51
|
Dai W, Leng H, Li J, Li A, Li Z, Zhu Y, Li X, Jin L, Sun K, Feng J. The role of host traits and geography in shaping the gut microbiome of insectivorous bats. mSphere 2024; 9:e0008724. [PMID: 38509042 PMCID: PMC11036801 DOI: 10.1128/msphere.00087-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The gut microbiome is a symbiotic microbial community associated with the host and plays multiple important roles in host physiology, nutrition, and health. A number of factors have been shown to influence the gut microbiome, among which diet is considered to be one of the most important; however, the relationship between diet composition and gut microbiota in wild mammals is still not well recognized. Herein, we characterized the gut microbiota of bats and examined the effects of diet, host taxa, body size, gender, elevation, and latitude on the gut microbiota. The cytochrome C oxidase subunit I (COI) gene and 16S rRNA gene amplicons were sequenced from the feces of eight insectivorous bat species in southern China, including Miniopterus fuliginosus, Aselliscus stoliczkanus, Myotis laniger, Rhinolophus episcopus, Rhinolophus osgoodi, Rhinolophus ferrumequinum, Rhinolophus affinis, and Rhinolophus pusillus. The results showed that the composition of gut microbiome and diet exhibited significant differences among bat species. Diet composition and gut microbiota were significantly correlated at the order, family, genus, and operational taxonomic unit levels, while certain insects had a marked effect on the gut microbiome at specific taxonomic levels. In addition, elevation, latitude, body weight of bats, and host species had significant effects on the gut microbiome, but phylosymbiosis between host phylogeny and gut microbiome was lacking. These findings clarify the relationship between gut microbiome and diet and contribute to improving our understanding of host ecology and the evolution of the gut microbiome in wild mammals. IMPORTANCE The gut microbiome is critical for the adaptation of wildlife to the dynamic environment. Bats are the second-largest group of mammals with short intestinal tract, yet their gut microbiome is still poorly studied. Herein, we explored the relationships between gut microbiome and food composition, host taxa, body size, gender, elevation, and latitude. We found a significant association between diet composition and gut microbiome in insectivorous bats, with certain insect species having major impacts on gut microbiome. Factors like species taxa, body weight, elevation, and latitude also affected the gut microbiome, but we failed to detect phylosymbiosis between the host phylogeny and the gut microbiome. Overall, our study presents novel insights into how multiple factors shape the bat's gut microbiome together and provides a study case on host-microbe interactions in wildlife.
Collapse
Affiliation(s)
- Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Aoqiang Li
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhongle Li
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yue Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Xiaolin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
52
|
Duan Y, Siegenthaler A, Skidmore AK, Chariton AA, Laros I, Rousseau M, De Groot GA. Forest top canopy bacterial communities are influenced by elevation and host tree traits. ENVIRONMENTAL MICROBIOME 2024; 19:21. [PMID: 38581032 PMCID: PMC10998314 DOI: 10.1186/s40793-024-00565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND The phyllosphere microbiome is crucial for plant health and ecosystem functioning. While host species play a determining role in shaping the phyllosphere microbiome, host trees of the same species that are subjected to different environmental conditions can still exhibit large degrees of variation in their microbiome diversity and composition. Whether these intra-specific variations in phyllosphere microbiome diversity and composition can be observed over the broader expanse of forest landscapes remains unclear. In this study, we aim to assess the variation in the top canopy phyllosphere bacterial communities between and within host tree species in the temperate European forests, focusing on Fagus sylvatica (European beech) and Picea abies (Norway spruce). RESULTS We profiled the bacterial diversity, composition, driving factors, and discriminant taxa in the top canopy phyllosphere of 211 trees in two temperate forests, Veluwe National Parks, the Netherlands and Bavarian Forest National Park, Germany. We found the bacterial communities were primarily shaped by host species, and large variation existed within beech and spruce. While we showed that there was a core microbiome in all tree species examined, community composition varied with elevation, tree diameter at breast height, and leaf-specific traits (e.g., chlorophyll and P content). These driving factors of bacterial community composition also correlated with the relative abundance of specific bacterial families. CONCLUSIONS While our results underscored the importance of host species, we demonstrated a substantial range of variation in phyllosphere bacterial diversity and composition within a host species. Drivers of these variations have implications at both the individual host tree level, where the bacterial communities differed based on tree traits, and at the broader forest landscape level, where drivers like certain highly plastic leaf traits can potentially link forest canopy bacterial community variations to forest ecosystem processes. We eventually showed close associations between forest canopy phyllosphere bacterial communities and host trees exist, and the consistent patterns emerging from these associations are critical for host plant functioning.
Collapse
Affiliation(s)
- Yiwei Duan
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Drienerlolaan 5, PO Box 217, 7500 AE, Enschede, The Netherlands.
| | - Andjin Siegenthaler
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Drienerlolaan 5, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Andrew K Skidmore
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Drienerlolaan 5, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Anthony A Chariton
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ivo Laros
- Wageningen Environmental Research, Wageningen UR, P.O. Box 46, 6700 AA, Wageningen, The Netherlands
| | - Mélody Rousseau
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Drienerlolaan 5, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - G Arjen De Groot
- Wageningen Environmental Research, Wageningen UR, P.O. Box 46, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
53
|
Schwob G, Cabrol L, Saucède T, Gérard K, Poulin E, Orlando J. Unveiling the co-phylogeny signal between plunderfish Harpagifer spp. and their gut microbiomes across the Southern Ocean. Microbiol Spectr 2024; 12:e0383023. [PMID: 38441978 PMCID: PMC10986581 DOI: 10.1128/spectrum.03830-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Understanding the factors that sculpt fish gut microbiome is challenging, especially in natural populations characterized by high environmental and host genomic complexity. However, closely related hosts are valuable models for deciphering the contribution of host evolutionary history to microbiome assembly, through the underscoring of phylosymbiosis and co-phylogeny patterns. Here, we propose that the recent diversification of several Harpagifer species across the Southern Ocean would allow the detection of robust phylogenetic congruence between the host and its microbiome. We characterized the gut mucosa microbiome of 77 individuals from four field-collected species of the plunderfish Harpagifer (Teleostei, Notothenioidei), distributed across three biogeographic regions of the Southern Ocean. We found that seawater physicochemical properties, host phylogeny, and geography collectively explained 35% of the variation in bacterial community composition in Harpagifer gut mucosa. The core microbiome of Harpagifer spp. gut mucosa was characterized by a low diversity, mostly driven by selective processes, and dominated by a single Aliivibrio Operational Taxonomic Unit (OTU) detected in more than 80% of the individuals. Nearly half of the core microbiome taxa, including Aliivibrio, harbored co-phylogeny signal at microdiversity resolution with host phylogeny, indicating an intimate symbiotic relationship and a shared evolutionary history with Harpagifer. The clear phylosymbiosis and co-phylogeny signals underscore the relevance of the Harpagifer model in understanding the role of fish evolutionary history in shaping the gut microbiome assembly. We propose that the recent diversification of Harpagifer may have led to the diversification of Aliivibrio, exhibiting patterns that mirror the host phylogeny. IMPORTANCE Although challenging to detect in wild populations, phylogenetic congruence between marine fish and its microbiome is critical, as it highlights intimate associations between hosts and ecologically relevant microbial symbionts. Our study leverages a natural system of closely related fish species in the Southern Ocean to unveil new insights into the contribution of host evolutionary trajectory on gut microbiome assembly, an underappreciated driver of the global marine fish holobiont. Notably, we unveiled striking evidence of co-diversification between Harpagifer and its microbiome, demonstrating both phylosymbiosis of gut bacterial communities and co-phylogeny of some specific bacterial symbionts, mirroring the host diversification patterns. Given Harpagifer's significance as a trophic resource in coastal areas and its vulnerability to climatic and anthropic pressures, understanding the potential evolutionary interdependence between the hosts and its microbiome provides valuable microbial candidates for future monitoring, as they may play a pivotal role in host species acclimatization to a rapidly changing environment.
Collapse
Affiliation(s)
- Guillaume Schwob
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
- Institute of Ecology and Biodiversity, Santiago, Chile
| | - Léa Cabrol
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Institute of Ecology and Biodiversity, Santiago, Chile
- Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France, Marseille, France
| | - Thomas Saucède
- UMR 6282 Biogeosciences, University Bourgogne Franche-Comté, CNRS, EPHE, Dijon, France
| | - Karin Gérard
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Laboratory of Antarctic and Subantarctic Marine Ecosystems, Faculty of Sciences, University of Magallanes, Punta Arenas, Chile
- Cape Horn International Center, Puerto Williams, Chile
| | - Elie Poulin
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
- Institute of Ecology and Biodiversity, Santiago, Chile
| | - Julieta Orlando
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
54
|
Riddle MR, Nguyen NK, Nave M, Peuß R, Maldonado E, Rohner N, Tabin CJ. Host evolution shapes gut microbiome composition in Astyanax mexicanus. Ecol Evol 2024; 14:e11192. [PMID: 38571802 PMCID: PMC10985381 DOI: 10.1002/ece3.11192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
The ecological and genetic changes that underlie the evolution of host-microbe interactions remain elusive, primarily due to challenges in disentangling the variables that alter microbiome composition. To understand the impact of host habitat, host genetics, and evolutionary history on microbial community structure, we examined gut microbiomes of river- and three cave-adapted morphotypes of the Mexican tetra, Astyanax mexicanus, in their natural environments and under controlled laboratory conditions. Field-collected samples were dominated by very few taxa and showed considerable interindividual variation. We found that lab-reared fish exhibited increased microbiome richness and distinct composition compared to their wild counterparts, underscoring the significant influence of habitat. Most notably, however, we found that morphotypes reared on the same diet throughout life developed distinct microbiomes suggesting that genetic loci resulting from cavefish evolution shape microbiome composition. We observed stable differences in Fusobacteriota abundance between morphotypes and demonstrated that this could be used as a trait for quantitative trait loci mapping to uncover the genetic basis of microbial community structure.
