51
|
Liu J, Zhao X, Pei D, Sun G, Li Y, Zhu C, Qiang C, Sun J, Shi J, Dong Y, Gou J, Wang S, Li A. The promotion function of Berberine for osteogenic differentiation of human periodontal ligament stem cells via ERK-FOS pathway mediated by EGFR. Sci Rep 2018; 8:2848. [PMID: 29434321 PMCID: PMC5809428 DOI: 10.1038/s41598-018-21116-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/25/2018] [Indexed: 02/06/2023] Open
Abstract
Coptidis Rhizoma binds to the membrane receptors on hPDLSC/CMC, and the active ingredient Berberine (BER) that can be extracted from it may promote the proliferation and osteogenesis of periodontal ligament stem cells (hPDLSC). The membrane receptor that binds with BER on the cell surface of hPDLSC, the mechanism of direct interaction between BER and hPDLSC, and the related signal pathway are not yet clear. In this research, EGFR was screened as the affinity membrane receptor between BER and hPDLSC, through retention on CMC, competition with BER and by using a molecular docking simulation score. At the same time, the MAPK PCR Array was selected to screen the target genes that changed when hPDLSC was simulated by BER. In conclusion, BER may bind to EGFR on the cell membrane of hPDLSC so the intracellular ERK signalling pathways activate, and nuclear-related genes of FOS change, resulting in the effect of osteogenesis on PDLSC.
Collapse
Affiliation(s)
- Jin Liu
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China
| | - Xiaodan Zhao
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China
| | - Dandan Pei
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Department of Prothodontics, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China
| | - Guo Sun
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China
| | - Ye Li
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China
| | - Chunhui Zhu
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China
| | - Cui Qiang
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China
| | - Junyi Sun
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China
| | - Jianfeng Shi
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Research Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China
| | - Yan Dong
- The Second Affiliated Hospital, Xi'an Jiaotong University, 157 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China
| | - Jianzhong Gou
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China
| | - Sicen Wang
- School of Pharmacy, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710 061, Shannxi, People's Republic of China.
| | - Ang Li
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China. .,Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China. .,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China. .,Research Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shannxi, 710004, People's Republic of China.
| |
Collapse
|
52
|
Adil M, Mansoori MN, Singh D, Kandhare AD, Sharma M. Pioglitazone-induced bone loss in diabetic rats and its amelioration by berberine: A portrait of molecular crosstalk. Biomed Pharmacother 2017; 94:1010-1019. [DOI: 10.1016/j.biopha.2017.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 12/24/2022] Open
|
53
|
Dadashpour M, Pilehvar-Soltanahmadi Y, Zarghami N, Firouzi-Amandi A, Pourhassan-Moghaddam M, Nouri M. Emerging Importance of Phytochemicals in Regulation of Stem Cells Fate via Signaling Pathways. Phytother Res 2017; 31:1651-1668. [DOI: 10.1002/ptr.5908] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/01/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Student Research Committee; Tabriz University of Medical Sciences; Tabriz Iran
| | - Younes Pilehvar-Soltanahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | | | - Mohammad Pourhassan-Moghaddam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell and Regenerative Medicine Institute; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
54
|
Chen G, Jiang H, Tian X, Tang J, Bai X, Zhang Z, Wang L. Mechanical loading modulates heterotopic ossification in calcific tendinopathy through the mTORC1 signaling pathway. Mol Med Rep 2017; 16:5901-5907. [PMID: 28901376 PMCID: PMC5865767 DOI: 10.3892/mmr.2017.7380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 03/20/2017] [Indexed: 01/05/2023] Open
Abstract
Excessive mechanical loading is a major factor affecting heterotopic ossification (HO), which is a major pathological alteration in calcific tendinopathy. However, physical therapies with mechanical loading as the functional element have exhibited promising results in the treatment of calcific tendinopathy. The dual effects that mechanical loading may have on the pathogenesis and rehabilitation of calcified tendinopathy remain unclear. The present study was designed to investigate the effects of mechanical loading on HO in calcific tendinopathy. In the present study, a tendon cell in vitro stretch model and an Achilles tenotomy rat model were used to simulate different elongation mechanical loading scenarios in order to investigate the effects of mechanical loading on HO of the tendon. In addition, rapamycin, a selective mammalian target of rapamycin complex-1 (mTORC1) signaling pathway inhibitor, was employed to determine whether mechanical loading modulates heterotopic ossification in calcific tendinopathy through the mTORC1 signaling pathway. The data indicate that mechanical loading modulated HO of the tendon through the mTORC1 signaling pathway, and that low elongation mechanical loading attenuated HO, while high elongation mechanical loading accelerated HO in vivo. This study may improve the understanding of the effect of physical therapies used to treat calcific tendinopathy, so as to guide clinical treatment more effectively. Furthermore, rapamycin may be a potential drug for the treatment of calcific tendinopathy.
Collapse
Affiliation(s)
- Guorong Chen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Huaji Jiang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Xinggui Tian
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Jiajun Tang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaochun Bai
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhongmin Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
55
|
Ayati SH, Fazeli B, Momtazi-Borojeni AA, Cicero AFG, Pirro M, Sahebkar A. Regulatory effects of berberine on microRNome in Cancer and other conditions. Crit Rev Oncol Hematol 2017; 116:147-158. [PMID: 28693796 DOI: 10.1016/j.critrevonc.2017.05.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/13/2017] [Accepted: 05/22/2017] [Indexed: 12/19/2022] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid found in different plant families such as Berberidaceae, Ranunculaceae, and Papaveraceae. BBR is well-known for its anti-inflammatory, lipid-modifying, anticancer, anti-diabetic, antibacterial, antiparasitic and fungicide activities. Multiple pharmacological actions of BBR stem from different molecular targets of this phytochemical. MicroRNAs (miRs) are single-stranded, evolutionary conserved, small non-coding RNA molecules with a length of 19-23 nucleotides that are involved in RNA silencing and post-transcriptional regulation of gene expression through binding to the 3'-untranslated region (3'UTR) of target mRNA. MiRs emerged as important regulatory elements in almost all biological processes like cell proliferation, apoptosis, differentiation and organogenesis, and numerous human diseases such as cancer and diabetes. BBR was shown to regulate the expression of miRs in several diseases. Here, we reviewed the target miRs of BBR and the relevance of their modulation for the potential treatment of serious human diseases like multiple myeloma, hepatocellular carcinoma, colorectal cancer, gastric cancer, ovarian cancer and glioblastoma. The role of miR regulation in the putative anti-diabetic effects of BBR is discussed, as well.
Collapse
Affiliation(s)
- Seyed Hasan Ayati
- Immunology Research Center, Department of Immunology, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Badrieh Fazeli
- Department of Biology, Faculty of Science, Isfahan University, Isfahan, Iran
| | - Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Student Research Committee, Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni 15, Bologna, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| |
Collapse
|
56
|
Arumugam B, Vairamani M, Partridge NC, Selvamurugan N. Characterization of Runx2 phosphorylation sites required for TGF‐β1‐mediated stimulation of matrix metalloproteinase‐13 expression in osteoblastic cells. J Cell Physiol 2017; 233:1082-1094. [DOI: 10.1002/jcp.25964] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/14/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mariappanadar Vairamani
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| | - Nicola C. Partridge
- Department of Basic Science and Craniofacial BiologyNew York University College of Dentistry, New York UniversityNew YorkNew York
| | - Nagarajan Selvamurugan
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| |
Collapse
|
57
|
Han Y, Jin Y, Lee SH, Khadka DB, Cho WJ, Lee KY. Berberine bioisostere Q8 compound stimulates osteoblast differentiation and function in vitro. Pharmacol Res 2017; 119:463-475. [DOI: 10.1016/j.phrs.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
|
58
|
Jiang HJ, Tian XG, Huang SB, Chen GR, Huang MJ, Chen YH, Yan B, Li SF, Tang JJ, Zhao HY, Wang L, Zhang ZM. Tenuigenin promotes the osteogenic differentiation of bone mesenchymal stem cells in vitro and in vivo. Cell Tissue Res 2017; 367:257-267. [PMID: 27844205 PMCID: PMC5269466 DOI: 10.1007/s00441-016-2528-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022]
Abstract
Osteoporosis, which is a systemic skeletal disease characterized by low bone mineral density and microarchitectural deterioration of bone quality, is a global and increasing public health problem. Recent studies have suggested that Tenuigenin (TEN), a class of native compounds with numerous biological activities such as anti-resorptive properties, exerts protective effects against postmenopausal bone loss. The present study aims to investigate the osteogenic effects of TEN on bone mesenchymal stem cells (BMSCs) in vitro and in vivo. Alkaline phosphatase (ALP) activity/staining, Alizarin red staining and the expression of osteogenic markers, including runt-related transcription factor 2, osterix, osteocalcin, collagen Iα1, β-catenin and glycogen synthase kinase-3β were investigated in primary femoral BMSCs from C57/BL6 mice cultured under osteogenic conditions for 2 weeks to examine the effects of TEN. An ovariectomized (OVX) mouse model was used to investigate the effect of TEN treatment for 3 months in vivo. We found that ALP activity, mineralized nodules and the expression of osteogenic markers were increased and WNT/β-catenin signaling was enhanced in vitro and in vivo. Bone parameters, including trabecular thickness, trabecular number and bone mineral density were higher in the OVX+TEN group than in control OVX mice. Our results suggest the therapeutic potential of TEN for the treatment of patients with postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Hua-Ji Jiang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Xing-Gui Tian
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Shou-Bin Huang
- Department of Orthopedics, Huizhou First Hospital, Huizhou, Guangdong, People's Republic of China
| | - Guo-Rong Chen
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Min-Jun Huang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Yu-Hui Chen
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Bin Yan
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Sheng-Fa Li
- Department of Orthopedics, Huizhou First Hospital, Huizhou, Guangdong, People's Republic of China
| | - Jia-Jun Tang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Hui-Yu Zhao
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China.
