51
|
Zou Q, Yang L, Shi R, Qi Y, Zhang X, Qi H. Proteostasis regulated by testis-specific ribosomal protein RPL39L maintains mouse spermatogenesis. iScience 2021; 24:103396. [PMID: 34825148 PMCID: PMC8605100 DOI: 10.1016/j.isci.2021.103396] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023] Open
Abstract
Maintaining proteostasis is important for animal development. How proteostasis influences spermatogenesis that generates male gametes, spermatozoa, is not clear. We show that testis-specific paralog of ribosomal large subunit protein RPL39, RPL39L, is required for mouse spermatogenesis. Deletion of Rpl39l in mouse caused reduced proliferation of spermatogonial stem cells, malformed sperm mitochondria and flagella, leading to sub-fertility in males. Biochemical analyses revealed that lack of RPL39L deteriorated protein synthesis and protein quality control in spermatogenic cells, partly due to reduced biogenesis of ribosomal subunits and ribosome homeostasis. RPL39/RPL39L is likely assembled into ribosomes via H/ACA domain containing NOP10 complex early in ribosome biogenesis pathway. Furthermore, Rpl39l null mice exhibited compromised regenerative spermatogenesis after chemical insult and early degenerative spermatogenesis in aging mice. These data demonstrate that maintaining proteostasis is important for spermatogenesis, of which ribosome homeostasis maintained by ribosomal proteins coordinates translation machinery to the regulation of cellular growth. Rpl39l deletion causes reduced spermatogenesis and subfertility in male mice SSC proliferation, mitochondria and sperm flagella compromised in Rpl39l–/– mice Rpl39l deletion affects ribosomal LSU formation and protein quality control Aberrant proteostasis affects spermatogenesis and regeneration
Collapse
Affiliation(s)
- Qianxing Zou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Yang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China
| | - Ruona Shi
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230000, China
| | - Yuling Qi
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou 510630, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou 510630, China
| | - Huayu Qi
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
52
|
Cheng J, Allgeyer ES, Richens JH, Dzafic E, Palandri A, Lewków B, Sirinakis G, St Johnston D. A single-molecule localization microscopy method for tissues reveals nonrandom nuclear pore distribution in Drosophila. J Cell Sci 2021; 134:jcs259570. [PMID: 34806753 PMCID: PMC8729783 DOI: 10.1242/jcs.259570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/19/2023] Open
Abstract
Single-molecule localization microscopy (SMLM) can provide nanoscale resolution in thin samples but has rarely been applied to tissues because of high background from out-of-focus emitters and optical aberrations. Here, we describe a line scanning microscope that provides optical sectioning for SMLM in tissues. Imaging endogenously-tagged nucleoporins and F-actin on this system using DNA- and peptide-point accumulation for imaging in nanoscale topography (PAINT) routinely gives 30 nm resolution or better at depths greater than 20 µm. This revealed that the nuclear pores are nonrandomly distributed in most Drosophila tissues, in contrast to what is seen in cultured cells. Lamin Dm0 shows a complementary localization to the nuclear pores, suggesting that it corrals the pores. Furthermore, ectopic expression of the tissue-specific Lamin C causes the nuclear pores to distribute more randomly, whereas lamin C mutants enhance nuclear pore clustering, particularly in muscle nuclei. Given that nucleoporins interact with specific chromatin domains, nuclear pore clustering could regulate local chromatin organization and contribute to the disease phenotypes caused by human lamin A/C laminopathies.
Collapse
Affiliation(s)
- Jinmei Cheng
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Edward S. Allgeyer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Jennifer H. Richens
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Edo Dzafic
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Amandine Palandri
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Bohdan Lewków
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - George Sirinakis
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Daniel St Johnston
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
53
|
Tsuchiya K, Goshima G. Microtubule-associated proteins promote microtubule generation in the absence of γ-tubulin in human colon cancer cells. J Cell Biol 2021; 220:e202104114. [PMID: 34779859 PMCID: PMC8598081 DOI: 10.1083/jcb.202104114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/13/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
The γ-tubulin complex acts as the predominant microtubule (MT) nucleator that initiates MT formation and is therefore an essential factor for cell proliferation. Nonetheless, cellular MTs are formed after experimental depletion of the γ-tubulin complex, suggesting that cells possess other factors that drive MT nucleation. Here, by combining gene knockout, auxin-inducible degron, RNA interference, MT depolymerization/regrowth assay, and live microscopy, we identified four microtubule-associated proteins (MAPs), ch-TOG, CLASP1, CAMSAPs, and TPX2, which are involved in γ-tubulin-independent MT generation in human colon cancer cells. In the mitotic MT regrowth assay, nucleated MTs organized noncentriolar MT organizing centers (ncMTOCs) in the absence of γ-tubulin. Depletion of CLASP1 or TPX2 substantially delayed ncMTOC formation, suggesting that these proteins might promote MT nucleation in the absence of γ-tubulin. In contrast, depletion of ch-TOG or CAMSAPs did not affect the timing of ncMTOC appearance. CLASP1 also accelerates γ-tubulin-independent MT regrowth during interphase. Thus, MT generation can be promoted by MAPs without the γ-tubulin template.
Collapse
Affiliation(s)
- Kenta Tsuchiya
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
54
|
Kumari A, Kumar C, Pergu R, Kumar M, Mahale SP, Wasnik N, Mylavarapu SVS. Phosphorylation and Pin1 binding to the LIC1 subunit selectively regulate mitotic dynein functions. J Cell Biol 2021; 220:212736. [PMID: 34709360 PMCID: PMC8562849 DOI: 10.1083/jcb.202005184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 05/13/2021] [Accepted: 09/22/2021] [Indexed: 01/31/2023] Open
Abstract
The dynein motor performs multiple functions in mitosis by engaging with a wide cargo spectrum. One way to regulate dynein's cargo-binding selectivity is through the C-terminal domain (CTD) of its light intermediate chain 1 subunit (LIC1), which binds directly with cargo adaptors. Here we show that mitotic phosphorylation of LIC1-CTD at its three cdk1 sites is required for proper mitotic progression, for dynein loading onto prometaphase kinetochores, and for spindle assembly checkpoint inactivation in human cells. Mitotic LIC1-CTD phosphorylation also engages the prolyl isomerase Pin1 predominantly to Hook2-dynein-Nde1-Lis1 complexes, but not to dynein-spindly-dynactin complexes. LIC1-CTD dephosphorylation abrogates dynein-Pin1 binding, promotes prophase centrosome-nuclear envelope detachment, and impairs metaphase chromosome congression and mitotic Golgi fragmentation, without affecting interphase membrane transport. Phosphomutation of a conserved LIC1-CTD SP site in zebrafish leads to early developmental defects. Our work reveals that LIC1-CTD phosphorylation differentially regulates distinct mitotic dynein pools and suggests the evolutionary conservation of this phosphoregulation.
Collapse
Affiliation(s)
- Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Chandan Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India
| | - Rajaiah Pergu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Megha Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Habsiguda, Hyderabad, Telangana, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sagar P Mahale
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Neeraj Wasnik
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| |
Collapse
|
55
|
Chin HL, Huynh S, Ashkani J, Castaldo M, Dixon K, Selby K, Shen Y, Wright M, Boerkoel CF, Hendson G, Jones SJM. An infant with congenital respiratory insufficiency and diaphragmatic paralysis: A novel BICD2 phenotype? Am J Med Genet A 2021; 188:926-930. [PMID: 34825470 DOI: 10.1002/ajmg.a.62578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/09/2021] [Accepted: 11/06/2021] [Indexed: 11/06/2022]
Abstract
Monoallelic pathogenic variants in BICD2 are associated with autosomal dominant Spinal Muscular Atrophy Lower Extremity Predominant 2A and 2B (SMALED2A, SMALED2B). As part of the cellular vesicular transport, complex BICD2 facilitates the flow of constitutive secretory cargoes from the trans-Golgi network, and its dysfunction results in motor neuron loss. The reported phenotypes among patients with SMALED2A and SMALED2B range from a congenital onset disorder of respiratory insufficiency, arthrogryposis, and proximal or distal limb weakness to an adult-onset disorder of limb weakness and contractures. We report an infant with congenital respiratory insufficiency requiring mechanical ventilation, congenital diaphragmatic paralysis, decreased lung volume, and single finger camptodactyly. The infant displayed appropriate antigravity limb movements but had radiological, electrophysiological, and histopathological evidence of myopathy. Exome sequencing and long-read whole-genome sequencing detected a novel de novo BICD2 variant (NM_001003800.1:c.[1543G>A];[=]). This is predicted to encode p.(Glu515Lys); p.Glu515 is located in the coiled-coil 2 mutation hotspot. We hypothesize that this novel phenotype of diaphragmatic paralysis without clear appendicular muscle weakness and contractures of large joints is a presentation of BICD2-related disease.
Collapse
Affiliation(s)
- Hui-Lin Chin
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada.,Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Stephanie Huynh
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Jahanshah Ashkani
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Michael Castaldo
- Division of Neonatology, Department of Pediatrics, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine Dixon
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Kathryn Selby
- Division of Neurology, Department of Pediatrics, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Marie Wright
- Division of Respirology, Department of Pediatrics, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Cornelius F Boerkoel
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Glenda Hendson
- Department of Pathology, BC Children's Hospital, BC Women's Hospital and Health Centre, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| |
Collapse
|
56
|
Intertwined and Finely Balanced: Endoplasmic Reticulum Morphology, Dynamics, Function, and Diseases. Cells 2021; 10:cells10092341. [PMID: 34571990 PMCID: PMC8472773 DOI: 10.3390/cells10092341] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is an organelle that is responsible for many essential subcellular processes. Interconnected narrow tubules at the periphery and thicker sheet-like regions in the perinuclear region are linked to the nuclear envelope. It is becoming apparent that the complex morphology and dynamics of the ER are linked to its function. Mutations in the proteins involved in regulating ER structure and movement are implicated in many diseases including neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis (ALS). The ER is also hijacked by pathogens to promote their replication. Bacteria such as Legionella pneumophila and Chlamydia trachomatis, as well as the Zika virus, bind to ER morphology and dynamics-regulating proteins to exploit the functions of the ER to their advantage. This review covers our understanding of ER morphology, including the functional subdomains and membrane contact sites that the organelle forms. We also focus on ER dynamics and the current efforts to quantify ER motion and discuss the diseases related to ER morphology and dynamics.
