51
|
Skeletal glucocorticoid signalling determines leptin resistance and obesity in aging mice. Mol Metab 2020; 42:101098. [PMID: 33045434 PMCID: PMC7596342 DOI: 10.1016/j.molmet.2020.101098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/23/2022] Open
Abstract
Objective Aging and chronic glucocorticoid excess share a number of critical features, including the development of central obesity, insulin resistance and osteoporosis. Previous studies have shown that skeletal glucocorticoid signalling increases with aging and that osteoblasts mediate the detrimental skeletal and metabolic effects of chronic glucocorticoid excess. Here, we investigated whether endogenous glucocorticoid action in the skeleton contributes to metabolic dysfunction during normal aging. Methods Mice lacking glucocorticoid signalling in osteoblasts and osteocytes (HSD2OB/OCY-tg mice) and their wild-type littermates were studied until 3, 6, 12 and 18 months of age. Body composition, adipose tissue morphology, skeletal gene expression and glucose/insulin tolerance were assessed at each timepoint. Leptin sensitivity was assessed by arcuate nucleus STAT3 phosphorylation and inhibition of feeding following leptin administration. Tissue-specific glucose uptake and adipose tissue oxygen consumption rate were also measured. Results As they aged, wild-type mice became obese and insulin-resistant. In contrast, HSD2OB/OCY-tg mice remained lean and insulin-sensitive during aging. Obesity in wild-type mice was due to leptin resistance, evidenced by an impaired ability of exogenous leptin to suppress food intake and phosphorylate hypothalamic STAT3, from 6 months of age onwards. In contrast, HSD2OB/OCY-tg mice remained leptin-sensitive throughout the study. Compared to HSD2OB/OCY-tg mice, leptin-resistant wild-type mice displayed attenuated sympathetic outflow, with reduced tyrosine hydroxylase expression in both the hypothalamus and thermogenic adipose tissues. Adipose tissue oxygen consumption rate declined progressively in aging wild-type mice but was maintained in HSD2OB/OCY-tg mice. At 18 months of age, adipose tissue glucose uptake was increased 3.7-fold in HSD2OB/OCY-tg mice, compared to wild-type mice. Conclusions Skeletal glucocorticoid signalling is critical for the development of leptin resistance, obesity and insulin resistance during aging. These findings underscore the skeleton's importance in the regulation of body weight and implicate osteoblastic/osteocytic glucocorticoid signalling in the aetiology of aging-related obesity and metabolic disease. As they aged, wild-type CD1 mice became hyperphagic, obese and insulin-resistant. Mice lacking skeletal glucocorticoid signalling (HSD2OB/OCY-tg) were lean and healthy. Unlike wild-type mice, HSD2OB/OCY-tg mice remained leptin-sensitive during aging. Adipose tissue sympathetic outflow was maintained in aging HSD2OB/OCY-tg mice.
Collapse
|
52
|
Fujii Y, Kozak E, Dutra E, Varadi A, Reichenberger EJ, Chen IP. Restriction of Dietary Phosphate Ameliorates Skeletal Abnormalities in a Mouse Model for Craniometaphyseal Dysplasia. J Bone Miner Res 2020; 35:2070-2081. [PMID: 33463757 PMCID: PMC9164311 DOI: 10.1002/jbmr.4110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 11/08/2022]
Abstract
Craniometaphyseal dysplasia (CMD), a rare genetic bone disorder, is characterized by lifelong progressive thickening of craniofacial bones and metaphyseal flaring of long bones. The autosomal dominant form of CMD is caused by mutations in the progressive ankylosis gene ANKH (mouse ortholog Ank), encoding a pyrophosphate (PPi) transporter. We previously reported reduced formation and function of osteoblasts and osteoclasts in a knockin (KI) mouse model for CMD (AnkKI/KI) and in CMD patients. We also showed rapid protein degradation of mutant ANK/ANKH. Mutant ANK protein displays reduced PPi transport, which may alter the inorganic phosphate (Pi) and PPi ratio, an important regulatory mechanism for bone mineralization. Here we investigate whether reducing dietary Pi intake can ameliorate the CMD-like skeletal phenotype by comparing male and female Ank+/+ and AnkKI/KI mice exposed to a low (0.3%) and normal (0.7%) Pi diet for 13 weeks from birth. Serum Pi and calcium (Ca) levels were not significantly changed by diet, whereas PTH and 25-hydroxy vitamin D (25-OHD) were decreased by low Pi diet but only in male Ank+/+ mice. Importantly, the 0.3% Pi diet significantly ameliorated mandibular hyperostosis in both sexes of AnkKI/KI mice. A tendency of decreased femoral trabeculation was observed in male and female Ank+/+ mice as well as in male AnkKI/KI mice fed with the 0.3% Pi diet. In contrast, in female AnkKI/KI mice the 0.3% Pi diet resulted in increased metaphyseal trabeculation. This was also the only group that showed increased bone formation rate. Low Pi diet led to increased osteoclast numbers and increased bone resorption in all mice. We conclude that lowering but not depleting dietary Pi delays the development of craniofacial hyperostosis in CMD mice without severely compromising serum levels of Pi, Ca, PTH, and 25-OHD. These findings may have implications for better clinical care of patients with CMD. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Eszter Kozak
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Eliane Dutra
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Andras Varadi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
53
|
Ayturk UM, Scollan JP, Goz Ayturk D, Suh ES, Vesprey A, Jacobsen CM, Divieti Pajevic P, Warman ML. Single-Cell RNA Sequencing of Calvarial and Long-Bone Endocortical Cells. J Bone Miner Res 2020; 35:1981-1991. [PMID: 32427356 PMCID: PMC8265023 DOI: 10.1002/jbmr.4052] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022]
Abstract
Single-cell RNA sequencing (scRNA-Seq) is emerging as a powerful technology to examine transcriptomes of individual cells. We determined whether scRNA-Seq could be used to detect the effect of environmental and pharmacologic perturbations on osteoblasts. We began with a commonly used in vitro system in which freshly isolated neonatal mouse calvarial cells are expanded and induced to produce a mineralized matrix. We used scRNA-Seq to compare the relative cell type abundances and the transcriptomes of freshly isolated cells to those that had been cultured for 12 days in vitro. We observed that the percentage of macrophage-like cells increased from 6% in freshly isolated calvarial cells to 34% in cultured cells. We also found that Bglap transcripts were abundant in freshly isolated osteoblasts but nearly undetectable in the cultured calvarial cells. Thus, scRNA-Seq revealed significant differences between heterogeneity of cells in vivo and in vitro. We next performed scRNA-Seq on freshly recovered long bone endocortical cells from mice that received either vehicle or sclerostin-neutralizing antibody for 1 week. We were unable to detect significant changes in bone anabolism-associated transcripts in immature and mature osteoblasts recovered from mice treated with sclerostin-neutralizing antibody; this might be a consequence of being underpowered to detect modest changes in gene expression, because only 7% of the sequenced endocortical cells were osteoblasts and a limited portion of their transcriptomes were sampled. We conclude that scRNA-Seq can detect changes in cell abundance, identity, and gene expression in skeletally derived cells. In order to detect modest changes in osteoblast gene expression at the single-cell level in the appendicular skeleton, larger numbers of osteoblasts from endocortical bone are required. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ugur M Ayturk
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA.,Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY, USA.,Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Joseph P Scollan
- Department of Orthopaedic Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Didem Goz Ayturk
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA
| | - Eun Sung Suh
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA
| | - Alexander Vesprey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA
| | - Christina M Jacobsen
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA.,Divisions of Endocrinology and Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Matthew L Warman
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
54
|
Kegelman CD, Collins JM, Nijsure MP, Eastburn EA, Boerckel JD. Gone Caving: Roles of the Transcriptional Regulators YAP and TAZ in Skeletal Development. Curr Osteoporos Rep 2020; 18:526-540. [PMID: 32712794 PMCID: PMC8040027 DOI: 10.1007/s11914-020-00605-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The development of the skeleton is controlled by cellular decisions determined by the coordinated activation of multiple transcription factors. Recent evidence suggests that the transcriptional regulator proteins, Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), could have important roles in directing the activity of these transcriptional programs. However, in vitro evidence for the roles of YAP and TAZ in skeletal cells has been hopelessly contradictory. The goals of this review are to provide a cross-sectional view on the state of the field and to synthesize the available data toward a unified perspective. RECENT FINDINGS YAP and TAZ are regulated by diverse upstream signals and interact downstream with multiple transcription factors involved in skeletal development, positioning YAP and TAZ as important signal integration nodes in an hourglass-shaped signaling pathway. Here, we provide a survey of putative transcriptional co-effectors for YAP and TAZ in skeletal cells. Synthesizing the in vitro data, we conclude that TAZ is consistently pro-osteogenic in function, while YAP can exhibit either pro- or anti-osteogenic activity depending on cell type and context. Synthesizing the in vivo data, we conclude that YAP and TAZ combinatorially promote developmental bone formation, bone matrix homeostasis, and endochondral fracture repair by regulating a variety of transcriptional programs depending on developmental stage. Here, we discuss the current understanding of the roles of the transcriptional regulators YAP and TAZ in skeletal development, and provide recommendations for continued study of molecular mechanisms, mechanotransduction, and therapeutic implications for skeletal disease.
Collapse
Affiliation(s)
- Christopher D Kegelman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph M Collins
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily A Eastburn
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel D Boerckel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
55
|
Li R, Ng TS, Garlin MA, Weissleder R, Miller MA. Understanding the in vivo Fate of Advanced Materials by Imaging. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910369. [PMID: 38545084 PMCID: PMC10972611 DOI: 10.1002/adfm.201910369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 11/13/2024]
Abstract
Engineered materials are ubiquitous in biomedical applications ranging from systemic drug delivery systems to orthopedic implants, and their actions unfold across multiple time- and length-scales. The efficacy and safety of biologics, nanomaterials, and macroscopic implants are all dictated by the same general principles of pharmacology as apply to small molecule drugs, comprising how the body affects materials (pharmacokinetics, PK) and conversely how materials affect the body (pharmacodynamics, PD). Imaging technologies play an increasingly insightful role in monitoring both of these processes, often simultaneously: translational macroscopic imaging modalities such as MRI and PET/CT offer whole-body quantitation of biodistribution and structural or molecular response, while ex vivo approaches and optical imaging via in vivo (intravital) microscopy reveal behaviors at subcellular resolution. In this review, the authors survey developments in imaging the in situ behavior of systemically and locally administered materials, with a particular focus on using microscopy to understand transport, target engagement, and downstream host responses at a single-cell level. The themes of microenvironmental influence, controlled drug release, on-target molecular action, and immune response, especially as mediated by macrophages and other myeloid cells are examined. Finally, the future directions of how new imaging technologies may propel efficient clinical translation of next-generation therapeutics and medical devices are proposed.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Thomas S.C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Michelle A. Garlin
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Department of Systems Biology, Harvard Medical School
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
56
|
Lee WC, Ji X, Nissim I, Long F. Malic Enzyme Couples Mitochondria with Aerobic Glycolysis in Osteoblasts. Cell Rep 2020; 32:108108. [PMID: 32905773 PMCID: PMC8183612 DOI: 10.1016/j.celrep.2020.108108] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/24/2020] [Accepted: 08/13/2020] [Indexed: 01/12/2023] Open
Abstract
The metabolic program of osteoblasts, the chief bone-making cells, remains incompletely understood. Here in murine calvarial cells, we establish that osteoblast differentiation under aerobic conditions is coupled with a marked increase in glucose consumption and lactate production but reduced oxygen consumption. As a result, aerobic glycolysis accounts for approximately 80% of the ATP production in mature osteoblasts. In vivo tracing with 13C-labeled glucose in the mouse shows that glucose in bone is readily metabolized to lactate but not organic acids in the TCA cycle. Glucose tracing in osteoblast cultures reveals that pyruvate is carboxylated to form malate integral to the malate-aspartate shuttle. RNA sequencing (RNA-seq) identifies Me2, encoding the mitochondrial NAD-dependent isoform of malic enzyme, as being specifically upregulated during osteoblast differentiation. Knockdown of Me2 markedly reduces the glycolytic flux and impairs osteoblast proliferation and differentiation. Thus, the mitochondrial malic enzyme functionally couples the mitochondria with aerobic glycolysis in osteoblasts.