Collapse
Affiliation(s)
| | | | | | - Robert Peuß
- Institute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
| | - Ernesto Maldonado
- Institute of Marine Sciences and LimnologyUniversidad Nacional Autonoma de Mexico, UNAMPuerto MorelosMexico
| | - Nicolas Rohner
- Stowers Institute for Medical ResearchKansas CityMissouriUSA
| | | |
Collapse
|
55
|
Su C, Xie T, Jiang L, Wang Y, Wang Y, Nie R, Zhao Y, He B, Ma J, Yang Q, Hao J. Host genetics and larval host plant modulate microbiome structure and evolution underlying the intimate insect-microbe-plant interactions in Parnassius species on the Qinghai-Tibet Plateau. Ecol Evol 2024; 14:e11218. [PMID: 38606343 PMCID: PMC11007261 DOI: 10.1002/ece3.11218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/09/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Insects harbor a remarkable diversity of gut microbiomes critical for host survival, health, and fitness, but the mechanism of this structured symbiotic community remains poorly known, especially for the insect group consisting of many closely related species that inhabit the Qinghai-Tibet Plateau. Here, we firstly analyzed population-level 16S rRNA microbial dataset, comprising 11 Parnassius species covering 5 subgenera, from 14 populations mostly sampled in mountainous regions across northwestern-to-southeastern China, and meanwhile clarified the relative importance of multiple factors on gut microbial community structure and evolution. Our findings indicated that both host genetics and larval host plant modulated gut microbial diversity and community structure. Moreover, the effect analysis of host genetics and larval diet on gut microbiomes showed that host genetics played a critical role in governing the gut microbial beta diversity and the symbiotic community structure, while larval host plant remarkably influenced the functional evolution of gut microbiomes. These findings of the intimate insect-microbe-plant interactions jointly provide some new insights into the correlation among the host genetic background, larval host plant, the structure and evolution of gut microbiome, as well as the mechanisms of high-altitude adaptation in closely related species of this alpine butterfly group.
Collapse
Affiliation(s)
- Chengyong Su
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Tingting Xie
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Lijun Jiang
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Yunliang Wang
- College of Life SciencesAnhui Normal UniversityWuhuChina
- College of Physical EducationAnhui Normal UniversityWuhuChina
| | - Ying Wang
- College of Life SciencesAnhui Normal UniversityWuhuChina
- College of Physical EducationAnhui Normal UniversityWuhuChina
| | - Ruie Nie
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Youjie Zhao
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Bo He
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Junye Ma
- Key Laboratory of Palaeobiology and Petroleum Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and PaleontologyChinese Academy of SciencesNanjingChina
| | - Qun Yang
- Key Laboratory of Palaeobiology and Petroleum Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and PaleontologyChinese Academy of SciencesNanjingChina
- Nanjing CollegeUniversity of Chinese Academy of SciencesNanjingChina
| | - Jiasheng Hao
- College of Life SciencesAnhui Normal UniversityWuhuChina
| |
Collapse
|
56
|
Pankey MS, Gochfeld DJ, Gastaldi M, Macartney KJ, Clayshulte Abraham A, Slattery M, Lesser MP. Phylosymbiosis and metabolomics resolve phenotypically plastic and cryptic sponge species in the genus Agelas across the Caribbean basin. Mol Ecol 2024; 33:e17321. [PMID: 38529721 DOI: 10.1111/mec.17321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 03/07/2024] [Indexed: 03/27/2024]
Abstract
Fundamental to holobiont biology is recognising how variation in microbial composition and function relates to host phenotypic variation. Sponges often exhibit considerable phenotypic plasticity and also harbour dense microbial communities that function to protect and nourish hosts. One of the most prominent sponge genera on Caribbean coral reefs is Agelas. Using a comprehensive set of morphological (growth form, spicule), chemical and molecular data on 13 recognised species of Agelas in the Caribbean basin, we were able to define only five species (=clades) and found that many morphospecies designations were incongruent with phylogenomic and population genetic analyses. Microbial communities were also strongly differentiated between phylogenetic species, showing little evidence of cryptic divergence and relatively low correlation with morphospecies assignment. Metagenomic analyses also showed strong correspondence to phylogenetic species, and to a lesser extent, geographical and morphological characters. Surprisingly, the variation in secondary metabolites produced by sponge holobionts was explained by geography and morphospecies assignment, in addition to phylogenetic species, and covaried significantly with a subset of microbial symbionts. Spicule characteristics were highly plastic, under greater impact from geographical location than phylogeny. Our results suggest that while phenotypic plasticity is rampant in Agelas, morphological differences within phylogenetic species affect functionally important ecological traits, including the composition of the symbiotic microbial communities and metabolomic profiles.
Collapse
Affiliation(s)
- M S Pankey
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - D J Gochfeld
- National Center for Natural Products Research and Environmental Toxicology, University of Mississippi, University, Mississippi, USA
| | - M Gastaldi
- Escuela Superior de Ciencias Marinas-Universidad Nacional del Comahue, San Antonio Oeste, Río Negro, Argentina
| | - K J Macartney
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - A Clayshulte Abraham
- Division of Environmental Toxicology, Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - M Slattery
- Division of Environmental Toxicology, Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - M P Lesser
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
57
|
Bouilloud M, Galan M, Pradel J, Loiseau A, Ferrero J, Gallet R, Roche B, Charbonnel N. Exploring the potential effects of forest urbanization on the interplay between small mammal communities and their gut microbiota. Anim Microbiome 2024; 6:16. [PMID: 38528597 DOI: 10.1186/s42523-024-00301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Urbanization significantly impacts wild populations, favoring urban dweller species over those that are unable to adapt to rapid changes. These differential adaptative abilities could be mediated by the microbiome, which may modulate the host phenotype rapidly through a high degree of flexibility. Conversely, under anthropic perturbations, the microbiota of some species could be disrupted, resulting in dysbiosis and negative impacts on host fitness. The links between the impact of urbanization on host communities and their gut microbiota (GM) have only been scarcely explored. In this study, we tested the hypothesis that the bacterial composition of the GM could play a role in host adaptation to urban environments. We described the GM of several species of small terrestrial mammals sampled in forested areas along a gradient of urbanization, using a 16S metabarcoding approach. We tested whether urbanization led to changes in small mammal communities and in their GM, considering the presence and abundance of bacterial taxa and their putative functions. This enabled to decipher the processes underlying these changes. We found potential impacts of urbanization on small mammal communities and their GM. The urban dweller species had a lower bacterial taxonomic diversity but a higher functional diversity and a different composition compared to urban adapter species. Their GM assembly was mostly governed by stochastic effects, potentially indicating dysbiosis. Selection processes and an overabundance of functions were detected that could be associated with adaptation to urban environments despite dysbiosis. In urban adapter species, the GM functional diversity and composition remained relatively stable along the urbanization gradient. This observation can be explained by functional redundancy, where certain taxa express the same function. This could favor the adaptation of urban adapter species in various environments, including urban settings. We can therefore assume that there are feedbacks between the gut microbiota and host species within communities, enabling rapid adaptation.
Collapse
Affiliation(s)
- Marie Bouilloud
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France.
- Centre de Biologie pour la Gestion des Populations, 750 Avenue Agropolis, 34988, Montferrier sur Lez, France.
| | - Maxime Galan
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Julien Pradel
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Anne Loiseau
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Julien Ferrero
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Romain Gallet
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Benjamin Roche
- MIVEGEC, IRD, CNRS, Univ Montpellier, Montpellier, France
| | - Nathalie Charbonnel
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| |
Collapse
|
58
|
Vijayan N, McAnulty SJ, Sanchez G, Jolly J, Ikeda Y, Nishiguchi MK, Réveillac E, Gestal C, Spady BL, Li DH, Burford BP, Kerwin AH, Nyholm SV. Evolutionary history influences the microbiomes of a female symbiotic reproductive organ in cephalopods. Appl Environ Microbiol 2024; 90:e0099023. [PMID: 38315021 PMCID: PMC10952459 DOI: 10.1128/aem.00990-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/09/2023] [Indexed: 02/07/2024] Open
Abstract
Many female squids and cuttlefishes have a symbiotic reproductive organ called the accessory nidamental gland (ANG) that hosts a bacterial consortium involved with egg defense against pathogens and fouling organisms. While the ANG is found in multiple cephalopod families, little is known about the global microbial diversity of these ANG bacterial symbionts. We used 16S rRNA gene community analysis to characterize the ANG microbiome from different cephalopod species and assess the relationship between host and symbiont phylogenies. The ANG microbiome of 11 species of cephalopods from four families (superorder: Decapodiformes) that span seven geographic locations was characterized. Bacteria of class Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia were found in all species, yet analysis of amplicon sequence variants by multiple distance metrics revealed a significant difference between ANG microbiomes of cephalopod families (weighted/unweighted UniFrac, Bray-Curtis, P = 0.001). Despite being collected from widely disparate geographic locations, members of the family Sepiolidae (bobtail squid) shared many bacterial taxa including (~50%) Opitutae (Verrucomicrobia) and Ruegeria (Alphaproteobacteria) species. Furthermore, we tested for phylosymbiosis and found a positive correlation between host phylogenetic distance and bacterial community dissimilarity (Mantel test r = 0.7). These data suggest that closely related sepiolids select for distinct symbionts from similar bacterial taxa. Overall, the ANGs of different cephalopod species harbor distinct microbiomes and thus offer a diverse symbiont community to explore antimicrobial activity and other functional roles in host fitness.IMPORTANCEMany aquatic organisms recruit microbial symbionts from the environment that provide a variety of functions, including defense from pathogens. Some female cephalopods (squids, bobtail squids, and cuttlefish) have a reproductive organ called the accessory nidamental gland (ANG) that contains a bacterial consortium that protects eggs from pathogens. Despite the wide distribution of these cephalopods, whether they share similar microbiomes is unknown. Here, we studied the microbial diversity of the ANG in 11 species of cephalopods distributed over a broad geographic range and representing 15-120 million years of host divergence. The ANG microbiomes shared some bacterial taxa, but each cephalopod species had unique symbiotic members. Additionally, analysis of host-symbiont phylogenies suggests that the evolutionary histories of the partners have been important in shaping the ANG microbiome. This study advances our knowledge of cephalopod-bacteria relationships and provides a foundation to explore defensive symbionts in other systems.
