51
|
Schwarz C, Horn N, Benson G, Wrachtrup Calzado I, Wurdack K, Pechlaner R, Grittner U, Wirth M, Flöel A. Spermidine intake is associated with cortical thickness and hippocampal volume in older adults. Neuroimage 2020; 221:117132. [PMID: 32629145 DOI: 10.1016/j.neuroimage.2020.117132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The natural polyamine spermidine, known to be important for cellular function, decreases during aging. Previous research has demonstrated beneficial impact of spermidine intake on memory functions in both animal models and humans, suggesting that spermidine may be a preventive approach to delay age-related cognitive decline and possibly even Alzheimer's disease (AD). However, the association of spermidine intake with brain health in humans is still unknown. In this study, we aimed to determine the association between dietary spermidine intake and structural brain measures in older individuals with subjective cognitive decline (SCD) and healthy controls (HC). METHODS Dietary spermidine intake and adherence to Mediterranean Diet (MeDi) were assessed by a self-reported food frequency questionnaire in 90 older adults with SCD and 47 HC. Processing of structural MRI data yielded global brain volumes, hippocampal volume, mean and regional cortical thickness, and cortical thickness in a template encompassing AD-vulnerable regions. In exploratory analyses, the association between spermidine intake and structural brain measures was assessed using adjusted and unadjusted linear regression models. Additionally, we tested for differential associations as a function of group. Mediation analyses were performed to examine whether dietary spermidine intake mediates the associations between adherence to MeDi and structural brain measures. RESULTS Higher spermidine intake was associated with larger hippocampal volume (standardized β = 0.262, p = 0.002), greater mean cortical thickness (standardized β = 0.187, p = 0.031), and greater cortical thickness in AD-vulnerable brain regions (standardized β = 0.176, p = 0.042), the parietal (standardized β = 0.202, p = 0.020), and temporal lobes (standardized β = 0.217, p = 0.012). No significant differential effect emerged between older adults with SCD and HC. Moreover, a substantial mediating effect of dietary spermidine intake on the associations between adherence to MeDi and structural brain measures was observed. CONCLUSION Higher dietary spermidine intake was positively associated with several structural brain measures, irrespective of the presence of SCD, and substantially mediated the relationship of adherence to MeDi and structural brain measures. Our data suggest that higher spermidine intake might be a promising dietary approach to preserve brain health in older adults, a hypothesis currently tested in an interventional trial.
Collapse
Affiliation(s)
- Claudia Schwarz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany.
| | - Nora Horn
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany.
| | - Gloria Benson
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany; Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Isabel Wrachtrup Calzado
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany.
| | - Katharina Wurdack
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany.
| | - Raimund Pechlaner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| | - Miranka Wirth
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany; German Center for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany.
| |
Collapse
|
52
|
Hoffmann-Conaway S, Brockmann MM, Schneider K, Annamneedi A, Rahman KA, Bruns C, Textoris-Taube K, Trimbuch T, Smalla KH, Rosenmund C, Gundelfinger ED, Garner CC, Montenegro-Venegas C. Parkin contributes to synaptic vesicle autophagy in Bassoon-deficient mice. eLife 2020; 9:56590. [PMID: 32364493 PMCID: PMC7224700 DOI: 10.7554/elife.56590] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/02/2020] [Indexed: 12/18/2022] Open
Abstract
Mechanisms regulating the turnover of synaptic vesicle (SV) proteins are not well understood. They are thought to require poly-ubiquitination and degradation through proteasome, endo-lysosomal or autophagy-related pathways. Bassoon was shown to negatively regulate presynaptic autophagy in part by scaffolding Atg5. Here, we show that increased autophagy in Bassoon knockout neurons depends on poly-ubiquitination and that the loss of Bassoon leads to elevated levels of ubiquitinated synaptic proteins per se. Our data show that Bassoon knockout neurons have a smaller SV pool size and a higher turnover rate as indicated by a younger pool of SV2. The E3 ligase Parkin is required for increased autophagy in Bassoon-deficient neurons as the knockdown of Parkin normalized autophagy and SV protein levels and rescued impaired SV recycling. These data indicate that Bassoon is a key regulator of SV proteostasis and that Parkin is a key E3 ligase in the autophagy-mediated clearance of SV proteins.
Collapse
Affiliation(s)
| | - Marisa M Brockmann
- Charité - Universitätsmedizin Berlin, Institute of Neurobiology, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Anil Annamneedi
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Institute of Biology (IBIO), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Kazi Atikur Rahman
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Christine Bruns
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Kathrin Textoris-Taube
- Charité - Universitätsmedizin Berlin, Institute of Biochemistry, Core Facility High Throughput Mass Spectrometry, Berlin, Germany
| | - Thorsten Trimbuch
- Charité - Universitätsmedizin Berlin, Institute of Neurobiology, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karl-Heinz Smalla
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Christian Rosenmund
- Charité - Universitätsmedizin Berlin, Institute of Neurobiology, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Molecular Neurobiology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Craig Curtis Garner
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institute of Neurobiology, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carolina Montenegro-Venegas
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Institute for Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
53
|
Tomoda T, Yang K, Sawa A. Neuronal Autophagy in Synaptic Functions and Psychiatric Disorders. Biol Psychiatry 2020; 87:787-796. [PMID: 31542152 PMCID: PMC6986983 DOI: 10.1016/j.biopsych.2019.07.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/02/2019] [Accepted: 07/19/2019] [Indexed: 12/22/2022]
Abstract
Homeostatic maintenance of physiological functions is fundamental to organismal well-being. Disruption or imbalance in homeostasis results in functional disturbances at molecular, cellular, and tissue levels, leading to manifestation as physical and mental illnesses. Homeostatic imbalance is caused by a range of pathophysiological mechanisms, including disrupted reduction-oxidation reactions, inflammatory responses, metabolic disturbances, or failure in quality control of cellular proteins and organelles. However, the roles for the protein/organelle quality control in the regulation of behaviors, in particular of cognitive processes, had not been well documented, until recent reports finally supported this concept. The frontline studies in neuroscience have revealed that synaptic components (e.g., synaptic proteins, organelles, neurotransmitters and their receptors) are selectively degraded by autophagy, a cellular recycling machinery implicated in surveillance and quality control of proteins and organelles responsible for the maintenance of cellular homeostasis. Apart from the canonical role of autophagy in supporting cell viability, synaptic autophagy appears to regulate synapse remodeling and plasticity. Consistently, emerging evidence suggests novel roles of autophagy in memory encoding, information processing, or cognitive functions. In this review, we overview recent progress in understanding the roles of neuronal autophagy in homeostatic maintenance of synaptic functions, with particular focus on how disruptions in these processes may contribute to the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Toshifumi Tomoda
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| |
Collapse
|
54
|
Long-term treatment with spermidine increases health span of middle-aged Sprague-Dawley male rats. GeroScience 2020; 42:937-949. [PMID: 32285289 DOI: 10.1007/s11357-020-00173-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/30/2019] [Indexed: 10/24/2022] Open
Abstract
Let alone calorie restriction, life span extension in higher organisms has proven to be difficult to achieve using simple drugs. Previous studies have shown that the polyamine spermidine increased the maximum life span in C. elegans and the median life span in mice. However, younger subjects (< 40 years of age) are infrequently prescribed nor self-medicating with antiaging drugs. Therefore, in the present study, we aimed at assessing the effect of long-term treatment with spermidine given in the drinking water on behavioral performance and longevity of male, middle-aged Sprague-Dawley rats. We report that spermidine given in the drinking water did not extend neither the median nor the maximum life span of the middle-aged male Sprague-Dawley rats. However, spermidine treatment had a beneficial effect on the body weight and the kidney tubules, liver, and heart morphology. Behaviorally, spermidine led to a reduction in anxiety and an increase in curiosity, as assessed by exploratory behavior. Moreover, long-term treatment with spermidine enhanced autophagy in the brain and led to a diminished expression of the inflammatory markers, Tgfb, CD11b, Fcgr1, Stat1, CR3, and GFAP mRNAs in several cortical region and hippocampus of the treated rats suggesting that one beneficial effect of the long-term treatment with spermidine is an attenuated proinflammatory state in the aged brain. Our results suggest that long-term treatment with spermidine increases health span of middle-aged rats by attenuating neuroinflammation and improving anxiety and exploratory behavior.