Collapse
Affiliation(s)
- Wen-Chih Lee
- Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, PA 19104, USA
| | - Xing Ji
- Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, PA 19104, USA
| | - Itzhak Nissim
- Division of Genetics and Metabolism, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, PA 19104, USA; Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
57
|
Zannit HM, Brodt MD, Silva MJ. Proliferating osteoblasts are necessary for maximal bone anabolic response to loading in mice. FASEB J 2020; 34:12739-12750. [PMID: 32744762 DOI: 10.1096/fj.202000614r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Following mechanical loading, osteoblasts may arise via activation, differentiation, or proliferation to form bone. Our objective was to ablate proliferating osteoblast lineage cells in order to investigate the importance of these cells as a source for loading-induced bone formation. We utilized 3.6Col1a1-tk mice in which replicating osteoblast lineage cells can be ablated in an inducible manner using ganciclovir (GCV). Male and female mice were aged to 5- and 12-months and subjected to 5 days of tibial compression. "Experimental" mice were tk-positive, treated with GCV; "control" mice were either tk-negative treated with GCV, or tk-positive treated with PBS. We confirmed that experimental mice had a decrease in tk-positive cells that arose from proliferation. Next, we assessed bone formation after loading to low (7N) and high (11N) forces and observed that periosteal bone formation rate in experimental mice was reduced by approximately 70% for both forces. Remarkably, woven bone formation induced by high-force loading was blocked in experimental mice. Loading-induced lamellar bone formation was diminished but not prevented in experimental mice. We conclude that osteoblast proliferation induced by mechanical loading is a critical source of bone forming osteoblasts for maximal lamellar formation and is essential for woven bone formation.
Collapse
Affiliation(s)
- Heather M Zannit
- Department of Biomedical Engineering, Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, USA
| | - Michael D Brodt
- Department of Biomedical Engineering, Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, USA
| | - Matthew J Silva
- Department of Biomedical Engineering, Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, USA
| |
Collapse
|
58
|
Törnqvist AE, Grahnemo L, Nilsson KH, Funck-Brentano T, Ohlsson C, Movérare-Skrtic S. Wnt16 Overexpression in Osteoblasts Increases the Subchondral Bone Mass but has no Impact on Osteoarthritis in Young Adult Female Mice. Calcif Tissue Int 2020; 107:31-40. [PMID: 32140758 PMCID: PMC7270053 DOI: 10.1007/s00223-020-00682-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/21/2020] [Indexed: 12/22/2022]
Abstract
Epidemiological studies have shown that high bone mineral density (BMD) is associated with an increased risk of osteoarthritis (OA), but the causality of this relationship remains unclear. Both bone mass and OA have been associated with the WNT signaling pathway in genetic studies, there is thus an interest in studying molecular partners of the WNT signaling pathway and OA. Female mice overexpressing WNT16 in osteoblasts (Obl-Wnt16 mice) have an increased bone mass. We aimed to evaluate if the high bone mass in Obl-Wnt16 mice leads to a more severe experimental OA development than in WT control mice. We induced experimental OA in female Obl-Wnt16 and WT control mice by destabilizing the medial meniscus (DMM). The Obl-Wnt16 mice displayed thicker medial and lateral subchondral bone plates as well as increased subchondral trabecular bone volume/tissue volume (BV/TV) but un-altered thickness of articular cartilage compared to WT mice. After DMM surgery, there was no difference in OA severity in the articular cartilage in the knee joint between the Obl-Wnt16 and WT mice. Both the Obl-Wnt16 and WT mice developed osteophytes in the DMM-operated tibia to a similar extent. We conclude that although the Obl-Wnt16 female mice have a high subchondral bone mass due to increased WNT signaling, they do not exhibit a more severe OA phenotype than their WT controls. This demonstrates that high bone mass does not result in an increased risk of OA per se.
Collapse
Affiliation(s)
- Anna E Törnqvist
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden.
- Klin Farm Lab, Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Sahlgrenska University Hospital, Vita Stråket 11, 41345, Gothenburg, Sweden.
| | - Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Karin H Nilsson
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Thomas Funck-Brentano
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
- BIOSCAR, Inserm, Université de Paris, 75010, Paris, France
- Department of Rheumatology, AP-HP, Hopital Lariboisière, 75010, Paris, France
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| |
Collapse
|
59
|
Rytelewski M, Harutyunyan K, Baran N, Mallampati S, Zal MA, Cavazos A, Butler JM, Konoplev S, El Khatib M, Plunkett S, Marszalek JR, Andreeff M, Zal T, Konopleva M. Inhibition of Oxidative Phosphorylation Reverses Bone Marrow Hypoxia Visualized in Imageable Syngeneic B-ALL Mouse Model. Front Oncol 2020; 10:991. [PMID: 32695673 PMCID: PMC7339962 DOI: 10.3389/fonc.2020.00991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Abnormally low level of interstitial oxygen, or hypoxia, is a hallmark of tumor microenvironment and a known promoter of cancer chemoresistance. Inside a solid tumor mass, the hypoxia stems largely from inadequate supply of oxygenated blood through sparse or misshapen tumor vasculature whilst oxygen utilization rates are low in typical tumor's glycolytic metabolism. In acute leukemias, however, markers of intracellular hypoxia such as increased pimonidazole adduct staining and HIF-1α stabilization are observed in advanced leukemic bone marrows (BM) despite an increase in BM vasculogenesis. We utilized intravital fast scanning two-photon phosphorescence lifetime imaging microscopy (FaST-PLIM) in a BCR-ABL B-ALL mouse model to image the extracellular oxygen concentrations (pO2) in leukemic BM, and we related the extracellular oxygen levels to intracellular hypoxia, vascular markers and local leukemia burden. We observed a transient increase in BM pO2 in initial disease stages with intermediate leukemia BM burden, which correlated with an expansion of blood-carrying vascular network in the BM. Yet, we also observed increased formation of intracellular pimonidazole adducts in leukemic BM at the same time. This intermediate stage was followed by a significant decrease of extracellular pO2 and further increase of intracellular hypoxia as leukemia cellularity overwhelmed BM in disease end-stage. Remarkably, treatment of leukemic mice with IACS-010759, a pharmacological inhibitor of mitochondrial Complex I, substantially increased pO2 in the BM with advanced B-ALL, and it alleviated intracellular hypoxia reported by pimonidazole staining. High rates of oxygen consumption by B-ALL cells were confirmed by Seahorse assay including in ex vivo cells. Our results suggest that B-ALL expansion in BM is associated with intense oxidative phosphorylation (OxPhos) leading to the onset of metabolic BM hypoxia despite increased BM vascularization. Targeting mitochondrial respiration may be a novel approach to counteract BM hypoxia in B-ALL and, possibly, tumor hypoxia in other OxPhos-reliant malignancies.
Collapse
Affiliation(s)
- Mateusz Rytelewski
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Karine Harutyunyan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Saradhi Mallampati
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - M Anna Zal
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Antonio Cavazos
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason M Butler
- Weill Cornell Medicine, Medical School of Biological Sciences, Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, United States
| | - Sergej Konoplev
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mirna El Khatib
- Department of Biochemistry and Biophysics, The University of Pennsylvania, Philadelphia, PA, United States
| | - Shane Plunkett
- Department of Biochemistry and Biophysics, The University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph R Marszalek
- TRACTION, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Tomasz Zal
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
60
|
Induction of Osteoblasts by Direct Reprogramming of Mouse Fibroblasts. Methods Mol Biol 2020. [PMID: 32474879 DOI: 10.1007/978-1-0716-0655-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
In the tissue culture dish, osteoblast cells can be derived from mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs) including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). However, differentiation of osteoblasts from PSCs is time-consuming and low yield. In contrast, we identified four osteogenic transcription factors, Runx2, Osx, Dlx5, and ATF4, that rapidly and efficiently reprogram mouse fibroblasts derived from 2.3 kb type I collagen promoter-driven green fluorescent protein (Col2.3GFP) transgenic mice into induced osteoblast cells (iOBs). iOBs exhibit osteoblast morphology, form mineralized nodules, and express Col2.3GFP and gene markers of osteoblast differentiation. Our method provides a robust system to rapidly generate appropriate and abundant osteoblast cells for osteogenesis and bone regeneration study.
Collapse
|
61
|
Yuh DY, Maekawa T, Li X, Kajikawa T, Bdeir K, Chavakis T, Hajishengallis G. The secreted protein DEL-1 activates a β3 integrin-FAK-ERK1/2-RUNX2 pathway and promotes osteogenic differentiation and bone regeneration. J Biol Chem 2020; 295:7261-7273. [PMID: 32280065 PMCID: PMC7247308 DOI: 10.1074/jbc.ra120.013024] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
The integrin-binding secreted protein developmental endothelial locus-1 (DEL-1) is involved in the regulation of both the initiation and resolution of inflammation in different diseases, including periodontitis, an oral disorder characterized by inflammatory bone loss. Here, using a mouse model of bone regeneration and in vitro cell-based mechanistic studies, we investigated whether and how DEL-1 can promote alveolar bone regeneration during resolution of experimental periodontitis. Compared with WT mice, mice lacking DEL-1 or expressing a DEL-1 variant with an Asp-to-Glu substitution in the RGD motif ("RGE point mutant"), which does not interact with RGD-dependent integrins, exhibited defective bone regeneration. Local administration of DEL-1 or of its N-terminal segment containing the integrin-binding RGD motif, but not of the RGE point mutant, reversed the defective bone regeneration in the DEL-1-deficient mice. Moreover, DEL-1 (but not the RGE point mutant) promoted osteogenic differentiation of MC3T3-E1 osteoprogenitor cells or of primary calvarial osteoblastic cells in a β3 integrin-dependent manner. The ability of DEL-1 to promote in vitro osteogenesis, indicated by induction of osteogenic genes such as the master transcription factor Runt-related transcription factor-2 (Runx2) and by mineralized nodule formation, depended on its capacity to induce the phosphorylation of focal adhesion kinase (FAK) and of extracellular signal-regulated kinase 1/2 (ERK1/2). We conclude that DEL-1 can activate a β3 integrin-FAK-ERK1/2-RUNX2 pathway in osteoprogenitors and promote new bone formation in mice. These findings suggest that DEL-1 may be therapeutically exploited to restore bone lost due to periodontitis and perhaps other osteolytic conditions.
Collapse
Affiliation(s)
- Da-Yo Yuh
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tomoki Maekawa
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tetsuhiro Kajikawa
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Khalil Bdeir
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 001069 Dresden, Germany
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
62
|
Fu X, Liu Q, Li C, Li Y, Wang L. Cardiac Fibrosis and Cardiac Fibroblast Lineage-Tracing: Recent Advances. Front Physiol 2020; 11:416. [PMID: 32435205 PMCID: PMC7218116 DOI: 10.3389/fphys.2020.00416] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 01/18/2023] Open
Abstract
Cardiac fibrosis is a common pathological change associated with cardiac injuries and diseases. Even though the accumulation of collagens and other extracellular matrix (ECM) proteins may have some protective effects in certain situations, prolonged fibrosis usually negatively affects cardiac function and often leads to deleterious consequences. While the development of cardiac fibrosis involves several cell types, the major source of ECM proteins is cardiac fibroblast. The high plasticity of cardiac fibroblasts enables them to quickly change their behaviors in response to injury and transition between several differentiation states. However, the study of cardiac fibroblasts in vivo was very difficult due to the lack of specific research tools. The development of cardiac fibroblast lineage-tracing mouse lines has greatly promoted cardiac fibrosis research. In this article, we review the recent cardiac fibroblast lineage-tracing studies exploring the origin of cardiac fibroblasts and their complicated roles in cardiac fibrosis, and briefly discuss the translational potential of basic cardiac fibroblast researches.