Collapse
Affiliation(s)
- Nidhi Vijayan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Sarah J. McAnulty
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Gustavo Sanchez
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
- Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima, Japan
| | - Jeffrey Jolly
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
- Marine Climate Change Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Yuzuru Ikeda
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of Ryukyus, Ryukyus, Japan
| | - Michele K. Nishiguchi
- Department of Molecular and Cell Biology, University of California, Merced, California, USA
| | - Elodie Réveillac
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS–La Rochelle Université, La Rochelle, France
| | - Camino Gestal
- Institute of Marine Research (IIM), CSIC, Vigo, Spain
| | - Blake L. Spady
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- U.S. National Oceanic and Atmospheric Administration, National Environmental Satellite Data and Information Service, Center for Satellite Applications and Research, Coral Reef Watch, College Park, Maryland, USA
| | - Diana H. Li
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, USA
| | - Benjamin P. Burford
- Institute of Marine Sciences, University of California, affiliated with the National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Center, Santa Cruz, California, USA
| | - Allison H. Kerwin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Biology, McDaniel College, Westminster, Maryland, USA
| | - Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
59
|
González A, Fullaondo A, Odriozola A. Impact of evolution on lifestyle in microbiome. ADVANCES IN GENETICS 2024; 111:149-198. [PMID: 38908899 DOI: 10.1016/bs.adgen.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This chapter analyses the interaction between microbiota and humans from an evolutionary point of view. Long-term interactions between gut microbiota and host have been generated as a result of dietary choices through coevolutionary processes, where mutuality of advantage is essential. Likewise, the characteristics of the intestinal environment have made it possible to describe different intrahost evolutionary mechanisms affecting microbiota. For its part, the intestinal microbiota has been of great importance in the evolution of mammals, allowing the diversification of dietary niches, phenotypic plasticity and the selection of host phenotypes. Although the origin of the human intestinal microbial community is still not known with certainty, mother-offspring transmission plays a key role, and it seems that transmissibility between individuals in adulthood also has important implications. Finally, it should be noted that certain aspects inherent to modern lifestyle, including refined diets, antibiotic intake, exposure to air pollutants, microplastics, and stress, could negatively affect the diversity and composition of our gut microbiota. This chapter aims to combine current knowledge to provide a comprehensive view of the interaction between microbiota and humans throughout evolution.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
60
|
Song P, Jiang F, Liu D, Cai Z, Gao H, Gu H, Zhang J, Li B, Xu B, Zhang T. Gut microbiota non-convergence and adaptations in sympatric Tibetan and Przewalski's gazelles. iScience 2024; 27:109117. [PMID: 38384851 PMCID: PMC10879710 DOI: 10.1016/j.isci.2024.109117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Unraveling the connection between gut microbiota and adaptability in wild species in natural habitats is imperative yet challenging. We studied the gut microbiota of sympatric and allopatric populations of two closely related species, the Procapra picticaudata and P. przewalskii, with the latter showing lower adaptability and adaptive potential than the former. Despite shared habitat, sympatric populations showed no convergence in gut microbiota, revealing distinct microbiota-environment relationships between the two gazelle species. Furthermore, the gut microbiota assembly process of the P. przewalskii was shifted toward homogeneous selection processes relative to that of the P. picticaudata. Those taxa which contributed to the shift were mainly from the phyla Firmicutes and Verrucomicrobiota, with functions highly related to micronutrient and macronutrient metabolism. Our study provides new insights into the complex dynamics between gut microbiota, host adaptability, and environment in wildlife adaptation and highlights the need to consider host adaptability when examining wildlife host-microbiome interplay.
Collapse
Affiliation(s)
- Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| | - Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| | - Daoxin Liu
- Qinghai University, Xining, Qinghai 810016, China
| | - Zhenyuan Cai
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| | - Hongmei Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| | - Haifeng Gu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| | - Jingjie Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| | - Bin Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| | - Bo Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| |
Collapse
|
61
|
Podar NA, Carrell AA, Cassidy KA, Klingeman DM, Yang Z, Stahler EA, Smith DW, Stahler DR, Podar M. From wolves to humans: oral microbiome resistance to transfer across mammalian hosts. mBio 2024; 15:e0334223. [PMID: 38299854 PMCID: PMC10936156 DOI: 10.1128/mbio.03342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
The mammalian mouth is colonized by complex microbial communities, adapted to specific niches, and in homeostasis with the host. Individual microbes interact metabolically and rely primarily on nutrients provided by the host, with which they have potentially co-evolved along the mammalian lineages. The oral environment is similar across mammals, but the diversity, specificity, and evolution of community structure in related or interacting mammals are little understood. Here, we compared the oral microbiomes of dogs with those of wild wolves and humans. In dogs, we found an increased microbial diversity relative to wolves, possibly related to the transition to omnivorous nutrition following domestication. This includes a larger diversity of Patescibacteria than previously reported in any other oral microbiota. The oral microbes are most distinct at bacterial species or strain levels, with few if any shared between humans and canids, while the close evolutionary relationship between wolves and dogs is reflected by numerous shared taxa. More taxa are shared at higher taxonomic levels including with humans, supporting their more ancestral common mammalian colonization followed by diversification. Phylogenies of selected oral bacterial lineages do not support stable human-dog microbial transfers but suggest diversification along mammalian lineages (apes and canids). Therefore, despite millennia of cohabitation and close interaction, the host and its native community controls and limits the assimilation of new microbes, even if closely related. Higher resolution metagenomic and microbial physiological studies, covering a larger mammalian diversity, should help understand how oral communities assemble, adapt, and interact with their hosts.IMPORTANCENumerous types of microbes colonize the mouth after birth and play important roles in maintaining oral health. When the microbiota-host homeostasis is perturbed, proliferation of some bacteria leads to diseases such as caries and periodontitis. Unlike the gut microbiome, the diversity of oral microbes across the mammalian evolutionary space is not understood. Our study compared the oral microbiomes of wild wolves, dogs, and apes (humans, chimpanzees, and bonobos), with the aim of identifying if microbes have been potentially exchanged between humans and dogs as a result of domestication and cohabitation. We found little if any evidence for such exchanges. The significance of our research is in finding that the oral microbiota and/or the host limit the acquisition of exogenous microbes, which is important in the context of natural exclusion of potential novel pathogens. We provide a framework for expanded higher-resolution studies across domestic and wild animals to understand resistance/resilience.
Collapse
Affiliation(s)
- Nicholas A. Podar
- School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Alyssa A. Carrell
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Kira A. Cassidy
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Dawn M. Klingeman
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Zamin Yang
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Erin A. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Douglas W. Smith
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Daniel R. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Mircea Podar
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
62
|
Rudzki EN, Antonson ND, Jones TM, Schelsky WM, Trevelline BK, Hauber ME, Kohl KD. Host avian species and environmental conditions influence the microbial ecology of brood parasitic brown-headed cowbird nestlings: What rules the roost? Mol Ecol 2024; 33:e17289. [PMID: 38327124 DOI: 10.1111/mec.17289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
The role of species interactions, as well as genetic and environmental factors, all likely contribute to the composition and structure of the gut microbiome; however, disentangling these independent factors under field conditions represents a challenge for a functional understanding of gut microbial ecology. Avian brood parasites provide unique opportunities to investigate these questions, as brood parasitism results in parasite and host nestlings being raised in the same nest, by the same parents. Here we utilized obligate brood parasite brown-headed cowbird nestlings (BHCO; Molothrus ater) raised by several different host passerine species to better understand, via 16S rRNA sequencing, the microbial ecology of brood parasitism. First, we compared faecal microbial communities of prothonotary warbler nestlings (PROW; Protonotaria citrea) that were either parasitized or non-parasitized by BHCO and communities among BHCO nestlings from PROW nests. We found that parasitism by BHCO significantly altered both the community membership and community structure of the PROW nestling microbiota, perhaps due to the stressful nest environment generated by brood parasitism. In a second dataset, we compared faecal microbiotas from BHCO nestlings raised by six different host passerine species. Here, we found that the microbiota of BHCO nestlings was significantly influenced by the parental host species and the presence of an inter-specific nestmate. Thus, early rearing environment is important in determining the microbiota of brood parasite nestlings and their companion nestlings. Future work may aim to understand the functional effects of this microbiota variability on nestling performance and fitness.
Collapse
Affiliation(s)
- Elizabeth N Rudzki
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nicholas D Antonson
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Todd M Jones
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Wendy M Schelsky
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Prairie Research Institute, Illinois Natural History Survey, University of Illinois, Champaign, Illinois, USA
| | - Brian K Trevelline
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Advanced Science Research Center and Program in Psychology, Graduate Center, City University of New York, New York, New York, USA
| | - Kevin D Kohl
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
63
|
Bell AG, McMurtrie J, Bolaños LM, Cable J, Temperton B, Tyler CR. Influence of host phylogeny and water physicochemistry on microbial assemblages of the fish skin microbiome. FEMS Microbiol Ecol 2024; 100:fiae021. [PMID: 38366921 PMCID: PMC10903987 DOI: 10.1093/femsec/fiae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
The skin of fish contains a diverse microbiota that has symbiotic functions with the host, facilitating pathogen exclusion, immune system priming, and nutrient degradation. The composition of fish skin microbiomes varies across species and in response to a variety of stressors, however, there has been no systematic analysis across these studies to evaluate how these factors shape fish skin microbiomes. Here, we examined 1922 fish skin microbiomes from 36 studies that included 98 species and nine rearing conditions to investigate associations between fish skin microbiome, fish species, and water physiochemical factors. Proteobacteria, particularly the class Gammaproteobacteria, were present in all marine and freshwater fish skin microbiomes. Acinetobacter, Aeromonas, Ralstonia, Sphingomonas and Flavobacterium were the most abundant genera within freshwater fish skin microbiomes, and Alteromonas, Photobacterium, Pseudoalteromonas, Psychrobacter and Vibrio were the most abundant in saltwater fish. Our results show that different culturing (rearing) environments have a small but significant effect on the skin bacterial community compositions. Water temperature, pH, dissolved oxygen concentration, and salinity significantly correlated with differences in beta-diversity but not necessarily alpha-diversity. To improve study comparability on fish skin microbiomes, we provide recommendations for approaches to the analyses of sequencing data and improve study reproducibility.
Collapse
Affiliation(s)
- Ashley G Bell
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
- Sustainable Aquaculture Futures, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| | - Jamie McMurtrie
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
- Sustainable Aquaculture Futures, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| | - Luis M Bolaños
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Ben Temperton
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| | - Charles R Tyler
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
- Sustainable Aquaculture Futures, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| |
Collapse
|
64
|
Härer A, Rennison DJ. Gut Microbiota Uniqueness Is Associated with Lake Size, a Proxy for Diet Diversity, in Stickleback Fish. Am Nat 2024; 203:284-291. [PMID: 38306277 DOI: 10.1086/727703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractOrganismal divergence can be driven by differential resource use and adaptation to different trophic niches. Variation in diet is a major factor shaping the gut microbiota, which is crucial for many aspects of their hosts' biology. However, it remains largely unknown how host diet diversity affects the gut microbiota, and it could be hypothesized that trophic niche width is positively associated with gut microbiota diversity. To test this idea, we sequenced the 16S ribosomal RNA gene from intestinal tissue of 14 threespine stickleback populations from lakes of varying size on Vancouver Island, Canada, that have been shown to differ in trophic niche width. Using lake size as a proxy for trophic ecology, we found evidence for higher gut microbiota uniqueness among individuals from populations with broader trophic niches. While these results suggest that diet diversity might promote gut microbiota diversity, additional work investigating diet and gut microbiota variation of the same host organisms will be necessary. Yet our results motivate the question of how host population diversity (e.g., ecological, morphological, genetic) might interact with the gut microbiota during the adaptation to ecological niches.