Collapse
|
57
|
Expression and functional analysis of cytoplasmic dynein during spermatogenesis in Portunus trituberculatus. Cell Tissue Res 2021; 386:191-203. [PMID: 34477967 DOI: 10.1007/s00441-021-03519-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
The mechanism of acrosome formation in the crab sperm is a hot topic in crustacean reproduction research. Dynein is a motor protein that performs microtubule-dependent retrograde transport and plays an essential role in spermatogenesis. However, whether cytoplasmic dynein participates in acrosome formation in the crab sperm remains poorly understood. In this study, we cloned the cytoplasmic dynein intermediate chain gene (Pt-DIC) from Portunus trituberculatus testis. Pt-DIC is composed of a p150glued-binding domain, a dynein light chain (DLC)-binding domain, and a dynein heavy chain (DHC)-binding domain. The Pt-DIC gene is widely expressed in different tissues, showing the highest expression in the testis, and it is expressed in different stages of spermatid development, indicating important functions in spermatogenesis. We further observed the colocalization of Pt-DIC and Pt-DHC, Pt-DHC and tubulin, and Pt-DHC and GM130, and the results indicated that cytoplasmic dynein may participate in nuclear shaping and acrosome formation via vesicle transport. In addition, we examined the colocalization of Pt-DHC and a mitochondrion (MT) tracker and that of Pt-DHC and prohibitin (PHB). The results indicated that cytoplasmic dynein participated in mitochondrial transport and mitochondrial degradation. Taken together, these results support the hypothesis that cytoplasmic dynein participates in acrosome formation, nuclear shaping, and mitochondrial transport during spermiogenesis in P. trituberculatus. This study will provide valuable guidance for the artificial fertilization and reproduction of P. trituberculatus.
Collapse
|
58
|
Multifunctionality of F-rich nucleoporins. Biochem Soc Trans 2021; 48:2603-2614. [PMID: 33336681 DOI: 10.1042/bst20200357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 01/11/2023]
Abstract
Nucleoporins (Nups) represent a range of proteins most known for composing the macromolecular assembly of the nuclear pore complex (NPC). Among them, the family of intrinsically disordered proteins (IDPs) phenylalanine-glycine (FG) rich Nups, form the permeability barrier and coordinate the high-speed nucleocytoplasmic transport in a selective way. Those FG-Nups have been demonstrated to participate in various biological processes besides nucleocytoplasmic transport. The high number of accessible hydrophobic motifs of FG-Nups potentially gives rise to this multifunctionality, enabling them to form unique microenvironments. In this review, we discuss the multifunctionality of disordered and F-rich Nups and the diversity of their localizations, emphasizing the important roles of those Nups in various regulatory and metabolic processes.
Collapse
|
59
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
60
|
Cui H, Ali MY, Goyal P, Zhang K, Loh JY, Trybus KM, Solmaz SR. Coiled-coil registry shifts in the F684I mutant of Bicaudal D result in cargo-independent activation of dynein motility. Traffic 2021; 21:463-478. [PMID: 32378283 DOI: 10.1111/tra.12734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/28/2022]
Abstract
The dynein adaptor Drosophila Bicaudal D (BicD) is auto-inhibited and activates dynein motility only after cargo is bound, but the underlying mechanism is elusive. In contrast, we show that the full-length BicD/F684I mutant activates dynein processivity even in the absence of cargo. Our X-ray structure of the C-terminal domain of the BicD/F684I mutant reveals a coiled-coil registry shift; in the N-terminal region, the two helices of the homodimer are aligned, whereas they are vertically shifted in the wild-type. One chain is partially disordered and this structural flexibility is confirmed by computations, which reveal that the mutant transitions back and forth between the two registries. We propose that a coiled-coil registry shift upon cargo-binding activates BicD for dynein recruitment. Moreover, the human homolog BicD2/F743I exhibits diminished binding of cargo adaptor Nup358, implying that a coiled-coil registry shift may be a mechanism to modulate cargo selection for BicD2-dependent transport pathways.
Collapse
Affiliation(s)
- Heying Cui
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Puja Goyal
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Kaiqi Zhang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Jia Ying Loh
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Sozanne R Solmaz
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| |
Collapse
|
61
|
Dantas M, Lima JT, Ferreira JG. Nucleus-Cytoskeleton Crosstalk During Mitotic Entry. Front Cell Dev Biol 2021; 9:649899. [PMID: 33816500 PMCID: PMC8014196 DOI: 10.3389/fcell.2021.649899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/26/2021] [Indexed: 12/30/2022] Open
Abstract
In preparation for mitosis, cells undergo extensive reorganization of the cytoskeleton and nucleus, so that chromosomes can be efficiently segregated into two daughter cells. Coordination of these cytoskeletal and nuclear events occurs through biochemical regulatory pathways, orchestrated by Cyclin-CDK activity. However, recent studies provide evidence that physical forces are also involved in the early steps of spindle assembly. Here, we will review how the crosstalk of physical forces and biochemical signals coordinates nuclear and cytoplasmic events during the G2-M transition, to ensure efficient spindle assembly and faithful chromosome segregation.
Collapse
Affiliation(s)
- Margarida Dantas
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal.,BiotechHealth Ph.D. Programme, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Joana T Lima
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina, University of Porto, Porto, Portugal
| | - Jorge G Ferreira
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina, University of Porto, Porto, Portugal
| |
Collapse
|
62
|
Nunes V, Ferreira JG. From the cytoskeleton to the nucleus: An integrated view on early spindle assembly. Semin Cell Dev Biol 2021; 117:42-51. [PMID: 33726956 DOI: 10.1016/j.semcdb.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/01/2022]
Abstract
Accurate chromosome segregation requires a complete restructuring of cellular organization. Microtubules remodel to assemble a mitotic spindle and the actin cytoskeleton rearranges to form a stiff actomyosin cortex. These cytoplasmic events must be spatially and temporally coordinated with mitotic chromosome condensation and nuclear envelope permeabilization, in order to ensure mitotic timing and fidelity. Here, we discuss the main cytoskeletal and nuclear events that occur during mitotic entry in proliferating animal cells, focusing on their coordinated contribution for early mitotic spindle assembly. We will also explore recent progress in understanding their regulatory biochemical and mechanical pathways.
Collapse
Affiliation(s)
- Vanessa Nunes
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal; BiotechHealth PhD Programe, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Jorge G Ferreira
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal; Departamento de Biomedicina, Faculdade de Medicina, University of Porto, Porto, Portugal.
| |
Collapse
|
63
|
Vallee RB, Yi J, Quintremil S, Khobrekar N. Roles of the multivalent dynein adaptors BicD2 and RILP in neurons. Neurosci Lett 2021; 752:135796. [PMID: 33667600 DOI: 10.1016/j.neulet.2021.135796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 01/18/2023]
Abstract
Cytoplasmic dynein is responsible for all forms of retrograde transport in neurons and other cells. Work over several years has led to the identification of a class of coiled-coil domain containing "adaptor" proteins that are responsible for expanding dynein's range of cargo interactions, as well as regulating dynein motor behavior. This brief review focuses first on the BicD family of adaptor proteins, which clearly serve to expand the number of dynein cargo interactions. RILP, another adaptor protein, also interacts with multiple proteins. Surprisingly, this is to mediate a series of steps within a common pathway, higher eukaryotic autophagy. These distinct features have important implications for understanding the full range of dynein adaptor functions.
Collapse
Affiliation(s)
- Richard B Vallee
- Columbia University, Department of Pathology and Cell Biology, United States
| | - Julie Yi
- Columbia University, Department of Pathology and Cell Biology, United States
| | | | - Noopur Khobrekar
- Columbia University, Department of Pathology and Cell Biology, United States.
| |
Collapse
|
64
|
Safieddine A, Coleno E, Salloum S, Imbert A, Traboulsi AM, Kwon OS, Lionneton F, Georget V, Robert MC, Gostan T, Lecellier CH, Chouaib R, Pichon X, Le Hir H, Zibara K, Mueller F, Walter T, Peter M, Bertrand E. A choreography of centrosomal mRNAs reveals a conserved localization mechanism involving active polysome transport. Nat Commun 2021; 12:1352. [PMID: 33649340 PMCID: PMC7921559 DOI: 10.1038/s41467-021-21585-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Local translation allows for a spatial control of gene expression. Here, we use high-throughput smFISH to screen centrosomal protein-coding genes, and we describe 8 human mRNAs accumulating at centrosomes. These mRNAs localize at different stages during cell cycle with a remarkable choreography, indicating a finely regulated translational program at centrosomes. Interestingly, drug treatments and reporter analyses reveal a common translation-dependent localization mechanism requiring the nascent protein. Using ASPM and NUMA1 as models, single mRNA and polysome imaging reveals active movements of endogenous polysomes towards the centrosome at the onset of mitosis, when these mRNAs start localizing. ASPM polysomes associate with microtubules and localize by either motor-driven transport or microtubule pulling. Remarkably, the Drosophila orthologs of the human centrosomal mRNAs also localize to centrosomes and also require translation. These data identify a conserved family of centrosomal mRNAs that localize by active polysome transport mediated by nascent proteins. Centrosomes function as microtubule organizing centers where several mRNAs accumulate. By employing high-throughput single molecule FISH screening, the authors discover that 8 human mRNAs localize to centrosomes with unique cell cycle dependent patterns using an active polysome targeting mechanism.
