. Conditional knockout of the GR (GR-CKO) reduced cortical and trabecular bone mass as compared to wildtype (WT) mice under both ad libitum and CR conditions. No interaction was detected between genotype and diet, suggesting that the GR is not required for CR-induced skeletal changes. The lower bone mass in GR-CKO mice, and the further suppression of bone by CR, resulted from suppressed bone formation. Interestingly, treatment with the -adrenergic receptor antagonist propranolol mildly but selectively improved metrics of cortical bone mass in GR-CKO mice during CR, suggesting interaction between adrenergic and glucocorticoid signaling pathways that affects cortical bone. GR-CKO mice dramatically increased marrow fat under both ad libitum and CR-fed conditions, and surprisingly propranolol treatment was unable to rescue CR-induced marrow fat in either WT or GR-CKO mice. Additionally, serum corticosterone levels were selectively elevated in GR-CKO mice with CR, suggesting the possibility of bone-hypothalamus-pituitary-adrenal crosstalk during metabolic stress. This work highlights the complexities of glucocorticoid and β-adrenergic signaling in stress-induced changes in bone mass, and the importance of GR function in suppressing marrow adipogenesis while maintaining healthy bone mass.
Collapse
Affiliation(s)
- Jessica L Pierce
- J Pierce, Cellular Biology and Anatomy, Augusta University, Augusta, United States
| | - Ke-Hong Ding
- K Ding, Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
| | - Jianrui Xu
- J Xu, Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
| | - Anuj K Sharma
- A Sharma, Cellular Biology and Anatomy, Augusta University, Augusta, United States
| | - Kanglun Yu
- K Yu, Cellular Biology and Anatomy, Augusta University, Augusta, United States
| | | | | | - Paul Bernard
- P Bernard, Pediatric Endocrine Specialists of Georgia, Pediatric Endocrine Specialists of Georgia, Duluth, United States
| | - Wendy B Bollag
- W Bollag, Department of Physiology, Medical College of Georgia, Augusta, GA 30912, United States
| | - Maribeth H Johnson
- M Johnson, Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
| | - Mark W Hamrick
- M Hamrick, Cellular Biology and Anatomy, Augusta University, Augusta, United States
| | - Dana L Begun
- D Begun, Department of Orthopedic Surgery, Mayo Clinic, Rochester, United States
| | - Xing M Shi
- X Ming Shi, Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
| | - Carlos M Isales
- C Isales, Neuroscience and Regenerative Medicine, Augusta University, Augusta, 30912, United States
| | | |
Collapse
|
72
|
Lerner UH, Kindstedt E, Lundberg P. The critical interplay between bone resorbing and bone forming cells. J Clin Periodontol 2019; 46 Suppl 21:33-51. [DOI: 10.1111/jcpe.13051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/05/2018] [Accepted: 12/01/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Ulf H. Lerner
- Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical Nutrition; Institute of Medicine; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
- Department of Odontology; Division of Molecular Periodontology; Umeå University; Umeå Sweden
| | - Elin Kindstedt
- Department of Odontology; Division of Molecular Periodontology; Umeå University; Umeå Sweden
| | - Pernilla Lundberg
- Department of Odontology; Division of Molecular Periodontology; Umeå University; Umeå Sweden
| |
Collapse
|
73
|
Zheng CM, Hsu YH, Wu CC, Lu CL, Liu WC, Zheng JQ, Lin YF, Chiu HW, Chang TJ, Shyu JF, Lu KC. Osteoclast-Released Wnt-10b Underlies Cinacalcet Related Bone Improvement in Chronic Kidney Disease. Int J Mol Sci 2019; 20:2800. [PMID: 31181716 PMCID: PMC6600662 DOI: 10.3390/ijms20112800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022] Open
Abstract
Secondary hyperparathyroidism (SHPT) relates to high turnover bone loss and is responsible for most bone fractures among chronic kidney disease (CKD) patients. Changes in the Wingless/beta-catenin signaling (Wnt/β-catenin) pathway and Wnt inhibitors have been found to play a critical role in CKD related bone loss. A calcimimetic agent, cinacalcet, is widely used for SHPT and found to be similarly effective for parathyroidectomy clinically. A significant decrease in hip fracture rates is noted among US hemodialysis Medicare patients since 2004, which is probably related to the cinacalcet era. In our previous clinical study, it was proven that cinacalcet improved the bone mineral density (BMD) even among severe SHPT patients. In this study, the influence of cinacalcet use on bone mass among CKD mice was determined. Cinacalcet significantly reduced the cortical porosity in femoral bones of treated CKD mice. It also improved the whole-bone structural properties through increased stiffness and maximum load. Cinacalcet increased femoral bone wingless 10b (Wnt10b) expression in CKD mice. In vitro studies revealed that cinacalcet decreased osteoclast bone resorption and increased Wnt 10b release from osteoclasts. Cinacalcet increased bone mineralization when culturing the osteoblasts with cinacalcet treated osteoclast supernatant. In conclusion, cinacalcet increased bone quantity and quality in CKD mice, probably through increased bone mineralization related with osteoclast Wnt 10b secretion.
Collapse
Affiliation(s)
- Cai-Mei Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Taipei Medical University, New Taipei City 235, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Yung-Ho Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Taipei Medical University, New Taipei City 235, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 10581, Taiwan.
| | - Chien-Lin Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 243, Taiwan.
| | - Wen-Chih Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Tungs' Taichung Metroharbor Hospital, Taichung City 43304, Taiwan.
| | - Jing-Quan Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan.
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Taipei Medical University, New Taipei City 235, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Tian-Jong Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.
- Performance Appraisal Section, Secretary Office, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Jia-Fwu Shyu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 110, Taiwan.
| | - Kuo-Cheng Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 243, Taiwan.
| |
Collapse
|
74
|
Ni LH, Tang RN, Yuan C, Song KY, Wang LT, Wang XC, Zhang YX, Zhang XL, Zhu DD, Liu BC. FK506 prevented bone loss in streptozotocin-induced diabetic rats via enhancing osteogenesis and inhibiting adipogenesis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:265. [PMID: 31355232 DOI: 10.21037/atm.2019.05.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Type 1 diabetes mellitus (DM) is associated with severe osteoporosis, which is still a great challenge in the clinic. This work aimed to investigate the skeletal effects of FK506 in a rat model of streptozocin induced type 1 DM. Methods Rats were divided into three groups: control (CTL), DM rats and DM rats treated with FK506. Dual energy X-ray absorption, micro-computed tomography, bone mechanics and bone histology were used for skeletal analysis. Bone marrow adipocytes infiltrations were detected by oil red O stain and H&E stain. In addition, the protein expression of adipocyte-specific makers (PPAR-γ, C/EBP-αβ), osteoblast-specific markers (Runx2, Osterix) and nuclear translocation of β-catenin in femurs were determined by western blot. Results In the study, bone mineral density of femurs and lumbar vertebras in diabetic rats were increased after FK506 administration. FK506 treatment resulted in higher cancellous bone volume but had no significant effect on cortical bones in diabetic rats. The ultimate force and work to failure were increased in DM+FK506 group, while they were reduced in the DM group. Compared with the CTL, the infiltration of bone marrow adipocytes was significantly increased in the DM group, which was reduced after the treatment of FK506. Besides, the expression levels of Runx2 and Osterix were up-regulated, and that of PPAR-γ and C/EBP-α were down-regulated in diabetic rats after FK506 treatment. In addition, the nuclear translocation of β-catenin protein levels were increased in diabetic rats after the treatment of FK506. Conclusions Our study indicated that FK506 could alleviate bone loss in diabetic rats. This effects could be due to the results of enhancing osteogenesis and inhibiting adipogenesis, which might be regulated by activation the nuclear translocation of β-catenin.