Collapse
|
55
|
Huang S, Piao C, Beuschel CB, Götz T, Sigrist SJ. Presynaptic Active Zone Plasticity Encodes Sleep Need in Drosophila. Curr Biol 2020; 30:1077-1091.e5. [PMID: 32142702 DOI: 10.1016/j.cub.2020.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/26/2019] [Accepted: 01/07/2020] [Indexed: 01/04/2023]
Abstract
Sleep is universal across species and essential for quality of life and health, as evidenced by the consequences of sleep loss. Sleep might homeostatically normalize synaptic gains made over wake states in order to reset information processing and storage and support learning, and sleep-associated synaptic (ultra)structural changes have been demonstrated recently. However, causal relationships between the molecular and (ultra)structural status of synapses, sleep homeostatic regulation, and learning processes have yet to be established. We show here that the status of the presynaptic active zone can directly control sleep in Drosophila. Short sleep mutants showed a brain-wide upregulation of core presynaptic scaffold proteins and release factors. Increasing the gene copy number of ELKS-family scaffold master organizer Bruchpilot (BRP) not only mimicked changes in the active zone scaffold and release proteins but importantly provoked sleep in a dosage-dependent manner, qualitatively and quantitatively reminiscent of sleep deprivation effects. Conversely, reducing the brp copy number decreased sleep in short sleep mutant backgrounds, suggesting a specific role of the active zone plasticity in homeostatic sleep regulation. Finally, elimination of BRP specifically in the sleep-promoting R2 neurons of 4xBRP animals partially restored sleep patterns and rescued learning deficits. Our results suggest that the presynaptic active zone plasticity driven by BRP operates as a sleep homeostatic actuator that also restricts periods of effective learning.
Collapse
Affiliation(s)
- Sheng Huang
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| | - Chengji Piao
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Christine B Beuschel
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Torsten Götz
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
56
|
Silva B, Niehage C, Maglione M, Hoflack B, Sigrist SJ, Wassmer T, Pavlowsky A, Preat T. Interactions between amyloid precursor protein-like (APPL) and MAGUK scaffolding proteins contribute to appetitive long-term memory in Drosophila melanogaster. J Neurogenet 2020; 34:92-105. [PMID: 31965876 DOI: 10.1080/01677063.2020.1712597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Amyloid precursor protein (APP), the precursor of amyloid beta peptide, plays a central role in Alzheimer's disease (AD), a pathology characterized by memory decline and synaptic loss upon aging. Understanding the physiological role of APP is fundamental in deciphering the progression of AD, and several studies suggest a synaptic function via protein-protein interactions. Nevertheless, it remains unclear whether and how these interactions contribute to memory. In Drosophila, we previously showed that APP-like (APPL), the fly APP homolog, is required for aversive associative memory in the olfactory memory center, the mushroom body (MB). In the present study, we show that APPL is required for appetitive long-term memory (LTM), another form of associative memory, in a specific neuronal subpopulation of the MB, the α'/β' Kenyon cells. Using a biochemical approach, we identify the synaptic MAGUK (membrane-associated guanylate kinase) proteins X11, CASK, Dlgh2 and Dlgh4 as interactants of the APP intracellular domain (AICD). Next, we show that the Drosophila homologs CASK and Dlg are also required for appetitive LTM in the α'/β' neurons. Finally, using a double RNAi approach, we demonstrate that genetic interactions between APPL and CASK, as well as between APPL and Dlg, are critical for appetitive LTM. In summary, our results suggest that APPL contributes to associative long-term memory through its interactions with the main synaptic scaffolding proteins CASK and Dlg. This function should be conserved across species.
Collapse
Affiliation(s)
- Bryon Silva
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | | | - Marta Maglione
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | | | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Thomas Wassmer
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Alice Pavlowsky
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| |
Collapse
|
57
|
Blagburn JM. A new method of recording from the giant fiber of Drosophila melanogaster shows that the strength of its auditory inputs remains constant with age. PLoS One 2020; 15:e0224057. [PMID: 31910219 PMCID: PMC6946141 DOI: 10.1371/journal.pone.0224057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/13/2019] [Indexed: 11/19/2022] Open
Abstract
There have been relatively few studies of how central synapses age in adult Drosophila melanogaster. In this study we investigate the aging of the synaptic inputs to the Giant Fiber (GF) from auditory Johnston's Organ neurons (JONs). In previously published experiments an indirect assay of this synaptic connection was used; here we describe a new, more direct assay, which allows reliable detection of the GF action potential in the neck connective, and long term recording of its responses to sound. Genetic poisoning using diphtheria toxin expressed in the GF with R68A06-GAL4 was used to confirm that this signal indeed arose from the GF and not from other descending neurons. As before, the sound-evoked action potentials (SEPs) in the antennal nerve were recorded via an electrode inserted at the base of the antenna. It was noted that an action potential in the GF elicited an antennal twitch, which in turn evoked a mechanosensory response from the JONs in the absence of sound. We then used these extracellular recording techniques in males and female of different ages to quantify the response of the JONs to a brief sound impulse, and also to measure the strength of the connection between the JONs and the GF. At no age was there any significant difference between males and females, for any of the parameters measured. The sensitivity of the JONs to a sound impulse approximately doubled between 1 d and 10 d after eclosion, which corresponds to the period when most mating is taking place. Subsequently JON sensitivity decreased with age, being approximately half as sensitive at 20 d and one-third as sensitive at 50 d, as compared to 10 d. However, the strength of the connection between the auditory input and the GF itself remained unchanged with age, although it did show some variability that could mask any small changes.
Collapse
Affiliation(s)
- Jonathan M. Blagburn
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, PR, United States of America
| |
Collapse
|
58
|
Maglione M, Kochlamazashvili G, Eisenberg T, Rácz B, Michael E, Toppe D, Stumpf A, Wirth A, Zeug A, Müller FE, Moreno-Velasquez L, Sammons RP, Hofer SJ, Madeo F, Maritzen T, Maier N, Ponimaskin E, Schmitz D, Haucke V, Sigrist SJ. Spermidine protects from age-related synaptic alterations at hippocampal mossy fiber-CA3 synapses. Sci Rep 2019; 9:19616. [PMID: 31873156 PMCID: PMC6927957 DOI: 10.1038/s41598-019-56133-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Aging is associated with functional alterations of synapses thought to contribute to age-dependent memory impairment (AMI). While therapeutic avenues to protect from AMI are largely elusive, supplementation of spermidine, a polyamine normally declining with age, has been shown to restore defective proteostasis and to protect from AMI in Drosophila. Here we demonstrate that dietary spermidine protects from age-related synaptic alterations at hippocampal mossy fiber (MF)-CA3 synapses and prevents the aging-induced loss of neuronal mitochondria. Dietary spermidine rescued age-dependent decreases in synaptic vesicle density and largely restored defective presynaptic MF-CA3 long-term potentiation (LTP) at MF-CA3 synapses (MF-CA3) in aged animals. In contrast, spermidine failed to protect CA3-CA1 hippocampal synapses characterized by postsynaptic LTP from age-related changes in function and morphology. Our data demonstrate that dietary spermidine attenuates age-associated deterioration of MF-CA3 synaptic transmission and plasticity. These findings provide a physiological and molecular basis for the future therapeutic usage of spermidine.