Collapse
Affiliation(s)
- Adham Safieddine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France. .,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France. .,ER045, PRASE, and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| | - Emeline Coleno
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Soha Salloum
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France.,ER045, PRASE, and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Arthur Imbert
- MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, Fontainebleau, France.,Institut Curie, Paris, Cedex, France.,INSERM, U900, Paris, Cedex, France
| | - Abdel-Meneem Traboulsi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Oh Sung Kwon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | | | | | - Marie-Cécile Robert
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Thierry Gostan
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Charles-Henri Lecellier
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Racha Chouaib
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France.,ER045, PRASE, and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Xavier Pichon
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Kazem Zibara
- ER045, PRASE, and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Florian Mueller
- Imaging and Modeling Unit, Institut Pasteur, UMR 3691 CNRS, C3BI USR 3756 IP CNRS, Paris, France
| | - Thomas Walter
- MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, Fontainebleau, France.,Institut Curie, Paris, Cedex, France.,INSERM, U900, Paris, Cedex, France
| | - Marion Peter
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France. .,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France. .,Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
65
|
Zila V, Margiotta E, Turoňová B, Müller TG, Zimmerli CE, Mattei S, Allegretti M, Börner K, Rada J, Müller B, Lusic M, Kräusslich HG, Beck M. Cone-shaped HIV-1 capsids are transported through intact nuclear pores. Cell 2021; 184:1032-1046.e18. [PMID: 33571428 PMCID: PMC7895898 DOI: 10.1016/j.cell.2021.01.025] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/20/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV-1) remains a major health threat. Viral capsid uncoating and nuclear import of the viral genome are critical for productive infection. The size of the HIV-1 capsid is generally believed to exceed the diameter of the nuclear pore complex (NPC), indicating that capsid uncoating has to occur prior to nuclear import. Here, we combined correlative light and electron microscopy with subtomogram averaging to capture the structural status of reverse transcription-competent HIV-1 complexes in infected T cells. We demonstrated that the diameter of the NPC in cellulo is sufficient for the import of apparently intact, cone-shaped capsids. Subsequent to nuclear import, we detected disrupted and empty capsid fragments, indicating that uncoating of the replication complex occurs by breaking the capsid open, and not by disassembly into individual subunits. Our data directly visualize a key step in HIV-1 replication and enhance our mechanistic understanding of the viral life cycle.
Collapse
Affiliation(s)
- Vojtech Zila
- Department of Infectious Diseases, Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Erica Margiotta
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany; Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Beata Turoňová
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Thorsten G Müller
- Department of Infectious Diseases, Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christian E Zimmerli
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Simone Mattei
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany; Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8092 Zurich, Switzerland; European Molecular Biology Laboratory, Imaging Center, 69117 Heidelberg, Germany
| | - Matteo Allegretti
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Kathleen Börner
- Department of Infectious Diseases, Virology, University of Heidelberg, 69120 Heidelberg, Germany; German Center for Infection Research, partner site Heidelberg, 69120 Heidelberg, Germany
| | - Jona Rada
- Department of Infectious Diseases, Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Marina Lusic
- Department of Infectious Diseases, Virology, University of Heidelberg, 69120 Heidelberg, Germany; German Center for Infection Research, partner site Heidelberg, 69120 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University of Heidelberg, 69120 Heidelberg, Germany; German Center for Infection Research, partner site Heidelberg, 69120 Heidelberg, Germany.
| | - Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany; Max Planck Institute of Biophysics, Department of Molecular Sociology, 60438 Frankfurt, Germany.
| |
Collapse
|
66
|
Spriggs CC, Badieyan S, Verhey KJ, Cianfrocco MA, Tsai B. Golgi-associated BICD adaptors couple ER membrane penetration and disassembly of a viral cargo. J Cell Biol 2021; 219:151622. [PMID: 32259203 PMCID: PMC7199864 DOI: 10.1083/jcb.201908099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/04/2019] [Accepted: 02/21/2020] [Indexed: 12/22/2022] Open
Abstract
During entry, viruses must navigate through the host endomembrane system, penetrate cellular membranes, and undergo capsid disassembly to reach an intracellular destination that supports infection. How these events are coordinated is unclear. Here, we reveal an unexpected function of a cellular motor adaptor that coordinates virus membrane penetration and disassembly. Polyomavirus SV40 traffics to the endoplasmic reticulum (ER) and penetrates a virus-induced structure in the ER membrane called “focus” to reach the cytosol, where it disassembles before nuclear entry to promote infection. We now demonstrate that the ER focus is constructed proximal to the Golgi-associated BICD2 and BICDR1 dynein motor adaptors; this juxtaposition enables the adaptors to directly bind to and disassemble SV40 upon arrival to the cytosol. Our findings demonstrate that positioning of the virus membrane penetration site couples two decisive infection events, cytosol arrival and disassembly, and suggest cargo remodeling as a novel function of dynein adaptors.
Collapse
Affiliation(s)
- Chelsey C Spriggs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Somayesadat Badieyan
- Department of Biological Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Michael A Cianfrocco
- Department of Biological Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
67
|
Priyanga J, Guha G, Bhakta-Guha D. Microtubule motors in centrosome homeostasis: A target for cancer therapy? Biochim Biophys Acta Rev Cancer 2021; 1875:188524. [PMID: 33582170 DOI: 10.1016/j.bbcan.2021.188524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/02/2023]
Abstract
Cancer is a grievous concern to human health, owing to a massive heterogeneity in its cause and impact. Dysregulation (numerical, positional and/or structural) of centrosomes is one of the notable factors among those that promote onset and progression of cancers. In a normal dividing cell, a pair of centrosomes forms two poles, thereby governing the formation of a bipolar spindle assembly. A large number of cancer cells, however, harbor supernumerary centrosomes, which mimic the bipolar arrangement in normal cells by centrosome clustering (CC) into two opposite poles, thus developing a pseudo-bipolar spindle assembly. Manipulation of centrosome homeostasis is the paramount pre-requisite for the evasive strategy of CC in cancers. Out of the varied factors that uphold centrosome integrity, microtubule motors (MiMos) play a critical role. Categorized as dyneins and kinesins, MiMos are involved in cohesion of centrosomes, and also facilitate the maintenance of the numerical, positional and structural integrity of centrosomes. Herein, we elucidate the decisive mechanisms undertaken by MiMos to mediate centrosome homeostasis, and how dysregulation of the same might lead to CC in cancer cells. Understanding the impact of MiMos on CC might open up avenues toward a credible therapeutic target against diverse cancers.
Collapse
Affiliation(s)
- J Priyanga
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Gunjan Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| | - Dipita Bhakta-Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
68
|
Salogiannis J, Christensen JR, Songster LD, Aguilar-Maldonado A, Shukla N, Reck-Peterson SL. PxdA interacts with the DipA phosphatase to regulate peroxisome hitchhiking on early endosomes. Mol Biol Cell 2021; 32:492-503. [PMID: 33476181 PMCID: PMC8101442 DOI: 10.1091/mbc.e20-08-0559] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In canonical microtubule-based transport, adaptor proteins link cargoes to dynein and kinesin motors. Recently, an alternative mode of transport known as “hitchhiking” was discovered, where cargoes achieve motility by hitching a ride on already-motile cargoes, rather than attaching to a motor protein. Hitchhiking has been best studied in two filamentous fungi, Aspergillus nidulans and Ustilago maydis. In U. maydis, ribonucleoprotein complexes, peroxisomes, lipid droplets (LDs), and endoplasmic reticulum hitchhike on early endosomes (EEs). In A. nidulans, peroxisomes hitchhike using a putative molecular linker, peroxisome distribution mutant A (PxdA), which associates with EEs. However, whether other organelles use PxdA to hitchhike on EEs is unclear, as are the molecular mechanisms that regulate hitchhiking. Here we find that the proper distribution of LDs, mitochondria, and preautophagosomes do not require PxdA, suggesting that PxdA is a peroxisome-specific molecular linker. We identify two new pxdA alleles, including a point mutation (R2044P) that disrupts PxdA’s ability to associate with EEs and reduces peroxisome movement. We also identify a novel regulator of peroxisome hitchhiking, the phosphatase DipA. DipA colocalizes with EEs and its association with EEs relies on PxdA. Together, our data suggest that PxdA and the DipA phosphatase are specific regulators of peroxisome hitchhiking on EEs.
Collapse
Affiliation(s)
- John Salogiannis
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Jenna R Christensen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Livia D Songster
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093
| | - Adriana Aguilar-Maldonado
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Nandini Shukla
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 043210.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 043210
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093.,Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
69
|
Zhang X, Wang X, Xue Z, Zhan G, Ito Y, Guo Z. Prevention properties on cerebral ischemia reperfusion of medicine food homologous Dioscorea yam-derived diosgenin based on mediation of potential targets. Food Chem 2020; 345:128672. [PMID: 33352403 DOI: 10.1016/j.foodchem.2020.128672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 10/23/2022]
Abstract
I/R (cerebral ischemia reperfusion injury) is the secondary complication of ischemic stroke patients that are immediately treated with drug thrombolysis or vascular recanalization in clinic. Diosgenin (DIO) purified from medicine food homologous (MFH) Dioscorea yam source is served as a fatal starting material to synthesize multifarious steroidal anti-inflammatory drugs in medicinal field, and has previously been demonstrated the potential prevention of I/R. However, the detailed mechanisms of neuroprotective effects against I/R remain elusively understood. Here, a global proteomic dynamics of rat right hemisphere brains was executed to investigate the protein expression patterns with a quantitative LC-MSn. In total, 5043 proteins were identified and 418 ones were determined to be significantly dysregulated DEPs (differentially expressed proteins) in comparison of Sham verse I/R and I/R verse DIO after onset stage of I/R, among which 5 DEPs namely BICD2, HNRNPK, CEP41, PPM1K, and ARL2BP, whose biological functions were mainly clustered into the mediation of nervous system, were selected for further validation in vitro and in vivo, and the change tendency expectedly supported the proteomic findings. Additionally, the AUC value of the combined ROC of these 5 DEPs was 0.988 with P < 0.0001, higher than every single one. Collectively, these scientific findings attributed to a typical investigation of dietary Dioscorea-enriched diosgenin in MFH research, suggesting that diosgenin or its derivatives were potential to be developed into food supplements or healthy food products to reveal healthy benefits in natural prevention and reduction risk of I/R. This work also promoted reasonable consumption of Dioscorea yams and contributed to the function of diosgenin-derived products and their applications in food industry.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Xingbin Wang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhaowei Xue
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Guanqun Zhan
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yoichiro Ito
- Laboratory of Bio-separation Technologies, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Zengjun Guo
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
70
|
Biedzinski S, Agsu G, Vianay B, Delord M, Blanchoin L, Larghero J, Faivre L, Théry M, Brunet S. Microtubules control nuclear shape and gene expression during early stages of hematopoietic differentiation. EMBO J 2020; 39:e103957. [PMID: 33089509 DOI: 10.15252/embj.2019103957] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPC) can differentiate into all hematopoietic lineages to support hematopoiesis. Cells from the myeloid and lymphoid lineages fulfill distinct functions with specific shapes and intra-cellular architectures. The role of cytokines in the regulation of HSPC differentiation has been intensively studied but our understanding of the potential contribution of inner cell architecture is relatively poor. Here, we show that large invaginations are generated by microtubule constraints on the swelling nucleus of human HSPC during early commitment toward the myeloid lineage. These invaginations are associated with a local reduction of lamin B density, local loss of heterochromatin H3K9me3 and H3K27me3 marks, and changes in expression of specific hematopoietic genes. This establishes the role of microtubules in defining the unique lobulated nuclear shape observed in myeloid progenitor cells and suggests that this shape is important to establish the gene expression profile specific to this hematopoietic lineage. It opens new perspectives on the implications of microtubule-generated forces, in the early commitment to the myeloid lineage.