Collapse
|
65
|
Lam IPY, Fong JJ. Are fecal samples an appropriate proxy for amphibian intestinal microbiota? Ecol Evol 2024; 14:e10862. [PMID: 38304268 PMCID: PMC10828907 DOI: 10.1002/ece3.10862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
The intestinal microbiota, an invisible organ supporting a host's survival, has essential roles in metabolism, immunity, growth, and development. Since intestinal microbiota influences a host's biology, application of such data to wildlife conservation has gained interest. There are standard protocols for studying the human intestinal microbiota, but no equivalent for wildlife. A major challenge is sampling the intestinal microbiota in an effective, unbiased way. Fecal samples are a popular proxy for intestinal microbiota because collection is non-invasive and allows for longitudinal sampling. Yet it is unclear whether the fecal microbiota is representative of the intestinal microbiota. In wildlife studies, research on the sampling methodology is limited. In this study focusing on amphibians, we characterize and compare the microbiota (small intestine, large intestine, and feces) of two Hong Kong stream-dwelling frog species: Lesser Spiny Frog (Quasipaa exilispinosa) and Hong Kong Cascade Frog (Amolops hongkongensis). We found that the microbiota of both species are similar at the level of phylum and family, but diverge at the level of genus. When we assessed the performance of fecal microbiota in representing the intestinal microbiota in these two species, we found that (1) the microbiota of the small and large intestine differs significantly, (2) feces are not an appropriate proxy of either intestinal sections, and (3) a set of microbial taxa significantly differs between sample types. Our findings raise caution equating fecal and intestinal microbiota in stream-dwelling frogs. Sampling feces can avoid sacrifice of an animal, but researchers should avoid over-extrapolation and interpret results carefully.
Collapse
Affiliation(s)
- Ivan P. Y. Lam
- School of Biological ScienceThe University of Hong KongHong KongChina
- Science UnitLingnan UniversityHong KongChina
| | | |
Collapse
|
66
|
Dosi A, Meziti A, Tounta E, Koemtzopoulos K, Komnenou A, Dendrinos P, Kormas K. Fecal and skin microbiota of two rescued Mediterranean monk seal pups during rehabilitation. Microbiol Spectr 2024; 12:e0280523. [PMID: 38084980 PMCID: PMC10783143 DOI: 10.1128/spectrum.02805-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE This study showed that during the rehabilitation of two rescued Mediterranean monk seal pups (Monachus monachus), the skin and fecal bacterial communities showed similar succession patterns between the two individuals. This finding means that co-housed pups share their microbiomes, and this needs to be considered in cases of infection outbreaks and their treatment. The housing conditions, along with the feeding scheme and care protocols, including the admission of antibiotics as prophylaxis, probiotics, and essential food supplements, resulted in bacterial communities with no apparent pathogenic bacteria. This is the first contribution to the microbiome of the protected seal species of M. monachus and contributes to the animal's conservation practices through its microbiome.
Collapse
Affiliation(s)
- Aggeliki Dosi
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Alexandra Meziti
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Eleni Tounta
- MOm/Hellenic Society for the Study and Protection of the Monk Seal, Athens, Greece
| | - Kimon Koemtzopoulos
- MOm/Hellenic Society for the Study and Protection of the Monk Seal, Athens, Greece
| | - Anastasia Komnenou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Dendrinos
- MOm/Hellenic Society for the Study and Protection of the Monk Seal, Athens, Greece
| | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| |
Collapse
|
67
|
Osborne OG, Jiménez RR, Byrne AQ, Gratwicke B, Ellison A, Muletz-Wolz CR. Phylosymbiosis shapes skin bacterial communities and pathogen-protective function in Appalachian salamanders. THE ISME JOURNAL 2024; 18:wrae104. [PMID: 38861457 PMCID: PMC11195472 DOI: 10.1093/ismejo/wrae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Phylosymbiosis is an association between host-associated microbiome composition and host phylogeny. This pattern can arise via the evolution of host traits, habitat preferences, diets, and the co-diversification of hosts and microbes. Understanding the drivers of phylosymbiosis is vital for modelling disease-microbiome interactions and manipulating microbiomes in multi-host systems. This study quantifies phylosymbiosis in Appalachian salamander skin in the context of infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd), while accounting for environmental microbiome exposure. We sampled ten salamander species representing >150M years of divergence, assessed their Bd infection status, and analysed their skin and environmental microbiomes. Our results reveal a significant signal of phylosymbiosis, whereas the local environmental pool of microbes, climate, geography, and Bd infection load had a smaller impact. Host-microbe co-speciation was not evident, indicating that the effect stems from the evolution of host traits influencing microbiome assembly. Bd infection is correlated with host phylogeny and the abundance of Bd-inhibitory bacterial strains, suggesting that the long-term evolutionary dynamics between salamander hosts and their skin microbiomes affect the present-day distribution of the pathogen, along with habitat-linked exposure risk. Five Bd-inhibitory bacterial strains showed unusual generalism: occurring in most host species and habitats. These generalist strains may enhance the likelihood of probiotic manipulations colonising and persisting on hosts. Our results underscore the substantial influence of host-microbiome eco-evolutionary dynamics on environmental health and disease outcomes.
Collapse
Affiliation(s)
- Owen G Osborne
- School of Environmental and Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Randall R Jiménez
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
- International Union for Conservation of Nature, C. 39, Los Yoses, San Jose, 146-2150, Costa Rica
| | - Allison Q Byrne
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, United States
| | - Brian Gratwicke
- Center for Species Survival, Smithsonian’s National Zoological Park and Conservation Biology Institute, Front Royal, VA 22630, United States
| | - Amy Ellison
- School of Environmental and Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
| |
Collapse
|
68
|
Rühlemann MC, Bang C, Gogarten JF, Hermes BM, Groussin M, Waschina S, Poyet M, Ulrich M, Akoua-Koffi C, Deschner T, Muyembe-Tamfum JJ, Robbins MM, Surbeck M, Wittig RM, Zuberbühler K, Baines JF, Leendertz FH, Franke A. Functional host-specific adaptation of the intestinal microbiome in hominids. Nat Commun 2024; 15:326. [PMID: 38182626 PMCID: PMC10770139 DOI: 10.1038/s41467-023-44636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024] Open
Abstract
Fine-scale knowledge of the changes in composition and function of the human gut microbiome compared that of our closest relatives is critical for understanding the evolutionary processes underlying its developmental trajectory. To infer taxonomic and functional changes in the gut microbiome across hominids at different timescales, we perform high-resolution metagenomic-based analyzes of the fecal microbiome from over two hundred samples including diverse human populations, as well as wild-living chimpanzees, bonobos, and gorillas. We find human-associated taxa depleted within non-human apes and patterns of host-specific gut microbiota, suggesting the widespread acquisition of novel microbial clades along the evolutionary divergence of hosts. In contrast, we reveal multiple lines of evidence for a pervasive loss of diversity in human populations in correlation with a high Human Development Index, including evolutionarily conserved clades. Similarly, patterns of co-phylogeny between microbes and hosts are found to be disrupted in humans. Together with identifying individual microbial taxa and functional adaptations that correlate to host phylogeny, these findings offer insights into specific candidates playing a role in the diverging trajectories of the gut microbiome of hominids. We find that repeated horizontal gene transfer and gene loss, as well as the adaptation to transient microaerobic conditions appear to have played a role in the evolution of the human gut microbiome.
Collapse
Affiliation(s)
- M C Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
| | - C Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - J F Gogarten
- Applied Zoology and Nature Conservation, University of Greifswald, Greifswald, Germany
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), Greifswald, Germany
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- Viral Evolution, Robert Koch Institute, Berlin, Germany
| | - B M Hermes
- Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - M Groussin
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - S Waschina
- Nutriinformatics Research Group, Institute for Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - M Poyet
- Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - M Ulrich
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), Greifswald, Germany
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - C Akoua-Koffi
- Training and Research Unit for in Medical Sciences, Alassane Ouattara University / University Teaching Hospital of Bouaké, Bouaké, Côte d'Ivoire
| | - T Deschner
- Comparative BioCognition, Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - J J Muyembe-Tamfum
- National Institute for Biomedical Research, National Laboratory of Public Health, Kinshasa, Democratic Republic of the Congo
| | - M M Robbins
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - M Surbeck
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - R M Wittig
- Institute of Cognitive Sciences, CNRS UMR5229 University Lyon 1, Bron Cedex, France
- Taï Chimpanzee Project, CSRS, Abidjan, Côte d'Ivoire
| | - K Zuberbühler
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, Scotland, UK
| | - J F Baines
- Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - F H Leendertz
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), Greifswald, Germany
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - A Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
| |
Collapse
|
69
|
Mazel F, Guisan A, Parfrey LW. Transmission mode and dispersal traits correlate with host specificity in mammalian gut microbes. Mol Ecol 2024; 33:e16862. [PMID: 36786039 DOI: 10.1111/mec.16862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023]
Abstract
Different host species associate with distinct gut microbes in mammals, a pattern sometimes referred to as phylosymbiosis. However, the processes shaping this host specificity are not well understood. One model proposes that barriers to microbial transmission promote specificity by limiting microbial dispersal between hosts. This model predicts that specificity levels measured across microbes is correlated to transmission mode (vertical vs. horizontal) and individual dispersal traits. Here, we leverage two large publicly available gut microbiota data sets (1490 samples from 195 host species) to test this prediction. We found that host specificity varies widely across bacteria (i.e., there are generalist and specialist bacteria) and depends on transmission mode and dispersal ability. Horizontally-like transmitted bacteria equipped with traits that facilitate switches between host (e.g., tolerance to oxygen) were found to be less specific (more generalist) than microbes without those traits, for example, vertically-like inherited bacteria that are intolerant to oxygen. Altogether, our findings are compatible with a model in which limited microbial dispersal abilities foster host specificity.
Collapse
Affiliation(s)
- Florent Mazel
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Laura Wegener Parfrey
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
70
|
Mazel F, Pitteloud C, Guisan A, Pellissier L. Contrasted host specificity of gut and endosymbiont bacterial communities in alpine grasshoppers and crickets. ISME COMMUNICATIONS 2024; 4:ycad013. [PMID: 38374896 PMCID: PMC10875604 DOI: 10.1093/ismeco/ycad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024]
Abstract
Bacteria colonize the body of macroorganisms to form associations ranging from parasitic to mutualistic. Endosymbiont and gut symbiont communities are distinct microbiomes whose compositions are influenced by host ecology and evolution. Although the composition of horizontally acquired symbiont communities can correlate to host species identity (i.e. harbor host specificity) and host phylogeny (i.e. harbor phylosymbiosis), we hypothesize that the microbiota structure of vertically inherited symbionts (e.g. endosymbionts like Wolbachia) is more strongly associated with the host species identity and phylogeny than horizontally acquired symbionts (e.g. most gut symbionts). Here, using 16S metabarcoding on 336 guts from 24 orthopteran species (grasshoppers and crickets) in the Alps, we observed that microbiota correlated to host species identity, i.e. hosts from the same species had more similar microbiota than hosts from different species. This effect was ~5 times stronger for endosymbionts than for putative gut symbionts. Although elevation correlated with microbiome composition, we did not detect phylosymbiosis for endosymbionts and putative gut symbionts: closely related host species did not harbor more similar microbiota than distantly related species. Our findings indicate that gut microbiota of studied orthopteran species is more correlated to host identity and habitat than to the host phylogeny. The higher host specificity in endosymbionts corroborates the idea that-everything else being equal-vertically transmitted microbes harbor stronger host specificity signal, but the absence of phylosymbiosis suggests that host specificity changes quickly on evolutionary time scales.