Collapse
Affiliation(s)
- Li-Hua Ni
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, China.,Department of Nephrology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Nanjing 10009, China
| | - Cheng Yuan
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Kai-Yun Song
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Li-Ting Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Xiao-Chen Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Yu-Xia Zhang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Xiao-Liang Zhang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Dong-Dong Zhu
- Department of Nephrology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, China
| |
Collapse
|
75
|
Sarmah S, Curtis C, Mahin J, Farrell M, Engler TA, Sanchez-Felix MV, Sato M, Ma YL, Chu S, Marrs JA. The Glycogen Synthase Kinase-3β Inhibitor LSN 2105786 Promotes Zebrafish Fin Regeneration. Biomedicines 2019; 7:biomedicines7020030. [PMID: 31010223 PMCID: PMC6630808 DOI: 10.3390/biomedicines7020030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 11/16/2022] Open
Abstract
The Wnt pathway has been shown to regulate bone homeostasis and to influence some bone disease states. We utilized a zebrafish model system to study the effects of a synthetic, orally bioavailable glycogen synthase kinase-3β (GSK3β) inhibitor LSN 2105786, which activates Wnt signaling during bone healing and embryogenesis. GSK3β inhibitor treatment was used to phenocopy GSK3β morpholino oligonucleotide (MO) knockdown in zebrafish embryos. Human and zebrafish synthetic mRNA injection were similarly effective at rescue of GSK3β MO knockdown. During caudal fin regeneration, bony rays are the first structure to differentiate in zebrafish fins, providing a useful model to study bone healing. Caudal fin regeneration experiments were conducted using various concentrations of a GSK3β inhibitor, examining duration and concentration dependence on regenerative outgrowth. Experiments revealed continuous low concentration (4-5 nM) treatment to be more effective at increasing regeneration than intermittent dosing. Higher concentrations inhibited fin growth, perhaps by excessive stimulation of differentiation programs. Increased Wnt responsive gene expression and differentiation were observed in response to GSK3b inhibitor treatment. Activating Wnt signaling also increased cell proliferation and osteoblast differentiation in fin regenerates. Together, these data indicate that bone healing in zebrafish fin regeneration was improved by activating Wnt signaling using GSK3b inhibitor treatment. In addition, caudal fin regeneration is useful to evaluate dose-dependent pharmacological efficacy in bone healing, various dosing regimens and possible toxicological effects of compounds.
Collapse
Affiliation(s)
- Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Courtney Curtis
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Jennifer Mahin
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Mark Farrell
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | | | - Manuel V Sanchez-Felix
- Lilly Research Laboratories, Indianapolis, IN 46225, USA.
- Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA.
| | - Masahiko Sato
- Lilly Research Laboratories, Indianapolis, IN 46225, USA.
| | | | - Shaoyou Chu
- Lilly Research Laboratories, Indianapolis, IN 46225, USA.
- Molecular Templates, Austin, TX 78729, USA.
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
76
|
Wei Y, Wu Y, Zhao R, Zhang K, Midgley AC, Kong D, Li Z, Zhao Q. MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials 2019; 204:13-24. [PMID: 30875515 DOI: 10.1016/j.biomaterials.2019.01.049] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 02/07/2023]
Abstract
Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention. These sEVs contain many potent signaling molecules that play important roles in tissue regeneration, such as microRNA and cytokines. In this study, a sEVs-functionalized vascular graft was developed, and in vivo performance was systematically evaluated in a rat model of hyperlipidemia. Electrospun poly (ε-caprolactone) (PCL) vascular grafts were first modified with heparin, to enhance the anti-thrombogenicity. MSC-derived sEVs were loaded onto the heparinized PCL grafts to obtain functional vascular grafts. As-prepared vascular grafts were implanted to replace a segment of rat abdominal artery (1 cm) for up to 3 months. Results showed that the incorporation of MSC-derived sEVs effectively inhibited thrombosis and calcification, thus enhancing the patency of vascular grafts. Furthermore, regeneration of the endothelium and vascular smooth muscle was markedly enhanced, as attributed to the bioactive molecules within the sEVs, including vascular endothelial growth factor (VEGF), miRNA126, and miRNA145. More importantly, MSC-derived sEVs demonstrated a robust immunomodulatory effect, that is, they induced the transition of macrophages from a pro-inflammatory and atherogenic (M1) phenotype to an anti-inflammatory and anti-osteogenic (M2c) phenotype. This phenotypic switch was confirmed in both in vitro and in vivo analyses. Taken together, these results suggest that fabrication of vascular grafts with immunomodulatory function can provide an effective approach to improve vascular performance and functionality, with translational implication in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yifan Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Runxia Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Kaiyue Zhang
- Nankai University School of Medicine, Tianjin 300071, PR China
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin 300071, PR China.
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
77
|
Balani DH, Kronenberg HM. Withdrawal of parathyroid hormone after prolonged administration leads to adipogenic differentiation of mesenchymal precursors in vivo. Bone 2019; 118:16-19. [PMID: 29800694 PMCID: PMC6250592 DOI: 10.1016/j.bone.2018.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
Abstract
Intermittent PTH-like drugs are the only approved so-called anabolic agent that increases bone mass in both mice and humans. It is well documented that PTH targets mature cells of the osteoblast lineage, with only indirect evidence of its actions on early cells of the osteoblast lineage. Using a triple transgenic mouse model that allowed labeling of very early cells of the osteoblast lineage, we traced the progeny of these into osteoblast lineage in adult mice. These early cells expressed PTH1R and multiplied when PTH (1-34) was administered daily. We also showed that the early mesenchymal cells showed accelerated differentiation into mature osteocalcin-positive osteoblasts and osteocytes. Rather surprisingly, when teriparatide administration was stopped, these early mesenchymal precursors differentiated into adipocytes. We showed that the adipogenic differentiation is accompanied by a decrease in wnt signaling in osteoblast precursors. In this review, we discuss the possible clinical relevance of this finding and the possible molecular mechanisms that contribute to this phenotype in vivo.
Collapse
Affiliation(s)
- Deepak H Balani
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, 50 Blossom Street, Boston, MA 02114, USA.