Collapse
Affiliation(s)
- Marta Maglione
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Gaga Kochlamazashvili
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010, Graz, Austria
- BioTechMed-Graz, 8010, Graz, Austria
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078, Budapest, Hungary
| | - Eva Michael
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - David Toppe
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Alexander Stumpf
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Alexander Wirth
- Cellular Neurophysiology, Hannover Medical School, 30625, Hannover, Germany
| | - André Zeug
- Cellular Neurophysiology, Hannover Medical School, 30625, Hannover, Germany
| | - Franziska E Müller
- Cellular Neurophysiology, Hannover Medical School, 30625, Hannover, Germany
| | - Laura Moreno-Velasquez
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Rosanna P Sammons
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010, Graz, Austria
- BioTechMed-Graz, 8010, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010, Graz, Austria
- BioTechMed-Graz, 8010, Graz, Austria
| | - Tanja Maritzen
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Nikolaus Maier
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, 30625, Hannover, Germany
| | - Dietmar Schmitz
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Volker Haucke
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany.
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany.
| | - Stephan J Sigrist
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany.
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany.
| |
Collapse
|
59
|
Wirth M, Schwarz C, Benson G, Horn N, Buchert R, Lange C, Köbe T, Hetzer S, Maglione M, Michael E, Märschenz S, Mai K, Kopp U, Schmitz D, Grittner U, Sigrist SJ, Stekovic S, Madeo F, Flöel A. Effects of spermidine supplementation on cognition and biomarkers in older adults with subjective cognitive decline (SmartAge)-study protocol for a randomized controlled trial. Alzheimers Res Ther 2019; 11:36. [PMID: 31039826 PMCID: PMC6492385 DOI: 10.1186/s13195-019-0484-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/20/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Given the global increase in the aging population and age-related diseases, the promotion of healthy aging is one of the most crucial public health issues. This trial aims to contribute to the establishment of effective approaches to promote cognitive and brain health in older individuals with subjective cognitive decline (SCD). Presence of SCD is known to increase the risk of objective cognitive decline and progression to dementia due to Alzheimer's disease. Therefore, it is our primary goal to determine whether spermidine supplementation has a positive impact on memory performance in this at-risk group, as compared with placebo. The secondary goal is to examine the effects of spermidine intake on other neuropsychological, behavioral, and physiological parameters. METHODS The SmartAge trial is a monocentric, randomized, double-blind, placebo-controlled phase IIb trial. The study will investigate 12 months of intervention with spermidine-based nutritional supplementation (target intervention) compared with 12 months of placebo intake (control intervention). We plan to recruit 100 cognitively normal older individuals with SCD from memory clinics, neurologists and general practitioners in private practice, and the general population. Participants will be allocated to one of the two study arms using blockwise randomization stratified by age and sex with a 1:1 allocation ratio. The primary outcome is the change in memory performance between baseline and post-intervention visits (12 months after baseline). Secondary outcomes include the change in memory performance from baseline to follow-up assessment (18 months after baseline), as well as changes in neurocognitive, behavioral, and physiological parameters (including blood and neuroimaging biomarkers), assessed at baseline and post-intervention. DISCUSSION The SmartAge trial aims to provide evidence of the impact of spermidine supplementation on memory performance in older individuals with SCD. In addition, we will identify possible neurophysiological mechanisms of action underlying the anticipated cognitive benefits. Overall, this trial will contribute to the establishment of nutrition intervention in the prevention of Alzheimer's disease. TRIAL REGISTRATION ClinicalTrials.gov, NCT03094546 . Registered 29 March 2017-retrospectively registered. PROTOCOL VERSION Based on EA1/250/16 version 1.5.
Collapse
Affiliation(s)
- Miranka Wirth
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Stroke Research Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Claudia Schwarz
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
| | - Gloria Benson
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
| | - Nora Horn
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
| | - Ralph Buchert
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Berlin, Germany
- University Hospital Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - Catharina Lange
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Berlin, Germany
| | - Theresa Köbe
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Douglas Mental Health University Institute, Studies on Prevention of Alzheimer’s Disease (StOP-AD) Centre, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Stefan Hetzer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Marta Maglione
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Eva Michael
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Stefanie Märschenz
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
| | - Knut Mai
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology & Metabolism, Berlin, Germany
- Charité-Center for Cardiovascular Research (CCR), Berlin, Germany
| | - Ute Kopp
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany
| | - Dietmar Schmitz
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Ulrike Grittner
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Stephan J. Sigrist
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Slaven Stekovic
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
60
|
Autophagy as a Homeostatic Mechanism in Response to Stress Conditions in the Central Nervous System. Mol Neurobiol 2019; 56:6594-6608. [DOI: 10.1007/s12035-019-1546-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
|
61
|
Bhukel A, Beuschel CB, Maglione M, Lehmann M, Juhász G, Madeo F, Sigrist SJ. Autophagy within the mushroom body protects from synapse aging in a non-cell autonomous manner. Nat Commun 2019; 10:1318. [PMID: 30899013 PMCID: PMC6428838 DOI: 10.1038/s41467-019-09262-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 02/08/2019] [Indexed: 12/21/2022] Open
Abstract
Macroautophagy is an evolutionarily conserved cellular maintenance program, meant to protect the brain from premature aging and neurodegeneration. How neuronal autophagy, usually loosing efficacy with age, intersects with neuronal processes mediating brain maintenance remains to be explored. Here, we show that impairing autophagy in the Drosophila learning center (mushroom body, MB) but not in other brain regions triggered changes normally restricted to aged brains: impaired associative olfactory memory as well as a brain-wide ultrastructural increase of presynaptic active zones (metaplasticity), a state non-compatible with memory formation. Mechanistically, decreasing autophagy within the MBs reduced expression of an NPY-family neuropeptide, and interfering with autocrine NPY signaling of the MBs provoked similar brain-wide metaplastic changes. Our results in an exemplary fashion show that autophagy-regulated signaling emanating from a higher brain integration center can execute high-level control over other brain regions to steer life-strategy decisions such as whether or not to form memories.
Collapse
Affiliation(s)
- Anuradha Bhukel
- Institute for Biology/Genetics, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
- NeuroCure, Charité, Charitéplatz 1, 11007, Berlin, Germany
| | - Christine Brigitte Beuschel
- Institute for Biology/Genetics, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
- NeuroCure, Charité, Charitéplatz 1, 11007, Berlin, Germany
| | - Marta Maglione
- Institute for Biology/Genetics, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
- NeuroCure, Charité, Charitéplatz 1, 11007, Berlin, Germany
| | - Martin Lehmann
- Leibniz Forschungsinstitut Für Molecular Pharmakologie, Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Gabor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány, s. 1/C. 6.520, Budapest, H-1117, Hungary
| | - Frank Madeo
- Institute for Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/EG, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany.