| | - Zhong-Min Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China.
| |
Collapse
|
59
|
Choi JH, Han Y, Kim YA, Jin SW, Lee GH, Jeong HM, Lee HS, Chung YC, Lee YC, Kim EJ, Lee KY, Jeong HG. Platycodin D Inhibits Osteoclastogenesis by Repressing the NFATc1 and MAPK Signaling Pathway. J Cell Biochem 2016; 118:860-868. [PMID: 27739107 DOI: 10.1002/jcb.25763] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/12/2016] [Indexed: 12/29/2022]
Abstract
Platycodon grandiflorum root-derived saponins (Changkil saponins, CKS) are reported to have many pharmacological activities. In our latest research, CKS was proven to have a significant osteogenic effect. However, the detail molecular mechanism of CKS on osteoclastic differentiation has not been fully investigated. Administration of CKS considerably reduced OVX-induced bone loss, and ameliorated the reduction in plasma levels of alkaline phosphatase, calcium, and phosphorus observed in OVX mice. CKS also repressed the deterioration of bone trabecular microarchitecture. Interestingly, platycodin D, the most abundant and major pharmacological constituent of triterpenoid CKS, inhibited receptor activator of NF-κB ligand (RANKL)-induced activation of NF-κB, and ERK and p38 MAPK, ultimately repressing osteoclast differentiation. OVX-induced bone turnover was attenuated by CKS, possibly via repression of osteoclast differentiation by platycodin D, the active component of CKS. Platycodin D can be regarded as an antiosteoporotic candidate for treatment of osteoporosis diseases. J. Cell. Biochem. 118: 860-868, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jae Ho Choi
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Younho Han
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Yong An Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hyung Min Jeong
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Hyun Sun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Young Chul Chung
- Department of Food Science, International University of Korea, Jinju, Republic of Korea
| | - Young Chun Lee
- Jangsaeng Doraji Research Institute of Biotechnology, Jangsaeng Doraji Co., Ltd., Jinju, Republic of Korea
| | - Eun Ju Kim
- Jangsaeng Doraji Research Institute of Biotechnology, Jangsaeng Doraji Co., Ltd., Jinju, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
60
|
Ham M, Choe SS, Shin KC, Choi G, Kim JW, Noh JR, Kim YH, Ryu JW, Yoon KH, Lee CH, Kim JB. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity. Diabetes 2016; 65:2624-38. [PMID: 27284106 DOI: 10.2337/db16-0060] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/24/2016] [Indexed: 11/13/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses.
Collapse
Affiliation(s)
- Mira Ham
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, National Creative Research Initiatives Center for Adipose Tissue Remodeling, Seoul National University, Seoul, Korea
| | - Sung Sik Choe
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, National Creative Research Initiatives Center for Adipose Tissue Remodeling, Seoul National University, Seoul, Korea
| | - Kyung Cheul Shin
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, National Creative Research Initiatives Center for Adipose Tissue Remodeling, Seoul National University, Seoul, Korea
| | - Goun Choi
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, National Creative Research Initiatives Center for Adipose Tissue Remodeling, Seoul National University, Seoul, Korea
| | - Ji-Won Kim
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Je-Won Ryu
- Department of Radiation Oncology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Korea
| | - Kun-Ho Yoon
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Jae Bum Kim
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, National Creative Research Initiatives Center for Adipose Tissue Remodeling, Seoul National University, Seoul, Korea
| |
Collapse
|
61
|
Imenshahidi M, Hosseinzadeh H. Berberis Vulgaris and Berberine: An Update Review. Phytother Res 2016; 30:1745-1764. [PMID: 27528198 DOI: 10.1002/ptr.5693] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/04/2016] [Accepted: 07/16/2016] [Indexed: 01/30/2023]
Abstract
Berberine is an isoquinoline alkaloid present in several plants, including Coptis sp. and Berberis sp. Berberine is a customary component in Chinese medicine, and is characterized by a diversity of pharmacological effects. An extensive search in electronic databases (PubMed, Scopus, Ovid, Wiley, ProQuest, ISI, and Science Direct) were used to identify the pharmacological and clinical studies on Berberis vulgaris and berberine, during 2008 to 2015, using 'berberine' and 'Berberis vulgaris' as search words. We found more than 1200 new article studying the properties and clinical uses of berberine and B. vulgaris, for treating tumor, diabetes, cardiovascular disease, hyperlipidemia, inflammation, bacterial and viral infections, cerebral ischemia trauma, mental disease, Alzheimer disease, osteoporosis, and so on. In this article, we have updated the pharmacological effects of B. vulgaris and its active constituent, berberine. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
62
|
Zhang ND, Han T, Huang BK, Rahman K, Jiang YP, Xu HT, Qin LP, Xin HL, Zhang QY, Li YM. Traditional Chinese medicine formulas for the treatment of osteoporosis: Implication for antiosteoporotic drug discovery. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:61-80. [PMID: 27180315 DOI: 10.1016/j.jep.2016.05.025] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteoporosis is a chronic epidemic which can leads to enhanced bone fragility and consequent an increase in fracture risk. Traditional Chinese medicine (TCM) formulas have a long history of use in the prevention and treatment of osteoporosis. Antiosteoporotic TCM formulas have conspicuous advantage over single drugs. Systematic data mining of the existing antiosteoporotic TCM formulas database can certainly help the drug discovery processes and help the identification of safe candidates with synergistic formulations. In this review, the authors summarize the clinical use and animal experiments of TCM formulas and their mechanism of action, and discuss the potential antiosteoporotic activity and the active constituents of commonly used herbs in TCM formulas for the therapy of osteoporosis. MATERIALS AND METHODS The literature was searched from Medline, Pubmed, ScienceDirect, Spring Link, Web of Science, CNKI and VIP database from 1989 to 2015, and also collected from Chinese traditional books and Chinese Pharmacopoeia with key words such as osteoporosis, osteoblast, osteoclast, traditional Chinese medicine formulas to identify studies on the antiosteoporotic effects of TCM formulas, herbs and chemical constituents, and also their possible mechanisms. RESULTS Thirty-three TCM formulas were commonly used to treat osteoporosis, and showed significant antiosteoporotic effects in human and animal. The herb medicines and their chemical constituents in TCM formulas were summarized, the pharmacological effects and chemical constituents of commonly used herbs in TCM formulas were described in detail. The action mechanisms of TCM formulas and their chemical constituents were described. Finally, the implication for the discovery of antiosteoporotic leads and combinatory ingredients from TCM formulas were prospectively discussed. CONCLUSIONS Clinical practice and animal experiments indicate that TCM formulas provide a definite therapeutic effect on osteoporosis. The active constituents in TCM formulas are diverse in chemical structure, and include flavonoids, lignans, saponins and iridoid glycosides. Antiosteoporotic mechanism of TCM formulas and herbs involves multi regulatory pathways, such as Wnt/β-catenin, BMP/Smad, MAPK pathway and RANKL/OPG system. Phytochemicals from TCM formulas and their compositional herb medicines offer great potential for the development of novel antiosteoporotic drugs. The active ingredients in TCM formulas can be developed in combination as potent drugs, which may exhibit better antiosteoporotic effects compared to the individual compound.