Collapse
Affiliation(s)
- Stefan Biedzinski
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Gökçe Agsu
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Benoit Vianay
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Marc Delord
- Recherche Clinique et Investigation, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Laurent Blanchoin
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Jerome Larghero
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,Unité de Thérapie Cellulaire, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Lionel Faivre
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,Unité de Thérapie Cellulaire, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Manuel Théry
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Stéphane Brunet
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| |
Collapse
|
71
|
Vincent J, Preston M, Mouchet E, Laugier N, Corrigan A, Boulanger J, Brown DG, Clark R, Wigglesworth M, Carter AP, Bullock SL. A High-Throughput Cellular Screening Assay for Small-Molecule Inhibitors and Activators of Cytoplasmic Dynein-1-Based Cargo Transport. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:985-999. [PMID: 32436764 PMCID: PMC7116108 DOI: 10.1177/2472555220920581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cytoplasmic dynein-1 (hereafter dynein) is a six-subunit motor complex that transports a variety of cellular components and pathogens along microtubules. Dynein's cellular functions are only partially understood, and potent and specific small-molecule inhibitors and activators of this motor would be valuable for addressing this issue. It has also been hypothesized that an inhibitor of dynein-based transport could be used in antiviral or antimitotic therapy, whereas an activator could alleviate age-related neurodegenerative diseases by enhancing microtubule-based transport in axons. Here, we present the first high-throughput screening (HTS) assay capable of identifying both activators and inhibitors of dynein-based transport. This project is also the first collaborative screening report from the Medical Research Council and AstraZeneca agreement to form the UK Centre for Lead Discovery. A cellular imaging assay was used, involving chemically controlled recruitment of activated dynein complexes to peroxisomes. Such a system has the potential to identify molecules that affect multiple aspects of dynein biology in vivo. Following optimization of key parameters, the assay was developed in a 384-well format with semiautomated liquid handling and image acquisition. Testing of more than 500,000 compounds identified both inhibitors and activators of dynein-based transport in multiple chemical series. Additional analysis indicated that many of the identified compounds do not affect the integrity of the microtubule cytoskeleton and are therefore candidates to directly target the transport machinery.
Collapse
Affiliation(s)
- John Vincent
- HTS, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Macclesfield, Cheshire, UK
| | - Marian Preston
- HTS, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Macclesfield, Cheshire, UK
| | - Elizabeth Mouchet
- HTS, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Macclesfield, Cheshire, UK
| | - Nicolas Laugier
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, UK
| | - Adam Corrigan
- Quantitative Biology, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Cambridge, Cambridgeshire, UK
| | - Jérôme Boulanger
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, UK
| | - Dean G Brown
- Hit Discovery, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Boston, USA
| | - Roger Clark
- Discovery Biology, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Cambridge, Cambridgeshire, UK
| | - Mark Wigglesworth
- HTS, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Macclesfield, Cheshire, UK
| | - Andrew P Carter
- Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, UK
| | - Simon L Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, UK
| |
Collapse
|
72
|
Ong JY, Torres JZ. Phase Separation in Cell Division. Mol Cell 2020; 80:9-20. [PMID: 32860741 DOI: 10.1016/j.molcel.2020.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Cell division requires the assembly and organization of a microtubule spindle for the proper separation of chromosomes in mitosis and meiosis. Phase separation is an emerging paradigm for understanding spatial and temporal regulation of a variety of cellular processes, including cell division. Phase-separated condensates have been recently discovered at many structures during cell division as a possible mechanism for properly localizing, organizing, and activating proteins involved in cell division. Here, we review how these condensates play roles in regulating microtubule density and organization and spindle assembly and function and in activating some of the key players in cell division. We conclude with perspectives on areas of future research for this exciting and rapidly advancing field.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
73
|
Gonçalves JC, Quintremil S, Yi J, Vallee RB. Nesprin-2 Recruitment of BicD2 to the Nuclear Envelope Controls Dynein/Kinesin-Mediated Neuronal Migration In Vivo. Curr Biol 2020; 30:3116-3129.e4. [PMID: 32619477 PMCID: PMC9670326 DOI: 10.1016/j.cub.2020.05.091] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/29/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023]
Abstract
Vertebrate brain development depends on a complex program of cell proliferation and migration. Post-mitotic neuronal migration in the developing cerebral cortex involves Nesprin-2, which recruits cytoplasmic dynein, kinesin, and actin to the nuclear envelope (NE) in other cell types. However, the relative importance of these interactions in neurons has remained poorly understood. To address these issues, we performed in utero electroporation into the developing rat brain to interfere with Nesprin-2 function. We find that an ∼100-kDa "mini" form of the ∼800-kDa Nesprin-2 protein, which binds dynein and kinesin, is sufficient, remarkably, to support neuronal migration. In contrast to dynein's role in forward nuclear migration in these cells, we find that kinesin-1 inhibition accelerates neuronal migration, suggesting a novel role for the opposite-directed motor proteins in regulating migration velocity. In contrast to studies in fibroblasts, the actin-binding domain of Nesprin-2 was dispensable for neuronal migration. We find further that, surprisingly, the motor proteins interact with Nesprin-2 through the dynein/kinesin "adaptor" BicD2, both in neurons and in non-mitotic fibroblasts. Furthermore, mutation of the Nesprin-2 LEWD sequence, implicated in nuclear envelope kinesin recruitment in other systems, interferes with BicD2 binding. Although disruption of the Nesprin-2/BicD2 interaction severely inhibited nuclear movement, centrosome advance proceeded unimpeded, supporting an independent mechanism for centrosome advance. Our data together implicate Nesprin-2 as a novel and fundamentally important form of BicD2 cargo and help explain BicD2's role in neuronal migration and human disease.
Collapse
Affiliation(s)
- João Carlos Gonçalves
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Sebastian Quintremil
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Julie Yi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA.
| |
Collapse
|
74
|
Agote-Aran A, Schmucker S, Jerabkova K, Jmel Boyer I, Berto A, Pacini L, Ronchi P, Kleiss C, Guerard L, Schwab Y, Moine H, Mandel JL, Jacquemont S, Bagni C, Sumara I. Spatial control of nucleoporin condensation by fragile X-related proteins. EMBO J 2020; 39:e104467. [PMID: 32706158 PMCID: PMC7560220 DOI: 10.15252/embj.2020104467] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 01/14/2023] Open
Abstract
Nucleoporins (Nups) build highly organized nuclear pore complexes (NPCs) at the nuclear envelope (NE). Several Nups assemble into a sieve‐like hydrogel within the central channel of the NPCs. In the cytoplasm, the soluble Nups exist, but how their assembly is restricted to the NE is currently unknown. Here, we show that fragile X‐related protein 1 (FXR1) can interact with several Nups and facilitate their localization to the NE during interphase through a microtubule‐dependent mechanism. Downregulation of FXR1 or closely related orthologs FXR2 and fragile X mental retardation protein (FMRP) leads to the accumulation of cytoplasmic Nup condensates. Likewise, models of fragile X syndrome (FXS), characterized by a loss of FMRP, accumulate Nup granules. The Nup granule‐containing cells show defects in protein export, nuclear morphology and cell cycle progression. Our results reveal an unexpected role for the FXR protein family in the spatial regulation of nucleoporin condensation.