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, 50 Blossom Street, Boston, MA 02114, USA.
| |
Collapse
|
78
|
|
79
|
ZHAO XIAOE, YANG ZHENSHAN, GAO ZHEN, GE JUNBANG, WEI QIANG, MA BAOHUA. 6-Bromoindirubin-3’-oxime promotes osteogenic differentiation of canine BMSCs through inhibition of GSK3β activity and activation of the Wnt/β-catenin signaling pathway. ACTA ACUST UNITED AC 2019; 91:e20180459. [PMID: 30916158 DOI: 10.1590/0001-3765201920180459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
|
80
|
Pierce JL, Begun DL, Westendorf JJ, McGee-Lawrence ME. Defining osteoblast and adipocyte lineages in the bone marrow. Bone 2019; 118:2-7. [PMID: 29782940 PMCID: PMC6240509 DOI: 10.1016/j.bone.2018.05.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022]
Abstract
Bone is a complex endocrine organ that facilitates structural support, protection to vital organs, sites for hematopoiesis, and calcium homeostasis. The bone marrow microenvironment is a heterogeneous niche consisting of multipotent musculoskeletal and hematopoietic progenitors and their derivative terminal cell types. Amongst these progenitors, bone marrow mesenchymal stem/stromal cells (BMSCs) may differentiate into osteogenic, adipogenic, myogenic, and chondrogenic lineages to support musculoskeletal development as well as tissue homeostasis, regeneration and repair during adulthood. With age, the commitment of BMSCs to osteogenesis slows, bone formation decreases, fracture risk rises, and marrow adiposity increases. An unresolved question is whether osteogenesis and adipogenesis are co-regulated in the bone marrow. Osteogenesis and adipogenesis are controlled by specific signaling mechanisms, circulating cytokines, and transcription factors such as Runx2 and Pparγ, respectively. One hypothesis is that adipogenesis is the default pathway if osteogenic stimuli are absent. However, recent work revealed that Runx2 and Osx1-expressing preosteoblasts form lipid droplets under pathological and aging conditions. Histone deacetylase 3 (Hdac3) and other epigenetic regulators suppress lipid storage in preosteoblasts and/or control marrow adiposity. Establishing a better understanding of fat storage in bone marrow cells, as well as the osteoblast-adipocyte relationship within the bone marrow niche is necessary to understand the mechanisms underlying disease- and aging-related marrow fat storage and may lead to the development of new therapeutic targets for "fatty bone" and osteoporosis.
Collapse
Affiliation(s)
- J L Pierce
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - D L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - J J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - M E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
81
|
Aslani S, Abhari A, Sakhinia E, Sanajou D, Rajabi H, Rahimzadeh S. Interplay between microRNAs and Wnt, transforming growth factor-β, and bone morphogenic protein signaling pathways promote osteoblastic differentiation of mesenchymal stem cells. J Cell Physiol 2018; 234:8082-8093. [PMID: 30548580 DOI: 10.1002/jcp.27582] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022]
Abstract
Osteoblasts are terminally differentiated cells with mesenchymal origins, known to possess pivotal roles in sustaining bone microstructure and homeostasis. These cells are implicated in the pathophysiology of various bone disorders, especially osteoporosis. Over the last few decades, strategies to impede bone resorption, principally by bisphosphonates, have been mainstay of treatment of osteoporosis; however, in recent years more attention has been drawn on bone-forming approaches for managing osteoporosis. MicroRNAs (miRNAs) are a broad category of noncoding short sequence RNA fragments that posttranscriptionally regulate the expression of diverse functional and structural genes in a negative manner. An accumulating body of evidence signifies that miRNAs direct mesenchymal stem cells toward osteoblast differentiation and bone formation through bone morphogenic protein, transforming growth factor-β, and Wnt signaling pathways. MiRNAs are regarded as excellent future therapeutic candidates because of their small size and ease of delivery into the cells. Considering their novel therapeutic significance, this review discusses the main miRNAs contributing to the anabolic aspects of bone formation and illustrates their interactions with corresponding signaling pathways involved in osteoblastic differentiation.
Collapse
Affiliation(s)
- Somayeh Aslani
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Deparment of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Sanajou
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Rahimzadeh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
82
|
Chen S, Liu D, He S, Yang L, Bao Q, Qin H, Liu H, Zhao Y, Zong Z. Differential effects of type 1 diabetes mellitus and subsequent osteoblastic β-catenin activation on trabecular and cortical bone in a mouse model. Exp Mol Med 2018; 50:1-14. [PMID: 30518745 PMCID: PMC6281645 DOI: 10.1038/s12276-018-0186-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/27/2018] [Accepted: 09/09/2018] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a pathological condition associated with osteopenia. WNT/β-catenin signaling is implicated in this process. Trabecular and cortical bone respond differently to WNT/β-catenin signaling in healthy mice. We investigated whether this signaling has different effects on trabecular and cortical bone in T1DM. We first established a streptozotocin-induced T1DM mouse model and then constitutively activated β-catenin in osteoblasts in the setting of T1DM (T1-CA). The extent of bone loss was greater in trabecular bone than that in cortical bone in T1DM mice, and this difference was consistent with the reduction in the expression of β-catenin signaling in the two bone compartments. Further experiments demonstrated that in T1DM mice, trabecular bone showed lower levels of insulin-like growth factor-1 receptor (IGF-1R) than the levels in cortical bone, leading to lower WNT/β-catenin signaling activity through the inhibition of the IGF-1R/Akt/glycogen synthase kinase 3β (GSK3β) pathway. After β-catenin was activated in T1-CA mice, the bone mass and bone strength increased to substantially greater extents in trabecular bone than those in cortical bone. In addition, the cortical bone of the T1-CA mice displayed an unexpected increase in bone porosity, with increased bone resorption. The downregulated expression of WNT16 might be responsible for these cortical bone changes. In conclusion, we found that although the activation of WNT/β-catenin signaling increased the trabecular bone mass and bone strength in T1DM mice, it also increased the cortical bone porosity, impairing the bone strength. These findings should be considered in the future treatment of T1DM-related osteopenia.
Collapse
Affiliation(s)
- Sixu Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, 400038, ChongQing, China.,Department of Orthopedics, The 118th Hospital of the Chinese People's Liberation Army, 325000, Wenzhou, Zhejiang, China
| | - Daocheng Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, 400038, ChongQing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, 400037, ChongQing, China
| | - Sihao He
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, 400038, ChongQing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, 400037, ChongQing, China
| | - Lei Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, 400038, ChongQing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, 400037, ChongQing, China
| | - Quanwei Bao
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, 400038, ChongQing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, 400037, ChongQing, China
| | - Hao Qin
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, 400038, ChongQing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, 400037, ChongQing, China
| | - Huayu Liu
- Department of Trauma Surgery, Daping Hospital, Army Medical University, 400042, ChongQing, China
| | - Yufeng Zhao
- Department of Trauma Surgery, Daping Hospital, Army Medical University, 400042, ChongQing, China
| | - Zhaowen Zong
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, 400038, ChongQing, China. .,Department of Emergency, Xinqiao Hospital, Army Medical University, 400037, ChongQing, China.