Collapse
Affiliation(s)
- Florent Mazel
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Camille Pitteloud
- Département de la mobilité, du territoire et de l'environnement, Service des forêts, de la nature et du paysage, Sion 1950, Switzerland
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland
- Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne 1015, Switzerland
| | - Loïc Pellissier
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland
- Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| |
Collapse
|
71
|
Härer A, Rennison DJ. The effects of host ecology and phylogeny on gut microbiota (non)parallelism across birds and mammals. mSphere 2023; 8:e0044223. [PMID: 38038446 PMCID: PMC10732045 DOI: 10.1128/msphere.00442-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE What are the roles of determinism and contingency in evolution? The paleontologist and evolutionary biologist Stephen J. Gould raised this question in his famous thought experiment of "replaying life's tape." Settings where independent lineages have repeatedly adapted to similar ecological niches (i.e., parallel evolution) are well suited to address this question. Here, we quantified whether repeated ecological shifts across 53 mammalian and 50 avian host species are associated with parallel gut microbiota changes. Our results indicate that parallel shifts in host diet are associated with greater gut microbiota parallelism (i.e., more deterministic). While further research will be necessary to obtain a comprehensive picture of the circumstances under which deterministic gut microbiota changes might be expected, our study can be instrumental in motivating the use of more quantitative methods in microbiota research. This, in turn, can help us better understand microbiota dynamics during adaptive evolution of their hosts.
Collapse
Affiliation(s)
- Andreas Härer
- Department of Ecology, Behavior & Evolution, School of Biological Sciences , University of California San Diego, La Jolla, California, USA
| | - Diana J. Rennison
- Department of Ecology, Behavior & Evolution, School of Biological Sciences , University of California San Diego, La Jolla, California, USA
| |
Collapse
|
72
|
Clerissi C, Huot C, Portet A, Gourbal B, Toulza E. Covariation between microeukaryotes and bacteria associated with Planorbidae snails. PeerJ 2023; 11:e16639. [PMID: 38144201 PMCID: PMC10740603 DOI: 10.7717/peerj.16639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/19/2023] [Indexed: 12/26/2023] Open
Abstract
Background Microbial communities associated with macroorganisms might affect host physiology and homeostasis. Bacteria are well studied in this context, but the diversity of microeukaryotes, as well as covariations with bacterial communities, remains almost unknown. Methods To study microeukaryotic communities associated with Planorbidae snails, we developed a blocking primer to reduce amplification of host DNA during metabarcoding analyses. Analyses of alpha and beta diversities were computed to describe microeukaryotes and bacteria using metabarcoding of 18S and 16S rRNA genes, respectively. Results Only three phyla (Amoebozoa, Opisthokonta and Alveolata) were dominant for microeukaryotes. Bacteria were more diverse with five dominant phyla (Proteobacteria, Bacteroidetes, Tenericutes, Planctomycetes and Actinobacteria). The composition of microeukaryotes and bacteria were correlated for the Biomphalaria glabrata species, but not for Planorbarius metidjensis. Network analysis highlighted clusters of covarying taxa. Among them, several links might reflect top-down control of bacterial populations by microeukaryotes, but also possible competition between microeukaryotes having opposite distributions (Lobosa and Ichthyosporea). The role of these taxa remains unknown, but we believe that the blocking primer developed herein offers new possibilities to study the hidden diversity of microeukaryotes within snail microbiota, and to shed light on their underestimated interactions with bacteria and hosts.
Collapse
Affiliation(s)
- Camille Clerissi
- Current Affiliation: PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Camille Huot
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Anaïs Portet
- Current Affiliation: MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Benjamin Gourbal
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Eve Toulza
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| |
Collapse
|
73
|
Meyer KM, Muscettola IE, Vasconcelos ALS, Sherman JK, Metcalf CJE, Lindow SE, Koskella B. Conspecific versus heterospecific transmission shapes host specialization of the phyllosphere microbiome. Cell Host Microbe 2023; 31:2067-2079.e5. [PMID: 38029741 DOI: 10.1016/j.chom.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/09/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
In disease ecology, pathogen transmission among conspecific versus heterospecific hosts is known to shape pathogen specialization and virulence, but we do not yet know if similar effects occur at the microbiome level. We tested this idea by experimentally passaging leaf-associated microbiomes either within conspecific or across heterospecific plant hosts. Although conspecific transmission results in persistent host-filtering effects and more within-microbiome network connections, heterospecific transmission results in weaker host-filtering effects but higher levels of interconnectivity. When transplanted onto novel plants, heterospecific lines are less differentiated by host species than conspecific lines, suggesting a shift toward microbiome generalism. Finally, conspecific lines from tomato exhibit a competitive advantage on tomato hosts against those passaged on bean or pepper, suggesting microbiome-level host specialization. Overall, we find that transmission mode and previous host history shape microbiome diversity, with repeated conspecific transmission driving microbiome specialization and repeated heterospecific transmission promoting microbiome generalism.
Collapse
Affiliation(s)
- Kyle M Meyer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Isabella E Muscettola
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ana Luisa S Vasconcelos
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Soil Science, College of Agriculture "Luiz de Queiroz", Universidade de São Paulo, Piracicaba 13418-900, Brazil
| | - Julia K Sherman
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
74
|
Lee W, Hayakawa T, Kiyono M, Yamabata N, Enari H, Enari HS, Fujita S, Kawazoe T, Asai T, Oi T, Kondo T, Uno T, Seki K, Shimada M, Tsuji Y, Langgeng A, MacIntosh A, Suzuki K, Yamada K, Onishi K, Ueno M, Kubo K, Hanya G. Diet-related factors strongly shaped the gut microbiota of Japanese macaques. Am J Primatol 2023; 85:e23555. [PMID: 37766673 DOI: 10.1002/ajp.23555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/08/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Although knowledge of the functions of the gut microbiome has increased greatly over the past few decades, our understanding of the mechanisms governing its ecology and evolution remains obscure. While host genetic distance is a strong predictor of the gut microbiome in large-scale studies and captive settings, its influence has not always been evident at finer taxonomic scales, especially when considering among the recently diverged animals in natural settings. Comparing the gut microbiome of 19 populations of Japanese macaques Macaca fuscata across the Japanese archipelago, we assessed the relative roles of host genetic distance, geographic distance and dietary factors in influencing the macaque gut microbiome. Our results suggested that the macaques may maintain a core gut microbiome, while each population may have acquired some microbes from its specific habitat/diet. Diet-related factors such as season, forest, and reliance on anthropogenic foods played a stronger role in shaping the macaque gut microbiome. Among closely related mammalian hosts, host genetics may have limited effects on the gut microbiome since the hosts generally have smaller physiological differences. This study contributes to our understanding of the relative roles of host phylogeography and dietary factors in shaping the gut microbiome of closely related mammalian hosts.
Collapse
Affiliation(s)
- Wanyi Lee
- Center for Ecological Research, Kyoto University, Inuyama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mieko Kiyono
- Graduate School of Human Development and Environment, Kobe University, Kobe, Hyogo, Japan
| | - Naoto Yamabata
- Institute of Natural and Environmental Sciences, University of Hyogo, Sanda, Hyogo, Japan
| | - Hiroto Enari
- Faculty of Agriculture, Yamagata University, Wakabamachi, Tsuruoka, Yamagata, Japan
| | - Haruka S Enari
- Faculty of Agriculture, Yamagata University, Wakabamachi, Tsuruoka, Yamagata, Japan
| | - Shiho Fujita
- Department of Behavioral Physiology and Ecology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tatsuro Kawazoe
- Research Institute for Languages and Cultures of Asia and Africa, Tokyo University of Foreign Studies, Tokyo, Japan
| | - Takayuki Asai
- South Kyushu Wildlife Management Center, Kagoshima, Japan
| | - Toru Oi
- Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | | | - Takeharu Uno
- Tohoku Monkey and Mammal Management Center, Sendai, Miyagi, Japan
| | - Kentaro Seki
- Tohoku Monkey and Mammal Management Center, Sendai, Miyagi, Japan
| | - Masaki Shimada
- Department of Animal Sciences, Teikyo University of Science, Uenohara, Yamanashi, Japan
| | - Yamato Tsuji
- Department of Science and Engineering, Ishinomaki Senshu University, Ishinomaki, Miyagi, Japan
| | - Abdullah Langgeng
- Primate Research Institute, Kyoto University, Inuyama, Japan
- Wildlife Research Center, Kyoto University, Kanrin, Inuyama, Japan
| | - Andrew MacIntosh
- Primate Research Institute, Kyoto University, Inuyama, Japan
- Wildlife Research Center, Kyoto University, Kanrin, Inuyama, Japan
| | | | - Kazunori Yamada
- Graduate School of Human Sciences, Osaka University, Suita, Osaka, Japan
| | - Kenji Onishi
- Department of Early Childhood Education, Nara University of Education, Nara, Japan
| | - Masataka Ueno
- Faculty of Applied Sociology, Kindai University, Higashiosaka, Osaka, Japan
| | - Kentaro Kubo
- Cultural Asset Management Division, Board of Education, Oita-City, Japan
| | - Goro Hanya
- Center for Ecological Research, Kyoto University, Inuyama, Japan
- Primate Research Institute, Kyoto University, Inuyama, Japan
| |
Collapse
|
75
|
Buthgamuwa I, Fenelon JC, Roser A, Meer H, Johnston SD, Dungan AM. Gut microbiota in the short-beaked echidna (Tachyglossus Aculeatus) shows stability across gestation. Microbiologyopen 2023; 12:e1392. [PMID: 38129978 PMCID: PMC10721944 DOI: 10.1002/mbo3.1392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Indigenous gut microbial communities (microbiota) play critical roles in health and may be especially important for the mother and fetus during pregnancy. Monotremes, such as the short-beaked echidna, have evolved to lay and incubate an egg, which hatches in their pouch where the young feeds. Since both feces and eggs pass through the cloaca, the fecal microbiota of female echidnas provides an opportunity for vertical transmission of microbes to their offspring. Here, we characterize the gut/fecal microbiome of female short-beaked echidnas and gain a better understanding of the changes that may occur in their microbiome as they go through pregnancy. Fecal samples from four female and five male echidnas were obtained from the Currumbin Wildlife Sanctuary in Queensland and sequenced to evaluate bacterial community structure. We identified 25 core bacteria, most of which were present in male and female samples. Genera such as Fusobacterium, Bacteroides, Escherichia-Shigella, and Lactobacillus were consistently abundant, regardless of sex or gestation stage, accounting for 58.00% and 56.14% of reads in male and female samples, respectively. The echidna microbiome remained stable across the different gestation stages, though there was a significant difference in microbiota composition between male and female echidnas. This study is the first to describe the microbiome composition of short-beaked echidnas across reproductive phases and allows the opportunity for this novel information to be used as a metric of health to aid in the detection of diseases triggered by microbiota dysbiosis.