Collapse
Affiliation(s)
- Arantxa Agote-Aran
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Stephane Schmucker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Katerina Jerabkova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Inès Jmel Boyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Alessandro Berto
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Ecole Doctorale SDSV, Université Paris Sud, Orsay, France
| | - Laura Pacini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Ronchi
- European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany
| | - Charlotte Kleiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Laurent Guerard
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Yannick Schwab
- European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany.,European Molecular Biology Laboratory, European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Hervé Moine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Sebastien Jacquemont
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,CHU Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
75
|
Markus SM, Marzo MG, McKenney RJ. New insights into the mechanism of dynein motor regulation by lissencephaly-1. eLife 2020; 9:59737. [PMID: 32692650 PMCID: PMC7373426 DOI: 10.7554/elife.59737] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Lissencephaly (‘smooth brain’) is a severe brain disease associated with numerous symptoms, including cognitive impairment, and shortened lifespan. The main causative gene of this disease – lissencephaly-1 (LIS1) – has been a focus of intense scrutiny since its first identification almost 30 years ago. LIS1 is a critical regulator of the microtubule motor cytoplasmic dynein, which transports numerous cargoes throughout the cell, and is a key effector of nuclear and neuronal transport during brain development. Here, we review the role of LIS1 in cellular dynein function and discuss recent key findings that have revealed a new mechanism by which this molecule influences dynein-mediated transport. In addition to reconciling prior observations with this new model for LIS1 function, we also discuss phylogenetic data that suggest that LIS1 may have coevolved with an autoinhibitory mode of cytoplasmic dynein regulation.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
76
|
Tsai MH, Cheng HY, Nian FS, Liu C, Chao NH, Chiang KL, Chen SF, Tsai JW. Impairment in dynein-mediated nuclear translocation by BICD2 C-terminal truncation leads to neuronal migration defect and human brain malformation. Acta Neuropathol Commun 2020; 8:106. [PMID: 32665036 PMCID: PMC7362644 DOI: 10.1186/s40478-020-00971-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
During brain development, the nucleus of migrating neurons follows the centrosome and translocates into the leading process. Defects in these migratory events, which affect neuronal migration, cause lissencephaly and other neurodevelopmental disorders. However, the mechanism of nuclear translocation remains elusive. Using whole exome sequencing (WES), we identified a novel nonsense BICD2 variant p.(Lys775Ter) (K775X) from a lissencephaly patient. Interestingly, most BICD2 missense variants have been associated with human spinal muscular atrophy (SMA) without obvious brain malformations. By in utero electroporation, we showed that BicD2 knockdown in mouse embryos inhibited neuronal migration. Surprisingly, we observed severe blockage of neuronal migration in cells overexpressing K775X but not in those expressing wild-type BicD2 or SMA-associated missense variants. The centrosome of the mutant was, on average, positioned farther away from the nucleus, indicating a failure in nuclear translocation without affecting the centrosome movement. Furthermore, BicD2 localized at the nuclear envelope (NE) through its interaction with NE protein Nesprin-2. K775X variant disrupted this interaction and further interrupted the NE recruitment of BicD2 and dynein. Remarkably, fusion of BicD2-K775X with NE-localizing domain KASH resumed neuronal migration. Our results underscore impaired nuclear translocation during neuronal migration as an important pathomechanism of lissencephaly.
Collapse
|
77
|
Stiff T, Echegaray-Iturra FR, Pink HJ, Herbert A, Reyes-Aldasoro CC, Hochegger H. Prophase-Specific Perinuclear Actin Coordinates Centrosome Separation and Positioning to Ensure Accurate Chromosome Segregation. Cell Rep 2020; 31:107681. [PMID: 32460023 PMCID: PMC7262599 DOI: 10.1016/j.celrep.2020.107681] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 02/11/2020] [Accepted: 05/01/2020] [Indexed: 12/30/2022] Open
Abstract
Centrosome separation in late G2/ early prophase requires precise spatial coordination that is determined by a balance of forces promoting and antagonizing separation. The major effector of centrosome separation is the kinesin Eg5. However, the identity and regulation of Eg5-antagonizing forces is less well characterized. By manipulating candidate components, we find that centrosome separation is reversible and that separated centrosomes congress toward a central position underneath the flat nucleus. This positioning mechanism requires microtubule polymerization, as well as actin polymerization. We identify perinuclear actin structures that form in late G2/early prophase and interact with microtubules emanating from the centrosomes. Disrupting these structures by breaking the interactions of the linker of nucleoskeleton and cytoskeleton (LINC) complex with perinuclear actin filaments abrogates this centrosome positioning mechanism and causes an increase in subsequent chromosome segregation errors. Our results demonstrate how geometrical cues from the cell nucleus coordinate the orientation of the emanating spindle poles before nuclear envelope breakdown.
Collapse
Affiliation(s)
- Tom Stiff
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN19RQ, UK
| | - Fabio R Echegaray-Iturra
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN19RQ, UK
| | - Harry J Pink
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN19RQ, UK
| | - Alex Herbert
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN19RQ, UK
| | | | - Helfrid Hochegger
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN19RQ, UK.
| |
Collapse
|
78
|
Nunes V, Dantas M, Castro D, Vitiello E, Wang I, Carpi N, Balland M, Piel M, Aguiar P, Maiato H, Ferreira JG. Centrosome-nuclear axis repositioning drives the assembly of a bipolar spindle scaffold to ensure mitotic fidelity. Mol Biol Cell 2020; 31:1675-1690. [PMID: 32348198 PMCID: PMC7521851 DOI: 10.1091/mbc.e20-01-0047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During the initial stages of cell division, the cytoskeleton is extensively reorganized so that a bipolar mitotic spindle can be correctly assembled. This process occurs through the action of molecular motors, cytoskeletal networks, and the nucleus. How the combined activity of these different components is spatiotemporally regulated to ensure efficient spindle assembly remains unclear. To investigate how cell shape, cytoskeletal organization, and molecular motors cross-talk to regulate initial spindle assembly, we use a combination of micropatterning with high-resolution imaging and 3D cellular reconstruction. We show that during prophase, centrosomes and nucleus reorient so that centrosomes are positioned on the shortest nuclear axis at nuclear envelope (NE) breakdown. We also find that this orientation depends on a combination of centrosome movement controlled by Arp2/3-mediated regulation of microtubule dynamics and Dynein-generated forces on the NE that regulate nuclear reorientation. Finally, we observe this centrosome configuration favors the establishment of an initial bipolar spindle scaffold, facilitating chromosome capture and accurate segregation, without compromising division plane orientation.
Collapse
Affiliation(s)
- Vanessa Nunes
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,BiotechHealth PhD program, Instituto de Ciências Biomédicas (ICBAS), 4050-313 Porto, Portugal
| | - Margarida Dantas
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,BiotechHealth PhD program, Instituto de Ciências Biomédicas (ICBAS), 4050-313 Porto, Portugal
| | - Domingos Castro
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto Nacional de Engenharia Biomédica (INEB), 4200-135 Porto, Portugal
| | - Elisa Vitiello
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1) 38058, France
| | - Irène Wang
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1) 38058, France
| | - Nicolas Carpi
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1) 38058, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Paulo Aguiar
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto Nacional de Engenharia Biomédica (INEB), 4200-135 Porto, Portugal
| | - Helder Maiato
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina do Porto, 4200-450 Porto, Portugal
| | - Jorge G Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina do Porto, 4200-450 Porto, Portugal
| |
Collapse
|
79
|
Vitre B, Taulet N, Guesdon A, Douanier A, Dosdane A, Cisneros M, Maurin J, Hettinger S, Anguille C, Taschner M, Lorentzen E, Delaval B. IFT proteins interact with HSET to promote supernumerary centrosome clustering in mitosis. EMBO Rep 2020; 21:e49234. [PMID: 32270908 PMCID: PMC7271317 DOI: 10.15252/embr.201949234] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 11/10/2022] Open
Abstract
Centrosome amplification is a hallmark of cancer, and centrosome clustering is essential for cancer cell survival. The mitotic kinesin HSET is an essential contributor to this process. Recent studies have highlighted novel functions for intraflagellar transport (IFT) proteins in regulating motors and mitotic processes. Here, using siRNA knock‐down of various IFT proteins or AID‐inducible degradation of endogenous IFT88 in combination with small‐molecule inhibition of HSET, we show that IFT proteins together with HSET are required for efficient centrosome clustering. We identify a direct interaction between the kinesin HSET and IFT proteins, and we define how IFT proteins contribute to clustering dynamics during mitosis using high‐resolution live imaging of centrosomes. Finally, we demonstrate the requirement of IFT88 for efficient centrosome clustering in a variety of cancer cell lines naturally harboring supernumerary centrosomes and its importance for cancer cell proliferation. Overall, our data unravel a novel role for the IFT machinery in centrosome clustering during mitosis in cells harboring supernumerary centrosomes.