| |
Collapse
|
83
|
Luo Y, Zhang Y, Miao G, Zhang Y, Liu Y, Huang Y. Runx1 regulates osteogenic differentiation of BMSCs by inhibiting adipogenesis through Wnt/β-catenin pathway. Arch Oral Biol 2018; 97:176-184. [PMID: 30391794 DOI: 10.1016/j.archoralbio.2018.10.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/29/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Bone marrow stem cells (BMSCs) can commit to both adipocyte and osteoblast lineages. However, the mechanism underlying how transcription factors regulate this process remains elusive. Our aims were to determine the role of runt-related transcription factor 1 (Runx1) in BMSCs lineage determination and the underlying mechanisms. STUDY DESIGN BMSCs from mouse femur bone marrow were harvested and cultured in osteogenic medium. Runx1 was knocked down in BMSCs using lentivirus. Alkaline phosphatase (ALP), Von Kossa and Oil Red O staining were performed on the Runx1-transduced BMSCs and control cells to see the differences of osteogenic and adipogenic differentiation in these groups. Real-time quantitative PCR and Western blot were performed to analyse the expression levels of osteogenic and adipogenic factors regulated by Runx1 at gene and protein levels. RESULTS In BMSCs with Runx1 knockdown, the expression levels of osteogenic-related genes decreased significantly while the adipogenic genes C/EBPα, PPARγ and Fabp4 increased by 12-fold, 10-fold, and 30-fold, respectively, compared with the control cells. ALP activity and Von kossa staining were greatly decreased in Runx1-transfected cells while the Oil Red O staining was comparable to that in the control groups. Canonical Wnt signaling was investigated in the Runx1-deficient BMSCs, and a 50% decrease in the expression of active β-catenin in these cells was found. Lef1 and Tcf1, which are regulated by β-catenin were also decreased in Runx1-deficient cells compared with the levels in controls. Moreover, although there was no difference in the expression of Wnt3a among the three groups of cells, the expression of Wnt10b decreased by 80% in Runx1-deficient BMSCs compared with the levels in the other two groups. CONCLUSIONS Our results show Runx1 promotes the capacity of osteogenesis in BMSCs while inhibits their adipogenesis through canonical Wnt/β-catenin pathway, which provides new insights into osteoblast development.
Collapse
Affiliation(s)
- Yuan Luo
- Department of Oral Surgery, Shanghai Stomatological Hospital, Shanghai, PR China
| | - Yingdi Zhang
- Department of Stomatology, Shanghai East Hospital Affiliated with Tongji University, Shanghai, PR China
| | - Guojun Miao
- Department of Stomatology, Shanghai East Hospital Affiliated with Tongji University, Shanghai, PR China
| | - Yiwen Zhang
- Department of Stomatology, Shanghai East Hospital Affiliated with Tongji University, Shanghai, PR China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital, Shanghai, PR China.
| | - Yuanliang Huang
- Department of Stomatology, Shanghai East Hospital Affiliated with Tongji University, Shanghai, PR China.
| |
Collapse
|
84
|
Xiao L, Fei Y, Hurley MM. FGF2 crosstalk with Wnt signaling in mediating the anabolic action of PTH on bone formation. Bone Rep 2018; 9:136-144. [PMID: 30258857 PMCID: PMC6152810 DOI: 10.1016/j.bonr.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/30/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
The mechanisms of the anabolic effect of parathyroid hormone (PTH) in bone are not fully defined. The bone anabolic effects of PTH require fibroblast growth factor 2 (FGF2) as well as Wnt signaling and FGF2 modulates Wnt signaling in osteoblasts. In vivo PTH administration differentially modulated Wnt signaling in bones of wild type (WT) and in mice that Fgf2 was knocked out (Fgf2KO). PTH increased Wnt10b mRNA and protein in WT but not in KO mice. Wnt antagonist SOST mRNA and protein was significantly higher in KO group. However, PTH decreased Sost mRNA significantly in WT as well as in Fgf2KO mice, but to a lesser extent in Fgf2KO. Dickhopf 2 (DKK2) is critical for osteoblast mineralization. PTH increased Dkk2 mRNA in WT mice but the response was impaired in Fgf2KO mice. PTH significantly increased Lrp5 mRNA and phosphorylation of Lrp6 in WT but the increase was markedly attenuated in Fgf2KO mice. PTH increased β-catenin expression and Wnt/β-catenin transcriptional activity significantly in WT but not in Fgf2KO mice. These data suggest that the impaired bone anabolic response to PTH in Fgf2KO mice is partially mediated by attenuated Wnt signaling. In vivo PTH administration differentially modulated Wnt signaling in bones of WT and Fgf2KO mice. PTH treatment increased WNT10b and DKK2 expression in WT mice but the increase was blunted in Fgf2KO mice PTH increased Lrp5 mRNA and phosphorylation of Lrp6 in WT but the increase was markedly attenuated in Fgf2KO mice. PTH treatment increased β-catenin protein level and Wnt/β-catenin transcriptional activity in WT but not in Fgf2KO mice The impaired bone anabolic response to PTH in Fgf2KO mice is partially mediated by attenuated Wnt signaling.
Collapse
Affiliation(s)
| | | | - Marja M. Hurley
- Corresponding author at: Department of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA.
| |
Collapse
|
85
|
Li Q, Li C, Xi S, Li X, Ding L, Li M. The effects of photobiomodulation therapy on mouse pre-osteoblast cell line MC3T3-E1 proliferation and apoptosis via miR-503/Wnt3a pathway. Lasers Med Sci 2018; 34:607-614. [DOI: 10.1007/s10103-018-2636-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022]
|
86
|
Genome-Wide DNA Methylation Analysis during Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2018; 2018:8238496. [PMID: 30275838 PMCID: PMC6151374 DOI: 10.1155/2018/8238496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) nowadays are regarded as promising candidates in cell-based therapy for the regeneration of damaged bone tissues that are either incurable or intractable due to the insufficiency of current therapies. Recent studies suggest that BMSCs differentiate into osteoblasts, and that this differentiation is regulated by some specific patterns of epigenetic modifications, such as DNA methylation. However, the potential role of DNA methylation modification in BMSC osteogenic differentiation is unclear. In this study, we performed a genome-wide study of DNA methylation between the noninduced and induced osteogenic differentiation of BMSCs at day 7. We found that the majority of cytosines in a CpG context were methylated in induced BMSCs. Our results also revealed that, along with the induced osteogenic differentiation in BMSCs, the average genomic methylation levels and CpG methylation in transcriptional factor regions (TFs) were increased, the CpG methylation level of various genomic elements was mainly in the medium-high methylation section, and CpG methylation levels in the repeat element had highly methylated levels. The GO analysis of differentially methylated region- (DMR-) associated genes (DMGs) showed that GO terms, including cytoskeletal protein binding (included in Molecular Function GO terms), skeletal development (included in Biological Process GO terms), mesenchymal cell differentiation (included in Biological Process GO terms), and stem cell differentiation (included in Biological Process), were enriched in the hypermethylated DMGs. Then, the KEGG analysis results showed that the WNT pathway, inositol phosphate metabolism pathway, and cocaine addiction pathway were more correlative with the DMRs during the induced osteogenic differentiation in BMSCs. In conclusion, this study revealed the difference of methylated levels during the noninduced and induced osteogenic differentiation of BMSCs and provided useful information for future works to characterize the important function of epigenetic mechanisms on BMSCs' differentiation.