- NeuroCure, Charité, Charitéplatz 1, 11007, Berlin, Germany.
| |
Collapse
|
62
|
Liang Y. Emerging Concepts and Functions of Autophagy as a Regulator of Synaptic Components and Plasticity. Cells 2019; 8:cells8010034. [PMID: 30634508 PMCID: PMC6357011 DOI: 10.3390/cells8010034] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022] Open
Abstract
Protein homeostasis (proteostasis) is crucial to the maintenance of neuronal integrity and function. As the contact sites between neurons, synapses rely heavily on precisely regulated protein-protein interactions to support synaptic transmission and plasticity processes. Autophagy is an effective degradative pathway that can digest cellular components and maintain cellular proteostasis. Perturbations of autophagy have been implicated in aging and neurodegeneration due to a failure to remove damaged proteins and defective organelles. Recent evidence has demonstrated that autophagosome formation is prominent at synaptic terminals and neuronal autophagy is regulated in a compartment-specific fashion. Moreover, synaptic components including synaptic proteins and vesicles, postsynaptic receptors and synaptic mitochondria are known to be degraded by autophagy, thereby contributing to the remodeling of synapses. Indeed, emerging studies indicate that modulation of autophagy may be required for different forms of synaptic plasticity and memory formation. In this review, I will discuss our current understanding of the important role of neuronal/synaptic autophagy in maintaining neuronal function by degrading synaptic components and try to propose a conceptual framework of how the degradation of synaptic components via autophagy might impact synaptic function and contribute to synaptic plasticity.
Collapse
Affiliation(s)
- YongTian Liang
- Neurogenetik, Institut für Biologie, Freie Universität Berlin, 14195 Berlin, Germany.
- NeuroCure, Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany.
| |
Collapse
|
63
|
Brain transcriptome changes in the aging Drosophila melanogaster accompany olfactory memory performance deficits. PLoS One 2018; 13:e0209405. [PMID: 30576353 PMCID: PMC6303037 DOI: 10.1371/journal.pone.0209405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
Cognitive decline is a common occurrence of the natural aging process in animals and studying age-related changes in gene expression in the brain might shed light on disrupted molecular pathways that play a role in this decline. The fruit fly is a useful neurobiological model for studying aging due to its short generational time and relatively small brain size. We investigated age-dependent changes in the Drosophila melanogaster whole-brain transcriptome by comparing 5-, 20-, 30- and 40-day-old flies of both sexes. We used RNA-Sequencing of dissected brain samples followed by differential expression, temporal clustering, co-expression network and gene ontology enrichment analyses. We found an overall decline in expression of genes from the mitochondrial oxidative phosphorylation pathway that occurred as part of aging. We also detected, in females, a pattern of continuously declining expression for many neuronal function genes, which was unexpectedly reversed later in life. This group of genes was highly enriched in memory-impairing genes previously identified through an RNAi screen. We also identified deficits in short-term olfactory memory performance in older flies of both sexes, some of which matched the timing of certain changes in the brain transcriptome. Our study provides the first transcriptome profile of aging brains from fruit flies of both sexes, and it will serve as an important resource for those who study aging and cognitive decline in this model.
Collapse
|
64
|
Pietrocola F, Castoldi F, Kepp O, Carmona-Gutierrez D, Madeo F, Kroemer G. Spermidine reduces cancer-related mortality in humans. Autophagy 2018; 15:362-365. [PMID: 30354939 DOI: 10.1080/15548627.2018.1539592] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A recent prospective epidemiological study suggested that an increase in the nutritional uptake of the natural polyamine spermidine is associated with reduced overall and cancer-specific mortality. Here, we speculate through which mechanisms spermidine might exert such oncopreventive effects. Abbreviations: ACLY, ATP citrate lyase; ATG, autophagy-related gene; CoA, coenzyme A; NSCLC, non-small cell lung cancer.
Collapse
Affiliation(s)
- Federico Pietrocola
- a Institute for Research in Biomedicine , Barcelona , Spain.,b INSERM, U1138 , Paris , France
| | - Francesca Castoldi
- b INSERM, U1138 , Paris , France.,c Gustave Roussy Cancer Campus , Villejuif , France.,d Equipe 11 labellisée par la Ligue Nationale contre le Cancer , Centre de Recherche des Cordeliers , Paris , France.,e Université Paris Descartes/Paris V, Sorbonne Paris Cité , Paris , France.,f Metabolomics and Cell Biology Platforms , Gustave Roussy Cancer Campus , Villejuif , France.,g Université Pierre et Marie Curie , Paris , France.,h Faculté de Medecine; Kremlin-Bicetre , Université Paris-Sud/Paris-Saclay , Kremlin Bicêtre , France
| | - Oliver Kepp
- b INSERM, U1138 , Paris , France.,c Gustave Roussy Cancer Campus , Villejuif , France.,d Equipe 11 labellisée par la Ligue Nationale contre le Cancer , Centre de Recherche des Cordeliers , Paris , France.,e Université Paris Descartes/Paris V, Sorbonne Paris Cité , Paris , France.,f Metabolomics and Cell Biology Platforms , Gustave Roussy Cancer Campus , Villejuif , France.,g Université Pierre et Marie Curie , Paris , France.,h Faculté de Medecine; Kremlin-Bicetre , Université Paris-Sud/Paris-Saclay , Kremlin Bicêtre , France
| | - Didac Carmona-Gutierrez
- i Institute of Molecular Biosciences , University of Graz, NAWI Graz , Graz , Austria.,j BioTechMed Graz , Graz , Austria
| | - Frank Madeo
- i Institute of Molecular Biosciences , University of Graz, NAWI Graz , Graz , Austria.,j BioTechMed Graz , Graz , Austria
| | - Guido Kroemer
- b INSERM, U1138 , Paris , France.,c Gustave Roussy Cancer Campus , Villejuif , France.,d Equipe 11 labellisée par la Ligue Nationale contre le Cancer , Centre de Recherche des Cordeliers , Paris , France.,e Université Paris Descartes/Paris V, Sorbonne Paris Cité , Paris , France.,f Metabolomics and Cell Biology Platforms , Gustave Roussy Cancer Campus , Villejuif , France.,g Université Pierre et Marie Curie , Paris , France.,h Faculté de Medecine; Kremlin-Bicetre , Université Paris-Sud/Paris-Saclay , Kremlin Bicêtre , France.,k Pôle de Biologie, Hôpital Européen Georges Pompidou , AP-HP , Paris , France.,l Karolinska Institute, Department of Women's and Children's Health , Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
65
|
Wirth M, Benson G, Schwarz C, Köbe T, Grittner U, Schmitz D, Sigrist SJ, Bohlken J, Stekovic S, Madeo F, Flöel A. The effect of spermidine on memory performance in older adults at risk for dementia: A randomized controlled trial. Cortex 2018; 109:181-188. [PMID: 30388439 DOI: 10.1016/j.cortex.2018.09.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/22/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Nutritional intervention with the natural polyamine spermidine, an autophagy-enhancing agent, can prevent memory loss in aging model organisms. This is the first human study to evaluate the impact of spermidine supplementation on memory performance in older adults at risk for the development of Alzheimer's disease. METHODS Cognitively intact participants with subjective cognitive decline (n = 30, 60-80 years of age) were included in this three-months, randomized, placebo-controlled, double-blind Phase IIa pilot trial with a spermidine-rich plant extract supplement. Effects of intervention were assessed using the behavioral mnemonic similarity task, measured at baseline and post-intervention visits. Data analysis was focused on reporting and interpreting effectiveness based on effect sizes. RESULTS Memory performance was moderately enhanced in the spermidine group compared with placebo at the end of intervention [contrast mean = .17, 95% confidence interval (CI): -.01, .35, Cohen's d = .77, 95% CI: 0, 1.53]. Mnemonic discrimination ability improved in the spermidine-treated group with a medium effect size (mean difference = -.11, 95% CI: -.19, -.03, Cohen's d = .79, 95% CI: .01, 1.55). A similar effect was not found in the placebo-treated group (mean difference = .07, 95% CI: -.13, .27, Cohen's d = -.20, 95% CI: -.94, .54). DISCUSSION In this pilot trial, nutritional spermidine was associated with a positive impact on memory performance in older adults with subject cognitive decline. The beneficial effect might be mediated by stimulation of neuromodulatory actions in the memory system. A follow-up Phase IIb randomized controlled trial will help validate the therapeutic potential of spermidine supplementation and delineate possible neurophysiological mechanisms of action. TRIAL REGISTRATION Registered in ClinicalTrials.gov with the Identifier NCT02755246.