Collapse
Affiliation(s)
- Xing Fu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Qianglin Liu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Chaoyang Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Yuxia Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Leshan Wang
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
63
|
Basile M, Marchegiani F, Novak S, Kalajzic I, Di Pietro R. Human amniotic fluid stem cells attract osteoprogenitor cells in bone healing. J Cell Physiol 2020; 235:4643-4654. [PMID: 31650536 PMCID: PMC7018542 DOI: 10.1002/jcp.29342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/30/2019] [Indexed: 02/05/2023]
Abstract
Current treatments of large bone defects are based on autologous or allogenic bone transplantation. Human amniotic fluid stem cells (hAFSCs) were evaluated for their potential in bone regenerative medicine. In this study, hAFSCs were transduced with lentiviral vector harboring red fluorescent protein to investigate their role in the regeneration of critical-size bone defects in calvarial mouse model. To distinguish donor versus recipient cells, a transgenic mouse model carrying GFP fluorescent reporter was used as recipient to follow the fate of hAFSCs transplanted in vivo into Healos® scaffold. Our results showed that transduced hAFSCs can be tracked in vivo directly at the site of transplantation. The presence of GFP positive cells in the scaffold at 3 and 6 weeks after transplantation indicates that donor hAFSCs can recruit host cells during the repair process. These observations help clarify the role of hAFSCs in bone tissue repair.
Collapse
Affiliation(s)
- Mariangela Basile
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Italy
- StemTeCh Group, CAST, G. d’Annunzio University of Chieti-Pescara, Italy
| | - Francesco Marchegiani
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Sanja Novak
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Italy
- StemTeCh Group, CAST, G. d’Annunzio University of Chieti-Pescara, Italy
| |
Collapse
|
64
|
Yu L, Rowe DW, Perera IP, Zhang J, Suib SL, Xin X, Wei M. Intrafibrillar Mineralized Collagen-Hydroxyapatite-Based Scaffolds for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18235-18249. [PMID: 32212615 DOI: 10.1021/acsami.0c00275] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As one of the major challenges in the field of tissue engineering, large skeletal defects have attracted wide attention from researchers. Collagen (Col) and hydroxyapatite (HA), the most abundant protein and the main component in natural bone, respectively, are usually used as a biomimetic composite material in tissue engineering due to their excellent biocompatibility and biodegradability. In this study, novel intrafibrillar mineralized Col-HA-based scaffolds, constructed in either cellular or lamellar microstructures, were established through a biomimetic method to enhance the new bone-regenerating capability of tissue engineering scaffolds. Moreover, iron (Fe) and manganese (Mn), two of the essential trace elements in the body, were successfully incorporated into the lamellar scaffold to further improve the osteoinductivity of these biomaterials. It was found that the lamellar scaffolds demonstrated better osteogenic abilities compared to both in-house and commercial Col-HA-based cellular scaffolds in vitro and in vivo. Meanwhile, Fe/Mn incorporation further amplified the osteogenic promotion of the lamellar scaffolds. More importantly, a synergistic effect was observed in the Fe and Mn dual-element-incorporated lamellar scaffolds for both in vitro osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and in vivo bone regeneration loaded with fresh bone marrow cells. This study provides a simple but practical strategy for the creation of functional scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06032, United States
| | | | | | | | - Xiaonan Xin
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06032, United States
| | - Mei Wei
- Department of Mechanical Engineering, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
65
|
Zhong L, Yao L, Tower RJ, Wei Y, Miao Z, Park J, Shrestha R, Wang L, Yu W, Holdreith N, Huang X, Zhang Y, Tong W, Gong Y, Ahn J, Susztak K, Dyment N, Li M, Long F, Chen C, Seale P, Qin L. Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. eLife 2020; 9:e54695. [PMID: 32286228 PMCID: PMC7220380 DOI: 10.7554/elife.54695] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/11/2020] [Indexed: 12/14/2022] Open
Abstract
Bone marrow mesenchymal lineage cells are a heterogeneous cell population involved in bone homeostasis and diseases such as osteoporosis. While it is long postulated that they originate from mesenchymal stem cells, the true identity of progenitors and their in vivo bifurcated differentiation routes into osteoblasts and adipocytes remain poorly understood. Here, by employing large scale single cell transcriptome analysis, we computationally defined mesenchymal progenitors at different stages and delineated their bi-lineage differentiation paths in young, adult and aging mice. One identified subpopulation is a unique cell type that expresses adipocyte markers but contains no lipid droplets. As non-proliferative precursors for adipocytes, they exist abundantly as pericytes and stromal cells that form a ubiquitous 3D network inside the marrow cavity. Functionally they play critical roles in maintaining marrow vasculature and suppressing bone formation. Therefore, we name them marrow adipogenic lineage precursors (MALPs) and conclude that they are a newly identified component of marrow adipose tissue.
Collapse
Affiliation(s)
- Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Orthopaedics, The First Hospital of China Medical UniversityShenyangChina
| | - Robert J Tower
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yulong Wei
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zhen Miao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Jihwan Park
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of PennsylvaniaPhiladelphiaUnited States
| | - Rojesh Shrestha
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of PennsylvaniaPhiladelphiaUnited States
| | - Luqiang Wang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Orthopaedics, Shandong University Qilu Hospital, Shandong UniversityJinanChina
| | - Wei Yu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Nicholas Holdreith
- Division of Hematology, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Xiaobin Huang
- Department of Pediatrics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Yejia Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaUnited States
| | - Wei Tong
- Division of Hematology, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Yanqing Gong
- Division of Transnational Medicine and Human Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jaimo Ahn
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of PennsylvaniaPhiladelphiaUnited States
| | - Nathanial Dyment
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery/Pharmacology, University of Pennsylvania, School of Dental MedicinePhiladelphiaUnited States
| | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
66
|
Zhu H, Swami S, Yang P, Shapiro F, Wu JY. Direct Reprogramming of Mouse Fibroblasts into Functional Osteoblasts. J Bone Miner Res 2020; 35:698-713. [PMID: 31793059 PMCID: PMC11376108 DOI: 10.1002/jbmr.3929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/15/2019] [Accepted: 11/24/2019] [Indexed: 01/20/2023]
Abstract
Although induced pluripotent stem cells hold promise as a potential source of osteoblasts for skeletal regeneration, the induction of pluripotency followed by directed differentiation into osteoblasts is time consuming and low yield. In contrast, direct lineage reprogramming without an intervening stem/progenitor cell stage would be a more efficient approach to generate osteoblasts. We screened combinations of osteogenic transcription factors and identified four factors, Runx2, Osx, Dlx5, and ATF4, that rapidly and efficiently reprogram mouse fibroblasts derived from 2.3 kb type I collagen promoter-driven green fluorescent protein (Col2.3GFP) transgenic mice into induced osteoblast cells (iOBs). iOBs exhibit osteoblast morphology, form mineralized nodules, and express Col2.3GFP and gene markers of osteoblast differentiation. The global transcriptome profiles validated that iOBs resemble primary osteoblasts. Genomewide DNA methylation analysis demonstrates that within differentially methylated loci, the methylation status of iOBs more closely resembles primary osteoblasts than mouse fibroblasts. We further demonstrate that Col2.3GFP+ iOBs have transcriptome profiles similar to GFP+ cells harvested from Col2.3GFP mouse bone chips. Functionally, Col2.3GFP+ iOBs form mineralized bone structures after subcutaneous implantation in immunodeficient mice and contribute to bone healing in a tibia bone fracture model. These findings provide an approach to derive and study osteoblasts for skeletal regeneration. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hui Zhu
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Srilatha Swami
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Pinglin Yang
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Geriatric Research Education and Clinical Center, Palo Alto, CA, USA
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Frederic Shapiro
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joy Y Wu
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
67
|
Root SH, Wee NKY, Novak S, Rosen CJ, Baron R, Matthews BG, Kalajzic I. Perivascular osteoprogenitors are associated with transcortical channels of long bones. Stem Cells 2020; 38:769-781. [PMID: 32053258 DOI: 10.1002/stem.3159] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
Bone remodeling and regeneration are dependent on resident stem/progenitor cells with the ability to replenish mature osteoblasts and repair the skeleton. Using lineage tracing approaches, we identified a population of Dmp1+ cells that reside within cortical bone and are distinct from osteocytes. Our aims were to characterize this stromal population of transcortical perivascular cells (TPCs) in their resident niche and evaluate their osteogenic potential. To distinguish this population from osteoblasts/osteocytes, we crossed mice containing inducible DMP1CreERT2/Ai9 Tomato reporter (iDMP/T) with Col2.3GFP reporter (ColGFP), a marker of osteoblasts and osteocytes. We observed iDMP/T+;ColGFP- TPCs within cortical bone following tamoxifen injection. These cells were perivascular and located within transcortical channels. Ex vivo bone outgrowth cultures showed TPCs migrated out of the channels onto the plate and expressed stem cell markers such as Sca1, platelet derived growth factor receptor beta (PDGFRβ), and leptin receptor. In a cortical bone transplantation model, TPCs migrate from their vascular niche within cortical bone and contribute to new osteoblast formation and bone tube closure. Treatment with intermittent parathyroid hormone increased TPC number and differentiation. TPCs were unable to differentiate into adipocytes in the presence of rosiglitazone in vitro or in vivo. Altogether, we have identified and characterized a novel stromal lineage-restricted osteoprogenitor that is associated with transcortical vessels of long bones. Functionally, we have demonstrated that this population can migrate out of cortical bone channels, expand, and differentiate into osteoblasts, therefore serving as a source of progenitors contributing to new bone formation.
Collapse
Affiliation(s)
- Sierra H Root
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, USA
| | - Natalie K Y Wee
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, USA
| | - Sanja Novak
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, USA
| | - Clifford J Rosen
- Department of Medicine, Tufts University School of Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Brya G Matthews
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, USA.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
68
|
Matthews BG, Wee NKY, Widjaja VN, Price JS, Kalajzic I, Windahl SH. αSMA Osteoprogenitor Cells Contribute to the Increase in Osteoblast Numbers in Response to Mechanical Loading. Calcif Tissue Int 2020; 106:208-217. [PMID: 31673746 PMCID: PMC6995756 DOI: 10.1007/s00223-019-00624-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/11/2019] [Indexed: 01/11/2023]
Abstract
Bone is a dynamic tissue that site-specifically adapts to the load that it experiences. In response to increasing load, the cortical bone area is increased, mainly through enhanced periosteal bone formation. This increase in area is associated with an increase in the number of bone-forming osteoblasts; however, the origin of the cells involved remains unclear. Alpha-smooth muscle actin (αSMA) is a marker of early osteoprogenitor cells in the periosteum, and we hypothesized that the new osteoblasts that are activated by loading could originate from αSMA-expressing cells. Therefore, we used an in vivo fate-mapping approach in an established axial loading model to investigate the role of αSMA-expressing cells in the load-induced increase in osteoblasts. Histomorphometric analysis was applied to measure the number of cells of different origin on the periosteal surface in the most load-responsive region of the mouse tibia. A single loading session failed to increase the number of periosteal αSMA-expressing cells and osteoblasts. However, in response to multiple episodes of loading, the caudal, but not the cranial, periosteal surface was lined with an increased number of osteoblasts originating from αSMA-expressing cells 5 days after the initial loading session. The proportion of osteoblasts derived from αSMA-labeled progenitors increased by 70% (p < 0.05), and the proportion of αSMA-labeled cells that had differentiated into osteoblasts was doubled. We conclude that αSMA-expressing osteoprogenitors can differentiate and contribute to the increase in periosteal osteoblasts induced by mechanical loading in a site-specific manner.