Collapse
Affiliation(s)
- Benjamin Vitre
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Nicolas Taulet
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Audrey Guesdon
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Audrey Douanier
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Aurelie Dosdane
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Melanie Cisneros
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Justine Maurin
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Sabrina Hettinger
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Christelle Anguille
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| | - Michael Taschner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Benedicte Delaval
- CRBM, University of Montpellier, CNRS, Montpellier, France.,Centrosome, Cilia and Pathologies Lab, Montpellier, France
| |
Collapse
|
80
|
Koboldt DC, Waldrop MA, Wilson RK, Flanigan KM. The Genotypic and Phenotypic Spectrum of
BICD2
Variants in Spinal Muscular Atrophy. Ann Neurol 2020; 87:487-496. [DOI: 10.1002/ana.25704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel C. Koboldt
- Institute for Genomic Medicine Nationwide Children's Hospital Columbus OH
- Department of Pediatrics Ohio State University Columbus OH
| | - Megan A. Waldrop
- Department of Pediatrics Ohio State University Columbus OH
- Center for Gene Therapy Nationwide Children's Hospital Columbus OH
- Department of Neurology Ohio State University Columbus OH
| | - Richard K. Wilson
- Institute for Genomic Medicine Nationwide Children's Hospital Columbus OH
- Department of Pediatrics Ohio State University Columbus OH
| | - Kevin M. Flanigan
- Department of Pediatrics Ohio State University Columbus OH
- Center for Gene Therapy Nationwide Children's Hospital Columbus OH
- Department of Neurology Ohio State University Columbus OH
| |
Collapse
|
81
|
Frasquet M, Camacho A, Vílchez R, Argente‐Escrig H, Millet E, Vázquez‐Costa JF, Silla R, Sánchez‐Monteagudo A, Vílchez JJ, Espinós C, Lupo V, Sevilla T. Clinical spectrum of
BICD2
mutations. Eur J Neurol 2020; 27:1327-1335. [DOI: 10.1111/ene.14173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/03/2020] [Indexed: 11/27/2022]
Affiliation(s)
- M. Frasquet
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
| | - A. Camacho
- Division of Child Neurology Hospital Universitario 12 de Octubre MadridSpain
- Faculty of Medicine Complutense University of Madrid Madrid Spain
| | - R. Vílchez
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
| | - H. Argente‐Escrig
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ValenciaSpain
| | - E. Millet
- Department of Clinical Neurophysiology Hospital Universitari i Politècnic La Fe ValenciaSpain
| | - J. F. Vázquez‐Costa
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ValenciaSpain
- Department of Medicine Universitat de València ValenciaSpain
| | - R. Silla
- Neurology Department Hospital Clínico Universitario ValenciaSpain
| | - A. Sánchez‐Monteagudo
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Service of Genomics and Translational Genetics Centro de Investigación Príncipe Felipe (CIPF) ValenciaSpain
| | - J. J. Vílchez
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ValenciaSpain
| | - C. Espinós
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Service of Genomics and Translational Genetics Centro de Investigación Príncipe Felipe (CIPF) ValenciaSpain
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders ValenciaSpain
- Department of Genetics Universitat de València Valencia Spain
| | - V. Lupo
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Service of Genomics and Translational Genetics Centro de Investigación Príncipe Felipe (CIPF) ValenciaSpain
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders ValenciaSpain
| | - T. Sevilla
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ValenciaSpain
- Department of Medicine Universitat de València ValenciaSpain
| |
Collapse
|
82
|
Galletta BJ, Ortega JM, Smith SL, Fagerstrom CJ, Fear JM, Mahadevaraju S, Oliver B, Rusan NM. Sperm Head-Tail Linkage Requires Restriction of Pericentriolar Material to the Proximal Centriole End. Dev Cell 2020; 53:86-101.e7. [PMID: 32169161 DOI: 10.1016/j.devcel.2020.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/22/2019] [Accepted: 02/07/2020] [Indexed: 01/27/2023]
Abstract
The centriole, or basal body, is the center of attachment between the sperm head and tail. While the distal end of the centriole templates the cilia, the proximal end associates with the nucleus. Using Drosophila, we identify a centriole-centric mechanism that ensures proper proximal end docking to the nucleus. This mechanism relies on the restriction of pericentrin-like protein (PLP) and the pericentriolar material (PCM) to the proximal end of the centriole. PLP is restricted proximally by limiting its mRNA and protein to the earliest stages of centriole elongation. Ectopic positioning of PLP to more distal portions of the centriole is sufficient to redistribute PCM and microtubules along the entire centriole length. This results in erroneous, lateral centriole docking to the nucleus, leading to spermatid decapitation as a result of a failure to form a stable head-tail linkage.
Collapse
Affiliation(s)
- Brian J Galletta
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jacob M Ortega
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha L Smith
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carey J Fagerstrom
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin M Fear
- Developmental Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharvani Mahadevaraju
- Developmental Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Oliver
- Developmental Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nasser M Rusan
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
83
|
Kesari AS, Heintz VJ, Poudyal S, Miller AS, Kuhn RJ, LaCount DJ. Zika virus NS5 localizes at centrosomes during cell division. Virology 2020; 541:52-62. [PMID: 32056715 DOI: 10.1016/j.virol.2019.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/04/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) nonstructural protein 5 (NS5) plays a critical role in viral RNA replication and mediates key virus-host cell interactions. As with other flavivirus NS5 proteins, ZIKV NS5 is primarily found in the nucleus. We previously reported that the NS5 protein of dengue virus, another flavivirus, localized to centrosomes during cell division. Here we show that ZIKV NS5 also relocalizes from the nucleus to centrosomes during mitosis. In infected cells with supernumerary centrosomes, NS5 was present at all centrosomes. Transient expression of NS5 in uninfected cells confirmed that centrosomal localization was independent of other viral proteins. Live-cell imaging demonstrated that NS5-GFP accumulated at centrosomes shortly after break down of nuclear membrane and remained there through mitosis. Cells expressing NS5-GFP took longer to complete mitosis than control cells. Finally, an analysis of ZIKV NS5 binding partners revealed several centrosomal proteins, providing potential direct links between NS5 and centrosomes.
Collapse
Affiliation(s)
- Aditi S Kesari
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Veronica J Heintz
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Shishir Poudyal
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrew S Miller
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Douglas J LaCount
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
84
|
Lee HJ, Han HJ. Role of Microtubule-Associated Factors in HIF1α Nuclear Translocation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1232:271-276. [PMID: 31893420 DOI: 10.1007/978-3-030-34461-0_34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Adaptation to hypoxia is essential for regulating the survival and functions of hypoxic cells; it is mainly mediated by the hypoxia-inducible factor 1 (HIF1). The alpha subunit of HIF1 (HIF1α) is a well-known regulatory component of HIF1, which is tightly controlled by various types of HIF1α-regulating processes. Previous research has shown that microtubule-regulated HIF1α nuclear translocation is a key factor for HIF1 activation under hypoxia. In this review, we summarize experimental reports on the role of microtubule-associated factors, such as microtubule, dynein, and dynein adaptor protein, in nuclear translocation of HIF1α. Based upon scientific evidence, we propose a bicaudal D homolog (BICD) as a novel HIF1α translocation regulating factor. A deeper understanding of the mechanism of the action of regulatory factors in controlling HIF1α nuclear translocation will provide novel insights into cell biology under hypoxia.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, South Korea
| |
Collapse
|
85
|
Dutta R, Sarkar SR. Role of Dynein and Dynactin (DCTN-1) in Neurodegenerative Diseases. ACTA ACUST UNITED AC 2019. [DOI: 10.33805/2641-8991.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pathophysiology and concept of degeneration in central nervous system is very complex and overwhelming at times. There is a complex mechanism which exists among different molecules in the cytoplasm of cell bodies of neurons, antegrade and retrograde axonal transport of cargoes and accumulation of certain substances and proteins which can influence the excitatory neurotransmitter like glutamate initiating the process of neurodegeneration. Neurons have extensive processes and communication between those processes and the cell body is crucial to neuronal function, viability and survival over time with progression of age. Researchers believe neurons are uniquely dependent on microtubule-based cargo transport. There is enough evidence to support that deficits in retrograde axonal transport contribute to pathogenesis in multiple neurodegenerative diseases. Cytoplasmic dynein and its regulation by Dynactin (DCTN1) is the major molecular motor cargo involved in autophagy, mitosis and neuronal cell survival. Mutation in dynactin gene located in 2p13.1,is indeed studied very extensively and is considered to be involved directly or indirectly to various conditions like Perry syndrome, familial and sporadic Amyotrophic lateral sclerosis, Hereditary spastic paraplegia, Spinocerebellar Ataxia (SCA-5), Huntingtons disease, Alzheimers disease, Charcot marie tooth disease, Hereditary motor neuropathy 7B, prion disease, parkinsons disease, malformation of cortical development, polymicrogyria to name a few with exception of Multiple Sclerosis (MS).
Collapse
|
86
|
The Mitotic Apparatus and Kinetochores in Microcephaly and Neurodevelopmental Diseases. Cells 2019; 9:cells9010049. [PMID: 31878213 PMCID: PMC7016623 DOI: 10.3390/cells9010049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022] Open
Abstract
Regulators of mitotic division, when dysfunctional or expressed in a deregulated manner (over- or underexpressed) in somatic cells, cause chromosome instability, which is a predisposing condition to cancer that is associated with unrestricted proliferation. Genes encoding mitotic regulators are growingly implicated in neurodevelopmental diseases. Here, we briefly summarize existing knowledge on how microcephaly-related mitotic genes operate in the control of chromosome segregation during mitosis in somatic cells, with a special focus on the role of kinetochore factors. Then, we review evidence implicating mitotic apparatus- and kinetochore-resident factors in the origin of congenital microcephaly. We discuss data emerging from these works, which suggest a critical role of correct mitotic division in controlling neuronal cell proliferation and shaping the architecture of the central nervous system.
Collapse
|
87
|
Cui H, Noell CR, Behler RP, Zahn JB, Terry LR, Russ BB, Solmaz SR. Adapter Proteins for Opposing Motors Interact Simultaneously with Nuclear Pore Protein Nup358. Biochemistry 2019; 58:5085-5097. [PMID: 31756096 DOI: 10.1021/acs.biochem.9b00907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nup358 is a protein subunit of the nuclear pore complex that recruits the opposing microtubule motors kinesin-1 and dynein [via the dynein adaptor Bicaudal D2 (BicD2)] to the nuclear envelope. This pathway is important for positioning of the nucleus during the early steps of mitotic spindle assembly and also essential for an important process in brain development. It is unknown whether dynein and kinesin-1 interact with Nup358 simultaneously or whether they compete. Here, we have reconstituted and characterized a minimal complex of kinesin-1 light chain 2 (KLC2) and Nup358. The proteins interact through a W-acidic motif in Nup358, which is highly conserved among vertebrates but absent in insects. While Nup358 and KLC2 form predominantly monomers, their interaction results in the formation of 2:2 complexes, and the W-acidic motif is required for the oligomerization. In active motor complexes, BicD2 and KLC2 each form dimers. Notably, we show that the dynein adaptor BicD2 and KLC2 interact simultaneously with Nup358, resulting in the formation of 2:2:2 complexes. Mutation of the W-acidic motif results in the formation of 1:1:1 complexes. On the basis of our data, we propose that Nup358 recruits simultaneously one kinesin-1 motor and one dynein motor via BicD2 to the nucleus. We hypothesize that the binding sites are close enough to promote direct interactions between these motor recognition domains, which may be important for the regulation of the motility of these opposing motors. Our data provide important insights into a nuclear positioning pathway that is crucial for brain development and faithful chromosome segregation.