Collapse
Affiliation(s)
- Nai-Dan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Bao-Kang Huang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, LiverpoolL3 3AF, UK
| | - Yi-Ping Jiang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hong-Tao Xu
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hai-Liang Xin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Qiao-Yan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yi-Min Li
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
63
|
Jeong YT, Baek SH, Jeong SC, Yoon YD, Kim OH, Oh BC, Jung JW, Kim JH. Osteoprotective Effects of Polysaccharide-Enriched Hizikia fusiforme Processing Byproduct In Vitro and In Vivo Models. J Med Food 2016; 19:805-14. [PMID: 27458685 DOI: 10.1089/jmf.2015.3646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The traditional manufacturing method used to produce goods from Hizikia fusiforme, utilizes extraction steps with hot water. The byproduct (of hot water extraction) is rich in polysaccharide and is considered a waste. To evaluate the osteogenic effects of the byproduct of H. fusiforme (HFB), osteogenic cells and animal models were used to test it effects on osteogenesis. The HFB-treated mouse myoblast C2C12 cells exhibited significant dose dependently elevated alkaline phosphatase (ALP) activity and slightly increased bone morphogenetic protein-2 (BMP-2). HFB also suppressed the formation of tartrate-resistant acid phosphatase (TRAP) activity and TRAP staining in the bone marrow-derived macrophages (BMM) cells that had been stimulated with the receptor activator of the nuclear factor kB ligand/macrophage colony-stimulating factor kB ligand. In addition, HFB also increased the phosphorylation of extracellular signal-regulated protein kinase (p-ERK) level. Finally, osteogenic effects of HFB were clearly confirmed in the three in vivo models: zebrafish, ovariectomized mice, and mouse calvarial bones. HFB accelerated the rate of skeletal development in zebrafish and prevented much of the mouse femoral bone density loss of ovariectomized mice. Moreover, HFB enhanced woven bone formation over the periosteum of mouse calvarial bones. Our result showed that HFB functions as a bone resorption inhibitor as well as an activator of bone formation in vivo and in osteogenic in vitro cell systems.
Collapse
Affiliation(s)
- Yong Tae Jeong
- 1 HK Bio, Business Incubator, Daegu Haany University , Gyeongsan, Korea
| | - Seung Hwa Baek
- 2 Department of Food Science & Biotechnology, Graduate School, Kyungpook National University , Daegu, Korea
| | - Sang Chul Jeong
- 3 Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources , SangJu, Korea
| | - Yeo Dae Yoon
- 4 Korea Research Institute of Bioscience and Biotechnology , Yuseong, Daejeon, Korea
| | - Ok Hee Kim
- 5 Lee Gil Ya Cancer and Diabetes Institute, Gachon University Graduate School of Medicine , Yeonsu-ku, Incheon, Korea
| | - Byung Chul Oh
- 5 Lee Gil Ya Cancer and Diabetes Institute, Gachon University Graduate School of Medicine , Yeonsu-ku, Incheon, Korea
| | - Ji Wook Jung
- 6 Department of Natural Cosmetic Ingredient, Daegu Haany University , Gyeongsan, Korea
| | - Jin Hee Kim
- 7 College of Herbal Bio-Industry, Daegu Haany University , Gyeongsan, Korea
| |
Collapse
|
64
|
Wu YY, Huang XM, Liu J, Cha Y, Chen ZP, Wang F, Xu J, Sheng L, Ding HY. Functional study of the upregulation of miRNA-27a and miRNA-27b in 3T3-L1 cells in response to berberine. Mol Med Rep 2016; 14:2725-31. [DOI: 10.3892/mmr.2016.5545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 04/18/2016] [Indexed: 11/05/2022] Open
|
65
|
Rodríguez-Carballo E, Gámez B, Ventura F. p38 MAPK Signaling in Osteoblast Differentiation. Front Cell Dev Biol 2016; 4:40. [PMID: 27200351 PMCID: PMC4858538 DOI: 10.3389/fcell.2016.00040] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
The skeleton is a highly dynamic tissue whose structure relies on the balance between bone deposition and resorption. This equilibrium, which depends on osteoblast and osteoclast functions, is controlled by multiple factors that can be modulated post-translationally. Some of the modulators are Mitogen-activated kinases (MAPKs), whose role has been studied in vivo and in vitro. p38-MAPK modifies the transactivation ability of some key transcription factors in chondrocytes, osteoblasts and osteoclasts, which affects their differentiation and function. Several commercially available inhibitors have helped to determine p38 action on these processes. Although it is frequently mentioned in the literature, this chemical approach is not always as accurate as it should be. Conditional knockouts are a useful genetic tool that could unravel the role of p38 in shaping the skeleton. In this review, we will summarize the state of the art on p38 activity during osteoblast differentiation and function, and emphasize the triggers of this MAPK.
Collapse
Affiliation(s)
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| |
Collapse
|
66
|
Liu S, Huang J, Wang J, Zhao Y, Lu S, Wang Y, Bian Q. Er-Xian Decoction Stimulates Osteoblastic Differentiation of Bone Mesenchymal Stem Cells in Ovariectomized Mice and Its Gene Profile Analysis. Stem Cells Int 2016; 2016:4079210. [PMID: 27064269 PMCID: PMC4811212 DOI: 10.1155/2016/4079210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 01/09/2023] Open
Abstract
We studied the bone mesenchymal stem cells (bMSCs) and gene profiles regulated by Er-Xian Decoction (EXD), a traditional Chinese herbal formula widely used for postmenopausal osteoporosis treatment. Six-month-old female Imprinting Control Region mice that underwent ovariectomy were treated with EXD. After 3 months, bone mass was evaluated by μCT and histological and immunohistochemical detection. The self-renewal and differentiation capacities of bMSCs were evaluated by colony-forming unit-fibroblastic, colony-forming unit-adipocyte, and alkaline phosphatase staining. In addition, the expression of 26991 genes of bMSCs ex vivo at 2 weeks after EXD-treatment or of bMSCs in vitro after exposure to conditioned serum from EXD-treated rats was measured and analyzed using NimbleGen Gene Expression Profiling and Cluster and pathway analysis. EXD treatment increased bone mass, elevating osteocalcin protein levels in vivo and facilitating the self-renewal and osteoblastic differentiation of bMSCs ex vivo. EXD rescued several gene expressions that were dysregulated by OVX. These genes overlapped and their functions were involved in ten pathways between ex vivo and in vitro experiments. EXD exerts an osteogenic effect on bMSCs in OVX induced osteoporotic mice. Our results contribute to further study of its molecular mechanism and traditional use in the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Shufen Liu
- Department of Orthopaedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725 South Wan-ping Road, Shanghai 200032, China
- Spine Research Institute, Shanghai University of Traditional Chinese Medicine, No. 725 South Wanping Road, Shanghai 200032, China
| | - Jianhua Huang
- Institute of Integrated Traditional Chinese Medicine & Western Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Jing Wang
- Department of Orthopaedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725 South Wan-ping Road, Shanghai 200032, China
- Spine Research Institute, Shanghai University of Traditional Chinese Medicine, No. 725 South Wanping Road, Shanghai 200032, China
| | - Yongjian Zhao
- Department of Orthopaedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725 South Wan-ping Road, Shanghai 200032, China
- Spine Research Institute, Shanghai University of Traditional Chinese Medicine, No. 725 South Wanping Road, Shanghai 200032, China
| | - Sheng Lu
- Department of Orthopaedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725 South Wan-ping Road, Shanghai 200032, China
- Spine Research Institute, Shanghai University of Traditional Chinese Medicine, No. 725 South Wanping Road, Shanghai 200032, China
| | - Yongjun Wang
- Department of Orthopaedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725 South Wan-ping Road, Shanghai 200032, China
- Spine Research Institute, Shanghai University of Traditional Chinese Medicine, No. 725 South Wanping Road, Shanghai 200032, China
| | - Qin Bian
- Department of Orthopaedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725 South Wan-ping Road, Shanghai 200032, China
- Spine Research Institute, Shanghai University of Traditional Chinese Medicine, No. 725 South Wanping Road, Shanghai 200032, China
| |
Collapse
|
67
|
Zhou J, Du X, Long M, Zhang Z, Zhou S, Zhou J, Qian G. Neuroprotective effect of berberine is mediated by MAPK signaling pathway in experimental diabetic neuropathy in rats. Eur J Pharmacol 2016; 774:87-94. [DOI: 10.1016/j.ejphar.2016.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022]
|
68
|
Tao K, Xiao D, Weng J, Xiong A, Kang B, Zeng H. Berberine promotes bone marrow-derived mesenchymal stem cells osteogenic differentiation via canonical Wnt/β-catenin signaling pathway. Toxicol Lett 2016; 240:68-80. [DOI: 10.1016/j.toxlet.2015.10.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/03/2015] [Accepted: 10/10/2015] [Indexed: 12/11/2022]
|
69
|
Berberine in Combination with Insulin Has Additive Effects on Titanium Implants Osseointegration in Diabetes Mellitus Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:824259. [PMID: 26783411 PMCID: PMC4691484 DOI: 10.1155/2015/824259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/09/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023]
Abstract
This study evaluated the effects of berberine in combination with insulin on early osseointegration of implants in diabetic rats. Fifty male Sprague-Dawley rats were randomly divided into 5 groups: healthy rats were used as control (HC), and streptozotocin-induced diabetic rats were treated with insulin, berberine, berberine + insulin (IB), or no treatment. Each rat received one machined-surface cp-Ti implant into the right tibia and was given insulin injection and/or gavage feeding with berberine daily for 8 weeks until being sacrificed. Serum levels of alkaline phosphatase (ALP) and bone gamma-carboxyglutamic acid-containing protein (BGP) were analyzed in each group. Peri-implant mineral apposition was marked by fluorochrome double-labeling and osseointegration was histomorphologically examined. The ALP and BGP levels decreased in diabetic rats but were successfully corrected by insulin and berberine combined treatment. Moreover, untreated diabetic rats had less labeled mineral apposition and impaired osseointegration. In contrast, Groups I, B, and IB were observed with increased peri-implant bone formation. The combination treatment of insulin and berberine was more effective than each administrated as a monotherapy. These results suggest that berberine combined with insulin could promote osseointegration in diabetic rats, thereby highlighting its potential application to patients, though further studies are needed.