Collapse
Affiliation(s)
- Isini Buthgamuwa
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | - Jane C. Fenelon
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Colossal Laboratories and BiosciencesDallasTexasUSA
| | - Alice Roser
- Currumbin Wildlife SanctuaryCurrumbinQueenslandAustralia
| | - Haley Meer
- Currumbin Wildlife SanctuaryCurrumbinQueenslandAustralia
| | - Stephen D. Johnston
- School of EnvironmentThe University of QueenslandGattonQueenslandAustralia
- School of Veterinary ScienceThe University of QueenslandGattonQueenslandAustralia
| | - Ashley M. Dungan
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
76
|
Sadeghi J, Chaganti SR, Johnson TB, Heath DD. Host species and habitat shape fish-associated bacterial communities: phylosymbiosis between fish and their microbiome. MICROBIOME 2023; 11:258. [PMID: 37981701 PMCID: PMC10658978 DOI: 10.1186/s40168-023-01697-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/11/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND While many studies have reported that the structure of the gut and skin microbiota is driven by both species-specific and habitat-specific factors, the relative importance of host-specific versus environmental factors in wild vertebrates remains poorly understood. The aim of this study was to determine the diversity and composition of fish skin, gut, and surrounding water bacterial communities (hereafter referred to as microbiota) and assess the extent to which host habitat and phylogeny predict microbiota similarity. Skin swabs and gut samples from 334 fish belonging to 17 species were sampled in three Laurentian Great Lakes (LGLs) habitats (Detroit River, Lake Erie, Lake Ontario). We also collected and filtered water samples at the time of fish collection. We analyzed bacterial community composition using 16S metabarcoding and tested for community variation. RESULTS We found that the water microbiota was distinct from the fish microbiota, although the skin microbiota more closely resembled the water microbiota. We also found that environmental (sample location), habitat, fish diet, and host species factors shape and promote divergence or convergence of the fish microbiota. Since host species significantly affected both gut and skin microbiota (separately from host species effects), we tested for phylosymbiosis using pairwise host species phylogenetic distance versus bacterial community dissimilarity. We found significant phylogenetic effects on bacterial community dissimilarity, consistent with phylosymbiosis for both the fish skin and gut microbiota, perhaps reflecting the longstanding co-evolutionary relationship between the host species and their microbiomes. CONCLUSIONS Analyzing the gut and skin mucus microbiota across diverse fish species in complex natural ecosystems such as the LGLs provides insights into the potential for habitat and species-specific effects on the microbiome, and ultimately the health, of the host. Video Abstract.
Collapse
Affiliation(s)
- Javad Sadeghi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Timothy B Johnson
- Ontario Ministry of Natural Resources and Forestry, Glenora Fisheries Station, Picton, ON, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
77
|
Williams CE, Brown AE, Williams CL. The role of diet and host species in shaping the seasonal dynamics of the gut microbiome. FEMS Microbiol Ecol 2023; 99:fiad156. [PMID: 38070877 PMCID: PMC10750813 DOI: 10.1093/femsec/fiad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/05/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023] Open
Abstract
The gut microbiome plays an important role in the health and fitness of hosts. While previous studies have characterized the importance of various ecological and evolutionary factors in shaping the composition of the gut microbiome, most studies have been cross-sectional in nature, ignoring temporal variation. Thus, it remains unknown how these same factors might affect the stability and dynamics of the gut microbiome over time, resulting in variation across the tree of life. Here, we used samples collected in each of four seasons for three taxa: the herbivorous southern white rhinoceros (Ceratotherium simum simum, n = 5); the carnivorous Sumatran tiger (Panthera tigris sumatrae, n = 5); and the red panda (Ailurus fulgens, n = 9), a herbivorous carnivore that underwent a diet shift in its evolutionary history from carnivory to a primarily bamboo-based diet. We characterize the variability of the gut microbiome among these three taxa across time to elucidate the influence of diet and host species on these dynamics. Altogether, we found that red pandas exhibit marked seasonal variation in their gut microbial communities, experiencing both high microbial community turnover and high variation in how individual red panda's gut microbiota respond to seasonal changes. Conversely, while the gut microbiota of rhinoceros change throughout the year, all individuals respond in the same way to seasonal changes. Tigers experience relatively low levels of turnover throughout the year, yet the ways in which individuals respond to seasonal transitions are highly varied. We highlight how the differences in microbiome richness and network connectivity between these three species may affect the level of temporal stability in the gut microbiota across the year.
Collapse
Affiliation(s)
- Claire E Williams
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Ashli E Brown
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS State, MS 39762, United States
| | - Candace L Williams
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS State, MS 39762, United States
- Beckman Center for Conservation Science, San Diego Zoo Wildlife Alliance, San Diego, CA 92027, United States
| |
Collapse
|
78
|
Qin M, Jiang L, Qiao G, Chen J. Phylosymbiosis: The Eco-Evolutionary Pattern of Insect-Symbiont Interactions. Int J Mol Sci 2023; 24:15836. [PMID: 37958817 PMCID: PMC10650905 DOI: 10.3390/ijms242115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Insects harbor diverse assemblages of bacterial and fungal symbionts, which play crucial roles in host life history. Insects and their various symbionts represent a good model for studying host-microbe interactions. Phylosymbiosis is used to describe an eco-evolutionary pattern, providing a new cross-system trend in the research of host-associated microbiota. The phylosymbiosis pattern is characterized by a significant positive correlation between the host phylogeny and microbial community dissimilarities. Although host-symbiont interactions have been demonstrated in many insect groups, our knowledge of the prevalence and mechanisms of phylosymbiosis in insects is still limited. Here, we provide an order-by-order summary of the phylosymbiosis patterns in insects, including Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera. Then, we highlight the potential contributions of stochastic effects, evolutionary processes, and ecological filtering in shaping phylosymbiotic microbiota. Phylosymbiosis in insects can arise from a combination of stochastic and deterministic mechanisms, such as the dispersal limitations of microbes, codiversification between symbionts and hosts, and the filtering of phylogenetically conserved host traits (incl., host immune system, diet, and physiological characteristics).
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| |
Collapse
|
79
|
Al-khlifeh E, Khadem S, Hausmann B, Berry D. Microclimate shapes the phylosymbiosis of rodent gut microbiota in Jordan's Great Rift Valley. Front Microbiol 2023; 14:1258775. [PMID: 37954239 PMCID: PMC10637782 DOI: 10.3389/fmicb.2023.1258775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Host phylogeny and the environment play vital roles in shaping animal microbiomes. However, the effects of these variables on the diversity and richness of the gut microbiome in different bioclimatic zones remain underexplored. In this study, we investigated the effects of host phylogeny and bioclimatic zone on the diversity and composition of the gut microbiota of two heterospecific rodent species, the spiny mouse Acomys cahirinus and the house mouse Mus musculus, in three bioclimatic zones of the African Great Rift Valley (GRV). We confirmed host phylogeny using the D-loop sequencing method and analyzed the influence of host phylogeny and bioclimatic zone parameters on the rodent gut microbiome using high-throughput amplicon sequencing of 16S rRNA gene fragments. Phylogenetic analysis supported the morphological identification of the rodents and revealed a marked genetic difference between the two heterospecific species. We found that bioclimatic zone had a significant effect on the gut microbiota composition while host phylogeny did not. Microbial alpha diversity of heterospecific hosts was highest in the Mediterranean forest bioclimatic zone, followed by the Irano-Turanian shrubland, and was lowest in the Sudanian savanna tropical zone. The beta diversity of the two rodent species showed significant differences across the Mediterranean, Irano-Turanian, and Sudanian regions. The phyla Firmicutes and Bacteroidetes were highly abundant, and Deferribacterota, Cyanobacteria and Proteobacteria were also prominent. Amplicon sequence variants (ASVs) were identified that were unique to the Sudanian bioclimatic zone. The core microbiota families recovered in this study were consistent among heterospecific hosts. However, diversity decreased in conspecific host populations found at lower altitudes in Sudanian bioclimatic zone. The composition of the gut microbiota is linked to the adaptation of the host to its environment, and this study underscores the importance of incorporating climatic factors such as elevation and ambient temperature, in empirical microbiome research and is the first to describe the rodent gut microbiome from the GRV.
Collapse
Affiliation(s)
- Enas Al-khlifeh
- Laboratory of Immunology, Department of Medical Laboratory Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Sanaz Khadem
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| |
Collapse
|
80
|
Aizpurua O, Blijleven K, Trivedi U, Gilbert MTP, Alberdi A. Unravelling animal-microbiota evolution on a chip. Trends Microbiol 2023; 31:995-1002. [PMID: 37217368 DOI: 10.1016/j.tim.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023]
Abstract
Whether and how microorganisms have shaped the evolution of their animal hosts is a major question in biology. Although many animal evolutionary processes appear to correlate with changes in their associated microbial communities, the mechanistic processes leading to these patterns and their causal relationships are still far from being resolved. Gut-on-a-chip models provide an innovative approach that expands beyond the potential of conventional microbiome profiling to study how different animals sense and react to microbes by comparing responses of animal intestinal tissue models to different microbial stimuli. This complementary knowledge can contribute to our understanding of how host genetic features facilitate or prevent different microbiomes from being assembled, and in doing so elucidate the role of host-microbiota interactions in animal evolution.