Collapse
Affiliation(s)
- Heying Cui
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Crystal R Noell
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Rachael P Behler
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Jacqueline B Zahn
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Lynn R Terry
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Blaine B Russ
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Sozanne R Solmaz
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| |
Collapse
|
88
|
Will L, Portegies S, van Schelt J, van Luyk M, Jaarsma D, Hoogenraad CC. Dynein activating adaptor BICD2 controls radial migration of upper-layer cortical neurons in vivo. Acta Neuropathol Commun 2019; 7:162. [PMID: 31655624 PMCID: PMC6815425 DOI: 10.1186/s40478-019-0827-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/03/2019] [Indexed: 01/19/2023] Open
Abstract
For the proper organization of the six-layered mammalian neocortex it is required that neurons migrate radially from their place of birth towards their designated destination. The molecular machinery underlying this neuronal migration is still poorly understood. The dynein-adaptor protein BICD2 is associated with a spectrum of human neurological diseases, including malformations of cortical development. Previous studies have shown that knockdown of BICD2 interferes with interkinetic nuclear migration in radial glial progenitor cells, and that Bicd2-deficient mice display an altered laminar organization of the cerebellum and the neocortex. However, the precise in vivo role of BICD2 in neocortical development remains unclear. By comparing cell-type specific conditional Bicd2 knock-out mice, we found that radial migration in the cortex predominantly depends on BICD2 function in post-mitotic neurons. Neuron-specific Bicd2 cKO mice showed severely impaired radial migration of late-born upper-layer neurons. BICD2 depletion in cortical neurons interfered with proper Golgi organization, and neuronal maturation and survival of cortical plate neurons. Single-neuron labeling revealed a specific role of BICD2 in bipolar locomotion. Rescue experiments with wildtype and disease-related mutant BICD2 constructs revealed that a point-mutation in the RAB6/RANBP2-binding-domain, associated with cortical malformation in patients, fails to restore proper cortical neuron migration. Together, these findings demonstrate a novel, cell-intrinsic role of BICD2 in cortical neuron migration in vivo and provide new insights into BICD2-dependent dynein-mediated functions during cortical development.
Collapse
|
89
|
Hampoelz B, Schwarz A, Ronchi P, Bragulat-Teixidor H, Tischer C, Gaspar I, Ephrussi A, Schwab Y, Beck M. Nuclear Pores Assemble from Nucleoporin Condensates During Oogenesis. Cell 2019; 179:671-686.e17. [PMID: 31626769 PMCID: PMC6838685 DOI: 10.1016/j.cell.2019.09.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 08/09/2019] [Accepted: 09/20/2019] [Indexed: 02/02/2023]
Abstract
The molecular events that direct nuclear pore complex (NPC) assembly toward nuclear envelopes have been conceptualized in two pathways that occur during mitosis or interphase, respectively. In gametes and embryonic cells, NPCs also occur within stacked cytoplasmic membrane sheets, termed annulate lamellae (AL), which serve as NPC storage for early development. The mechanism of NPC biogenesis at cytoplasmic membranes remains unknown. Here, we show that during Drosophila oogenesis, Nucleoporins condense into different precursor granules that interact and progress into NPCs. Nup358 is a key player that condenses into NPC assembly platforms while its mRNA localizes to their surface in a translation-dependent manner. In concert, Microtubule-dependent transport, the small GTPase Ran and nuclear transport receptors regulate NPC biogenesis in oocytes. We delineate a non-canonical NPC assembly mechanism that relies on Nucleoporin condensates and occurs away from the nucleus under conditions of cell cycle arrest.
Collapse
Affiliation(s)
- Bernhard Hampoelz
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany; Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Andre Schwarz
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany; Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Paolo Ronchi
- European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany
| | | | - Christian Tischer
- Center for Bioimage Analysis, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Imre Gaspar
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Anne Ephrussi
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Yannick Schwab
- European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany; European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany; Max Planck Institute of Biophysics, Frankfurt am Main, Germany; European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany.
| |
Collapse
|
90
|
Burute M, Kapitein LC. Cellular Logistics: Unraveling the Interplay Between Microtubule Organization and Intracellular Transport. Annu Rev Cell Dev Biol 2019; 35:29-54. [DOI: 10.1146/annurev-cellbio-100818-125149] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microtubules are core components of the cytoskeleton and serve as tracks for motor protein–based intracellular transport. Microtubule networks are highly diverse across different cell types and are believed to adapt to cell type–specific transport demands. Here we review how the spatial organization of different subsets of microtubules into higher-order networks determines the traffic rules for motor-based transport in different animal cell types. We describe the interplay between microtubule network organization and motor-based transport within epithelial cells, oocytes, neurons, cilia, and the spindle apparatus.
Collapse
Affiliation(s)
- Mithila Burute
- Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Lukas C. Kapitein
- Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
91
|
Kendrick AA, Dickey AM, Redwine WB, Tran PT, Vaites LP, Dzieciatkowska M, Harper JW, Reck-Peterson SL. Hook3 is a scaffold for the opposite-polarity microtubule-based motors cytoplasmic dynein-1 and KIF1C. J Cell Biol 2019; 218:2982-3001. [PMID: 31320392 PMCID: PMC6719453 DOI: 10.1083/jcb.201812170] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/06/2019] [Accepted: 06/21/2019] [Indexed: 01/06/2023] Open
Abstract
The unidirectional and opposite-polarity microtubule-based motors, dynein and kinesin, drive long-distance intracellular cargo transport. Cellular observations suggest that opposite-polarity motors may be coupled. We recently identified an interaction between the cytoplasmic dynein-1 activating adaptor Hook3 and the kinesin-3 KIF1C. Here, using in vitro reconstitutions with purified components, we show that KIF1C and dynein/dynactin can exist in a complex scaffolded by Hook3. Full-length Hook3 binds to and activates dynein/dynactin motility. Hook3 also binds to a short region in the "tail" of KIF1C, but unlike dynein/dynactin, this interaction does not activate KIF1C. Hook3 scaffolding allows dynein to transport KIF1C toward the microtubule minus end, and KIF1C to transport dynein toward the microtubule plus end. In cells, KIF1C can recruit Hook3 to the cell periphery, although the cellular role of the complex containing both motors remains unknown. We propose that Hook3's ability to scaffold dynein/dynactin and KIF1C may regulate bidirectional motility, promote motor recycling, or sequester the pool of available dynein/dynactin activating adaptors.
Collapse
Affiliation(s)
- Agnieszka A Kendrick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Andrea M Dickey
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - William B Redwine
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Phuoc Tien Tran
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | | | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
92
|
Karabasheva D, Smyth JT. A novel, dynein-independent mechanism focuses the endoplasmic reticulum around spindle poles in dividing Drosophila spermatocytes. Sci Rep 2019; 9:12456. [PMID: 31462700 PMCID: PMC6713755 DOI: 10.1038/s41598-019-48860-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/14/2019] [Indexed: 01/04/2023] Open
Abstract
In dividing animal cells the endoplasmic reticulum (ER) concentrates around the poles of the spindle apparatus by associating with astral microtubules (MTs), and this association is essential for proper ER partitioning to progeny cells. The mechanisms that associate the ER with astral MTs are unknown. Because astral MT minus-ends are anchored by centrosomes at spindle poles, we hypothesized that the MT minus-end motor dynein mediates ER concentration around spindle poles. Live in vivo imaging of Drosophila spermatocytes revealed that dynein is required for ER concentration around centrosomes during late interphase. In marked contrast, however, dynein suppression had no effect on ER association with astral MTs and concentration around spindle poles in early M-phase. In fact, there was a sudden onset of ER association with astral MTs in dynein RNAi cells, revealing activation of an M-phase specific mechanism of ER-MT association. ER redistribution to spindle poles also did not require non-claret disjunctional (ncd), the other known Drosophila MT minus-end motor, nor Klp61F, a MT plus-end motor that generates spindle poleward forces. Collectively, our results suggest that a novel, M-phase specific mechanism of ER-MT association that is independent of MT minus-end motors is required for proper ER partitioning in dividing cells.
Collapse
Affiliation(s)
- Darya Karabasheva
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, 20814, USA
| | - Jeremy T Smyth
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, 20814, USA.
| |
Collapse
|
93
|
Noell CR, Loh JY, Debler EW, Loftus KM, Cui H, Russ BB, Zhang K, Goyal P, Solmaz SR. Role of Coiled-Coil Registry Shifts in the Activation of Human Bicaudal D2 for Dynein Recruitment upon Cargo Binding. J Phys Chem Lett 2019; 10:4362-4367. [PMID: 31306018 PMCID: PMC7243283 DOI: 10.1021/acs.jpclett.9b01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Dynein adaptors such as Bicaudal D2 (BicD2) recognize cargo for dynein-dependent transport, and cargo-bound adaptors are required to activate dynein for processive transport, but the mechanism of action is unknown. Here we report the X-ray structure of the cargo-binding domain of human BicD2 and investigate the structural dynamics of the coiled-coil. Our molecular dynamics simulations support the fact that BicD2 can switch from a homotypic coiled-coil registry, in which both helices of the homodimer are aligned, to an asymmetric registry, where a portion of one helix is vertically shifted, as both states are similarly stable and defined by distinct conformations of F743. The F743I variant increases dynein recruitment in the Drosophila homologue, whereas the human R747C variant causes spinal muscular atrophy. We report spontaneous registry shifts for both variants, which may be the cause for BicD2 hyperactivation and disease. We propose that a registry shift upon cargo binding may activate autoinhibited BicD2 for dynein recruitment.