Collapse
Affiliation(s)
- B G Matthews
- Department of Reconstructive Sciences, UConn Health, Farmington, CT, USA
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - N K Y Wee
- Department of Reconstructive Sciences, UConn Health, Farmington, CT, USA
| | - V N Widjaja
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - J S Price
- School of Veterinary Sciences, University of Bristol, Bristol, UK
- Royal Agricultural University, Cirencester, UK
| | - I Kalajzic
- Department of Reconstructive Sciences, UConn Health, Farmington, CT, USA
| | - S H Windahl
- School of Veterinary Sciences, University of Bristol, Bristol, UK.
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
69
|
Simões FC, Cahill TJ, Kenyon A, Gavriouchkina D, Vieira JM, Sun X, Pezzolla D, Ravaud C, Masmanian E, Weinberger M, Mayes S, Lemieux ME, Barnette DN, Gunadasa-Rohling M, Williams RM, Greaves DR, Trinh LA, Fraser SE, Dallas SL, Choudhury RP, Sauka-Spengler T, Riley PR. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat Commun 2020; 11:600. [PMID: 32001677 PMCID: PMC6992796 DOI: 10.1038/s41467-019-14263-2] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
Canonical roles for macrophages in mediating the fibrotic response after a heart attack include extracellular matrix turnover and activation of cardiac fibroblasts to initiate collagen deposition. Here we reveal that macrophages directly contribute collagen to the forming post-injury scar. Unbiased transcriptomics shows an upregulation of collagens in both zebrafish and mouse macrophages following heart injury. Adoptive transfer of macrophages, from either collagen-tagged zebrafish or adult mouse GFPtpz-collagen donors, enhances scar formation via cell autonomous production of collagen. In zebrafish, the majority of tagged collagen localises proximal to the injury, within the overlying epicardial region, suggesting a possible distinction between macrophage-deposited collagen and that predominantly laid-down by myofibroblasts. Macrophage-specific targeting of col4a3bpa and cognate col4a1 in zebrafish significantly reduces scarring in cryoinjured hosts. Our findings contrast with the current model of scarring, whereby collagen deposition is exclusively attributed to myofibroblasts, and implicate macrophages as direct contributors to fibrosis during heart repair. Macrophages mediate the fibrotic response after a heart attack by extracellular matrix turnover and cardiac fibroblasts activation. Here the authors identify an evolutionarily-conserved function of macrophages that contributes directly to the forming post-injury scar through cell-autonomous deposition of collagen.
Collapse
Affiliation(s)
- Filipa C Simões
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK
| | - Thomas J Cahill
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK.,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Amy Kenyon
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Daria Gavriouchkina
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.,Molecular Genetics Unit, Okinawa Institute of Science & Technology, 1919-1 Tancha, Onna, 904-0495, Japan
| | - Joaquim M Vieira
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK
| | - Xin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK
| | - Daniela Pezzolla
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christophe Ravaud
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK
| | - Eva Masmanian
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Michael Weinberger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Sarah Mayes
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | | | - Damien N Barnette
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Ruth M Williams
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Le A Trinh
- Translational Imaging Centre, University of Southern California, Los Angeles, CA, USA
| | - Scott E Fraser
- Translational Imaging Centre, University of Southern California, Los Angeles, CA, USA
| | - Sarah L Dallas
- School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK. .,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
70
|
Soliman H, Paylor B, Scott RW, Lemos DR, Chang C, Arostegui M, Low M, Lee C, Fiore D, Braghetta P, Pospichalova V, Barkauskas CE, Korinek V, Rampazzo A, MacLeod K, Underhill TM, Rossi FMV. Pathogenic Potential of Hic1-Expressing Cardiac Stromal Progenitors. Cell Stem Cell 2020; 26:205-220.e8. [PMID: 31978365 DOI: 10.1016/j.stem.2019.12.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 10/02/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
The cardiac stroma contains multipotent mesenchymal progenitors. However, lineage relationships within cardiac stromal cells are poorly defined. Here, we identified heart-resident PDGFRa+ SCA-1+ cells as cardiac fibro/adipogenic progenitors (cFAPs) and show that they respond to ischemic damage by generating fibrogenic cells. Pharmacological blockade of this differentiation step with an anti-fibrotic tyrosine kinase inhibitor decreases post-myocardial infarction (post-MI) remodeling and leads to improvement in cardiac function. In the undamaged heart, activation of cFAPs through lineage-specific deletion of the gene encoding the quiescence-associated factor HIC1 reveals additional pathogenic potential, causing fibrofatty infiltration within the myocardium and driving major pathological features pathognomonic in arrhythmogenic cardiomyopathy (AC). In this regard, cFAPs contribute to multiple pathogenic cell types within cardiac tissue and therapeutic strategies aimed at modifying their activity are expected to have tremendous benefit for the treatment of diverse cardiac diseases.
Collapse
Affiliation(s)
- Hesham Soliman
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Faculty of Pharmaceutical Sciences, Minia University, Minia, Egypt
| | - Ben Paylor
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - R Wilder Scott
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | | | - ChihKai Chang
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Martin Arostegui
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Marcela Low
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Christina Lee
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Daniela Fiore
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza, University of Rome, Viale Regina Elana 324, 00161 Rome, Italy
| | - Paola Braghetta
- Department of Biology, School of Science, University of Padova, Via 8 Febbraio 2, 35122 Padova, Italy
| | - Vendula Pospichalova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | - Christina E Barkauskas
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Vladimir Korinek
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | - Alessandra Rampazzo
- Department of Biology, School of Science, University of Padova, Via 8 Febbraio 2, 35122 Padova, Italy
| | - Kathleen MacLeod
- Molecular and Cellular Pharmacology Research Group, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - T Michael Underhill
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Fabio M V Rossi
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
71
|
Daneshmandi L, Laurencin CT. Regenerative engineered vascularized bone mediated by calcium peroxide. J Biomed Mater Res A 2020; 108:1045-1057. [PMID: 31925886 DOI: 10.1002/jbm.a.36879] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022]
Abstract
One of the main challenges hindering the clinical translation of bone tissue engineering scaffolds is the lack of establishment of functional vasculature. Insufficient vascularization and poor oxygen supply limit cell survival within the constructs resulting in poor osseointegration with the host tissue and eventually leading to inadequate bone regeneration. Inspired by cues from developmental biology, we regenerative engineered a composite matrix by incorporating calcium peroxide (CaO2 ) into poly(lactide-co-glycolide) (PLGA) microsphere-based matrices and sought to assess whether the delivery of the byproducts of CaO2 decomposition, namely O2 , Ca2+ , and H2 O2 could enhance the regeneration of vascularized bone tissue. The composite microspheres were successfully fabricated via the oil-in-water emulsion method. The presence and encapsulation of CaO2 was confirmed using scanning electron microscopy, energy dispersive x-ray spectroscopy, thermogravimetric analysis, and X-ray powder diffraction. The microspheres were further heat sintered into three-dimensional porous scaffolds and characterized for their degradation and release of byproducts. The in vitro cytocompatibility of the matrices and their ability to support osteogenic differentiation was confirmed using human adipose-derived stem cells. Lastly, an in vivo study was performed in a mouse critical-sized calvarial defect model to evaluate the capacity of these matrices in supporting vascularized bone regeneration. Results demonstrated that the presence of CaO2 increased cellularization and biological activity throughout the matrices. There was greater migration of host cells to the interior of the matrices and greater survival and persistence of donor cells after 8 weeks, which in synergy with the composite matrices led to enhanced vascularized bone regeneration.
Collapse
Affiliation(s)
- Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut.,Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut.,Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut.,Institute of Materials Science, University of Connecticut, Storrs, Connecticut.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
72
|
Zujur D, Kanke K, Onodera S, Tani S, Lai J, Azuma T, Xin X, Lichtler AC, Rowe DW, Saito T, Tanaka S, Masaki H, Nakauchi H, Chung UI, Hojo H, Ohba S. Stepwise strategy for generating osteoblasts from human pluripotent stem cells under fully defined xeno-free conditions with small-molecule inducers. Regen Ther 2020; 14:19-31. [PMID: 31988991 PMCID: PMC6965656 DOI: 10.1016/j.reth.2019.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/20/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023] Open
Abstract
Clinically relevant human induced pluripotent stem cell (hiPSC) derivatives require efficient protocols to differentiate hiPSCs into specific lineages. Here we developed a fully defined xeno-free strategy to direct hiPSCs toward osteoblasts within 21 days. The strategy successfully achieved the osteogenic induction of four independently derived hiPSC lines by a sequential use of combinations of small-molecule inducers. The induction first generated mesodermal cells, which subsequently recapitulated the developmental expression pattern of major osteoblast genes and proteins. Importantly, Col2.3-Cherry hiPSCs subjected to this strategy strongly expressed the cherry fluorescence that has been observed in bone-forming osteoblasts in vivo. Moreover, the protocol combined with a three-dimensional (3D) scaffold was suitable for the generation of a xeno-free 3D osteogenic system. Thus, our strategy offers a platform with significant advantages for bone biology studies and it will also contribute to clinical applications of hiPSCs to skeletal regenerative medicine.
Collapse
Affiliation(s)
- Denise Zujur
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kosuke Kanke
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Shoichiro Tani
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jenny Lai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Xiaonan Xin
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Alexander C Lichtler
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - David W Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Taku Saito
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Masaki
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ung-Il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hironori Hojo
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Ohba
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
73
|
Sinder BP, Novak S, Wee NKY, Basile M, Maye P, Matthews BG, Kalajzic I. Engraftment of skeletal progenitor cells by bone-directed transplantation improves osteogenesis imperfecta murine bone phenotype. Stem Cells 2019; 38:530-541. [PMID: 31859429 DOI: 10.1002/stem.3133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
Abstract
Osteogenesis imperfecta (OI) is a genetic disorder most commonly caused by mutations associated with type I collagen, resulting in a defective collagen bone matrix. Current treatments for OI focus on pharmaceutical strategies to increase the amount of defective bone matrix, but do not address the underlying collagen defect. Introducing healthy donor stem cells that differentiate into osteoblasts producing normal collagen in OI patients has the potential to increase bone mass and correct the mutant collagen matrix. In this study, donor bone marrow stromal cells (BMSCs, also known as bone marrow mesenchymal stem cells) expressing both αSMACreERT2/Ai9 progenitor reporter and osteoblast reporter Col2.3GFP were locally transplanted into the femur of OI murine (OIM) mice. One month post-transplantation, 18% of the endosteal surface was lined by donor Col2.3GFP expressing osteoblasts indicating robust engraftment. Long-term engraftment in the marrow was observed 3 and 6 months post-transplantation. The presence of Col1a2-expressing donor cell-derived cortical bone matrix was detected in transplanted OIM femurs. Local transplantation of BMSCs increased cortical thickness (+12%), the polar moment of inertia (+14%), bone strength (+30%), and stiffness (+30%) 3 months post-transplantation. Engrafted cells expressed progenitor markers CD51 and Sca-1 up to 3 months post-transplantation. Most importantly, 3 months post-transplantation donor cells maintained the ability to differentiate into Col2.3GFP+ osteoblasts in vitro, and in vivo following secondary transplantation into OIM animals. Locally transplanted BMSCs can improve cortical structure and strength, and persist as continued source of osteoblast progenitors in the OIM mouse for at least 6 months.