Collapse
Affiliation(s)
- Miranka Wirth
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Center for Stroke Research, Berlin, Germany
| | - Gloria Benson
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.
| | - Claudia Schwarz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.
| | - Theresa Köbe
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Studies on Prevention of Alzheimer's Disease Centre, Montreal, Quebec, Canada.
| | - Ulrike Grittner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| | - Dietmar Schmitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.
| | - Stephan J Sigrist
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany; Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany.
| | - Jens Bohlken
- Medical Practice Bohlken for Neurology and Psychiatry, Berlin, Germany.
| | - Slaven Stekovic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
66
|
Michels B, Zwaka H, Bartels R, Lushchak O, Franke K, Endres T, Fendt M, Song I, Bakr M, Budragchaa T, Westermann B, Mishra D, Eschbach C, Schreyer S, Lingnau A, Vahl C, Hilker M, Menzel R, Kähne T, Leßmann V, Dityatev A, Wessjohann L, Gerber B. Memory enhancement by ferulic acid ester across species. SCIENCE ADVANCES 2018; 4:eaat6994. [PMID: 30417089 PMCID: PMC6224069 DOI: 10.1126/sciadv.aat6994] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/12/2018] [Indexed: 06/09/2023]
Abstract
Cognitive impairments can be devastating for quality of life, and thus, preventing or counteracting them is of great value. To this end, the present study exploits the potential of the plant Rhodiola rosea and identifies the constituent ferulic acid eicosyl ester [icosyl-(2E)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-enoate (FAE-20)] as a memory enhancer. We show that food supplementation with dried root material from R. rosea dose-dependently improves odor-taste reward associative memory scores in larval Drosophila and prevents the age-related decline of this appetitive memory in adult flies. Task-relevant sensorimotor faculties remain unaltered. From a parallel approach, a list of candidate compounds has been derived, including R. rosea-derived FAE-20. Here, we show that both R. rosea-derived FAE-20 and synthetic FAE-20 are effective as memory enhancers in larval Drosophila. Synthetic FAE-20 also partially compensates for age-related memory decline in adult flies, as well as genetically induced early-onset loss of memory function in young flies. Furthermore, it increases excitability in mouse hippocampal CA1 neurons, leads to more stable context-shock aversive associative memory in young adult (3-month-old) mice, and increases memory scores in old (>2-year-old) mice. Given these effects, and given the utility of R. rosea-the plant from which we discovered FAE-20-as a memory enhancer, these results may hold potential for clinical applications.
Collapse
Affiliation(s)
- Birgit Michels
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, Germany
| | - Hanna Zwaka
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, Germany
- Free University Berlin, Institute of Neurobiology, Berlin, Germany
| | - Ruth Bartels
- Free University Berlin, Institute of Neurobiology, Berlin, Germany
| | - Oleh Lushchak
- Precarpathian National University, Department of Biochemistry, Ivano-Frankivsk, Ukraine
| | - Katrin Franke
- Leibniz Institute of Plant Biochemistry (IPB), Department of Bioorganic Chemistry, Halle (Saale), Germany
| | - Thomas Endres
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | - Markus Fendt
- Otto von Guericke University, Medical Faculty, Institute for Pharmacology and Toxicology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| | - Inseon Song
- German Center for Neurodegenerative Diseases (DZNE), Molecular Neuroplasticity Group, Magdeburg, Germany
| | - May Bakr
- German Center for Neurodegenerative Diseases (DZNE), Molecular Neuroplasticity Group, Magdeburg, Germany
| | - Tuvshinjargal Budragchaa
- Leibniz Institute of Plant Biochemistry (IPB), Department of Bioorganic Chemistry, Halle (Saale), Germany
| | - Bernhard Westermann
- Leibniz Institute of Plant Biochemistry (IPB), Department of Bioorganic Chemistry, Halle (Saale), Germany
| | - Dushyant Mishra
- University of Würzburg, Biocenter Am Hubland, Department of Genetics and Neurobiology, Würzburg, Germany
| | - Claire Eschbach
- University of Würzburg, Biocenter Am Hubland, Department of Genetics and Neurobiology, Würzburg, Germany
| | | | - Annika Lingnau
- Free University Berlin, Institute of Neurobiology, Berlin, Germany
| | - Caroline Vahl
- Free University Berlin, Institute of Neurobiology, Berlin, Germany
| | - Marike Hilker
- Free University Berlin, Institute of Neurobiology, Berlin, Germany
| | - Randolf Menzel
- Free University Berlin, Institute of Neurobiology, Berlin, Germany
| | - Thilo Kähne
- Otto von Guericke University, Institute of Experimental Internal Medicine, Magdeburg, Germany
| | - Volkmar Leßmann
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| | - Alexander Dityatev
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Molecular Neuroplasticity Group, Magdeburg, Germany
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | - Ludger Wessjohann
- Leibniz Institute of Plant Biochemistry (IPB), Department of Bioorganic Chemistry, Halle (Saale), Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
- Otto von Guericke University, Institute of Biology, Magdeburg, Germany
| |
Collapse
|
67
|
Zimmermann A, Hofer S, Pendl T, Kainz K, Madeo F, Carmona-Gutierrez D. Yeast as a tool to identify anti-aging compounds. FEMS Yeast Res 2018; 18:4919731. [PMID: 29905792 PMCID: PMC6001894 DOI: 10.1093/femsyr/foy020] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/27/2018] [Indexed: 12/23/2022] Open
Abstract
In the search for interventions against aging and age-related diseases, biological screening platforms are indispensable tools to identify anti-aging compounds among large substance libraries. The budding yeast, Saccharomyces cerevisiae, has emerged as a powerful chemical and genetic screening platform, as it combines a rapid workflow with experimental amenability and the availability of a wide range of genetic mutant libraries. Given the amount of conserved genes and aging mechanisms between yeast and human, testing candidate anti-aging substances in yeast gene-deletion or overexpression collections, or de novo derived mutants, has proven highly successful in finding potential molecular targets. Yeast-based studies, for example, have led to the discovery of the polyphenol resveratrol and the natural polyamine spermidine as potential anti-aging agents. Here, we present strategies for pharmacological anti-aging screens in yeast, discuss common pitfalls and summarize studies that have used yeast for drug discovery and target identification.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Sebastian Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
- BioTechMed Graz, Graz, 8010, Austria
| | | |
Collapse
|
68
|
Gurău F, Baldoni S, Prattichizzo F, Espinosa E, Amenta F, Procopio AD, Albertini MC, Bonafè M, Olivieri F. Anti-senescence compounds: A potential nutraceutical approach to healthy aging. Ageing Res Rev 2018; 46:14-31. [PMID: 29742452 DOI: 10.1016/j.arr.2018.05.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/02/2018] [Accepted: 05/03/2018] [Indexed: 01/10/2023]
Abstract
The desire of eternal youth seems to be as old as mankind. However, the increasing life expectancy experienced by populations in developed countries also involves a significantly increased incidence of the most common age-related diseases (ARDs). Senescent cells (SCs) have been identified as culprits of organismal aging. Their number rises with age and their senescence-associated secretory phenotype fuels the chronic, pro-inflammatory systemic state (inflammaging) that characterizes aging, impairing the regenerative ability of stem cells and increasing the risk of developing ARDs. A variegated class of molecules, including synthetic senolytic compounds and natural compounds contained in food, have been suggested to possess anti-senescence activity. Senolytics are attracting growing interest, and their safety and reliability as anti-senescence drugs are being assessed in human clinical trials. Notably, since SCs spread inflammation at the systemic level through pro-oxidant and pro-inflammatory signals, foods rich in polyphenols, which exert antioxidant and anti-inflammatory actions, have the potential to be harnessed as "anti-senescence foods" in a nutraceutical approach to healthier aging. We discuss the beneficial effects of polyphenol-rich foods in relation to the Mediterranean diet and the dietary habits of long-lived individuals, and examine their ability to modulate bacterial genera in the gut.