Collapse
|
87
|
Lu CL, Shyu JF, Wu CC, Hung CF, Liao MT, Liu WC, Zheng CM, Hou YC, Lin YF, Lu KC. Association of Anabolic Effect of Calcitriol with Osteoclast-Derived Wnt 10b Secretion. Nutrients 2018; 10:1164. [PMID: 30149605 PMCID: PMC6164019 DOI: 10.3390/nu10091164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/02/2023] Open
Abstract
Canonical Wnt (Wingless/Integrated) signaling is crucial in bone development and the Wnt ligand can promote osteoblast differentiation from mesenchymal progenitor cells. Calcitriol, an active vitamin D3, is used clinically for treatment of secondary hyperparathyroidism (SHPT) in chronic kidney disease (CKD) patients. The bone effects of calcitriol in SHPT remains uncertain. We hypothesized that calcitriol improves bone mass by suppressing osteoclast activity, and simultaneously promoting Wnt ligand secretion. We designed a cross-sectional study in maintenance hemodialysis patients to explore the effects of calcitriol on different bone turnover markers and specifically emphasized the Wnt 10b levels. Then, we explored the source of Wnt 10b secretion by using osteoclasts and osteoblasts treated with calcitriol in cell culture studies. Finally, we explored the effects of calcitriol on bone microarchitectures in CKD mice, using the 5/6 nephrectomy CKD animal model with analysis using micro-computed tomography. Calcitriol promoted the growth of both trabecular and cortical bones in the CKD mice. Wnt 10b and Procollagen 1 N-terminal Propeptide (P1NP) significantly increased, but Tartrate-resistant acid phosphatase 5b (Trap 5b) significantly decreased in the calcitriol-treated maintenance hemodialysis patients. Calcitriol enhanced Wnt 10b secretion from osteoclasts in a dose-dependent manner. Treatment of SHPT with calcitriol improved the bone anabolism by inhibiting osteoclasts and promoting osteoblasts that might be achieved by increasing the Wnt 10b level.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Anabolic Agents/therapeutic use
- Animals
- Biomarkers/metabolism
- Bone Remodeling/drug effects
- Calcitriol/therapeutic use
- Cells, Cultured
- Cross-Sectional Studies
- Disease Models, Animal
- Female
- Humans
- Hyperparathyroidism, Secondary/drug therapy
- Hyperparathyroidism, Secondary/etiology
- Hyperparathyroidism, Secondary/metabolism
- Hyperparathyroidism, Secondary/physiopathology
- Male
- Mice, Inbred C57BL
- Middle Aged
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- Osteoclasts/drug effects
- Osteoclasts/metabolism
- Proto-Oncogene Proteins/metabolism
- Rats, Sprague-Dawley
- Renal Dialysis
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/therapy
- Secretory Pathway/drug effects
- Wnt Proteins/metabolism
Collapse
Affiliation(s)
- Chien-Lin Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Jia-Fwu Shyu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan.
| | - Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| | - Chi-Feng Hung
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 262, Taiwan.
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan.
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| | - Wen-Chih Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung City 433, Taiwan.
| | - Cai-Mei Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11103, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 235, Taiwan.
| | - Yi-Chou Hou
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 23155, Taiwan.
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11103, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 235, Taiwan.
| | - Kuo-Cheng Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| |
Collapse
|
88
|
Knight MN, Karuppaiah K, Lowe M, Mohanty S, Zondervan RL, Bell S, Ahn J, Hankenson KD. R-spondin-2 is a Wnt agonist that regulates osteoblast activity and bone mass. Bone Res 2018; 6:24. [PMID: 30131881 PMCID: PMC6089978 DOI: 10.1038/s41413-018-0026-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/28/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022] Open
Abstract
The R-spondin family of proteins are Wnt agonists, and the complete embryonic disruption of Rspo2 results in skeletal developmental defects that recapitulate the phenotype observed with Lrp5/6 deficiency. Previous work has shown that R-spondin-2 (Rspo2, RSPO2) is both highly expressed in Wnt-stimulated pre-osteoblasts and its overexpression induces osteoblast differentiation in the same cells, supporting its putative role as a positive autocrine regulator of osteoblastogenesis. However, the role of Rspo2 in regulating osteoblastogenesis and bone formation in postnatal bone has not been explored. Here we show that limb-bud progenitor cells from Rspo2 knockout mice undergo reduced mineralization during osteoblastogenesis in vitro and have a corresponding alteration in their osteogenic gene expression profile. We also generated the first Rspo2 conditional knockout (Rspo2floxed) mouse and disrupted Rspo2 expression in osteoblast-lineage cells by crossing to the Osteocalcin-Cre mouse line (Ocn-Cre + Rspo2f/f). Ocn-Cre + Rspo2f/f male and female mice at 1, 3, and 6 months were examined. Ocn-Cre + Rspo2f/f mice are decreased in overall body size compared to their control littermates and have decreased bone mass. Histomorphometric analysis of 1-month-old mice revealed a similar number of osteoblasts and mineralizing surface per bone surface with a simultaneous decrease in mineral apposition and bone formation rates. Consistent with this observation, serum osteocalcin in 3-month-old Ocn-Cre + Rspo2f/f was reduced, and bone marrow-mesenchymal stem cells from Ocn-Cre + Rspo2f/f mice undergo less mineralization in vitro. Finally, gene expression analysis and immunohistochemistry of mature bone shows reduced beta-catenin signaling in Ocn-Cre + Rspo2f/f. Overall, RSPO2 reduces osteoblastogenesis and mineralization, leading to reduced bone mass. A loss of R-spondin-2 reduces osteoblastogenesis (production of osteoblasts, the cells from which bone develops) and mineralization, thereby leading to decreased bone mass in adults. R-spondin-2 is one of a family of four proteins that are expressed in the developing mouse limb as well as other tissues; each R-spondin family member exerts a different functional effect. R-spondins clearly influence several aspects of skeletal biology, but their specific roles—especially in postnatal bone—remained to be elucidated. A team headed by Kurt Hankenson at the University of Michigan Medical School investigated the role of R-spondin-2 in osteoblastogenesis, both in vitro and in vivo, using a mouse model. For the first time, the team was able to demonstrate that R-spondin-2 promotes osteoblastogenesis, bone development, and consequent bone mass growth in adult mice.
Collapse
Affiliation(s)
- M Noelle Knight
- 1Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Kannan Karuppaiah
- 2Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, USA
| | - Michele Lowe
- 2Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, USA
| | - Sarthak Mohanty
- 1Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Robert L Zondervan
- 2Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, USA
| | - Sheila Bell
- 3Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Jaimo Ahn
- 1Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Kurt D Hankenson
- 1Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,2Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
89
|
Kida J, Hata K, Nakamura E, Yagi H, Takahata Y, Murakami T, Maeda Y, Nishimura R. Interaction of LEF1 with TAZ is necessary for the osteoblastogenic activity of Wnt3a. Sci Rep 2018; 8:10375. [PMID: 29991769 PMCID: PMC6039525 DOI: 10.1038/s41598-018-28711-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/28/2018] [Indexed: 02/07/2023] Open
Abstract
Canonical Wnt signalling plays an important role in osteoblast differentiation and bone formation. However, the molecular mechanisms by which canonical Wnt signalling exerts its osteoblastogenic effect remain elusive. Here, we investigated the relationship between lymphoid enhancer-binding factor 1 (LEF1) and transcriptional co-activator with PDZ-binding motif (TAZ), both of which are transcriptional regulators that mediate canonical Wnt signalling during osteoblast differentiation. Reporter assay and co-immunoprecipitation experiments revealed functional and physical interaction between LEF1 and TAZ. Overexpression of dominant-negative forms of either LEF1 or TAZ markedly inhibited Wnt3a-dependent osteoblast differentiation. Moreover, we found that LEF1 and TAZ formed a transcriptional complex with runt-related transcription factor 2 (Runx2) and that inhibition of LEF1 or TAZ by their dominant-negative forms dramatically suppressed the osteoblastogenic activity of Ruxn2. Additionally, Wnt3a enhanced osteoblast differentiation induced by bone morphogenetic protein 2 (BMP2), which stimulates osteoblast differentiation by regulating Runx2. Collectively, these findings suggest that interaction between LEF1 and TAZ is crucial for the osteoblastogenic activity of Wnt3a and that LEF1 and TAZ contribute to the cooperative effect of Wnt3a and BMP2 on osteoblast differentiation through association with Runx2.