Collapse
Affiliation(s)
- Benjamin P Sinder
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| | - Sanja Novak
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| | - Natalie K Y Wee
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| | - Mariangela Basile
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| | - Peter Maye
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| | - Brya G Matthews
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| |
Collapse
|
74
|
Notch signaling is involved in Fgf23 upregulation in osteocytes. Biochem Biophys Res Commun 2019; 518:233-238. [PMID: 31420162 DOI: 10.1016/j.bbrc.2019.08.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023]
Abstract
Fgf23 acts as a phosphaturic factor secreted from osteocytes in bone, but the mechanism regulating Fgf23 is not fully understood. Here, we showed the colocalization of Fgf23, Notch, and Hes1, a downstream target of Notch signaling, in numerous osteocytes in cortical bone of femur in wild-type mice. We generated NICD (Notch intracellular domain)-transgenic mice driven by a 2.3 kb collagenα1 (I) (Col1a1) promoter fragment. Western blot and RT-PCR analyses revealed upregulation of Notch protein and mRNA levels in the bones of transgenic mice compared with those in wild-type mice. In the transgenic mice, immunohistochemical studies demonstrated that numerous osteocytes and osteoblasts express Notch in the rib, whereas only osteoblasts exhibit Notch in the femur. NICD-transgenic mice were characterized by upregulation of Fgf23 mRNA levels in the rib but not in the femur compared with that in wild type mice. These mice exhibited dwarfism associated with an osteomalacia phenotype. The expression of Alpl, Col1a1, and Bglap decreased in NICD-transgenic mice compared with wild-type mice. UMR-106 cells cultured on Jagged1-immobilized wells significantly increased Fgf23 expressions associating with upregulation of Hes1 and Hey1. These results imply that Notch signaling is a positive regulator for Fgf23 expression in osteocytes.
Collapse
|
75
|
Vijaykumar A, Ghassem-Zadeh S, Vidovic-Zdrilic I, Komitas K, Adameyko I, Krivanek J, Fu Y, Maye P, Mina M. Generation and characterization of DSPP-Cerulean/DMP1-Cherry reporter mice. Genesis 2019; 57:e23324. [PMID: 31271259 PMCID: PMC6939995 DOI: 10.1002/dvg.23324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022]
Abstract
To gain a better understanding of the progression of progenitor cells in the odontoblast lineage, we have examined and characterized the expression of a series of GFP reporters during odontoblast differentiation. However, previously reported GFP reporters (pOBCol2.3-GFP, pOBCol3.6-GFP, and DMP1-GFP), similar to the endogenous proteins, are also expressed by bone-forming cells, which made it difficult to delineate the two cell types in various in vivo and in vitro studies. To overcome these difficulties we generated DSPP-Cerulean/DMP1-Cherry transgenic mice using a bacterial recombination strategy with the mouse BAC clone RP24-258g7. We have analyzed the temporal and spatial expression of both transgenes in tooth and bone in vivo and in vitro. This transgenic animal enabled us to visualize the interactions between odontoblasts and surrounding tissues including dental pulp, ameloblasts and cementoblasts. Our studies showed that DMP1-Cherry, similar to Dmp1, was expressed in functional and fully differentiated odontoblasts as well as osteoblasts, osteocytes and cementoblasts. Expression of DSPP-Cerulean transgene was limited to functional and fully differentiated odontoblasts and correlated with the expression of Dspp. This transgenic animal can help in the identification and isolation of odontoblasts at later stages of differentiation and help in better understanding of developmental disorders in dentin and odontoblasts.
Collapse
Affiliation(s)
- Anushree Vijaykumar
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Sean Ghassem-Zadeh
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Ivana Vidovic-Zdrilic
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Karren Komitas
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jan Krivanek
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Yu Fu
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Peter Maye
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| | - Mina Mina
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, Connecticut
| |
Collapse
|
76
|
Böhm AM, Dirckx N, Tower RJ, Peredo N, Vanuytven S, Theunis K, Nefyodova E, Cardoen R, Lindner V, Voet T, Van Hul M, Maes C. Activation of Skeletal Stem and Progenitor Cells for Bone Regeneration Is Driven by PDGFRβ Signaling. Dev Cell 2019; 51:236-254.e12. [PMID: 31543445 DOI: 10.1016/j.devcel.2019.08.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/27/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022]
Abstract
Bone repair and regeneration critically depend on the activation and recruitment of osteogenesis-competent skeletal stem and progenitor cells (SSPCs). Yet, the origin and triggering cues for SSPC propagation and migration remain largely elusive. Through bulk and single-cell transcriptome profiling of fetal osterix (Osx)-expressing cells, followed by lineage mapping, cell tracing, and conditional mouse mutagenesis, we here identified PDGF-PDGFRβ signaling as critical functional mediator of SSPC expansion, migration, and angiotropism during bone repair. Our data show that cells marked by a history of Osx expression, including those arising in fetal or early postnatal periods, represent or include SSPCs capable of delivering all the necessary differentiated progeny to repair acute skeletal injuries later in life, provided that they express functional PDGFRβ. Mechanistically, MMP-9 and VCAM-1 appear to be involved downstream of PDGF-PDGFRβ. Our results reveal considerable cellular dynamism in the skeletal system and show that activation and recruitment of SSPCs for bone repair require functional PDGFRβ signaling.
Collapse
Affiliation(s)
- Anna-Marei Böhm
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Naomi Dirckx
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Robert J Tower
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Nicolas Peredo
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Sebastiaan Vanuytven
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Koen Theunis
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Elena Nefyodova
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Ruben Cardoen
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Volkhard Lindner
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Matthias Van Hul
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
77
|
Serowoky MA, Patel DD, Hsieh JW, Mariani FV. The use of commercially available adhesive tapes to preserve cartilage and bone tissue integrity during cryosectioning. Biotechniques 2019; 65:191-196. [PMID: 30284932 DOI: 10.2144/btn-2018-0021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of fluorescent tags to monitor protein expression and to lineage-trace cells has become a standard complement to standard histological techniques in the fields of embryology, pathology and regenerative medicine. Unfortunately, traditional paraffin embedding protocols can substantially diminish or abolish the native emission signal of the fluorophore of interest. To preserve the fluorescent signal, an alternative is to use cryosectioning; however, this can often result in undesirable artefacts such as tearing or shattering - particularly for mineralized tissues such as bone and cartilage. Here we present a method of using a commercially available tape to stabilize murine femur tissue, thus allowing for cryosectioning of cartilage and bone tissues carrying fluorescent tags without the need for demineralization.
Collapse
Affiliation(s)
- Maxwell A Serowoky
- Department of Stem Cell Biology & Regenerative Medicine, Broad Center for Regenerative Medicine & Stem Cell Research, Keck School of Medicine, University of Southern California, CA, USA
| | - Divya D Patel
- Department of Stem Cell Biology & Regenerative Medicine, Broad Center for Regenerative Medicine & Stem Cell Research, Keck School of Medicine, University of Southern California, CA, USA
| | - Jason W Hsieh
- Department of Stem Cell Biology & Regenerative Medicine, Broad Center for Regenerative Medicine & Stem Cell Research, Keck School of Medicine, University of Southern California, CA, USA
| | - Francesca V Mariani
- Department of Stem Cell Biology & Regenerative Medicine, Broad Center for Regenerative Medicine & Stem Cell Research, Keck School of Medicine, University of Southern California, CA, USA
| |
Collapse
|
78
|
Abstract
Over the past two decades there have been unprecedented advances in the capabilities for live cell imaging using light and confocal microscopy. Together with the discovery of green fluorescent protein and its derivatives and the development of a vast array of fluorescent imaging probes and conjugates, it is now possible to image virtually any intracellular or extracellular protein or structure. Traditional static imaging of fixed bone cells and tissues takes a snapshot view of events at a specific time point, but can often miss the dynamic aspects of the events being investigated. This chapter provides an overview of the application of live cell imaging approaches for the study of bone cells and bone organ cultures. Rather than emphasizing technical aspects of the imaging equipment, which may vary in different laboratories, we focus on what we consider to be the important principles that are of most practical use for an investigator setting up these techniques in their own laboratory. We also provide detailed protocols that our laboratory has used for live imaging of bone cell and organ cultures.
Collapse
Affiliation(s)
- Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA.
| | - Patricia A Veno
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| |
Collapse
|
79
|
Abstract
The tumour microenvironment, also termed the tumour stroma or tumour mesenchyme, includes fibroblasts, immune cells, blood vessels and the extracellular matrix and substantially influences the initiation, growth and dissemination of gastrointestinal cancer. Cancer-associated fibroblasts (CAFs) are one of the critical components of the tumour mesenchyme and not only provide physical support for epithelial cells but also are key functional regulators in cancer, promoting and retarding tumorigenesis in a context-dependent manner. In this Review, we outline the emerging understanding of gastrointestinal CAFs with a particular emphasis on their origin and heterogeneity, as well as their function in cancer cell proliferation, tumour immunity, angiogenesis, extracellular matrix remodelling and drug resistance. Moreover, we discuss the clinical implications of CAFs as biomarkers and potential targets for prevention and treatment of patients with gastrointestinal cancer.
Collapse
|
80
|
Phosphate graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration. Proc Natl Acad Sci U S A 2019; 116:4855-4860. [PMID: 30796184 DOI: 10.1073/pnas.1815434116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Synthetic, resorbable scaffolds for bone regeneration have potential to transform the clinical standard of care. Here, we demonstrate that functional graphenic materials (FGMs) could serve as an osteoinductive scaffold: recruiting native cells to the site of injury and promoting differentiation into bone cells. By invoking a Lewis acid-catalyzed Arbuzov reaction, we are able to functionalize graphene oxide (GO) to produce phosphate graphenes (PGs) with unprecedented control of functional group density, mechanical properties, and counterion identity. In aqueous environments, PGs release inducerons, including Ca2+ and PO4 3- Calcium phosphate graphene (CaPG) intrinsically induces osteogenesis in vitro and in the presence of bone marrow stromal cells (BMSCs), can induce ectopic bone formation in vivo. Additionally, an FGM can be made by noncovalently loading GO with the growth factor recombinant human bone morphogenetic protein 2 (rhBMP-2), producing a scaffold that induces ectopic bone formation with or without BMSCs. The FGMs reported here are intrinsically inductive scaffolds with significant potential to revolutionize the regeneration of bone.