Collapse
Affiliation(s)
- Crystal R. Noell
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Jia Ying Loh
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Erik W. Debler
- Department of Biochemistry & Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, United States
| | - Kyle M. Loftus
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Heying Cui
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Blaine B. Russ
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Kaiqi Zhang
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Puja Goyal
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902, United States
- Corresponding Authors:. Tel: +1 607 777 4308 (P.G.)., . Tel: +1 607 777 2089 (S.R.S.)
| | - Sozanne R. Solmaz
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902, United States
- Corresponding Authors:. Tel: +1 607 777 4308 (P.G.)., . Tel: +1 607 777 2089 (S.R.S.)
| |
Collapse
|
94
|
Gill NK, Ly C, Kim PH, Saunders CA, Fong LG, Young SG, Luxton GWG, Rowat AC. DYT1 Dystonia Patient-Derived Fibroblasts Have Increased Deformability and Susceptibility to Damage by Mechanical Forces. Front Cell Dev Biol 2019; 7:103. [PMID: 31294022 PMCID: PMC6606767 DOI: 10.3389/fcell.2019.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
DYT1 dystonia is a neurological movement disorder that is caused by a loss-of-function mutation in the DYT1/TOR1A gene, which encodes torsinA, a conserved luminal ATPases-associated with various cellular activities (AAA+) protein. TorsinA is required for the assembly of functional linker of nucleoskeleton and cytoskeleton (LINC) complexes, and consequently the mechanical integration of the nucleus and the cytoskeleton. Despite the potential implications of altered mechanobiology in dystonia pathogenesis, the role of torsinA in regulating cellular mechanical phenotype, or mechanotype, in DYT1 dystonia remains unknown. Here, we define the deformability of mouse fibroblasts lacking functional torsinA as well as human fibroblasts isolated from DYT1 dystonia patients. We find that the deletion of torsinA or the expression of torsinA containing the DYT1 dystonia-causing ΔE302/303 (ΔE) mutation results in more deformable cells. We observe a similar increased deformability of mouse fibroblasts that lack lamina-associated polypeptide 1 (LAP1), which interacts with and stimulates the ATPase activity of torsinA in vitro, as well as with the absence of the LINC complex proteins, Sad1/UNC-84 1 (SUN1) and SUN2, lamin A/C, or lamin B1. Consistent with these findings, we also determine that DYT1 dystonia patient-derived fibroblasts are more compliant than fibroblasts isolated from unafflicted individuals. DYT1 dystonia patient-derived fibroblasts also exhibit increased nuclear strain and decreased viability following mechanical stretch. Taken together, our results establish the foundation for future mechanistic studies of the role of cellular mechanotype and LINC-dependent nuclear-cytoskeletal coupling in regulating cell survival following exposure to mechanical stresses.
Collapse
Affiliation(s)
- Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chau Ly
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul H Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
95
|
Alvarado-Kristensson M, Rosselló CA. The Biology of the Nuclear Envelope and Its Implications in Cancer Biology. Int J Mol Sci 2019; 20:E2586. [PMID: 31137762 PMCID: PMC6566445 DOI: 10.3390/ijms20102586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022] Open
Abstract
The formation of the nuclear envelope and the subsequent compartmentalization of the genome is a defining feature of eukaryotes. Traditionally, the nuclear envelope was purely viewed as a physical barrier to preserve genetic material in eukaryotic cells. However, in the last few decades, it has been revealed to be a critical cellular component in controlling gene expression and has been implicated in several human diseases. In cancer, the relevance of the cell nucleus was first reported in the mid-1800s when an altered nuclear morphology was observed in tumor cells. This review aims to give a current and comprehensive view of the role of the nuclear envelope on cancer first by recapitulating the changes of the nuclear envelope during cell division, second, by reviewing the role of the nuclear envelope in cell cycle regulation, signaling, and the regulation of the genome, and finally, by addressing the nuclear envelope link to cell migration and metastasis and its use in cancer prognosis.
Collapse
Affiliation(s)
- Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Catalina Ana Rosselló
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07121 Palma de Mallorca, Spain.
- Lipopharma Therapeutics, Isaac Newton, 07121 Palma de Mallorca, Spain.
| |
Collapse
|
96
|
Al Jord A, Spassky N, Meunier A. Motile ciliogenesis and the mitotic prism. Biol Cell 2019; 111:199-212. [PMID: 30905068 DOI: 10.1111/boc.201800072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Motile cilia of epithelial multiciliated cells transport vital fluids along organ lumens to promote essential respiratory, reproductive and brain functions. Progenitors of multiciliated cells undergo massive and coordinated organelle remodelling during their differentiation for subsequent motile ciliogenesis. Defects in multiciliated cell differentiation lead to severe cilia-related diseases by perturbing cilia-based flows. Recent work designated the machinery of mitosis as the orchestrator of the orderly progression of differentiation associated with multiple motile cilia formation. By examining the events leading to motile ciliogenesis with a methodological prism of mitosis, we contextualise and discuss the recent findings to broaden the spectrum of questions related to the differentiation of mammalian multiciliated cells.
Collapse
Affiliation(s)
- Adel Al Jord
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS 7241 INSERM U1050, PSL Research University, Paris, 75005, France
| | - Nathalie Spassky
- Institut de Biologie de l'École Normale Supérieure (IBENS), Paris Sciences et Lettres (PSL) Research University, Paris, F-75005, France.,CNRS, UMR 8197, Paris, F-75005, France.,INSERM, U1024, Paris, F-75005, France
| | - Alice Meunier
- Institut de Biologie de l'École Normale Supérieure (IBENS), Paris Sciences et Lettres (PSL) Research University, Paris, F-75005, France.,CNRS, UMR 8197, Paris, F-75005, France.,INSERM, U1024, Paris, F-75005, France
| |
Collapse
|
97
|
Motor-cargo adaptors at the organelle-cytoskeleton interface. Curr Opin Cell Biol 2019; 59:16-23. [PMID: 30952037 DOI: 10.1016/j.ceb.2019.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 01/03/2023]
Abstract
Cytoskeletal motors of the dynein, kinesin and myosin superfamilies maintain and adapt subcellular organelle organization to meet functional demands and support the vesicular transport of material between organelles. These motors require the capacity to specifically recognize the vesicle/organelle to be transported and are capable of selective recognition of multiple cargo. Recent studies have begun to uncover the molecular basis for motor recruitment and have highlighted the role of organelle-associated 'cargo-adaptor' proteins in cellular transport. These adaptors possess sequences and/or structural features that enable both motor recruitment and activation from regulated, inactive, states to enable motility on the cytoskeleton. Motor-cargo adaptor interactions define a key organelle-cytoskeleton interface, acting as crucial regulatory hubs to enable the cell to finely control membrane trafficking and organelle dynamics. Understanding the molecular basis of these interactions may offer new opportunities to control and manipulate cytoskeletal and organelle dynamics for the development of new research tools and potentially therapeutics.
Collapse
|
98
|
The Nuclear Arsenal of Cilia. Dev Cell 2019; 49:161-170. [DOI: 10.1016/j.devcel.2019.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/07/2018] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
|
99
|
Som S, Chatterjee S, Paul R. Mechanistic three-dimensional model to study centrosome positioning in the interphase cell. Phys Rev E 2019; 99:012409. [PMID: 30780383 DOI: 10.1103/physreve.99.012409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 01/28/2023]
Abstract
During the interphase in mammalian cells, the position of the centrosome is actively maintained at a small but finite distance away from the nucleus. The perinuclear positioning of the centrosome is crucial for cellular trafficking and progression into mitosis. Although the literature suggests that the contributions of the microtubule-associated forces bring the centrosome to the center of the cell, the position of the centrosome was merely investigated in the absence of the nucleus. Upon performing a coarse-grained simulation study with mathematical analysis, we show that the combined effect of the forces due to the cell cortex and the nucleus facilitate the centrosome positioning. Our study also demonstrates that in the absence of nucleus-based forces, the centrosome collapses on the nucleus due to cortical forces. Depending upon the magnitudes of the cortical forces and the nucleus-based forces, the centrosome appears to stay at various distances away from the nucleus. Such null force regions are found to be stable as well as unstable fixed points. This study uncovers a set of redundant schemes that the cell may adopt to produce the required cortical and nucleus-based forces stabilizing the centrosome at a finite distance away from the nucleus.
Collapse
Affiliation(s)
- Subhendu Som
- Indian Association for the Cultivation of Science, Kolkata - 700032, India
| | | | - Raja Paul
- Indian Association for the Cultivation of Science, Kolkata - 700032, India
| |
Collapse
|
100
|
Martinez Carrera LA, Gabriel E, Donohoe CD, Hölker I, Mariappan A, Storbeck M, Uhlirova M, Gopalakrishnan J, Wirth B. Novel insights into SMALED2: BICD2 mutations increase microtubule stability and cause defects in axonal and NMJ development. Hum Mol Genet 2019. [PMID: 29528393 DOI: 10.1093/hmg/ddy086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bicaudal D2 (BICD2) encodes a highly conserved motor adaptor protein that regulates the dynein-dynactin complex in different cellular processes. Heterozygous mutations in BICD2 cause autosomal dominant lower extremity-predominant spinal muscular atrophy-2 (SMALED2). Although, various BICD2 mutations have been shown to alter interactions with different binding partners or the integrity of the Golgi apparatus, the specific pathological effects of BICD2 mutations underlying SMALED2 remain elusive. Here, we show that the fibroblasts derived from individuals with SMALED2 exhibit stable microtubules. Importantly, this effect was observed regardless of where the BICD2 mutation is located, which unifies the most likely cellular mechanism affecting microtubules. Significantly, overexpression of SMALED2-causing BICD2 mutations in the disease-relevant cell type, motor neurons, also results in an increased microtubule stability which is accompanied by axonal aberrations such as collateral branching and overgrowth. To study the pathological consequences of BICD2 mutations in vivo, and to address the controversial debate whether two of these mutations are neuron or muscle specific, we generated the first Drosophila model of SMALED2. Strikingly, neuron-specific expression of BICD2 mutants resulted in reduced neuromuscular junction size in larvae and impaired locomotion of adult flies. In contrast, expressing BICD2 mutations in muscles had no obvious effect on motor function, supporting a primarily neurological etiology of the disease. Thus, our findings contribute to the better understanding of SMALED2 pathology by providing evidence for a common pathomechanism of BICD2 mutations that increase microtubule stability in motor neurons leading to increased axonal branching and to impaired neuromuscular junction development.
Collapse
Affiliation(s)
- Lilian A Martinez Carrera
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Elke Gabriel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Colin D Donohoe
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Irmgard Hölker
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Aruljothi Mariappan
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Markus Storbeck
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Mirka Uhlirova
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Jay Gopalakrishnan
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Center for Rare Diseases Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| |
Collapse
|