Collapse
Affiliation(s)
- Jumpei Kida
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Prosthodontics and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenji Hata
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eriko Nakamura
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroko Yagi
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshifumi Takahata
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomohiko Murakami
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshinobu Maeda
- Department of Prosthodontics and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Riko Nishimura
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
90
|
Tazaki Y, Sugitani K, Ogai K, Kobayashi I, Kawasaki H, Aoyama T, Suzuki N, Tabuchi Y, Hattori A, Kitamura KI. RANKL, Ephrin-Eph and Wnt10b are key intercellular communication molecules regulating bone remodeling in autologous transplanted goldfish scales. Comp Biochem Physiol A Mol Integr Physiol 2018; 225:46-58. [PMID: 29886255 DOI: 10.1016/j.cbpa.2018.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate the precise data of gene expression, functions, and chronological relationships amongst communication molecules involved in the bone remodeling process with an in vivo model using autologous transplanted scales of goldfish. Autotransplantation of methanol-fixed cell-free scales triggers scale resorption and regeneration, as well as helps elucidate the process of bone remodeling. We investigated osteoclastic markers, osteoblastic markers, and gene expressions of communicating molecules (RANKL, ephrinB2, EphB4, EphA4, Wnt10b) by qPCR, in situ hybridization for Wnt10b, and immunohistochemistry for EphrinB2 and EphA4 proteins to elucidate the bone remodeling process. Furthermore, functional inhibition experiments for the signaling of ephrinB2/Eph, ephrin/EphA4, and Wnt10b using specific antibodies, revealed that these proteins are involved in key signaling pathways promoting normal bone remodeling. Our data suggests that the remodeling process comprises of two successive phases. In the first absorption phase, differentiation of osteoclast progenitors by RANKL is followed by the bone absorption by mature, active osteoclasts, with the simultaneous induction of osteoblast progenitors by multinucleated osteoclast-derived Wnt10b, and proliferation of osteoblast precursors by ehprinB2/EphB4 signaling. Subsequently, during the second formation phase, termination of bone resorption by synergistic cooperation occurs, with downregulation of RANKL expression in activated osteoblasts and Ephrin/EphA4-mediated mutual inhibition between neighboring multinucleated osteoclasts, along with simultaneous activation of osteoblasts via forward and reverse EphrinB2/EphB4 signaling between neighboring osteoblasts. In addition, the present study shows that autologous transplantation of methanol-fixed cell-free scale is an ideal in vivo model to study bone remodeling.
Collapse
Affiliation(s)
- Yuya Tazaki
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan; Clinical Laboratory, Kanazawa University Hospital, Takara-machi Kanazawa Ishikawa, 920-8641, Japan
| | - Kayo Sugitani
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Kazuhiro Ogai
- Wellness Promotion Science Center, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Haruki Kawasaki
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Takafumi Aoyama
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Atsuhiko Hattori
- College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Kei-Ichiro Kitamura
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
91
|
Li Z, Hardij J, Bagchi DP, Scheller EL, MacDougald OA. Development, regulation, metabolism and function of bone marrow adipose tissues. Bone 2018; 110:134-140. [PMID: 29343445 PMCID: PMC6277028 DOI: 10.1016/j.bone.2018.01.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022]
Abstract
Most adipocytes exist in discrete depots throughout the body, notably in well-defined white and brown adipose tissues. However, adipocytes also reside within specialized niches, of which the most abundant is within bone marrow. Whereas bone marrow adipose tissue (BMAT) shares many properties in common with white adipose tissue, the distinct functions of BMAT are reflected by its development, regulation, protein secretion, and lipid composition. In addition to its potential role as a local energy reservoir, BMAT also secretes proteins, including adiponectin, RANK ligand, dipeptidyl peptidase-4, and stem cell factor, which contribute to local marrow niche functions and which may also influence global metabolism. The characteristics of BMAT are also distinct depending on whether marrow adipocytes are contained within yellow or red marrow, as these can be thought of as 'constitutive' and 'regulated', respectively. The rBMAT for instance can be expanded or depleted by myriad factors, including age, nutrition, endocrine status and pharmaceuticals. Herein we review the site specificity, age-related development, regulation and metabolic characteristics of BMAT under various metabolic conditions, including the functional interactions with bone and hematopoietic cells.
Collapse
Affiliation(s)
- Ziru Li
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Julie Hardij
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Devika P Bagchi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Erica L Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, MO, United States
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
92
|
Sun J, Ermann J, Niu N, Yan G, Yang Y, Shi Y, Zou W. Histone demethylase LSD1 regulates bone mass by controlling WNT7B and BMP2 signaling in osteoblasts. Bone Res 2018; 6:14. [PMID: 29707403 PMCID: PMC5916912 DOI: 10.1038/s41413-018-0015-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/03/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple regulatory mechanisms control osteoblast differentiation and function to ensure unperturbed skeletal formation and remodeling. In this study we identify histone lysine-specific demethylase 1(LSD1/KDM1A) as a key epigenetic regulator of osteoblast differentiation. Knockdown of LSD1 promoted osteoblast differentiation of human mesenchymal stem cells (hMSCs) in vitro and mice lacking LSD1 in mesenchymal cells displayed increased bone mass secondary to accelerated osteoblast differentiation. Mechanistic in vitro studies revealed that LSD1 epigenetically regulates the expression of WNT7B and BMP2. LSD1 deficiency resulted in increased BMP2 and WNT7B expression in osteoblasts and enhanced bone formation, while downregulation of WNT7B- and BMP2-related signaling using genetic mouse model or small-molecule inhibitors attenuated bone phenotype in vivo. Furthermore, the LSD1 inhibitor tranylcypromine (TCP) could increase bone mass in mice. These data identify LSD1 as a novel regulator of osteoblast activity and suggest LSD1 inhibition as a potential therapeutic target for treatment of osteoporosis.