Collapse
|
70
|
Pirillo A, Catapano AL. Berberine, a plant alkaloid with lipid- and glucose-lowering properties: From in vitro evidence to clinical studies. Atherosclerosis 2015; 243:449-61. [DOI: 10.1016/j.atherosclerosis.2015.09.032] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/01/2015] [Accepted: 09/24/2015] [Indexed: 02/07/2023]
|
71
|
Cao S, Qin H, Gossmann A, Deng HW, Wang YP. Unified tests for fine-scale mapping and identifying sparse high-dimensional sequence associations. Bioinformatics 2015; 32:330-7. [PMID: 26458888 DOI: 10.1093/bioinformatics/btv586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION In searching for genetic variants for complex diseases with deep sequencing data, genomic marker sets of high-dimensional genotypic data and sparse functional variants are quite common. Existing sequence association tests are incapable of identifying such marker sets or individual causal loci, although they appeared powerful to identify small marker sets with dense functional variants. In sequence association studies of admixed individuals, cryptic relatedness and population structure are known to confound the association analyses. METHOD We here propose a unified marker wise test (uFineMap) to accurately localize causal loci and a unified high-dimensional set based test (uHDSet) to identify high-dimensional sparse associations in deep sequencing genomic data of multi-ethnic individuals with random relatedness. These two novel tests are based on scaled sparse linear mixed regressions with Lp (0 < p < 1) norm regularization. They jointly adjust for cryptic relatedness, population structure and other confounders to prevent false discoveries and improve statistical power for identifying promising individual markers and marker sets that harbor functional genetic variants of a complex trait. RESULTS With large scale simulation data and real data analyses, the proposed tests appropriately controlled Type I error rates and appeared to be more powerful than several prominent methods. We illustrated their practical utilities by the applications to DNA sequence data of Framingham Heart Study for osteoporosis. The proposed tests identified 11 novel significant genes that were missed by the prominent famSKAT and GEMMA. In particular, four out of six most significant pathways identified by the uHDSet but missed by famSKAT have been reported to be related to BMD or osteoporosis in the literature. AVAILABILITY AND IMPLEMENTATION The computational toolkit is available for academic use: https://sites.google.com/site/shaolongscode/home/uhdset CONTACT wyp@tulane.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shaolong Cao
- Department of Biomedical Engineering, Center for Bioinformatics and Genomics
| | - Huaizhen Qin
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics and
| | - Alexej Gossmann
- Center for Bioinformatics and Genomics, Department of Mathematics, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics and
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics and
| |
Collapse
|
72
|
Vimalraj S, Arumugam B, Miranda P, Selvamurugan N. Runx2: Structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol 2015; 78:202-8. [PMID: 25881954 DOI: 10.1016/j.ijbiomac.2015.04.008] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 02/07/2023]
|
73
|
Zhang C, Shi YR, Liu XR, Cao YC, Zhen D, Jia ZY, Jiang JQ, Tian JH, Gao JM. The Anti-Apoptotic Role of Berberine in Preimplantation Embryo In Vitro Development through Regulation of miRNA-21. PLoS One 2015; 10:e0129527. [PMID: 26042820 PMCID: PMC4456273 DOI: 10.1371/journal.pone.0129527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 05/11/2015] [Indexed: 11/19/2022] Open
Abstract
Traditional Chinese medicinal herbs containing berberine have been historically used to prevent miscarriage. Here, we investigated whether the anti-apoptotic effects of berberine on pre-implantation embryonic development are regulated by miRNA-21. Mouse pronuclear embryos were cultured in medium with or without berberine, and some were then microinjected with a miRNA-21 inhibitor. The in vitro developmental rates of 2- and 4-cell embryos and blastocysts, blastocyst cell numbers, apoptotic rates, and apoptotic cell numbers were measured in each group. Furthermore, we examined the transcription levels of miRNA-21 and its target genes (caspase-3, PTEN, and Bcl-2) and their translation levels. Comparisons were made with in vivo-developed and untreated embryos. We found that berberine significantly increased the developmental rates and cell numbers of mouse blastocysts and decreased apoptotic cell rates in vitro. Berberine also significantly increased miRNA-21 and Bcl-2 transcription levels and significantly decreased caspase-3 and PTEN transcription levels. In embryos treated with a miRNA-21 inhibitor, the results followed the opposite trend; PTEN and caspase-3 transcription levels increased significantly, while the transcription level of Bcl-2 decreased significantly. Additionally, berberine treatment significantly increased the Bcl-2 protein level and significantly decreased the caspase-3 and PTEN protein levels in blastocysts, but there were no significant differences observed in the levels of these proteins in 2- and 4-cell embryos. This study revealed that miRNA-21 is important for pre-implantation embryonic development, especially blastocyst development in vitro. Berberine elevates miRNA-21 expression, decreases PTEN and caspase-3 levels, increases Bcl-2 levels, and exerts anti-apoptotic and pro-growth effects.
Collapse
Affiliation(s)
- Chao Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Ya-Ran Shi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiao-Ran Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yong-Chun Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Di Zhen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Zi-Ye Jia
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jin-Qi Jiang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jian-Hui Tian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Ming Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
74
|
Artigas N, Ureña C, Rodríguez-Carballo E, Rosa JL, Ventura F. Mitogen-activated protein kinase (MAPK)-regulated interactions between Osterix and Runx2 are critical for the transcriptional osteogenic program. J Biol Chem 2014; 289:27105-27117. [PMID: 25122769 PMCID: PMC4175347 DOI: 10.1074/jbc.m114.576793] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/06/2014] [Indexed: 11/06/2022] Open
Abstract
The transcription factors Runx2 and Osx (Osterix) are required for osteoblast differentiation and bone formation. Runx2 expression occurs at early stages of osteochondroprogenitor determination, followed by Osx induction during osteoblast maturation. We demonstrate that coexpression of Osx and Runx2 leads to cooperative induction of expression of the osteogenic genes Col1a1, Fmod, and Ibsp. Functional interaction of Osx and Runx2 in the regulation of these promoters is mediated by enhancer regions with adjacent Sp1 and Runx2 DNA-binding sites. These enhancers allow formation of a cooperative transcriptional complex, mediated by the binding of Osx and Runx2 to their specific DNA promoter sequences and by the protein-protein interactions between them. We also identified the domains involved in the interaction between Osx and Runx2. These regions contain the amino acids in Osx and Runx2 known to be phosphorylated by p38 and ERK MAPKs. Inhibition of p38 and ERK kinase activities or mutation of their known phosphorylation sites in Osx or Runx2 strongly disrupts their physical interaction and cooperative transcriptional effects. Altogether, our results provide a molecular description of a mechanism for Osx and Runx2 transcriptional cooperation that is subject to further regulation by MAPK-activating signals during osteogenesis.