Collapse
|
81
|
Wang X, Matthews BG, Yu J, Novak S, Grcevic D, Sanjay A, Kalajzic I. PDGF Modulates BMP2-Induced Osteogenesis in Periosteal Progenitor Cells. JBMR Plus 2019; 3:e10127. [PMID: 31131345 PMCID: PMC6524680 DOI: 10.1002/jbm4.10127] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/23/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
BMPs are used in various clinical applications to promote bone formation. The limited success of the BMPs in clinical settings and supraphysiological doses required for their effects prompted us to evaluate the influence of other signaling molecules, specifically platelet‐derived growth factor (PDGF) on BMP2‐induced osteogenesis. Periosteal cells make a major contribution to fracture healing. We detected broad expression of PDGF receptor beta (PDGFRβ) within the intact periosteum and healing callus during fracture repair. In vitro, periosteum‐derived progenitor cells were highly responsive to PDGF as demonstrated by increased proliferation and decreased apoptosis. However, PDGF blocked BMP2‐induced osteogenesis by inhibiting the canonical BMP2/Smad pathway and downstream target gene expression. This effect is mediated via PDGFRβ and involves ERK1/2 MAPK and PI3K/AKT signaling pathways. Therapeutic targeting of the PDGFRβ pathway in periosteum‐mediated bone repair might have profound implications in the treatment of bone disease in the future. © 2018 The Authors JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xi Wang
- Department of Reconstructive Sciences UConn Health Farmington CT USA
| | - Brya G Matthews
- Department of Reconstructive Sciences UConn Health Farmington CT USA.,Department of Molecular Medicine and Pathology University of Auckland Auckland New Zealand
| | - Jungeun Yu
- Department of Orthopedic Surgery UConn Health Farmington CT USA
| | - Sanja Novak
- Department of Reconstructive Sciences UConn Health Farmington CT USA
| | - Danka Grcevic
- Department of Physiology and Immunology School of Medicine University of Zagreb Zagreb Croatia
| | - Archana Sanjay
- Department of Orthopedic Surgery UConn Health Farmington CT USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences UConn Health Farmington CT USA
| |
Collapse
|
82
|
Scheiber AL, Guess AJ, Kaito T, Abzug JM, Enomoto-Iwamoto M, Leikin S, Iwamoto M, Otsuru S. Endoplasmic reticulum stress is induced in growth plate hypertrophic chondrocytes in G610C mouse model of osteogenesis imperfecta. Biochem Biophys Res Commun 2018; 509:235-240. [PMID: 30579604 DOI: 10.1016/j.bbrc.2018.12.111] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
Abstract
Osteogenesis imperfecta (OI) is a hereditary bone disorder most commonly caused by autosomal dominant mutations in genes encoding type I collagen. In addition to bone fragility, patients suffer from impaired longitudinal bone growth. It has been demonstrated that in OI, an accumulation of mutated type I collagen in the endoplasmic reticulum (ER) induces ER stress in osteoblasts, causing osteoblast dysfunction leading to bone fragility. We hypothesize that ER stress is also induced in the growth plate where bone growth is initiated, and examined a mouse model of dominant OI that carries a G610C mutation in the procollagen α2 chain. The results demonstrated that G610C OI mice had significantly shorter long bones with growth plate abnormalities including elongated total height and hypertrophic zone. Moreover, we found that mature hypertrophic chondrocytes expressed type I collagen and ER dilation was more pronounced compared to wild type littermates. The results from in vitro chondrocyte cultures demonstrated that the maturation of G610C OI hypertrophic chondrocytes was significantly suppressed and ER stress related genes were upregulated. Given that the alteration of hypertrophic chondrocyte activity often causes dwarfism, our findings suggest that hypertrophic chondrocyte dysfunction induced by ER stress may be an underlying cause of growth deficiency in G610C OI mice.
Collapse
Affiliation(s)
- Amanda L Scheiber
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Adam J Guess
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Joshua M Abzug
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sergey Leikin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, 20892, USA
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| |
Collapse
|
83
|
Wulff BC, Pappa NK, Wilgus TA. Interleukin-33 encourages scar formation in murine fetal skin wounds. Wound Repair Regen 2018; 27:19-28. [PMID: 30368969 DOI: 10.1111/wrr.12687] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/11/2023]
Abstract
The magnitude of the inflammatory response after skin injury is important for determining whether wounds in developing fetal skin will heal scarlessly (minimal inflammation) or with prominent scars (robust inflammation). One class of inflammatory mediators gaining attention for their role in wound inflammation is alarmins. In the current study, the alarmin interleukin-33 (IL-33) was examined in a mouse model of fetal wound healing. IL-33 expression was elevated in scar-forming embryonic day 18 wounds compared to scarless embryonic day 15 wounds. Furthermore, injection of IL-33 into embryonic day 15 wounds caused scarring when wounds were analyzed at 7 days postwounding. The introduction of IL-33 into embryonic day 15 wounds did not induce statistically significant changes in the number of neutrophils, mast cells, or macrophages in vivo. However, IL-33 treatment enhanced collagen expression in cultured fibroblasts derived from adult and fetal murine skin, suggesting that IL-33 may directly stimulate fibroblasts. In vitro studies suggested that the stimulation of collagen production by IL-33 in fibroblasts was partially dependent on NF-κB activation. Overall, the data suggest an association between IL-33 and scar formation in fetal wounds.
Collapse
Affiliation(s)
- Brian C Wulff
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Nicholas K Pappa
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Traci A Wilgus
- Department of Pathology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
84
|
NUMB maintains bone mass by promoting degradation of PTEN and GLI1 via ubiquitination in osteoblasts. Bone Res 2018; 6:32. [PMID: 30455992 PMCID: PMC6226489 DOI: 10.1038/s41413-018-0030-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 02/05/2023] Open
Abstract
The adaptor protein NUMB is involved in asymmetric division and cell fate determination and recognized as an antagonist of Notch. Previous studies have proved that Notch activation in osteoblasts contributes to a high bone mass. In this study, however, an osteopenic phenotype was found in 9-week-old mice using osteoblastic specific Col1a1–2.3-Cre to ablate both Numb and its homologue Numbl . The trabecular bone mass decreased dramatically while the cortical bone mass was unaffected. Here, the Notch signal was not activated, while the tensin homologue deleted on human chromosome 10 (PTEN), which dephosphorylates phosphatidylinositide 3-kinases, was elevated, attenuating protein kinase B (Akt). The ubiquitination assay revealed that NUMB may physiologically promote PTEN ubiquitination in the presence of neural precursor cell-expressed developmentally downregulated protein 4–1. In addition, the deficiency of Numb/Numbl also activated the Hedgehog pathway through GLI1. This process was found to improve the ratio of the receptor activator of nuclear factor-kB ligand to osteoprotegerin, which enhanced the differentiation of osteoclasts and bone resorption . In conclusion, this study provides an insight into new functons of NUMB and NUMBL on bone homeostasis. The related proteins NUMB and NUMBL maintain the survival of bone-generating osteoblast cells. NUMB was previously recognized to antagonize Notch signaling pathway ; In this study, it observes that genetically altered mice, unable to express the two proteins, suffered from degraded bone quality. This suggests that the two proteins play a more complex, nuanced role in the process of bone mass maintenance. The team’s studies showed that NUMB and NUMBL suppression inhibits a signaling pathway important to skeletal development and protein synthesis in osteoblasts, though raise that further investigations are essential to elucidate the exact mechanistic action of these proteins. The authors of this study suggest that NUMB constitutes a potential target for therapies targeting bone loss and reduced bone strength in patients with osteoporosis.
Collapse
|
85
|
Zhang S, Gong Y, Xiao J, Chai Y, Lei J, Huang H, Xiang T, Shen W. A COL1A1 Promoter-Controlled Expression of TGF-β Soluble Receptor Inhibits Hepatic Fibrosis Without Triggering Autoimmune Responses. Dig Dis Sci 2018; 63:2662-2672. [PMID: 29934723 DOI: 10.1007/s10620-018-5168-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/09/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Soluble TGF-β1 type II receptor (sTβRII) via TGF-β1 inhibition could inhibit hepatic fibrosis, but over-dosage triggers autoimmune responses. AIM To test whether the use of a TGF-β1-responsive collagen I promoter COL1A1, via generating a feedback loop to TGF-β1 level, could offer accurate control on sTβRII expression. METHODS Recombinant adenoviruses with COL1A1 (Ad-COL-sTβRII/Luc) or CMV promoter (Ad-CMV-sTβRII/Luc) were constructed and characterized. Inhibition of TGF-β activity was determined both in vitro and in vivo. Total and bioactive TGF-β, hepatic fibrosis scale, α-SMA, collagen levels, and liver function were determined. RESULTS COL1A1, but not CMV, responded to TGF-β1 in vitro. Both in vitro and in vivo, Ad-COL-sTβRII could significantly, but not completely inhibit TGF-β1 activity while Ad-CMV-sTβRII almost completely inhibited TGF-β1 activity. As evidenced by fibrosis scale, α-SMA, and collagen levels in liver tissue, Ad-COL-sTβRII and Ad-CMV-sTβRII had comparable efficacies in treating hepatic fibrosis. Ad-COL-sTβRII was better than Ad-CMV-sTβRII in liver function restore. Ad-CMV-sTβRII, but not Ad-COL-sTβRII, induced high level of anti-dsDNA and anti-Sm antibodies in rats. CONCLUSIONS COL1A1 can precisely control sTβRII expression to inhibit excessive bioactive TGF-β level and thus inhibit hepatic fibrosis but without inducing autoimmune responses.
Collapse
Affiliation(s)
- Shouhua Zhang
- Department of Comprehensive Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330006, China
| | - Yuanqi Gong
- Department of Comprehensive Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, China
| | - Yong Chai
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330006, China
| | - Jun Lei
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330006, China
| | - Hui Huang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330006, China
| | - Tianxin Xiang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Road, Nanchang, 330006, China.
| | - Wei Shen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
86
|
Hardy RS, Zhou H, Seibel MJ, Cooper MS. Glucocorticoids and Bone: Consequences of Endogenous and Exogenous Excess and Replacement Therapy. Endocr Rev 2018; 39:519-548. [PMID: 29905835 DOI: 10.1210/er.2018-00097] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/08/2018] [Indexed: 02/02/2023]
Abstract
Osteoporosis associated with long-term glucocorticoid therapy remains a common and serious bone disease. Additionally, in recent years it has become clear that more subtle states of endogenous glucocorticoid excess may have a major impact on bone health. Adverse effects can be seen with mild systemic glucocorticoid excess, but there is also evidence of tissue-specific regulation of glucocorticoid action within bone as a mechanism of disease. This review article examines (1) the role of endogenous glucocorticoids in normal bone physiology, (2) the skeletal effects of endogenous glucocorticoid excess in the context of endocrine conditions such as Cushing disease/syndrome and autonomous cortisol secretion (subclinical Cushing syndrome), and (3) the actions of therapeutic (exogenous) glucocorticoids on bone. We review the extent to which the effect of glucocorticoids on bone is influenced by variations in tissue metabolizing enzymes and glucocorticoid receptor expression and sensitivity. We consider how the effects of therapeutic glucocorticoids on bone are complicated by the effects of the underlying inflammatory disease being treated. We also examine the impact that glucocorticoid replacement regimens have on bone in the context of primary and secondary adrenal insufficiency. We conclude that even subtle excess of endogenous or moderate doses of therapeutic glucocorticoids are detrimental to bone. However, in patients with inflammatory disorders there is a complex interplay between glucocorticoid treatment and underlying inflammation, with the underlying condition frequently representing the major component underpinning bone damage.
Collapse
Affiliation(s)
- Rowan S Hardy
- University of Birmingham, Birmingham, United Kingdom
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Markus J Seibel
- Bone Research Program, ANZAC Research Institute, Sydney, New South Wales, Australia.,Department of Endocrinology and Metabolism, Concord Repatriation General Hospital, Sydney, New South Wales, Australia.,Concord Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mark S Cooper
- Department of Endocrinology and Metabolism, Concord Repatriation General Hospital, Sydney, New South Wales, Australia.,Concord Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Adrenal Steroid Laboratory, ANZAC Research Institute, Sydney, New South Wales, Australia
| |
Collapse
|
87
|
New transgenic NIS reporter rats for longitudinal tracking of fibrogenesis by high-resolution imaging. Sci Rep 2018; 8:14209. [PMID: 30242176 PMCID: PMC6155090 DOI: 10.1038/s41598-018-32442-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/31/2018] [Indexed: 12/25/2022] Open
Abstract
Fibrogenesis is the underlying mechanism of wound healing and repair. Animal models that enable longitudinal monitoring of fibrogenesis are needed to improve traditional tissue analysis post-mortem. Here, we generated transgenic reporter rats expressing the sodium iodide symporter (NIS) driven by the rat collagen type-1 alpha-1 (Col1α1) promoter and demonstrated that fibrogenesis can be visualized over time using SPECT or PET imaging following activation of NIS expression by rotator cuff (RC) injury. Radiotracer uptake was first detected in and around the injury site day 3 following surgery, increasing through day 7–14, and declining by day 21, revealing for the first time, the kinetics of Col1α1 promoter activity in situ. Differences in the intensity and duration of NIS expression/collagen promoter activation between individual RC injured Col1α1-hNIS rats were evident. Dexamethasone treatment delayed time to peak NIS signals, showing that modulation of fibrogenesis by a steroid can be imaged with exquisite sensitivity and resolution in living animals. NIS reporter rats would facilitate studies in physiological wound repair and pathological processes such as fibrosis and the development of anti-fibrotic drugs.