Collapse
Affiliation(s)
- Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Kees Blijleven
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Urvish Trivedi
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
81
|
Zhang XY, Khakisahneh S, Liu W, Zhang X, Zhai W, Cheng J, Speakman JR, Wang DH. Phylogenetic signal in gut microbial community rather than in rodent metabolic traits. Natl Sci Rev 2023; 10:nwad209. [PMID: 37928774 PMCID: PMC10625476 DOI: 10.1093/nsr/nwad209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 11/07/2023] Open
Abstract
Host phylogeny and environment have all been implicated in shaping the gut microbiota and host metabolic traits of mammals. However, few studies have evaluated phylogeny-associated microbial assembly and host metabolic plasticity concurrently, and their relationships on both short-term and evolutionary timescales. We report that the branching order of a gut microbial dendrogram was nearly congruent with phylogenetic relationships of seven rodent species, and this pattern of phylosymbiosis was intact after diverse laboratory manipulations. Laboratory rearing, diet or air temperature (Ta) acclimation induced alterations in gut microbial communities, but could not override host phylogeny in shaping microbial community assembly. A simulative heatwave reduced core microbiota diversity by 26% in these species, and led to an unmatched relationship between the microbiota and host metabolic phenotypes in desert species. Moreover, the similarity of metabolic traits across species at different Tas was not correlated with phylogenetic distance. These data demonstrated that the gut microbial assembly showed strong concordance with host phylogeny and may be shaped by environmental variables, whereas host metabolic traits did not seem to be linked with phylogeny.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Saeid Khakisahneh
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Animal Evolution and Genetics, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Animal Evolution and Genetics, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB39 2PN, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
82
|
Donohue ME, Hert ZL, Karrick CE, Rowe AK, Wright PC, Randriamanandaza LJ, Zakamanana F, Nomenjanahary ES, Everson KM, Weisrock DW. Lemur Gut Microeukaryotic Community Variation Is Not Associated with Host Phylogeny, Diet, or Habitat. MICROBIAL ECOLOGY 2023; 86:2149-2160. [PMID: 37133496 DOI: 10.1007/s00248-023-02233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
Identifying the major forces driving variation in gut microbiomes enhances our understanding of how and why symbioses between hosts and microbes evolved. Gut prokaryotic community variation is often closely associated with host evolutionary and ecological variables. Whether these same factors drive variation in other microbial taxa occupying the animal gut remains largely untested. Here, we present a one-to-one comparison of gut prokaryotic (16S rRNA metabarcoding) and microeukaryotic (18S rRNA metabarcoding) community patterning among 12 species of wild lemurs. Lemurs were sampled from dry forests and rainforests of southeastern Madagascar and display a range of phylogenetic and ecological niche diversity. We found that while lemur gut prokaryotic community diversity and composition vary with host taxonomy, diet, and habitat, gut microeukaryotic communities have no detectable association with any of these factors. We conclude that gut microeukaryotic community composition is largely random, while gut prokaryotic communities are conserved among host species. It is likely that a greater proportion of gut microeukaryotic communities comprise taxa with commensal, transient, and/or parasitic symbioses compared with gut prokaryotes, many of which form long-term relationships with the host and perform important biological functions. Our study highlights the importance of greater specificity in microbiome research; the gut microbiome contains many "omes" (e.g., prokaryome, eukaryome), each comprising different microbial taxa shaped by unique selective pressures.
Collapse
Affiliation(s)
- Mariah E Donohue
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA.
| | - Zoe L Hert
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Carly E Karrick
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Amanda K Rowe
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Patricia C Wright
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Centre ValBio Research Station, Ranomafana, MD, USA
| | | | | | | | - Kathryn M Everson
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
| |
Collapse
|
83
|
Härer A, Mauro AA, Laurentino TG, Rosenblum EB, Rennison DJ. Gut microbiota parallelism and divergence associated with colonisation of novel habitats. Mol Ecol 2023; 32:5661-5672. [PMID: 37715531 DOI: 10.1111/mec.17135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
An organism's gut microbiota can change in response to novel environmental conditions, in particular when colonisation of new habitats is accompanied by shifts in the host species' ecology. Here, we investigated the gut microbiota of three lizard species (A. inornata, H. maculata and S. cowlesi) from their ancestral-like habitat in the Chihuahuan desert and two colonised habitats with contrasting geological and ecological compositions: the White Sands and Carrizozo lava flow. The host species and the lizards' environment both shape gut microbiota composition, but host effects were overall stronger. Further, we found evidence that colonisation of the same environment by independent host species led to parallel changes of the gut microbiota, whereas the colonisation of two distinct environments by the same host species led to gut microbiota divergence. Some of the gut microbiota changes that accompanied the colonisation of the White Sands were associated with shifts in diet (based on diet information from previous studies), which is congruent with the general observation that trophic ecology has a strong effect on gut microbiota composition. Our study provides insights into how shifts in host ecology accompanying colonisation of novel environments can affect gut microbiota composition and diversity.
Collapse
Affiliation(s)
- Andreas Härer
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Alexander A Mauro
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Telma G Laurentino
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
| | - Erica B Rosenblum
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, USA
| | - Diana J Rennison
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
84
|
Pushpakumara BLDU, Tandon K, Willis A, Verbruggen H. The Bacterial Microbiome of the Coral Skeleton Algal Symbiont Ostreobium Shows Preferential Associations and Signatures of Phylosymbiosis. MICROBIAL ECOLOGY 2023; 86:2032-2046. [PMID: 37002423 PMCID: PMC10497448 DOI: 10.1007/s00248-023-02209-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Ostreobium, the major algal symbiont of the coral skeleton, remains understudied despite extensive research on the coral holobiont. The enclosed nature of the coral skeleton might reduce the dispersal and exposure of residing bacteria to the outside environment, allowing stronger associations with the algae. Here, we describe the bacterial communities associated with cultured strains of 5 Ostreobium clades using 16S rRNA sequencing. We shed light on their likely physical associations by comparative analysis of three datasets generated to capture (1) all algae associated bacteria, (2) enriched tightly attached and potential intracellular bacteria, and (3) bacteria in spent media. Our data showed that while some bacteria may be loosely attached, some tend to be tightly attached or potentially intracellular. Although colonised with diverse bacteria, Ostreobium preferentially associated with 34 bacterial taxa revealing a core microbiome. These bacteria include known nitrogen cyclers, polysaccharide degraders, sulphate reducers, antimicrobial compound producers, methylotrophs, and vitamin B12 producers. By analysing co-occurrence networks of 16S rRNA datasets from Porites lutea and Paragoniastrea australensis skeleton samples, we show that the Ostreobium-bacterial associations present in the cultures are likely to also occur in their natural environment. Finally, our data show significant congruence between the Ostreobium phylogeny and the community composition of its tightly associated microbiome, largely due to the phylosymbiotic signal originating from the core bacterial taxa. This study offers insight into the Ostreobium microbiome and reveals preferential associations that warrant further testing from functional and evolutionary perspectives.
Collapse
Affiliation(s)
| | - Kshitij Tandon
- School of Biosciences, University of Melbourne, Victoria, 3010, Australia
| | - Anusuya Willis
- Australian National Algae Culture Collection, CSIRO, Tasmania, 7000, Victoria, Australia
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
85
|
Zhao C, Wang L, Zhang K, Zhu X, Li D, Ji J, Luo J, Cui J. Variation of Helicoverpa armigera symbionts across developmental stages and geographic locations. Front Microbiol 2023; 14:1251627. [PMID: 37744901 PMCID: PMC10513443 DOI: 10.3389/fmicb.2023.1251627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Cotton bollworm (Helicoverpa armigera) poses a global problem, causing substantial economic and ecological losses. Endosymbionts in insects play crucial roles in multiple insect biological processes. However, the interactions between H. armigera and its symbionts have not been well characterized to date. We investigated the symbionts of H. armigera in the whole life cycle from different geographical locations. In the whole life cycle of H. armigera, Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were the dominant bacteria at the phylum level, while Enterococcus, Enterobacter, Glutamicibacter, and Bacillus were the four dominant bacteria at the genus level. Furthermore, high similarity in symbiotic bacterial community was observed in different stages of H. armigera, which were dominated by Enterococcus and Enterobacter. In fields, the dominant bacteria were Proteobacteria and Bacteroidetes, whereas, in the laboratory, the dominant bacteria were Proteobacteria. At the genus level, the dominant bacteria in cotton bollworm eggs of wild populations were Enterobacter, Morganella, Lactococcus, Asaia, Apibacter, and Enterococcus, and the subdominant bacteria were Bartonella, Pseudomonas, and Orbus. Moreover, the symbionts varied with geographical locations, and the closer the geographical distance, the more similar the microbial composition. Taken together, our study identifies and compares the symbiont variation along with geographical gradients and host development dynamic and reveals the high flexibility of microbiome communities in H. armigera, which probably benefits for the successful survival in a complicated changing environment.
Collapse
Affiliation(s)
- Chenchen Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
86
|
Guo M, Xie S, Wang J, Zhang Y, He X, Luo P, Deng J, Zhou C, Qin J, Huang C, Zhang L. The difference in the composition of gut microbiota is greater among bats of different phylogenies than among those with different dietary habits. Front Microbiol 2023; 14:1207482. [PMID: 37577418 PMCID: PMC10419214 DOI: 10.3389/fmicb.2023.1207482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Bats have a very long evolutionary history and are highly differentiated in their physiological functions. Results of recent studies suggest effects of some host factors (e.g., phylogeny and dietary habit) on their gut microbiota. In this study, we examined the gut microbial compositions of 18 different species of bats. Results showed that Firmicutes, Gammaproteobacteria, and Actinobacteria were dominant in all fecal samples of bats. However, the difference in the diversity of gut microbiota among bats of different phylogenies was notable (p = 0.06). Various species of Firmicutes, Actinobacteria, and Gammaproteobacteria were found to contribute to the majority of variations in gut microbiota of all bats examined, and Aeromonas species were much more abundant in bats that feed on both insects and fish than in those of insectivores. The abundance of various species of Clostridium, Euryarchaeota, and ancient bacterial phyla was found to vary among bats of different phylogenies, and various species of Vibrio varied significantly among bats with different dietary habits. No significant difference in the number of genes involved in various metabolic pathways was detected among bats of different phylogenies, but the abundance of genes involved in 5 metabolic pathways, including transcription; replication, recombination, and repair; amino acid transport and metabolism; and signal transduction mechanisms, was different among bats with different dietary habits. The abundance of genes in 3 metabolic pathways, including those involved in stilbenoid, diarylheptanoid, and gingerol biosynthesis, was found to be different between insectivorous bats and bats that feed on both insects and fish. Results of this study suggest a weak association between dietary habit and gut microbiota in most bats but a notable difference in gut microbiota among bats of different phylogenies.