Collapse
Affiliation(s)
- Natalia Artigas
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain
| | - Carlos Ureña
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain
| | - Edgardo Rodríguez-Carballo
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain
| | - José Luis Rosa
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
75
|
Huh JE, Kim SJ, Kang JW, Nam DW, Choi DY, Park DS, Lee JD. The standardized BHH10 extract, a combination of Astragalus membranaceus, Cinnamomum cassia, and Phellodendron amurense, reverses bone mass and metabolism in a rat model of postmenopausal osteoporosis. Phytother Res 2014; 29:30-9. [PMID: 25230217 PMCID: PMC4303985 DOI: 10.1002/ptr.5218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/08/2014] [Accepted: 08/04/2014] [Indexed: 01/20/2023]
Abstract
Jasin-hwan-gagambang (BHH10), a modified prescription of Jasin-hwan, contains Astragalus membranaceus, Cinnamomum cassia, and Phellodendron amurense, and it has been traditionally used to treat osteoporosis and other inflammatory diseases. In this study, we systematically investigated the protective effects of BHH10 in ovariectomy (OVX)-induced rats. Sprague–Dawley rats were randomly divided into sham and OVX subgroups. The rats in the OVX group were treated with vehicle, BHH10, alendronate (ALN), and 17β-estradiol (E2). BHH10 treatment significantly inhibited OVX-induced increases in body weight and uterus atrophy. In addition, it significantly increased the bone mineral density (BMD) and prevented a decrease in trabecular bone volume, connectivity density, trabecular number, thickness, and separation at the total femur and femur neck. The OVX rats showed significant decreases in the serum levels of calcium and phosphorous and significant increases in the serum levels of cholesterol, low-density lipoprotein cholesterol, alkaline phosphatase, osteocalcin, C-telopeptide type 1 collagen, and bone morphogenetic protein-2. These changes were significantly reduced to near sham levels by administration of BHH10 to OVX rats. BHH10-treated rats had a greater bone mass, a better structural architecture of the bone, and higher levels of biochemical markers of the bone than did the ALN-treated or E2-treated rats. These results suggest that BHH10 reverses osteoporosis in OVX rats by stimulating bone formation or regulating bone resorption and is not associated with toxicity. © 2014 The Authors. Phytotherapy Research published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Jeong-Eun Huh
- Oriental Medicine Research Center for Bone and Joint Disease, East-West Bone and Joint Research Institute, Kyung Hee University, 149 Sangil-dong, Gangdong-gu, Seoul, 134-727, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
76
|
Kim JY, Cheon YH, Kwak SC, Baek JM, Yoon KH, Lee MS, Oh J. Emodin regulates bone remodeling by inhibiting osteoclastogenesis and stimulating osteoblast formation. J Bone Miner Res 2014; 29:1541-53. [PMID: 25832436 DOI: 10.1002/jbmr.2183] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/30/2013] [Accepted: 01/15/2014] [Indexed: 01/09/2023]
Abstract
Bone remodeling, a physiological process in which new bone is formed by osteoblasts and the preexisting bone matrix is resorbed by osteoclasts, is vital for the maintenance of healthy bone tissue in adult humans. Imbalances in this process can cause various pathological conditions, including osteoporosis. Emodin, a naturally occurring anthraquinone derivative found in Asian herbal medicines, has numerous beneficial pharmacologic effects, including anticancer and antidiabetic activities. However, the effect of emodin on the regulation of osteoblast and osteoclast activity has not yet been investigated. We show here that emodin is a potential target for osteoporosis therapeutics, as treatment with this agent enhances osteoblast differentiation and bone growth and suppresses osteoclast differentiation and bone resorption. In this study, emodin suppressed receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation of bone marrow macrophages (BMMs) and the bone-resorbing activity of mature osteoclasts by inhibiting RANKL-induced NF-κB, c-Fos, and NFATc1 expression. Emodin also increased ALP, Alizarin Red-mineralization activity, and the expression of osteoblastogenic gene markers, such as Runx2, osteocalcin (OCN), and ALP in mouse calvarial primary osteoblasts, as well as activated the p38-Runx2 pathway, which enhanced osteoblast differentiation. Moreover, mice treated with emodin showed marked attenuation of lipopolysaccharide (LPS)-induced bone erosion and increased bone-forming activity in a mouse calvarial bone formation model based on micro-computed tomography and histologic analysis of femurs. Our findings reveal a novel function for emodin in bone remodeling, and highlight its potential for use as a therapeutic agent in the treatment of osteoporosis that promotes bone anabolic activity and inhibits osteoclast differentiation.
Collapse
Affiliation(s)
- Ju-Young Kim
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Korea
| | | | | | | | | | | | | |
Collapse
|
77
|
Zhang W, Guo H, Jing H, Li Y, Wang X, Zhang H, Jiang L, Ren F. Lactoferrin stimulates osteoblast differentiation through PKA and p38 pathways independent of lactoferrin's receptor LRP1. J Bone Miner Res 2014; 29:1232-43. [PMID: 24877241 DOI: 10.1002/jbmr.2116] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lactoferrin (LF) has been established as a potent anabolic factor for bone health both in vivo and in vitro. However, the molecular mechanisms underlying LF's action are still largely unknown. Here, we explore the signaling pathways that mediate LF's beneficial effect on osteoblast differentiation. In primary osteoblast and preosteoblast MC3T3‐E1, LF promoted alkaline phosphatase (ALP)activity, osteocalcin (OCN) secretion, and mineralization. Along with this enhanced osteogenic differentiation, activation of p38 mitogen‐activated protein kinase (MAPK) was detected in LF‐treated MC3T3‐E1 cells. Downregulating p38 with selective inhibitor SB203580 or p38a small interfering RNA (siRNA) attenuated the effect of LF on osteogenesis. Furthermore, knockdown of p38α significantly decreased LF‐induced Runt‐related transcription factor 2 (Runx2) phosphorylation. According to previous studies and our results, we speculated that LF‐induced osteoblast proliferation and differentiation were two relatively separate processes controlled by extracellular signal‐regulated kinase 1/2 (ERK1/2) and p38 pathways, respectively. Besides p38 MAPK activation, protein kinase A(PKA) was also activated in MC3T3‐E1 cells. PKA inhibitor H89 significantly inhibited LF‐induced p38 activation, ALP activity, and OCN secretion, indicating that PKA possibly acted as an upstream kinase of p38. In order to further identify the role of LF's receptor low-density lipoprotein receptor‐related protein 1 (LRP1), we constructed LRP1 stable‐knockdown MC3T3‐E1 cells. Neither LRP1 antagonist receptor associated protein (RAP), nor LRP1 knockdown approach could attenuate the LF‐induced osteogenesis, implying that LF stimulated osteoblast differentiation via an LRP1‐independent pathway. Taken together, the present work indicated that LF stimulated MC3T3‐E1 preosteoblast differentiation mainly through LRP1‐independent PKA and p38 signaling pathways. These results provided the first evidence of the signaling mechanisms of LF's effect on osteoblast differentiation.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Functional Dairy; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Beijing Laboratory for Food Quality and Safety; Beijing China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Beijing Laboratory for Food Quality and Safety; Beijing China
| | - Hao Jing
- Key Laboratory of Functional Dairy; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
| | - Yixuan Li
- Key Laboratory of Functional Dairy; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Beijing Higher Institution Engineering Research Center of Animal Product; Beijing China
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Beijing Higher Institution Engineering Research Center of Animal Product; Beijing China
| | - Hao Zhang
- Key Laboratory of Functional Dairy; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
| | - Lu Jiang
- Beijing Laboratory for Food Quality and Safety; Beijing China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Beijing Laboratory for Food Quality and Safety; Beijing China
| |
Collapse
|
78
|
Leng B, Jin X, Lin Q, Chen L, Wang Y, Du Z, Lin K, Chang J, Gu X, Wang C. A comparative study of proliferation and osteogenic differentiation of rat adipose-derived stem cells in β-tricalcium phosphate (β-TCP), forsterite (Mg2SiO4) and clinoenstatite (MgSiO3). ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5874-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
79
|
Lo KWH, Ashe KM, Kan HM, Laurencin CT. The role of small molecules in musculoskeletal regeneration. Regen Med 2013; 7:535-49. [PMID: 22817627 DOI: 10.2217/rme.12.33] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The uses of bone morphogenetic proteins and parathyroid hormone therapeutics are fraught with several fundamental problems, such as cost, protein stability, immunogenicity, contamination and supraphysiological dosage. These downsides may effectively limit their more universal use. Therefore, there is a clear need for alternative forms of biofactors to obviate the drawbacks of protein-based inductive factors for bone repair and regeneration. Our group has studied small molecules with the capacity to regulate osteoblast differentiation and mineralization because their inherent physical properties minimize limitations observed in protein growth factors. For instance, in general, small molecule inducers are usually more stable, highly soluble, nonimmunogenic, more affordable and require lower dosages. Small molecules with the ability to induce osteoblastic differentiation may represent the next generation of bone regenerative medicine. This review describes efforts to develop small molecule-based biofactors for induction, paying specific attention to their novel roles in bone regeneration.