Collapse
|
88
|
Ramdani G, Schall N, Kalyanaraman H, Wahwah N, Moheize S, Lee JJ, Sah RL, Pfeifer A, Casteel DE, Pilz RB. cGMP-dependent protein kinase-2 regulates bone mass and prevents diabetic bone loss. J Endocrinol 2018; 238:203-219. [PMID: 29914933 PMCID: PMC6086127 DOI: 10.1530/joe-18-0286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 11/08/2022]
Abstract
NO/cGMP signaling is important for bone remodeling in response to mechanical and hormonal stimuli, but the downstream mediator(s) regulating skeletal homeostasis are incompletely defined. We generated transgenic mice expressing a partly-activated, mutant cGMP-dependent protein kinase type 2 (PKG2R242Q) under control of the osteoblast-specific Col1a1 promoter to characterize the role of PKG2 in post-natal bone formation. Primary osteoblasts from these mice showed a two- to three-fold increase in basal and total PKG2 activity; they proliferated faster and were resistant to apoptosis compared to cells from WT mice. Male Col1a1-Prkg2R242Q transgenic mice had increased osteoblast numbers, bone formation rates and Wnt/β-catenin-related gene expression in bone and a higher trabecular bone mass compared to their WT littermates. Streptozotocin-induced type 1 diabetes suppressed bone formation and caused rapid bone loss in WT mice, but male transgenic mice were protected from these effects. Surprisingly, we found no significant difference in bone micro-architecture or Wnt/β-catenin-related gene expression between female WT and transgenic mice; female mice of both genotypes showed higher systemic and osteoblastic NO/cGMP generation compared to their male counterparts, and a higher level of endogenous PKG2 activity may be responsible for masking effects of the PKG2R242Q transgene in females. Our data support sexual dimorphism in Wnt/β-catenin signaling and PKG2 regulation of this crucial pathway in bone homeostasis. This work establishes PKG2 as a key regulator of osteoblast proliferation and post-natal bone formation.
Collapse
Affiliation(s)
- Ghania Ramdani
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Nadine Schall
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
- The Institute for Pharmacology and ToxicologyUniversity of Bonn, Bonn, Germany
| | - Hema Kalyanaraman
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Nisreen Wahwah
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Sahar Moheize
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Jenna J Lee
- Department of BioengineeringUniversity of California, San Diego, La Jolla, California, USA
| | - Robert L Sah
- Department of BioengineeringUniversity of California, San Diego, La Jolla, California, USA
| | - Alexander Pfeifer
- The Institute for Pharmacology and ToxicologyUniversity of Bonn, Bonn, Germany
| | - Darren E Casteel
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Renate B Pilz
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| |
Collapse
|
89
|
Delgado Caceres M, Pfeifer CG, Docheva D. Understanding Tendons: Lessons from Transgenic Mouse Models. Stem Cells Dev 2018; 27:1161-1174. [PMID: 29978741 PMCID: PMC6121181 DOI: 10.1089/scd.2018.0121] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 12/26/2022] Open
Abstract
Tendons and ligaments are connective tissues that have been comparatively less studied than muscle and cartilage/bone, even though they are crucial for proper function of the musculoskeletal system. In tendon biology, considerable progress has been made in identifying tendon-specific genes (Scleraxis, Mohawk, and Tenomodulin) in the past decade. However, besides tendon function and the knowledge of a small number of important players in tendon biology, neither the ontogeny of the tenogenic lineage nor signaling cascades have been fully understood. This results in major drawbacks in treatment and repair options following tendon degeneration. In this review, we have systematically evaluated publications describing tendon-related genes, which were studied in depth and characterized by using knockout technologies and the subsequently generated transgenic mouse models (Tg) (knockout mice, KO). We report in a tabular manner, that from a total of 24 tendon-related genes, in 22 of the respective knockout mouse models, phenotypic changes were detected. Additionally, in some of the models it was described at which developmental stages these changes appeared and progressed. To summarize, only loss of Scleraxis and TGFβ signaling led to severe tendon developmental phenotypes, while mice deficient for various proteoglycans, Mohawk, EGR1 and 2, and Tenomodulin presented mild phenotypes. These data suggest that the tendon developmental system is well organized, orchestrated, and backed up; this is even more evident among the members of the proteoglycan family, where the compensatory effects are much clearer. In future, it will be of great importance to discover additional master tendon transcription factors and the genes that play crucial roles in tendon development. This would improve our understanding of the genetic makeup of tendons, and will increase the chances of generating tendon-specific drugs to advance overall treatment strategies.
Collapse
Affiliation(s)
- Manuel Delgado Caceres
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Christian G. Pfeifer
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
90
|
Are Sphingolipids and Serine Dipeptide Lipids Underestimated Virulence Factors of Porphyromonas gingivalis? Infect Immun 2018; 86:IAI.00035-18. [PMID: 29632248 DOI: 10.1128/iai.00035-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The keystone periodontal pathogen Porphyromonas gingivalis produces phosphorylated dihydroceramide lipids (sphingolipids) such as phosphoethanolamine dihydroceramide (PE DHC) and phosphoglycerol dihydroceramide (PG DHC) lipids. Phosphorylated DHCs (PDHCs) from P. gingivalis can affect a number of mammalian cellular functions, such as potentiation of prostaglandin secretion from gingival fibroblasts, promotion of RANKL-induced osteoclastogenesis, promotion of apoptosis, and enhancement of autoimmunity. In P. gingivalis, these lipids affect anchoring of surface polysaccharides, resistance to oxidative stress, and presentation of surface polysaccharides (anionic polysaccharides and K-antigen capsule). In addition to phosphorylated dihydroceramide lipids, serine dipeptide lipids of P. gingivalis are implicated in alveolar bone loss in chronic periodontitis through interference with osteoblast differentiation and function and promotion of osteoclast activity. As a prerequisite for designation as bacterial virulence factors, bacterial sphingolipids and serine dipeptide lipids are recovered in gingival/periodontal tissues, tooth calculus, human blood, vascular tissues, and brain. In addition to P. gingivalis, other bacteria of the genera Bacteroides, Parabacteroides, Porphyromonas, Tannerella, and Prevotella produce sphingolipids and serine dipeptide lipids. The contribution of PDHCs and serine dipeptide lipids to the pathogenesis of periodontal and extraoral diseases may be an underappreciated area in microbe-host interaction and should be more intensively investigated.
Collapse
|
91
|
Nelson C, Khan Y, Laurencin CT. Nanofiber/Microsphere Hybrid Matrices In Vivo for Bone Regenerative Engineering: A Preliminary Report. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 4:133-141. [PMID: 30687776 DOI: 10.1007/s40883-018-0055-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The demand for bone grafts has led to advances in regenerative engineering, a field at the intersection of advanced biomaterials, stem cell science, physics, developmental biology, and clinical translation. In this work, the authors evaluated a hybrid nanofiber/microsphere matrices both in vitro and in vivo for its ability to promote bone regeneration. Quantitative measures of cellular characteristics in vitro showed a higher fraction of marrow stromal cells with collagen promoter activity on hybrid matrices compared to control matrices (41% vs. 24%, p = 0.02). Control and hybrid matrices were then implanted for 6 weeks in calvarial defects of mice, and the animals received a single injection of calcein 1 day prior to sacrifice to visualize bone formation. Cryohistology of the undecalfied implants were evaluated for markers of bone mineralization, which revealed evidence of higher levels of bone tissue formation in hybrid matrices compared to controls. These data provide support that nanofiber-permeated, sintered, composite microsphere matrices may be a particularly useful matrix for the regenerative engineering of bone.
Collapse
Affiliation(s)
- Clarke Nelson
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut 06030
| | - Yusuf Khan
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut 06030.,Department of Orthopaedic Surgery, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut 06030.,Department of Materials Science and Engineering, University of Connecticut, School of Engineering, Storrs, Connecticut 06268
| | - Cato T Laurencin
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut 06030.,Department of Orthopaedic Surgery, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut 06030.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA Connecticut 06030
| |
Collapse
|
92
|
Lee NJ, Ali N, Zhang L, Qi Y, Clarke I, Enriquez RF, Brzozowska M, Lee IC, Rogers MJ, Laybutt DR, Center JR, Baldock PA, Herzog H. Osteoglycin, a novel coordinator of bone and glucose homeostasis. Mol Metab 2018; 13:30-44. [PMID: 29799418 PMCID: PMC6026319 DOI: 10.1016/j.molmet.2018.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023] Open
Abstract
Objective The skeleton, which is strongly controlled by endocrine factors, has recently been shown to also play an active endocrine role itself, specifically influencing energy metabolism. However, much less is known about this role. Therefore, we sought to identify novel endocrine factors involved in the regulation of both bone mass and whole-body glucose homeostasis. Methods We used transcriptomic and proteomic analysis of Y1 receptor deficient osteoblasts combined with the generation of a novel osteoglycin deficient mouse model and performed comprehensive in vivo phenotype profiling, combined with osteoglycin administration in wildtype mice and human studies. Results Here we identify a novel role for osteoglycin, a secreted proteoglycan, in coordinating bone accretion with changes in energy balance. Using an osteoglycin knockout mouse model, we show that at a whole body level, osteoglycin acts to suppress bone formation and modulate whole body energy supplies by altering glucose uptake through changes in insulin secretion and sensitivity, as well as by altering food intake through central signaling. Examining humans following gastric surgery as a model of negative energy balance, we show that osteoglycin is associated with BMI and lean mass as well as changes in weight, BMI, and glucose levels. Conclusions Thus, we identify osteoglycin as a novel factor involved in the regulation of energy homeostasis and identify a role for it in facilitating the matching of bone acquisition to alterations in energy status. Osteoglycin regulates insulin action, bone mass and food intake in mice. Osteoglycin is associated with changes in weight, BMI and glucose in obese humans. Osteoglycin is a downstream mediator of NPY signaling via osteoblastic Y1 receptors.
Collapse
Affiliation(s)
- N J Lee
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincents Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - N Ali
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - L Zhang
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincents Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Y Qi
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - I Clarke
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - R F Enriquez
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - M Brzozowska
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincents Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - I C Lee
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - M J Rogers
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincents Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - D R Laybutt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - J R Center
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincents Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - P A Baldock
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincents Clinical School, UNSW Sydney, Sydney, NSW, Australia; Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - H Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincents Clinical School, UNSW Sydney, Sydney, NSW, Australia; Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
93
|
Shao J, Zhou Y, Xiao Y. The regulatory roles of Notch in osteocyte differentiation via the crosstalk with canonical Wnt pathways during the transition of osteoblasts to osteocytes. Bone 2018; 108:165-178. [PMID: 29331299 DOI: 10.1016/j.bone.2018.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
Abstract
Osteocytes comprise more than 90% of the cells in bone and are differentiated from osteoblasts via an unknown mechanism. Recently, it was shown that Notch signaling plays an important role in osteocyte functions. To gain insights into the mechanisms underlying the functions of Notch in regulating the transition of osteoblasts to osteocytes, we performed a luciferase assay by cloning the proximal E11 and dentin matrix acidic phosphoprotein 1 (DMP1) promotor regions into pGluc-Basic 2 vectors, which were subsequently transfected into the IDG-SW3 (osteocytes), MC3T3 (osteoblasts) and 293T (non-osteoblastic cells) cell lines. Two approaches were used to activate Notch signaling in vitro. One was a Notch1 extracellular antibody-coated cell culture plate, and the other was transfection of a Hairy/Enhancer of Split 1 (Hes1) overexpression vector. The interaction between the Notch and Wnt signaling pathways was probed by assessing the expression of a series of phosphorylated proteins involved in the cascade of both signaling pathways. Our data suggested that Notch signaling regulates E11 expression through Hes1 activity, while Hes1 solely did not initiate the expression of DMP1. The regulatory function of E11 by Hes1 was not observed in the 293T cell line, indicating a cell context-dependent manner of the Notch signaling pathway. Additionally, we found that Notch inhibited Wnt signaling at the late differentiation stage of osteocytes by both directly repressing phosphorylated Akt and preventing the nuclear aggregation of β-catenin. These findings provide profound understandings of Notch's regulatory function in osteocyte differentiation.