Collapse
Affiliation(s)
- Felicia Gurău
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Simone Baldoni
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy
| | | | - Emma Espinosa
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Amenta
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | | | - Massimiliano Bonafè
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Bologna, Italy; Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Forlì, Italy.
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy.
| |
Collapse
|
69
|
Kiechl S, Pechlaner R, Willeit P, Notdurfter M, Paulweber B, Willeit K, Werner P, Ruckenstuhl C, Iglseder B, Weger S, Mairhofer B, Gartner M, Kedenko L, Chmelikova M, Stekovic S, Stuppner H, Oberhollenzer F, Kroemer G, Mayr M, Eisenberg T, Tilg H, Madeo F, Willeit J. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr 2018; 108:371-380. [PMID: 29955838 DOI: 10.1093/ajcn/nqy102] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Background Spermidine administration is linked to increased survival in several animal models. Objective The aim of this study was to test the potential association between spermidine content in diet and mortality in humans. Design This prospective community-based cohort study included 829 participants aged 45-84 y, 49.9% of whom were male. Diet was assessed by repeated dietitian-administered validated food-frequency questionnaires (2540 assessments) in 1995, 2000, 2005, and 2010. During follow-up between 1995 and 2015, 341 deaths occurred. Results All-cause mortality (deaths per 1000 person-years) decreased across thirds of increasing spermidine intake from 40.5 (95% CI: 36.1, 44.7) to 23.7 (95% CI: 20.0, 27.0) and 15.1 (95% CI: 12.6, 17.8), corresponding to an age-, sex- and caloric intake-adjusted 20-y cumulative mortality incidence of 0.48 (95% CI: 0.45, 0.51), 0.41 (95% CI: 0.38, 0.45), and 0.38 (95% CI: 0.34, 0.41), respectively. The age-, sex- and caloric ratio-adjusted HR for all-cause death per 1-SD higher spermidine intake was 0.74 (95% CI: 0.66, 0.83; P < 0.001). Further adjustment for lifestyle factors, established predictors of mortality, and other dietary features yielded an HR of 0.76 (95% CI: 0.67, 0.86; P < 0.001). The association was consistent in subgroups, robust against unmeasured confounding, and independently validated in the Salzburg Atherosclerosis Prevention Program in Subjects at High Individual Risk (SAPHIR) Study (age-, sex-, and caloric ratio-adjusted HR per 1-SD higher spermidine intake: 0.71; 95% CI: 0.53, 0.95; P = 0.019). The difference in mortality risk between the top and bottom third of spermidine intakes was similar to that associated with a 5.7-y (95% CI: 3.6, 8.1 y) younger age. Conclusion Our findings lend epidemiologic support to the concept that nutrition rich in spermidine is linked to increased survival in humans. This trial was registered at www.clinicaltrials.gov as NCT03378843.
Collapse
Affiliation(s)
- Stefan Kiechl
- Departments of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raimund Pechlaner
- Departments of Neurology, Medical University of Innsbruck, Innsbruck, Austria.,King's British Heart Foundation Center, King's College London, London, United Kingdom
| | - Peter Willeit
- Departments of Neurology, Medical University of Innsbruck, Innsbruck, Austria.,King's British Heart Foundation Center, King's College London, London, United Kingdom.,Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | | | - Bernhard Paulweber
- First Department of Internal Medicine and Department of Geriatric Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Karin Willeit
- Departments of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Philipp Werner
- Department of Acute Neurology and Stroke, Feldkirch Academic Teaching Hospital, Feldkirch, Austria
| | - Christoph Ruckenstuhl
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| | - Bernhard Iglseder
- First Department of Internal Medicine and Department of Geriatric Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Siegfried Weger
- Department of Internal Medicine, Bruneck Hospital, Bruneck, Italy
| | | | - Markus Gartner
- Department of Internal Medicine, Bruneck Hospital, Bruneck, Italy
| | - Ludmilla Kedenko
- First Department of Internal Medicine and Department of Geriatric Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Monika Chmelikova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Slaven Stekovic
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy.,Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | | | - Guido Kroemer
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Institut national de la santé et de la recherche médicale, U1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Manuel Mayr
- King's British Heart Foundation Center, King's College London, London, United Kingdom
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| | - Herbert Tilg
- Departments of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| | - Johann Willeit
- Departments of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
70
|
Hansen M, Rubinsztein DC, Walker DW. Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol 2018; 19:579-593. [PMID: 30006559 DOI: 10.1038/s41580-018-0033-y] [Citation(s) in RCA: 531] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autophagy is a conserved process that catabolizes intracellular components to maintain energy homeostasis and to protect cells against stress. Autophagy has crucial roles during development and disease, and evidence accumulated over the past decade indicates that autophagy also has a direct role in modulating ageing. In particular, elegant studies using yeasts, worms, flies and mice have demonstrated a broad requirement for autophagy-related genes in the lifespan extension observed in a number of conserved longevity paradigms. Moreover, several new and interesting concepts relevant to autophagy and its role in modulating longevity have emerged. First, select tissues may require or benefit from autophagy activation in longevity paradigms, as tissue-specific overexpression of single autophagy genes is sufficient to extend lifespan. Second, selective types of autophagy may be crucial for longevity by specifically targeting dysfunctional cellular components and preventing their accumulation. And third, autophagy can influence organismal health and ageing even non-cell autonomously, and thus, autophagy stimulation in select tissues can have beneficial, systemic effects on lifespan. Understanding these mechanisms will be important for the development of approaches to improve human healthspan that are based on the modulation of autophagy.