Collapse
Affiliation(s)
- Kevin W-H Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
80
|
Ortuño MJ, Susperregui ARG, Artigas N, Rosa JL, Ventura F. Osterix induces Col1a1 gene expression through binding to Sp1 sites in the bone enhancer and proximal promoter regions. Bone 2013; 52:548-56. [PMID: 23159876 DOI: 10.1016/j.bone.2012.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/10/2012] [Accepted: 11/07/2012] [Indexed: 01/24/2023]
Abstract
Bone-specific transcription factors promote differentiation of mesenchymal precursors toward the osteoblastic cell phenotype. Among them, Runx2 and Osterix have been widely accepted as master osteogenic factors, since neither Runx2 nor Osterix null mice form mature osteoblasts. Recruitment of Osterix to a number of promoters of bone-specific genes has been shown. However, little is known about the functional interactions between Osterix and the Col1a1 promoter. In this study we determined in several mesenchymal and osteoblastic cell types that either BMP-2 or Osterix overexpression increased Col1a1 transcription. We identified consensus Sp1 sequences, located in the proximal promoter and in the bone-enhancer, as Osterix binding regions in the Col1a1 promoter in vitro and in vivo. Furthermore, we show that p38 or Erk MAPK signaling is required for maximal transcriptional effects on Col1a1 expression. Runx2 has been shown to activate Col1a1 expression through binding to sites which are located close to the Sp1 sites where Osterix binds. Our data show that overexpression of Runx2 and Osterix leads to a cooperative effect on the expression of the Col1a1 endogenous gene and its promoter reporter construct. These effects mainly affect the long isoform of Osterix which suggest that the two Osterix isoforms might display some differential effects on the transactivation of bone-specific genes.
Collapse
Affiliation(s)
- Maria José Ortuño
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | | | | | | | | |
Collapse
|
81
|
Jia M, Nie Y, Cao DP, Xue YY, Wang JS, Zhao L, Rahman K, Zhang QY, Qin LP. Potential antiosteoporotic agents from plants: a comprehensive review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:364604. [PMID: 23365596 PMCID: PMC3551255 DOI: 10.1155/2012/364604] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/30/2012] [Indexed: 02/08/2023]
Abstract
Osteoporosis is a major health hazard and is a disease of old age; it is a silent epidemic affecting more than 200 million people worldwide in recent years. Based on a large number of chemical and pharmacological research many plants and their compounds have been shown to possess antiosteoporosis activity. This paper reviews the medicinal plants displaying antiosteoporosis properties including their origin, active constituents, and pharmacological data. The plants reported here are the ones which are commonly used in traditional medical systems and have demonstrated clinical effectiveness against osteoporosis. Although many plants have the potential to prevent and treat osteoporosis, so far, only a fraction of these plants have been thoroughly investigated for their physiological and pharmacological properties including their mechanism of action. An attempt should be made to highlight plant species with possible antiosteoporosis properties and they should be investigated further to help with future drug development for treating this disease.
Collapse
Affiliation(s)
- Min Jia
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yan Nie
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Da-Peng Cao
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yun-Yun Xue
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jie-Si Wang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lu Zhao
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Qiao-Yan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
82
|
Chen XW, Di YM, Zhang J, Zhou ZW, Li CG, Zhou SF. Interaction of herbal compounds with biological targets: a case study with berberine. ScientificWorldJournal 2012; 2012:708292. [PMID: 23213296 PMCID: PMC3504405 DOI: 10.1100/2012/708292] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/08/2012] [Indexed: 02/06/2023] Open
Abstract
Berberine is one of the main alkaloids found in the Chinese herb Huang lian (Rhizoma Coptidis), which has been reported to have multiple pharmacological activities. This study aimed to analyze the molecular targets of berberine based on literature data followed by a pathway analysis using the PANTHER program. PANTHER analysis of berberine targets showed that the most classes of molecular functions include receptor binding, kinase activity, protein binding, transcription activity, DNA binding, and kinase regulator activity. Based on the biological process classification of in vitro berberine targets, those targets related to signal transduction, intracellular signalling cascade, cell surface receptor-linked signal transduction, cell motion, cell cycle control, immunity system process, and protein metabolic process are most frequently involved. In addition, berberine was found to interact with a mixture of biological pathways, such as Alzheimer's disease-presenilin and -secretase pathways, angiogenesis, apoptosis signalling pathway, FAS signalling pathway, Hungtington disease, inflammation mediated by chemokine and cytokine signalling pathways, interleukin signalling pathway, and p53 pathways. We also explored the possible mechanism of action for the anti-diabetic effect of berberine. Further studies are warranted to elucidate the mechanisms of action of berberine using systems biology approach.
Collapse
Affiliation(s)
- Xiao-Wu Chen
- Department of General Surgery, The First People's Hospital of Shunde, Southern Medical University, Shunde, Guangdong 528300, China
| | | | | | | | | | | |
Collapse
|
83
|
Effects and interaction of icariin, curculigoside, and berberine in er-xian decoction, a traditional chinese medicinal formula, on osteoclastic bone resorption. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:490843. [PMID: 23243450 PMCID: PMC3519276 DOI: 10.1155/2012/490843] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/09/2012] [Accepted: 09/24/2012] [Indexed: 11/28/2022]
Abstract
Er-Xian decoction (EXD), a traditional Chinese medicine, has been reported to have a protective effect against bone loss in ovariectomized osteoporotic rats, and the inclusion of icariin (I), curculigoside (C), and berberine (B) in EXD displays inhibitory effects on osteoclastic bone resorption. In the present paper, we investigated the interaction and effects of I, C, B, and their combination on bone resorption activity in vitro on osteoclasts derived from rat bone marrow cells. ICB synergistically decreased the formation of bone resorption pits, the number of multinucleated osteoclasts, and the activity of tartrate-resistant acid phosphatase (TRAP) and showed antagonistic or additive effects on cathepsin K activity in the coculture system of osteoblasts and bone marrow cells in the presence of 1, 25-dihydroxyvitamin D3 and dexamethasone. The combination of ICB also enhanced the inhibitory effects on the formation of F-actin ring, a cytoskeleton structure of osteoclasts induced from bone marrow cells with macrophage colony stimulation factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). In addition, ICB synergistically improved the ratio of protein expression of osteoprotegerin (OPG) and RANKL in osteoblasts and interfered with the mitogen-activated protein kinases (MAPKs) pathway in osteoclast. These results clearly show that I, C, B, and their combination in EXD exert effects of mutual reinforcement. However, IBC does not show an intensified adverse effect in the ovariectomized murine model, as revealed by change in body and uterine weight, confirming the safety of EXD. These observations are in agreement with the rationality of the formula used in this paper.
Collapse
|
84
|
Rahigude A, Kaulaskar S, Bhutada P. Possible therapeutic potential of berberine in diabetic osteopathy. Med Hypotheses 2012; 79:440-4. [DOI: 10.1016/j.mehy.2012.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/22/2012] [Indexed: 12/12/2022]
|
85
|
Liu J, Yang J, Wang S, Sun J, Shi J, Rao G, Li A, Gou J. Combining human periodontal ligament cell membrane chromatography with online HPLC/MS for screening osteoplastic active compounds from Coptidis Rhizoma. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 904:115-20. [PMID: 22884476 DOI: 10.1016/j.jchromb.2012.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 07/16/2012] [Accepted: 07/25/2012] [Indexed: 11/18/2022]
Abstract
We have developed an online analytical method that combines human periodontal ligament cell membrane chromatography (hPDLC/CMC) with high-performance liquid chromatography and mass spectrometry (LC/MS) for recognizing and identifying osteoplastic active components from Coptidis Rhizoma. Retention fractions on hPDLC/CMC were enriched onto an enrichment column and the components were directly analyzed by combining a 10-port column switcher with an LC/MS system for separation and preliminary identification. Using simvastatin (SIM) as a positive control, berberine from Coptidis Rhizoma was identified as the active component which could act on the hPDLC. The MTT colorimetric assay, alkaline phosphatase (ALP) activity, and staining tests revealed that berberine could promote hPDLC growth, increase the secretion of ALP in the culture medium, and enhance the formation of mineralized nodule, thus it is a potential osteoplastic ingredient. This hPDLC/CMC-online-LC/MS method can be applied for screening active components acting on hPDLC from traditional Chinese medicines exemplified by Coptidis Rhizoma and will be of great utility in drug discovery using natural medicinal herbs as a source of leading compounds.
Collapse
Affiliation(s)
- Jin Liu
- Stomatological Hospital, Xi'an Jiaotong University, Xi'an 710 004, China
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Nakagawa A, Takahashi H, Kojima S, Sato N, Ohga K, Cha BY, Woo JT, Nagai K, Horiguchi G, Tsukaya H, Machida Y, Machida C. Berberine enhances defects in the establishment of leaf polarity in asymmetric leaves1 and asymmetric leaves2 of Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2012; 79:569-81. [PMID: 22684430 PMCID: PMC3402677 DOI: 10.1007/s11103-012-9929-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 05/13/2012] [Indexed: 05/09/2023]
Abstract
Leaves develop as flat lateral organs from the indeterminate shoot apical meristem. The establishment of polarity along three-dimensional axes, proximal-distal, medial-lateral, and adaxial-abaxial axes, is crucial for the growth of normal leaves. The mutations of ASYMMETRIC LEAVES1 (AS1) and AS2 of Arabidopsis thaliana cause defects in repression of the indeterminate state and the establishment of axis formation in leaves. Although many mutations have been identified that enhance the adaxial-abaxial polarity defects of as1 and as2 mutants, the roles of the causative genes in leaf development are still unknown. In this study, we found that wild-type plants treated with berberine produced pointed leaves, which are often observed in the single mutants that enhance phenotypes of as1 and as2 mutants. The berberine-treated as1 and as2 mutants formed abaxialized filamentous leaves. Berberine, an isoquinoline alkaloid compound naturally produced in various plant sources, has a growth inhibitory effect on plants that do not produce berberine. We further showed that transcript levels of meristem-specific class 1 KNOX homeobox genes and abaxial determinant genes were increased in berberine-treated as1 and as2. Berberine treated plants carrying double mutations of AS2 and the large subunit ribosomal protein gene RPL5B showed more severe defects in polarity than did the as2 single mutant plants. We suggest that berberine inhibits (a) factor(s) that might be required for leaf adaxial cell differentiation through a pathway independent of AS1 and AS2. Multiple pathways might play important roles in the formation of flat symmetric leaves.