Collapse
Affiliation(s)
- Jun Sun
- 1State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Joerg Ermann
- 2Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Ningning Niu
- 1State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Guang Yan
- 1State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yang Yang
- 1State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yujiang Shi
- 3Newborn Medicine Division, Boston Children's Hospital and Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Weiguo Zou
- 1State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| |
Collapse
|
93
|
Farr JN, Weivoda MM, Nicks KM, Fraser DG, Negley BA, Onken JL, Thicke BS, Ruan M, Liu H, Forrest D, Hawse JR, Khosla S, Monroe DG. Osteoprotection Through the Deletion of the Transcription Factor Rorβ in Mice. J Bone Miner Res 2018; 33:720-731. [PMID: 29206307 PMCID: PMC5925424 DOI: 10.1002/jbmr.3351] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/13/2017] [Accepted: 11/25/2017] [Indexed: 01/01/2023]
Abstract
There is a clinical need to identify new molecular targets for the treatment of osteoporosis, particularly those that simultaneously inhibit bone resorption while stimulating bone formation. We have previously shown in overexpression studies that retinoic acid receptor-related orphan receptor β (Rorβ) suppresses in vitro osteoblast differentiation. In addition, the expression of Rorβ is markedly increased in bone marrow-derived mesenchymal stromal cells with aging in both mice and humans. Here we establish a critical role for Rorβ in regulating bone metabolism using a combination of in vitro and in vivo studies. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 gene editing to demonstrate that loss of Rorβ in osteoblasts enhances Wnt signaling, specifically through increased recruitment of β-catenin to T-cell factor/lymphoid enhancer factor (Tcf/Lef) DNA binding sites in the promoters of the Wnt target genes Tcf7 and Opg. This resulted in increased osteogenic gene expression and suppressed osteoclast formation through increased osteoprotegerin (OPG) secretion in Rorβ-deficient cells. Consistent with our in vitro data, genetic deletion of Rorβ in both female and male mice resulted in preserved bone mass and microarchitecture with advancing age due to increased bone formation with a concomitant decrease in resorption. The improved skeletal phenotype in the Rorβ-/- mice was also associated with increased bone protein levels of TCF7 and OPG. These data demonstrate that loss of Rorβ has beneficial skeletal effects by increasing bone formation and decreasing bone resorption, at least in part through β-catenin-dependent activation of the Wnt pathway. Thus, inhibition of Rorβ represents a novel approach to potentially prevent or reverse osteoporosis. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joshua N Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Megan M Weivoda
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Kristy M Nicks
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Daniel G Fraser
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Brittany A Negley
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jennifer L Onken
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Brianne S Thicke
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ming Ruan
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - David G Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| |
Collapse
|
94
|
Ruan B, Zhu Z, Yan Z, Yang W, Zhai D, Wang L, Ye Z, Lu H, Xiang A, Liang J, Jiang Y, Xu C, Wang Z, Wei M, Lei X, Cao X, Lu Z. Azoramide, a novel regulator, favors adipogenesis against osteogenesis through inhibiting the GLP-1 receptor-PKA-β-catenin pathway. Stem Cell Res Ther 2018; 9:57. [PMID: 29523188 PMCID: PMC5845182 DOI: 10.1186/s13287-018-0771-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 12/27/2017] [Accepted: 01/12/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The reciprocal fate decision of mesenchymal stem cells (MSCs) to either bone or adipocytes is determined by Wnt-related signaling and the glucagon-like peptide-1 receptor (GLP-1R). Azoramide, an ER stress alleviator, was reported to have an antidiabetic effect. In this study, we investigated the function of azoramide in regulating the lineage determination of MSCs for either adipogenic or osteogenic differentiation. METHODS In this study, microcomputed tomography and histological analysis on bone morphogenetic protein (BMP)2-induced parietal periosteum bone formation assays, C3H10T1/2 and mouse bone marrow MSC-derived bone formation and adipogenesis assays, and specific staining for bone tissue and lipid droplets were used to evaluate the role of azoramide on the lineage determination of MSC differentiation. Cells were harvested for Western blot and quantitative real-time polymerase chain reaction (PCR), and immunofluorescence staining was used to explore the potential mechanism of azoramide for regulating MSC differentiation. RESULTS Based on MSC-derived bone formation assays both in vivo and in vitro, azoramide treatment displayed a cell fate determining ability in favor of adipogenesis over osteogenesis. Further mechanistic characterizations disclosed that both the GLP-1R agonist peptide exendin-4 (Ex-4) and GLP-1R small interfering (si)RNA abrogated azoramide dual effects. Moreover, cAMP-protein kinase A (PKA)-mediated nuclear β-catenin activity was responsible for the negative function of azoramide on bone formation in favor of adipogenesis. CONCLUSIONS These data provide the first evidence to show that azoramide may serve as an antagonist against GLP-1R in MSC lineage determination.
Collapse
Affiliation(s)
- Banjun Ruan
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zheng Zhu
- Institute of Urinary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zhao Yan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Wei Yang
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Dongsheng Zhai
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zichen Ye
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Huanyu Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - An Xiang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jingwei Liang
- School of Pharmacy, China Medical University, Liaoning, 110122, China
| | - Yinghao Jiang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chengming Xu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zhenyu Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Ming Wei
- Department of Pharmacology, Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Xiaoying Lei
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiaorui Cao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
95
|
Seldeen KL, Halley PG, Volmar CH, Rodríguez MA, Hernandez M, Pang M, Carlsson SK, Suva LJ, Wahlestedt C, Troen BR, Brothers SP. Neuropeptide Y Y2 antagonist treated ovariectomized mice exhibit greater bone mineral density. Neuropeptides 2018; 67:45-55. [PMID: 29129406 PMCID: PMC5805636 DOI: 10.1016/j.npep.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022]
Abstract
Osteoporosis, a disease characterized by progressive bone loss and increased risk of fracture, often results from menopausal loss of estrogen in women. Neuropeptide Y has been shown to negatively regulate bone formation, with amygdala specific deletion of the Y2 receptor resulting in increased bone mass in mice. In this study, ovariectomized (OVX) mice were injected once daily with JNJ-31020028, a brain penetrant Y2 receptor small molecule antagonist to determine the effects on bone formation. Antagonist treated mice had reduced weight and showed increased whole-body bone mineral density compared to vehicle-injected mice. Micro computerized tomography (micro-CT) demonstrated increased vertebral trabecular bone volume, connectivity density and trabecular thickness. Femoral micro-CT analysis revealed increased bone volume within trabecular regions and greater trabecular number, without significant difference in other parameters or within cortical regions. A decrease was seen in serum P1NP, a measure used to confirm positive treatment outcomes in bisphosphonate treated patients. C-terminal telopeptide 1 (CTX-1), a blood biomarker of bone resorption, was decreased in treated animals. The higher bone mineral density observed following Y2 antagonist treatment, as determined by whole-body DEXA scanning, is indicative of either enhanced mineralization or reduced bone loss. Additionally, our findings that ex vivo treatment of bone marrow cells with the Y2 antagonist did not affect osteoblast and osteoclast formation suggests the inhibitor is not affecting these cells directly, and suggests a central role for compound action in this system. Our results support the involvement of Y2R signalling in bone metabolism and give credence to the hypothesis that selective pharmacological manipulation of Y2R may provide anabolic benefits for treating osteoporosis.
Collapse
Affiliation(s)
- K L Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - P G Halley
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - C H Volmar
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - M A Rodríguez
- Bruce W. Carter VA Geriatric Research Education and Clinical Center (GRECC), Miami, FL, USA; University of Miami Miller School of Medicine, Miami, FL, USA
| | - M Hernandez
- Bruce W. Carter VA Geriatric Research Education and Clinical Center (GRECC), Miami, FL, USA; University of Miami Miller School of Medicine, Miami, FL, USA
| | - M Pang
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - S K Carlsson
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - L J Suva
- Department of Orthopaedic Surgery, Centre for Orthopaedic Research, University of Arkansas Medical School, Little Rock, AR, USA
| | - C Wahlestedt
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - B R Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - S P Brothers
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
96
|
Grigorie D, Lerner U. THE CRUCIAL ROLE OF THE WNT SYSTEM IN BONE REMODELLING. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2018; 14:90-101. [PMID: 31149241 PMCID: PMC6516605 DOI: 10.4183/aeb.2018.90] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The maintenance of bone mass is critically dependent on the balance between bone formation by osteoblasts and bone resorption by osteoclasts, processes in which osteocytes play also an important role. The activities of these bone cells are regulated by a variety of endocrine and paracrine factors of which sex steroids, parathyroid hormone, 1.25(OH)2-vitamin D3, glucocorticoids, retinoids and thyroid hormones are the most well known systemic factors. To the long list of locally acting factors belong cytokines and growth factors. This list was extended some 15 years ago by the discovery of the very important role of the WNT signalling system for the maintenance of bone mass. The first evidence of its role was the findings that mutations in the LRP5 gene, encoding a co-receptor in WNT-signaling, could result in either gain or loss of bone mass, i.e. either high bone mass or osteoporosis. This was a most unexpected observation since no indications existed prior to this discovery that the WNT signalling system had a role in bone remodeling. Since then, many observations have been made demonstrating the important role of different WNTs in regulating bone formation and resorption. Interestingly, some of these findings have demonstrated that trabecular and cortical bone are regulated by different mechanisms. It is the aim of the present overview to give the readers an insight into the WNT signalling system and its role in bone remodeling.