Collapse
Affiliation(s)
- Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging and Regeneration, La Jolla, CA, USA.
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, Department of Medical Genetics, Cambridge, UK. .,UK Dementia Research Institute, University of Cambridge, Cambridge, UK.
| | - David W Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
71
|
Sugie A, Marchetti G, Tavosanis G. Structural aspects of plasticity in the nervous system of Drosophila. Neural Dev 2018; 13:14. [PMID: 29960596 PMCID: PMC6026517 DOI: 10.1186/s13064-018-0111-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
Neurons extend and retract dynamically their neurites during development to form complex morphologies and to reach out to their appropriate synaptic partners. Their capacity to undergo structural rearrangements is in part maintained during adult life when it supports the animal's ability to adapt to a changing environment or to form lasting memories. Nonetheless, the signals triggering structural plasticity and the mechanisms that support it are not yet fully understood at the molecular level. Here, we focus on the nervous system of the fruit fly to ask to which extent activity modulates neuronal morphology and connectivity during development. Further, we summarize the evidence indicating that the adult nervous system of flies retains some capacity for structural plasticity at the synaptic or circuit level. For simplicity, we selected examples mostly derived from studies on the visual system and on the mushroom body, two regions of the fly brain with extensively studied neuroanatomy.
Collapse
Affiliation(s)
- Atsushi Sugie
- Center for Transdisciplinary Research, Niigata University, Niigata, 951-8585 Japan
- Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | | | - Gaia Tavosanis
- Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
72
|
Zhu WW, Xiao F, Tang YY, Zou W, Li X, Zhang P, Wang AP, Tang XQ. Spermidine prevents high glucose-induced senescence in HT-22 cells by upregulation of CB1 receptor. Clin Exp Pharmacol Physiol 2018; 45:832-840. [PMID: 29699000 DOI: 10.1111/1440-1681.12955] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 12/31/2022]
Abstract
Hyperglycaemia-induced neurotoxicity involved in the pathogenesis of diabetic encephalopathy and neuronal senescence is one of the worst effects of hyperglyceamic neurotoxicity. Cannabinoid receptor type 1 (CB1) has neuroprotective function in a series of neuropathy. Spermidine (Spd) has anti-aging function in many tissues. However, the role of Spd in hyperglyceamia-induced neuronal senescence remains unexplored. Therefore, we used high glucose (HG)-treated HT-22 cell as vitro model to investigate whether Spd protects neurons against hyperglyceamia-induced senescence and the mediatory role of CB1 receptor. The HT-22 cells were cultured in HG condition in the presence of different dose of Spd. Then, the viability of cells was measured by Cell Counting Kit-8 (CCK-8) assay. The senescence of cells was detected by Senescence-associated β-galactosidase (SA-β-Gal) staining. The expressions of p16INK4a , p21CIP1 and CB1 receptor were measured by western blot. We found that Spd inhibited HG-induced neurotoxicity (the loss of cell viability) and senescence (the increase of SA-β-Gal positive cells, the upregulation of p16INK4a and p21CIP1 ) in HT-22 cells. Also, Spd prevented HG-induced downregulation of CB1 receptor in HT-22 cells. Furthermore, we demonstrated that AM251 (a specific inhibitor of the CB1 receptor) reversed the protective effects of Spd on HG-induced neurotoxicity and senescence. These results indicated that Spd prevents HG-induced neurotoxicity and senescence via the upregulation of CB1 receptor. Our findings provide a promising future of Spd-based preventions and therapies for diabetic encephalopathy.
Collapse
Affiliation(s)
- Wei-Wen Zhu
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Department of Physiology, Medical College, University of South China, Hengyang, Hunan, China
| | - Fan Xiao
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Department of Physiology, Medical College, University of South China, Hengyang, Hunan, China.,Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Yi-Yun Tang
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Department of Physiology, Medical College, University of South China, Hengyang, Hunan, China
| | - Wei Zou
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Xiang Li
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Department of Anesthesiology, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Ping Zhang
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Ai-Ping Wang
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Department of Anatomy, Medical College, University of South China, Hengyang, Hunan, China
| | - Xiao-Qing Tang
- Institute of Neuroscience, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Department of Physiology, Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
73
|
Jiang N, Kim HJ, Chozinski TJ, Azpurua JE, Eaton BA, Vaughan JC, Parrish JZ. Superresolution imaging of Drosophila tissues using expansion microscopy. Mol Biol Cell 2018; 29:1413-1421. [PMID: 29688792 PMCID: PMC6014096 DOI: 10.1091/mbc.e17-10-0583] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The limited resolving power of conventional diffraction-limited microscopy hinders analysis of small, densely packed structural elements in cells. Expansion microscopy (ExM) provides an elegant solution to this problem, allowing for increased resolution with standard microscopes via physical expansion of the specimen in a swellable polymer hydrogel. Here, we apply, validate, and optimize ExM protocols that enable the study of Drosophila embryos, larval brains, and larval and adult body walls. We achieve a lateral resolution of ∼70 nm in Drosophila tissues using a standard confocal microscope, and we use ExM to analyze fine intracellular structures and intercellular interactions. First, we find that ExM reveals features of presynaptic active zone (AZ) structure that are observable with other superresolution imaging techniques but not with standard confocal microscopy. We further show that synapses known to exhibit age-dependent changes in activity also exhibit age-dependent changes in AZ structure. Finally, we use the significantly improved axial resolution of ExM to show that dendrites of somatosensory neurons are inserted into epithelial cells at a higher frequency than previously reported in confocal microscopy studies. Altogether, our study provides a foundation for the application of ExM to Drosophila tissues and underscores the importance of tissue-specific optimization of ExM procedures.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Hyeon-Jin Kim
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Tyler J Chozinski
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Jorge E Azpurua
- Department of Physiology, University of Texas Health Sciences Center, San Antonio, TX 78229
| | - Benjamin A Eaton
- Department of Physiology, University of Texas Health Sciences Center, San Antonio, TX 78229
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA 98195
| |
Collapse
|
74
|
Ehmann N, Owald D, Kittel RJ. Drosophila active zones: From molecules to behaviour. Neurosci Res 2018; 127:14-24. [DOI: 10.1016/j.neures.2017.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 11/15/2022]
|
75
|
Azarnia Tehran D, Kuijpers M, Haucke V. Presynaptic endocytic factors in autophagy and neurodegeneration. Curr Opin Neurobiol 2018; 48:153-159. [DOI: 10.1016/j.conb.2017.12.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/01/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
|
76
|
Liang Y, Sigrist S. Autophagy and proteostasis in the control of synapse aging and disease. Curr Opin Neurobiol 2018; 48:113-121. [DOI: 10.1016/j.conb.2017.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/25/2017] [Accepted: 12/10/2017] [Indexed: 11/30/2022]
|
77
|
Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science 2018; 359:359/6374/eaan2788. [DOI: 10.1126/science.aan2788] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
78
|
Schwarz C, Stekovic S, Wirth M, Benson G, Royer P, Sigrist SJ, Pieber T, Dammbrueck C, Magnes C, Eisenberg T, Pendl T, Bohlken J, Köbe T, Madeo F, Flöel A. Safety and tolerability of spermidine supplementation in mice and older adults with subjective cognitive decline. Aging (Albany NY) 2018; 10:19-33. [PMID: 29315079 PMCID: PMC5807086 DOI: 10.18632/aging.101354] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/23/2017] [Indexed: 04/14/2023]
Abstract
Supplementation of spermidine, an autophagy-inducing agent, has been shown to protect against neurodegeneration and cognitive decline in aged animal models. The present translational study aimed to determine safety and tolerability of a wheat germ extract containing enhanced spermidine concentrations. In a preclinical toxicity study, supplementation of spermidine using this extract did not result in morbidities or changes in behavior in BALBc/Rj mice during the 28-days repeated-dose tolerance study. Post mortem examination of the mice organs showed no increase in tumorigenic and fibrotic events. In the human cohort (participants with subjective cognitive decline, n=30, 60 to 80 years of age), a 3-month randomized, placebo-controlled, double-blind Phase II trial was conducted with supplementation of the spermidine-rich plant extract (dosage: 1.2 mg/day). No differences were observed between spermidine and placebo-treated groups in vital signs, weight, clinical chemistry and hematological parameters of safety, as well as in self-reported health status at the end of intervention. Compliance rates above 85% indicated excellent tolerability. The data demonstrate that spermidine supplementation using a spermidine-rich plant extract is safe and well-tolerated in mice and older adults. These findings allow for longer-term intervention studies in humans to investigate the impact of spermidine treatment on cognition and brain integrity.