Collapse
Affiliation(s)
- Ayami Nakagawa
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Hiro Takahashi
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Shoko Kojima
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Nobuo Sato
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Kazuomi Ohga
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Byung Yoon Cha
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Je-Tae Woo
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Kazuo Nagai
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501 Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yasunori Machida
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 Japan
| | - Chiyoko Machida
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| |
Collapse
|
87
|
Guan Y, Chen Q, Yang X, Haines P, Pei M, Terek R, Wei X, Zhao T, Wei L. Subcellular relocation of histone deacetylase 4 regulates growth plate chondrocyte differentiation through Ca2+/calmodulin-dependent kinase IV. Am J Physiol Cell Physiol 2012; 303:C33-40. [PMID: 22442139 DOI: 10.1152/ajpcell.00348.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulatory mechanisms of chondrocyte differentiation in the growth plate are incompletely understood. Here, we find that histone deacetylase 4 (HDAC4) is located in the nucleus of chondrocytes in the proliferation zone and relocates to the cytoplasm of chondrocytes in the prehypertrophic zone in vivo. This suggests that the relocation of HDAC4 from the nucleus to the cytoplasm may play a role during chondrocyte differentiation. Expression of active CaMKIV in chondrocytes promotes HDAC4 relocation into cytoplasm in primary chondrocytes. Conversely, HDAC4 relocation is blocked by a Ca(2+)/calmodulin-dependent kinase IV (CaMKIV) inhibitor. This indicates that CaMKIV signaling plays an important role in regulating HDAC4 relocation. In addition, CaMKIV is required for HDAC4 phosphorylation, which is required for HDAC4 association with the cytoplasmic protein 14-3-3. Active CaMKIV also stimulates runt-related transcription factor-2 (RunX2) and type X collagen (Col X) promoter activities and overcomes repression of these promoter activities by HDAC4. Furthermore, CaMKIV increases gene expression of the chondrocyte differentiation markers Ihh and Col X. Our results demonstrate that CaMKIV induces chondrocyte differentiation through regulation of HDAC4 subcellular relocation, from the nucleus to the cytoplasm, which results in increased activity of RunX2 and transition of chondrocytes from the proliferative to the prehypertrophic stage. Thus, CaMKIV plays an important regulatory role during chondrocyte differentiation.
Collapse
Affiliation(s)
- Yingjie Guan
- Department of Orthopaedics, Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Yang L, Wang NL, Cai GP. Maohuoside A promotes osteogenesis of rat mesenchymal stem cells via BMP and MAPK signaling pathways. Mol Cell Biochem 2011; 358:37-44. [PMID: 21698346 DOI: 10.1007/s11010-011-0918-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 06/07/2011] [Indexed: 11/29/2022]
Abstract
Osteoporosis is becoming a more prevalent health problem with the aging of the population around the world. Epimedium koreanum Nakai is one of the most used herbs in East Asia for curing osteoporosis, with its major ingredient, icariin, mostly explored by researchers. In this article, maohuoside A (MHA), a single isolated compound from the herb, was identified to be more potent than icariin in promoting osteogenesis of rat bone marrow-derived mesenchymal stem cells (rMSCs) (increasing by 16.6, 33.3, and 15.8% on D3, D7, and D11, respectively). Alkaline phosphatase (ALP) assay and calcium content measurement were assigned to quantify the promoted osteogenesis and alizarin red S (ARS) staining was conducted to visualize it. Quantitative real-time PCR (Q-PCR) was assayed to evaluate the mRNA expression of marker genes in osteogenesis and master regulators in BMP pathway. Moreover, PD98059 (PD) and SB203580 (SB), inhibitor of ERK1/2 and p38 MAPK pathway, were administered to assess the involvement of MAPK pathway in the promotion process. In conclusion, MHA pronouncedly enhanced the osteogenesis of rMSC, plausibly via the BMP and MAPK signaling pathways.
Collapse
Affiliation(s)
- Lei Yang
- School of Life Science, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | |
Collapse
|
89
|
Yoon HY, Yun SI, Kim BY, Jin Q, Woo ER, Jeong SY, Chung YS. Poncirin promotes osteoblast differentiation but inhibits adipocyte differentiation in mesenchymal stem cells. Eur J Pharmacol 2011; 664:54-9. [PMID: 21550337 DOI: 10.1016/j.ejphar.2011.04.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 03/29/2011] [Accepted: 04/15/2011] [Indexed: 11/26/2022]
Abstract
Poncirin, flavanone glycoside, isolated from the fruit of Poncirus trifoliata, has anti-bacterial and anti-inflammatory activities. In this study, the effects of poncirin on the differentiation of mesenchymal stem cells were investigated. The C3H10T1/2 mesenchymal stem cells and primary bone marrow mesenchymal stem cells were studied. In the C3H10T1/2 cells, poncirin prevented adipocyte differentiation, as demonstrated by inhibition of cytoplasm lipid droplet accumulation and peroxisome proliferator-activating receptor-γ (PPAR-γ) and CCAAT-enhancer-binding protein-β (C/EBP-β) mRNA expression. By contrast, poncirin enhanced the expression of the key osteogenic transcription factors, runt-related transcription factor 2 (Runx2) and transcriptional coactivator with PDZ-binding motif (TAZ). Poncirin also enhanced expression of the osteogenic marker genes including alkaline phosphatase (ALP) and osteocalcin (OC). Poncirin increased mineral nodule formation in primary bone marrow mesenchymal stem cells. These results suggest that poncirin prevents adipogenesis and enhances osteoblast differentiation in mesenchymal stem cells.
Collapse
Affiliation(s)
- Hyung-Young Yoon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon City, Gyeonggi Province, South Korea
| | | | | | | | | | | | | |
Collapse
|
90
|
Lee JW, Mase N, Yonezawa T, Seo HJ, Jeon WB, Cha BY, Nagai K, Woo JT. Palmatine attenuates osteoclast differentiation and function through inhibition of receptor activator of nuclear factor-κb ligand expression in osteoblast cells. Biol Pharm Bull 2011; 33:1733-9. [PMID: 20930384 DOI: 10.1248/bpb.33.1733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteoclasts are the only cell type capable of resorbing mineralized bone, and they act under the control of numerous cytokines produced by supporting cells such as osteoblasts and stromal cells. Among cytokines, receptor activator of nuclear factor-κB ligand (RANKL) was found to be a key osteoclastogenetic molecule that directly binds to its cognate receptor, RANK, on osteoclast precursor cells. In turn, RANKL, which is an essential factor for differentiation and activation of osteoclasts, is one of the major targets of anti-resorptive agents. In this study, we found that palmatine, an isoquinoline alkaloid originally isolated from Coptis chinensis, had an inhibitory effect on osteoclast differentiation and function in vitro. Palmatine inhibited osteoclast formation in the co-culture system with mouse bone marrow cells (BMC) and osteoblasts in the presence of 10 nM 1α,25-(OH)(2)D(3). Palmatine did not affect osteoclast formation induced by RANKL in the BMC cultures. Reverse-transcription polymerase chain reaction (RT-PCR) analysis showed that palmatine significantly inhibited the expression of 1α,25-(OH)(2)D(3)-induced expression of RANKL mRNAs in stromal cells without loss of cell viability. Moreover, palmatine suppressed resorption pit formation by mature osteoclasts on dentin slices and induced disruption of actin ring formation in mature osteoclasts with an impact on cell viability. Taken together, these results suggest that palmatine attenuates osteoclast differentiation through inhibition of RANKL expression in osteoblast cells, and its inhibitory effect on bone resorption is due to its disruptive effect on actin rings in mature osteoclasts. Therefore, palmatine might be an ideal candidate as an anti-resorptive agent for the prevention and treatment of bone disorders such as osteoporosis.