Collapse
Affiliation(s)
- D. Grigorie
- “C.I. Parhon” National Institute of Endocrinology, Bucharest, Romania
| | - U.H. Lerner
- Institute for Medicine, Sahlgrenska Academy at University of Gothenburg - Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical Nutrition, Gothenburg, Sweden
| |
Collapse
|
97
|
|
98
|
Sebastian A, Hum NR, Murugesh DK, Hatsell S, Economides AN, Loots GG. Wnt co-receptors Lrp5 and Lrp6 differentially mediate Wnt3a signaling in osteoblasts. PLoS One 2017; 12:e0188264. [PMID: 29176883 PMCID: PMC5703471 DOI: 10.1371/journal.pone.0188264] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/05/2017] [Indexed: 01/10/2023] Open
Abstract
Wnt3a is a major regulator of bone metabolism however, very few of its target genes are known in bone. Wnt3a preferentially signals through transmembrane receptors Frizzled and co-receptors Lrp5/6 to activate the canonical signaling pathway. Previous studies have shown that the canonical Wnt co-receptors Lrp5 and Lrp6 also play an essential role in normal postnatal bone homeostasis, yet, very little is known about specific contributions by these co-receptors in Wnt3a-dependent signaling. We used high-throughput sequencing technology to identify target genes regulated by Wnt3a in osteoblasts and to elucidate the role of Lrp5 and Lrp6 in mediating Wnt3a signaling. Our study identified 782 genes regulated by Wnt3a in primary calvarial osteoblasts. Wnt3a up-regulated the expression of several key regulators of osteoblast proliferation/ early stages of differentiation while inhibiting genes expressed in later stages of osteoblastogenesis. We also found that Lrp6 is the key mediator of Wnt3a signaling in osteoblasts and Lrp5 played a less significant role in mediating Wnt3a signaling.
Collapse
Affiliation(s)
- Aimy Sebastian
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
- UC Merced, School of Natural Sciences, Merced, CA, United States of America
| | - Nicholas R. Hum
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
- UC Merced, School of Natural Sciences, Merced, CA, United States of America
| | - Deepa K. Murugesh
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
| | - Sarah Hatsell
- Regeneron Pharmaceuticals, Tarrytown, NY, United States of America
| | | | - Gabriela G. Loots
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
- UC Merced, School of Natural Sciences, Merced, CA, United States of America
- * E-mail:
| |
Collapse
|
99
|
Yu M, D'Amelio P, Tyagi AM, Vaccaro C, Li JY, Hsu E, Buondonno I, Sassi F, Adams J, Weitzmann MN, DiPaolo R, Pacifici R. Regulatory T cells are expanded by Teriparatide treatment in humans and mediate intermittent PTH-induced bone anabolism in mice. EMBO Rep 2017; 19:156-171. [PMID: 29158349 DOI: 10.15252/embr.201744421] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022] Open
Abstract
Teriparatide is a bone anabolic treatment for osteoporosis, modeled in animals by intermittent PTH (iPTH) administration, but the cellular and molecular mechanisms of action of iPTH are largely unknown. Here, we show that Teriparatide and iPTH cause a ~two-threefold increase in the number of regulatory T cells (Tregs) in humans and mice. Attesting in vivo relevance, blockade of the Treg increase in mice prevents the increase in bone formation and trabecular bone volume and structure induced by iPTH Therefore, increasing the number of Tregs is a pivotal mechanism by which iPTH exerts its bone anabolic activity. Increasing Tregs pharmacologically may represent a novel bone anabolic therapy, while iPTH-induced Treg increase may find applications in inflammatory conditions and transplant medicine.
Collapse
Affiliation(s)
- Mingcan Yu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Patrizia D'Amelio
- Gerontology Section, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Abdul Malik Tyagi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Chiara Vaccaro
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Jau-Yi Li
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Emory Hsu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Ilaria Buondonno
- Gerontology Section, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Francesca Sassi
- Gerontology Section, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Jonathan Adams
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - M Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA.,Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Richard DiPaolo
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA .,Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
100
|
Mason JB, Gurda BL, Hankenson KD, Harper LR, Carlson CS, Wilson JM, Richardson DW. Wnt10b and Dkk-1 gene therapy differentially influenced trabecular bone architecture, soft tissue integrity, and osteophytosis in a skeletally mature rat model of osteoarthritis. Connect Tissue Res 2017; 58:542-552. [PMID: 27937051 PMCID: PMC7413086 DOI: 10.1080/03008207.2016.1267153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIMS Our goals in the current experiments were to determine if (a) upregulation of Wnt signaling would induce osteoarthritis changes in stable stifle joints and (b) if downregulation of Wnt signaling in destabilized joints would influence the progression of OA. METHODS At 37 weeks of age, rats were injected in the stifle joint with a recombinant adeno-associated viral vector containing the Wnt-inhibitor Dkk-1 or a Wnt10b transgene. At 40 weeks of age, rats underwent surgical destabilization of the joint. At 50 weeks of age, stifle joints were submitted for micro-computed tomography and histopathological analysis. RESULTS Injection of either Wnt10b or Dkk-1 transgenes in stable joints improved bone architectural parameters, but worsened soft tissue integrity. Osteophytosis was decreased by Dkk-1, but unchanged by Wnt10b. Destabilization negatively influenced bone architecture, increased osteophytosis, and decreased soft tissue integrity. Dkk-1 exacerbated the negative effects of destabilization, whereas Wnt10b had little effect on these parameters. Osteophytosis was improved, whereas soft tissue integrity was worsened by both transgenes in destabilized joints. CONCLUSIONS The Wnt-inhibitor Dkk-1 does not appear to completely inhibit the effects of Wnt signaling on bone remodeling. In vivo upregulation of Wnt10b and its inhibitor, Dkk-1, can produce both parallel or contrasting phenotypic responses depending on the specific parameter measured and the fidelity of the examined joint. These observations elucidate different roles for Wnt signaling in stable versus destabilized joints and may help to explain the conflicting results previously reported for the role of Dkk-1 in joint disease.
Collapse
Affiliation(s)
- Jeffrey B. Mason
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA.,Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, Logan, UT
| | - Brittney L. Gurda
- Gene Therapy Program, School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kurt D. Hankenson
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA
| | - Lindsey R. Harper
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Cathy S Carlson
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - James M. Wilson
- Gene Therapy Program, School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dean W. Richardson
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA
| |
Collapse
|