Collapse
Affiliation(s)
- Claudia Schwarz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Equal contribution
| | - Slaven Stekovic
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
- Equal contribution
| | - Miranka Wirth
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Stroke Research Berlin, Berlin, Germany
- Equal contribution
| | - Gloria Benson
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Philipp Royer
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Stephan J Sigrist
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Thomas Pieber
- BioTechMed, Graz, Austria
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Joanneum Research Forschungsgesellschaft m.b.H., HEALTH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | | | - Christoph Magnes
- Joanneum Research Forschungsgesellschaft m.b.H., HEALTH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Jens Bohlken
- Medical Practice Bohlken for Neurology and Psychiatry, Berlin, Germany
| | - Theresa Köbe
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
79
|
Ferreiro MJ, Pérez C, Marchesano M, Ruiz S, Caputi A, Aguilera P, Barrio R, Cantera R. Drosophila melanogaster White Mutant w1118 Undergo Retinal Degeneration. Front Neurosci 2018; 11:732. [PMID: 29354028 PMCID: PMC5758589 DOI: 10.3389/fnins.2017.00732] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/15/2017] [Indexed: 01/14/2023] Open
Abstract
Key scientific discoveries have resulted from genetic studies of Drosophila melanogaster, using a multitude of transgenic fly strains, the majority of which are constructed in a genetic background containing mutations in the white gene. Here we report that white mutant flies from w1118 strain undergo retinal degeneration. We observed also that w1118 mutants have progressive loss of climbing ability, shortened life span, as well as impaired resistance to various forms of stress. Retinal degeneration was abolished by transgenic expression of mini-white+ in the white null background w1118 . We conclude that beyond the classical eye-color phenotype, mutations in Drosophila white gene could impair several biological functions affecting parameters like mobility, life span and stress tolerance. Consequently, we suggest caution and attentiveness during the interpretation of old experiments employing white mutant flies and when planning new ones, especially within the research field of neurodegeneration and neuroprotection. We also encourage that the use of w1118 strain as a wild-type control should be avoided.
Collapse
Affiliation(s)
- María José Ferreiro
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Coralia Pérez
- Center of Cooperative Research in Biosciences CIC bioGUNE, Bizkaia Technology Park, Derio, Spain
| | - Mariana Marchesano
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Santiago Ruiz
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Angel Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pedro Aguilera
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Rosa Barrio
- Center of Cooperative Research in Biosciences CIC bioGUNE, Bizkaia Technology Park, Derio, Spain
| | - Rafael Cantera
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Zoology Department, Stockholm University, Stockholm, Sweden
| |
Collapse
|
80
|
Vijayan V, Verstreken P. Autophagy in the presynaptic compartment in health and disease. J Cell Biol 2017; 216:1895-1906. [PMID: 28515275 PMCID: PMC5496617 DOI: 10.1083/jcb.201611113] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/30/2017] [Accepted: 04/25/2017] [Indexed: 12/25/2022] Open
Abstract
Vijayan and Verstreken review the process of autophagy in the synapse and the role of autophagy in maintaining neuronal function. Synapses are functionally distinct neuronal compartments that are critical for brain function, with synaptic dysfunction being an early pathological feature in aging and disease. Given the large number of proteins needed for synaptic function, the proliferation of defective proteins and the subsequent loss of protein homeostasis may be a leading cause of synaptic dysfunction. Autophagic mechanisms are cellular digestion processes that recycle cellular components and contribute to protein homeostasis. Autophagy is important within the nervous system, but its function in specific compartments such as the synapse has been unclear. Evidence from research on both autophagy and synaptic function suggests that there are links between the two and that synaptic homeostasis during aging requires autophagy to regulate protein homeostasis. Exciting new work on autophagy-modulating proteins that are enriched at the synapse has begun to link autophagy to synapses and synaptic dysfunction in disease. A better understanding of these links will help us harness the potential therapeutic benefits of autophagy in combating age-related disorders of the nervous system.
Collapse
Affiliation(s)
- Vinoy Vijayan
- Department of Neurosciences, Katholieke University Leuven, 3000 Leuven, Belgium .,Leuven Institute for Neurodegenerative Disease, Katholieke University Leuven, 3000 Leuven, Belgium.,VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
| | - Patrik Verstreken
- Department of Neurosciences, Katholieke University Leuven, 3000 Leuven, Belgium.,Leuven Institute for Neurodegenerative Disease, Katholieke University Leuven, 3000 Leuven, Belgium.,VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
| |
Collapse
|
81
|
Age-associated increase of the active zone protein Bruchpilot within the honeybee mushroom body. PLoS One 2017; 12:e0175894. [PMID: 28437454 PMCID: PMC5402947 DOI: 10.1371/journal.pone.0175894] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/02/2017] [Indexed: 01/07/2023] Open
Abstract
In honeybees, age-associated structural modifications can be observed in the mushroom bodies. Prominent examples are the synaptic complexes (microglomeruli, MG) in the mushroom body calyces, which were shown to alter their size and density with age. It is not known whether the amount of intracellular synaptic proteins in the MG is altered as well. The presynaptic protein Bruchpilot (BRP) is localized at active zones and is involved in regulating the probability of neurotransmitter release in the fruit fly, Drosophila melanogaster. Here, we explored the localization of the honeybee BRP (Apis mellifera BRP, AmBRP) in the bee brain and examined age-related changes in the AmBRP abundance in the central bee brain and in microglomeruli of the mushroom body calyces. We report predominant AmBRP localization near the membrane of presynaptic boutons within the mushroom body MG. The relative amount of AmBRP was increased in the central brain of two-week old bees whereas the amount of Synapsin, another presynaptic protein involved in the regulation of neurotransmitter release, shows an increase during the first two weeks followed by a decrease. In addition, we demonstrate an age-associated modulation of AmBRP located near the membrane of presynaptic boutons within MG located in mushroom body calyces where sensory input is conveyed to mushroom body intrinsic neurons. We discuss that the observed age-associated AmBRP modulation might be related to maturation processes or to homeostatic mechanisms that might help to maintain synaptic functionality in old animals.
Collapse
|