Collapse
Affiliation(s)
- Jin Shao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia.
| |
Collapse
|
94
|
Shao J, Zhou Y, Lin J, Nguyen TD, Huang R, Gu Y, Friis T, Crawford R, Xiao Y. Notch expressed by osteocytes plays a critical role in mineralisation. J Mol Med (Berl) 2018; 96:333-347. [PMID: 29455246 DOI: 10.1007/s00109-018-1625-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/04/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
Abstract
Notch is actively involved in various life processes including osteogenesis; however, the role of Notch signalling in the terminal mineralisation of bone is largely unknown. In this study, it was noted that Hey1, a downstream target of Notch signalling was highly expressed in mature osteocytes compared to osteoblasts, indicating a potential role of Notch in osteocytes. Using a recently developed thermosensitive cell line (IDG-SW3), we demonstrated that dentin matrix acidic phosphoprotein 1 (DMP1) expression was inhibited and mineralisation process was significantly altered when Notch pathway was inactivated via administration of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), an inhibitor of Notch. Dysregulation of Notch in osteocyte differentiation can result in spontaneous deposition of calcium phosphate on collagen fibrils, disturbed transportation of intracellular mineral vesicles, alteration of mineral crystal structure, decreased bonding force between minerals and organic matrix, and suppression of dendrite development coupled with decreased expression of E11. In conclusion, the evidence presented here suggests that Notch plays a critical role in osteocyte differentiation and biomineralisation process. KEY MESSAGES Notch plays a regulatory role in osteocyte phenotype. Notch modulates the mineralisation mediated by osteocytes. Notch activity influences the ultrastructural properties of bone mineralisation.
Collapse
Affiliation(s)
- Jin Shao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Jinying Lin
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Department of Implantology, Xiamen Stomatological Research Institute, Xiamen Stomatological Hospital, Fujian, 361000, China
| | - Trung Dung Nguyen
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Department of Aerospace and Mechanical Engineering, College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rong Huang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Yuantong Gu
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD, 4059, Australia
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Thor Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD, 4059, Australia
- The Prince Charles Hospital, Brisbane, QLD, 4059, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia.
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD, 4059, Australia.
| |
Collapse
|
95
|
Pluripotent stem cells as a source of osteoblasts for bone tissue regeneration. Biomaterials 2018; 196:31-45. [PMID: 29456164 DOI: 10.1016/j.biomaterials.2018.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/19/2018] [Accepted: 02/02/2018] [Indexed: 12/11/2022]
Abstract
Appropriate and abundant sources of bone-forming osteoblasts are essential for bone tissue engineering. Pluripotent stem cells can self-renew and thereby offer a potentially unlimited supply of osteoblasts, a significant advantage over other cell sources. We generated mouse embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) from transgenic mice expressing rat 2.3 kb type I collagen promoter-driven green fluorescent protein (Col2.3GFP), a reporter of the osteoblast lineage. We demonstrated that Col2.3GFP ESCs and iPSCs can be successfully differentiated to osteoblast lineage cells that express Col2.3GFP in vitro. We harvested GFP+ osteoblasts differentiated from ESCs. Genome wide gene expression profiles validated that ESC- and iPSC-derived osteoblasts resemble calvarial osteoblasts, and that Col2.3GFP expression serves as a marker for mature osteoblasts. Our results confirm the cell identity of ESC- and iPSC-derived osteoblasts and highlight the potential of pluripotent stem cells as a source of osteoblasts for regenerative medicine.
Collapse
|
96
|
Aravamudhan A, Ramos DM, Nip J, Kalajzic I, Kumbar SG. Micro-Nanostructures of Cellulose-Collagen for Critical Sized Bone Defect Healing. Macromol Biosci 2018; 18:10.1002/mabi.201700263. [PMID: 29178402 PMCID: PMC5835266 DOI: 10.1002/mabi.201700263] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Indexed: 01/12/2023]
Abstract
Bone tissue engineering strategies utilize biodegradable polymeric matrices alone or in combination with cells and factors to provide mechanical support to bone, while promoting cell proliferation, differentiation, and tissue ingrowth. The performance of mechanically competent, micro-nanostructured polymeric matrices, in combination with bone marrow stromal cells (BMSCs), is evaluated in a critical sized bone defect. Cellulose acetate (CA) is used to fabricate a porous microstructured matrix. Type I collagen is then allowed to self-assemble on these microstructures to create a natural polymer-based, micro-nanostructured matrix (CAc). Poly (lactic-co-glycolic acid) matrices with identical microstructures serve as controls. Significantly higher number of implanted host cells are distributed in the natural polymer based micro-nanostructures with greater bone density and more uniform cell distribution. Additionally, a twofold increase in collagen content is observed with natural polymer based scaffolds. This study establishes the benefits of natural polymer derived micro-nanostructures in combination with donor derived BMSCs to repair and regenerate critical sized bone defects. Natural polymer based materials with mechanically competent micro-nanostructures may serve as an alternative material platform for bone regeneration.
Collapse
Affiliation(s)
- Aja Aravamudhan
- Skeletal Cranial Biology, UConn Health, Farmington, CT-06030, US
| | - Daisy M. Ramos
- Materials Science and Engineering, University of Connecticut, Storrs, CT-06269, US
| | - Jonathan Nip
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT-06269, US
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, Uconn Health, Farmington, CT-06030, US
| | - Sangamesh G. Kumbar
- Skeletal Cranial Biology, UConn Health, Farmington, CT-06030, US
- Materials Science and Engineering, University of Connecticut, Storrs, CT-06269, US
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT-06269, US
- Department of Orthopaedics, UConn Health, Farmington, CT-06030, US
| |
Collapse
|
97
|
Direct cell-cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo. Nat Commun 2018; 9:300. [PMID: 29352112 PMCID: PMC5775424 DOI: 10.1038/s41467-017-02541-w] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 12/07/2017] [Indexed: 01/24/2023] Open
Abstract
Bone homeostasis is regulated by communication between bone-forming mature osteoblasts (mOBs) and bone-resorptive mature osteoclasts (mOCs). However, the spatial–temporal relationship and mode of interaction in vivo remain elusive. Here we show, by using an intravital imaging technique, that mOB and mOC functions are regulated via direct cell–cell contact between these cell types. The mOBs and mOCs mainly occupy discrete territories in the steady state, although direct cell–cell contact is detected in spatiotemporally limited areas. In addition, a pH-sensing fluorescence probe reveals that mOCs secrete protons for bone resorption when they are not in contact with mOBs, whereas mOCs contacting mOBs are non-resorptive, suggesting that mOBs can inhibit bone resorption by direct contact. Intermittent administration of parathyroid hormone causes bone anabolic effects, which lead to a mixed distribution of mOBs and mOCs, and increase cell–cell contact. This study reveals spatiotemporal intercellular interactions between mOBs and mOCs affecting bone homeostasis in vivo. Communication between osteoblasts and osteoclasts is essential for bone homeostasis, but the mode of interaction is unclear. The authors use intravital two-photon microscopy in mice to show that these cells directly interact, regulating activity of osteoclasts, and that the interaction is modulated by parathyroid hormone administration.
Collapse
|
98
|
Gohil SV, Wang L, Rowe DW, Nair LS. Spatially controlled rhBMP-2 mediated calvarial bone formation in a transgenic mouse model. Int J Biol Macromol 2018; 106:1159-1165. [DOI: 10.1016/j.ijbiomac.2017.08.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/30/2022]
|
99
|
Identification of a murine CD45 -F4/80 lo HSC-derived marrow endosteal cell associated with donor stem cell engraftment. Blood Adv 2017; 1:2667-2678. [PMID: 29296920 DOI: 10.1182/bloodadvances.2017008730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/09/2017] [Indexed: 01/26/2023] Open
Abstract
Hematopoietic stem cells (HSCs) reside in specialized microenvironments within the marrow designated as stem cell niches, which function to support HSCs at homeostasis and promote HSC engraftment after radioablation. We previously identified marrow space remodeling after hematopoietic ablation, including osteoblast thickening, osteoblast proliferation, and megakaryocyte migration to the endosteum, which is critical for effective engraftment of donor HSCs. To further evaluate the impact of hematopoietic cells on marrow remodeling, we used a transgenic mouse model (CD45Cre/iDTR) to selectively deplete hematopoietic cells in situ. Depletion of hematopoietic cells immediately before radioablation and hematopoietic stem cell transplantation abrogated donor HSC engraftment and was associated with strikingly flattened endosteal osteoblasts with preserved osteoblast proliferation and megakaryocyte migration. Depletion of monocytes, macrophages, or megakaryocytes (the predominant hematopoietic cell populations that survive short-term after irradiation) did not lead to an alteration of osteoblast morphology, suggesting that a hematopoietic-derived cell outside these lineages regulates osteoblast morphologic adaptation after irradiation. Using 2 lineage-tracing strategies, we identified a novel CD45-F4/80lo HSC-derived cell that resides among osteoblasts along the endosteal marrow surface and, at least transiently, survives radioablation. This newly identified marrow cell may be an important regulator of HSC engraftment, possibly by influencing the shape and function of endosteal osteoblasts.
Collapse
|
100
|
Shi Y, He G, Lee WC, McKenzie JA, Silva MJ, Long F. Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Nat Commun 2017; 8:2043. [PMID: 29230039 PMCID: PMC5725597 DOI: 10.1038/s41467-017-02171-2] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 11/09/2017] [Indexed: 12/23/2022] Open
Abstract
Bone formation in mammals requires continuous production of osteoblasts throughout life. A common molecular marker for all osteogenic mesenchymal progenitors has not been identified. Here, by lineage-tracing experiments in fetal or postnatal mice, we discover that Gli1+ cells progressively produce osteoblasts in all skeletal sites. Most notably, in postnatal growing mice, the Gli1+ cells residing immediately beneath the growth plate, termed here "metaphyseal mesenchymal progenitors" (MMPs), are essential for cancellous bone formation. Besides osteoblasts, MMPs also give rise to bone marrow adipocytes and stromal cells in vivo. RNA-seq reveals that MMPs express a number of marker genes previously assigned to mesenchymal stem/progenitor cells, including CD146/Mcam, CD44, CD106/Vcam1, Pdgfra, and Lepr. Genetic disruption of Hh signaling impairs proliferation and osteoblast differentiation of MMPs. Removal of β-catenin causes MMPs to favor adipogenesis, resulting in osteopenia coupled with increased marrow adiposity. Finally, postnatal Gli1+ cells contribute to both chondrocytes and osteoblasts during bone fracture healing. Thus Gli1 marks mesenchymal progenitors responsible for both normal bone formation and fracture repair.
Collapse
Affiliation(s)
- Yu Shi
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Guangxu He
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Orthopedic Surgery, The Second Xiangya Hospital, Central South University, Hunan, 410011, China
| | - Wen-Chih Lee
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jennifer A McKenzie
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew J Silva
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fanxin Long
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Departments of Medicine and Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|