Collapse
Affiliation(s)
- Ji-Won Lee
- Research Institute for Biological Functions, Chubu University, Kasugai, Aichi 487–8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Lin KL, Chou CH, Hsieh SC, Hwa SY, Lee MT, Wang FF. Transcriptional upregulation of DDR2 by ATF4 facilitates osteoblastic differentiation through p38 MAPK-mediated Runx2 activation. J Bone Miner Res 2010; 25:2489-503. [PMID: 20564243 DOI: 10.1002/jbmr.159] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Deficiency of the collagen receptor discoidin domain receptor tyrosine kinase (DDR2) in mice and humans results in dwarfism and short limbs, of which the mechanism remains unknown. Here we report that DDR2 is a key regulator of osteoblast differentiation. DDR2 mRNA expression was increased at an early stage of induced osteoblast differentiation. In the subchondral bone of human osteoarthritic knee, DDR2 was detected in osteoblastic cells. In mouse embryos, DDR2 expression was found from E11 to E15, preceding osteocalcin (OCN) and coinciding with Runx2 expression. Activating transcription factor 4 (ATF4) enhanced DDR2 mRNA expression, and knockdown of ATF4 expression delayed DDR2 induction during osteoblast differentiation. A CCAAT/enhancer binding protein (C/EBP) binding site at -1150 bp in the DDR2 promoter was required for ATF4-mediated DDR2 activation. C/EBPβ bound to and cooperated with ATF4 in stimulating DDR2 transcription; accordingly, the ATF4 mutants deficient of C/EBPβ binding were incapable of transactivating DDR2. Overexpression of DDR2 increased osteoblast-specific gene expression. Conversely, knockdown of DDR2 suppressed osteogenic marker gene expression and matrix mineralization during the induced osteogenesis. The stimulation of p38 MAPK by DDR2 was required for DDR2-induced activation of Runx2 and OCN promoters. Together our findings uncover a pathway in which ATF4, by binding to C/EBPβ transcriptionally upregulates DDR2 expression, and DDR2, in turn, activates Runx2 through p38 MAPK to promote osteoblast differentiation.
Collapse
Affiliation(s)
- Kuan-Liang Lin
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
92
|
Ortuño MJ, Ruiz-Gaspà S, Rodríguez-Carballo E, Susperregui ARG, Bartrons R, Rosa JL, Ventura F. p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix. J Biol Chem 2010; 285:31985-94. [PMID: 20682789 DOI: 10.1074/jbc.m110.123612] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Osterix, a zinc finger transcription factor, is specifically expressed in osteoblasts and osteocytes of all developing bones. Because no bone formation occurs in Osx-null mice, Osterix is thought to be an essential regulator of osteoblast differentiation. We report that, in several mesenchymal and osteoblastic cell types, BMP-2 induces an increase in expression of the two isoforms of Osterix arising from two alternative promoters. We identified a consensus Sp1 sequence (GGGCGG) as Osterix binding regions in the fibromodulin and the bone sialoprotein promoters in vitro and in vivo. Furthermore, we show that Osterix is a novel substrate for p38 MAPK in vitro and in vivo and that Ser-73 and Ser-77 are the regulatory sites phosphorylated by p38. Our data also demonstrate that Osterix is able to increase recruitment of p300 and Brg1 to the promoters of its target genes fibromodulin and bone sialoprotein in vivo and that it directly associates with these cofactors through protein-protein interactions. Phosphorylation of Osterix at Ser-73/77 increased its ability to recruit p300 and SWI/SNF to either fibromodulin or bone sialoprotein promoters. We therefore propose that Osterix binds to Sp1 sequences on target gene promoters and that its phosphorylation by p38 enhances recruitment of coactivators to form transcriptionally active complexes.
Collapse
Affiliation(s)
- María José Ortuño
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), E-08907 L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | |
Collapse
|
93
|
Gothard D, Roberts SJ, Shakesheff KM, Buttery LD. Engineering embryonic stem-cell aggregation allows an enhanced osteogenic differentiation in vitro. Tissue Eng Part C Methods 2010; 16:583-95. [PMID: 19751101 DOI: 10.1089/ten.tec.2009.0462] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pluripotent embryonic stem (ES) cells hold great promise for the field of tissue engineering, with numerous studies investigating differentiation into various cell types including cardiomyocytes, chondrocytes, and osteoblasts. Previous studies have detailed osteogenic differentiation via dissociated embryoid body (EB) culture in osteoinductive media comprising of ascorbic acid, beta-glycerophosphate, and dexamethasone. It is hoped that these osteogenic cultures will have clinical application in bone tissue repair and regeneration and pharmacological testing. However, differentiation remains highly inefficient and generates heterogeneous populations. We have previously reported an engineered three-dimensional culture system for controlled ES cell-ES cell interaction via the avidin-biotin binding complex. Here we investigate the effect of such engineering on ES cell differentiation. Engineered EBs exhibit enhanced osteogenic differentiation assessed by cadherin-11, Runx2, and osteopontin expression, alkaline phosphatase activity, and bone nodule formation. Results show that cultures produced from intact EBs aggregated for 3 days generated the greatest levels of osteogenic differentiation when cultured in osteoinductive media. However, when cultured in control media, only engineered samples appeared to exhibit bone nodule formation. In addition, polymerase chain reaction analysis revealed a decrease in endoderm and ectoderm expression within engineered samples. This suggests that engineered ES cell aggregation has increased mesoderm homogeneity, contributing to enhanced osteogenic differentiation.
Collapse
Affiliation(s)
- David Gothard
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | | | | | | |
Collapse
|
94
|
Platt MO, Wilder CL, Wells A, Griffith LG, Lauffenburger DA. Multipathway kinase signatures of multipotent stromal cells are predictive for osteogenic differentiation: tissue-specific stem cells. Stem Cells 2010; 27:2804-14. [PMID: 19750537 DOI: 10.1002/stem.215] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone marrow-derived multipotent stromal cells (MSCs) offer great promise for regenerating tissue. Although certain transcription factors have been identified in association with tendency toward particular MSC differentiation phenotypes, the regulatory network of key receptor-mediated signaling pathways activated by extracellular ligands that induce various differentiation responses remains poorly understood. Attempts to predict differentiation fate tendencies from individual pathways in isolation are problematic due to the complex pathway interactions inherent in signaling networks. Accordingly, we have undertaken a multivariate systems approach integrating experimental measurement of multiple kinase pathway activities and osteogenic differentiation in MSCs, together with computational analysis to elucidate quantitative combinations of kinase signals predictive of cell behavior across diverse contexts. In particular, for culture on polymeric biomaterial surfaces presenting tethered epidermal growth factor, type I collagen, neither, or both, we have found that a partial least-squares regression model yields successful prediction of phenotypic behavior on the basis of two principal components comprising the weighted sums of eight intracellular phosphoproteins: phospho-epidermal growth factor receptor, phospho-Akt, phospho-extracellular signal-related kinase 1/2, phospho-heat shock protein 27, phospho-c-Jun, phospho-glycogen synthase kinase 3alpha/beta, phospho-p38, and phospho-signal transducer and activator of transcription 3. This combination provides the strongest predictive capability for 21-day differentiated phenotype status when calculated from day-7 signal measurements; day-4 and day-14 signal measurements are also significantly predictive, indicating a broad time frame during MSC osteogenesis wherein multiple pathways and states of the kinase signaling network are quantitatively integrated to regulate gene expression, cell processes, and ultimately, cell fate.
Collapse
Affiliation(s)
- Manu O Platt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
95
|
Lee HW, Kim SY, Kim AY, Lee EJ, Choi JY, Kim JB. Adiponectin stimulates osteoblast differentiation through induction of COX2 in mesenchymal progenitor cells. Stem Cells 2009; 27:2254-62. [PMID: 19522015 DOI: 10.1002/stem.144] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In bone marrow, osteoblasts and adipocytes are differentiated from mesenchymal progenitor cells and their differentiation is reciprocally regulated by largely unknown mechanisms. In this study, we investigated downstream signaling cascades of adiponectin, a member of the adipocytokine family, in the regulation of osteoblast differentiation. Adiponectin augmented expression of several osteogenic marker genes and increased osteoblast differentiation in mesenchymal progenitor cells. The expression of cyclooxygenase-2 (COX2) was potently increased by adiponectin, whereas inhibition of COX2 activity abolished the effect of adiponectin on osteogenesis. In addition, adiponectin rapidly stimulated p38 mitogen-activated protein kinase via the adiponectin receptor, AdipoR1, which resulted in c-Jun activation for COX2 expression. Adiponectin also stimulated BMP2 expression in a COX2-dependent manner. Moreover, Runx2, a key osteogenic transcription factor, contributed to the acceleration of osteogenesis in the presence of adiponectin. Collectively, the finding that adiponectin could promote osteogenesis through an intracellular signaling cascade in mesenchymal progenitor cells suggests that adiponectin would be a potential therapeutic target for bone-related diseases.
Collapse
Affiliation(s)
- Hyun Woo Lee
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|