Collapse
Affiliation(s)
- Min Guo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Siwei Xie
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Junhua Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuzhi Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Pengfei Luo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jin Deng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
- College of Life Sciences, South China Normal University, Guangzhou, China
| | - Chunhui Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiao Qin
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chen Huang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
87
|
Stuij T, Cleary DFR, Polónia ARM, Putchakarn S, Pires ACC, Gomes NCM, de Voogd NJ. Exploring Prokaryotic Communities in the Guts and Mucus of Nudibranchs, and Their Similarity to Sediment and Seawater Microbiomes. Curr Microbiol 2023; 80:294. [PMID: 37481620 PMCID: PMC10363043 DOI: 10.1007/s00284-023-03397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/01/2023] [Indexed: 07/24/2023]
Abstract
In the present study, we compared mucus and gut-associated prokaryotic communities from seven nudibranch species with sediment and seawater from Thai coral reefs using high-throughput 16S rRNA gene sequencing. The nudibranch species were identified as Doriprismatica atromarginata (family Chromodorididae), Jorunna funebris (family Discodorididae), Phyllidiella nigra, Phyllidiella pustulosa, Phyllidia carlsonhoffi, Phyllidia elegans, and Phyllidia picta (all family Phyllidiidae). The most abundant bacterial phyla in the dataset were Proteobacteria, Tenericutes, Chloroflexi, Thaumarchaeota, and Cyanobacteria. Mucus and gut-associated communities differed from one another and from sediment and seawater communities. Host phylogeny was, furthermore, a significant predictor of differences in mucus and gut-associated prokaryotic community composition. With respect to higher taxon abundance, the order Rhizobiales (Proteobacteria) was more abundant in Phyllidia species (mucus and gut), whereas the order Mycoplasmatales (Tenericutes) was more abundant in D. atromarginata and J. funebris. Mucus samples were, furthermore, associated with greater abundances of certain phyla including Chloroflexi, Poribacteria, and Gemmatimonadetes, taxa considered to be indicators for high microbial abundance (HMA) sponge species. Overall, our results indicated that nudibranch microbiomes consisted of a number of abundant prokaryotic members with high sequence similarities to organisms previously detected in sponges.
Collapse
Affiliation(s)
- Tamara Stuij
- Department of Biology, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniel F R Cleary
- Department of Biology, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana R M Polónia
- Department of Biology, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sumaitt Putchakarn
- Institute of Marine Science, Burapha University, Chon Buri, 20131, Thailand
| | - Ana C C Pires
- Department of Biology, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Newton C M Gomes
- Department of Biology, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands.
- Environmental Biology Department, Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands.
| |
Collapse
|
88
|
Keady MM, Jimenez RR, Bragg M, Wagner JCP, Bornbusch SL, Power ML, Muletz-Wolz CR. Ecoevolutionary processes structure milk microbiomes across the mammalian tree of life. Proc Natl Acad Sci U S A 2023; 120:e2218900120. [PMID: 37399384 PMCID: PMC10334807 DOI: 10.1073/pnas.2218900120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/22/2023] [Indexed: 07/05/2023] Open
Abstract
Milk production is an ancient adaptation that unites all mammals. Milk contains a microbiome that can contribute to offspring health and microbial-immunological development. We generated a comprehensive milk microbiome dataset (16S rRNA gene) for the class Mammalia, representing 47 species from all placental superorders, to determine processes structuring milk microbiomes. We show that across Mammalia, milk exposes offspring to maternal bacterial and archaeal symbionts throughout lactation. Deterministic processes of environmental selection accounted for 20% of milk microbiome assembly processes; milk microbiomes were similar from mammals with the same host superorder (Afrotheria, Laurasiathera, Euarchontoglires, and Xenarthra: 6%), environment (marine captive, marine wild, terrestrial captive, and terrestrial wild: 6%), diet (carnivore, omnivore, herbivore, and insectivore: 5%), and milk nutrient content (sugar, fat, and protein: 3%). We found that diet directly and indirectly impacted milk microbiomes, with indirect effects being mediated by milk sugar content. Stochastic processes, such as ecological drift, accounted for 80% of milk microbiome assembly processes, which was high compared to mammalian gut and mammalian skin microbiomes (69% and 45%, respectively). Even amid high stochasticity and indirect effects, our results of direct dietary effects on milk microbiomes provide support for enteromammary trafficking, representing a mechanism by which bacteria are transferred from the mother's gut to mammary gland and then to offspring postnatally. The microbial species present in milk reflect both selective pressures and stochastic processes at the host level, exemplifying various ecological and evolutionary factors acting on milk microbiomes, which, in turn, set the stage for offspring health and development.
Collapse
Affiliation(s)
- Mia M. Keady
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
- Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI53706
| | - Randall R. Jimenez
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
- Science Team, International Union for Conservation of Nature, 11501San José, Costa Rica
| | - Morgan Bragg
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA22030
| | - Jenna C. P. Wagner
- Nutrition Laboratory and Conservation Ecology Center, Smithsonian National Zoo and Conservation Biology Institute, National Zoological Park, Washington, DC20008
| | - Sally L. Bornbusch
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
- Department of Nutrition Science, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
| | - Michael L. Power
- Nutrition Laboratory and Conservation Ecology Center, Smithsonian National Zoo and Conservation Biology Institute, National Zoological Park, Washington, DC20008
| | - Carly R. Muletz-Wolz
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
| |
Collapse
|
89
|
Umbach AK, Fernando C, Hill JE, Neufeld JD. Evaluating cpn60 for high-resolution profiling of the mammalian skin microbiome and detection of phylosymbiosis. ISME COMMUNICATIONS 2023; 3:69. [PMID: 37419988 PMCID: PMC10328941 DOI: 10.1038/s43705-023-00276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Despite being the most widely used phylogenetic marker for amplicon-based profiling of microbial communities, limited phylogenetic resolution of the 16S rRNA gene limits its use for studies of host-microbe co-evolution. In contrast, the cpn60 gene is a universal phylogenetic marker with greater sequence variation capable of species-level resolution. This research compared mammalian skin microbial profiles generated from cpn60 and 16S rRNA gene sequencing approaches, testing for patterns of phylosymbiosis that suggest co-evolutionary host-microbe associations. An ~560 bp fragment of the cpn60 gene was amplified with universal primers and subjected to high-throughput sequencing. Taxonomic classification of cpn60 sequences was completed using a naïve-Bayesian QIIME2 classifier created for this project, trained with an NCBI-supplemented curated cpn60 database (cpnDB_nr). The cpn60 dataset was then compared to published 16S rRNA gene amplicon data. Beta diversity comparisons of microbial community profiles generated with cpn60 and 16S rRNA gene amplicons were not significantly different, based on Procrustes analysis of Bray-Curtis and UniFrac distances. Despite similar relationships among skin microbial profiles, improved phylogenetic resolution provided by the cpn60 gene sequencing permitted observations of phylosymbiosis between microbial community profiles and their mammalian hosts that were not previously observed with 16S rRNA gene profiles. Subsequent investigation of Staphylococcaceae taxa using the cpn60 gene showed increased phylogenetic resolution compared the 16S rRNA gene profiles, revealing potential co-evolutionary host-microbe associations. Overall, our results demonstrate that 16S rRNA and cpn60 marker genes generate comparable microbial community composition patterns while cpn60 better facilitates analyses, such as phylosymbiosis, that require increased phylogenetic resolution.
Collapse
Affiliation(s)
- Alexander K Umbach
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Champika Fernando
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
90
|
Villa SM, Chen JZ, Kwong Z, Acosta A, Vega NM, Gerardo NM. Specialized acquisition behaviors maintain reliable environmental transmission in an insect-microbial mutualism. Curr Biol 2023:S0960-9822(23)00724-8. [PMID: 37385254 DOI: 10.1016/j.cub.2023.05.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023]
Abstract
Understanding how horizontally transmitted mutualisms are maintained is a major focus of symbiosis research.1,2,3,4 Unlike vertical transmission, hosts that rely on horizontal transmission produce symbiont-free offspring that must find and acquire their beneficial microbes from the environment. This transmission strategy is inherently risky since hosts may not obtain the right symbiont every generation. Despite these potential costs, horizontal transmission underlies stable mutualisms involving a large diversity of both plants and animals.5,6,7,8,9 One largely unexplored way horizontal transmission is maintained is for hosts to evolve sophisticated mechanisms to consistently find and acquire specific symbionts from the environment. Here, we examine this possibility in the squash bug Anasa tristis, an insect pest that requires bacterial symbionts in the genus Caballeronia10 for survival and development.11 We conduct a series of behavioral and transmission experiments that track strain-level transmission in vivo among individuals in real-time. We demonstrate that nymphs can accurately find feces from adult bugs in both the presence and absence of those adults. Once nymphs locate the feces, they deploy feeding behavior that results in nearly perfect symbiont acquisition success. We further demonstrate that nymphs can locate and feed on isolated, cultured symbionts in the absence of feces. Finally, we show this acquisition behavior is highly host specific. Taken together, our data describe not only the evolution of a reliable horizontal transmission strategy, but also a potential mechanism that drives patterns of species-specific microbial communities among closely related, sympatric host species.
Collapse
Affiliation(s)
- Scott M Villa
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA; Department of Biology, Davidson College, 209 Ridge Rd., Davidson, NC 28035, USA.
| | - Jason Z Chen
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Zeeyong Kwong
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Alice Acosta
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Nicole M Vega
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Nicole M Gerardo
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| |
Collapse
|
91
|
Seabourn PS, Weber DE, Spafford H, Medeiros MCI. Aedes albopictus microbiome derives from environmental sources and partitions across distinct host tissues. Microbiologyopen 2023; 12:e1364. [PMID: 37379424 PMCID: PMC10261752 DOI: 10.1002/mbo3.1364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
The mosquito microbiome consists of a consortium of interacting microorganisms that reside on and within culicid hosts. Mosquitoes acquire most of their microbial diversity from the environment over their life cycle. Once present within the mosquito host, the microbes colonize distinct tissues, and these symbiotic relationships are maintained by immune-related mechanisms, environmental filtering, and trait selection. The processes that govern how environmental microbes assemble across the tissues within mosquitoes remain poorly resolved. We use ecological network analyses to examine how environmental bacteria assemble to form bacteriomes among Aedes albopictus host tissues. Mosquitoes, water, soil, and plant nectar were collected from 20 sites in the Mānoa Valley, Oahu. DNA was extracted and associated bacteriomes were inventoried using Earth Microbiome Project protocols. We find that the bacteriomes of A. albopictus tissues were compositional taxonomic subsets of environmental bacteriomes and suggest that the environmental microbiome serves as a source pool that supports mosquito microbiome diversity. Within the mosquito, the microbiomes of the crop, midgut, Malpighian tubules, and ovaries differed in composition. This microbial diversity partitioned among host tissues formed two specialized modules: one in the crop and midgut, and another in the Malpighian tubules and ovaries. The specialized modules may form based on microbe niche preferences and/or selection of mosquito tissues for specific microbes that aid unique biological functions of the tissue types. A strong niche-driven assembly of tissue-specific microbiotas from the environmental species pool suggests that each tissue has specialized associations with microbes, which derive from host-mediated microbe selection.
Collapse
Affiliation(s)
- Priscilla S. Seabourn
- Plant and Environmental Protection SciencesHonoluluHawaiiUSA
- Pacific Biosciences Research CenterUniversity of HawaiiHonoluluHawaiiUSA
| | - Danya E. Weber
- Pacific Biosciences Research CenterUniversity of HawaiiHonoluluHawaiiUSA
| | - Helen Spafford
- Plant and Environmental Protection SciencesHonoluluHawaiiUSA
- Department of Primary Industries and Regional DevelopmentSouth PerthWestern AustraliaAustralia
| | - Matthew C. I. Medeiros
- Pacific Biosciences Research CenterUniversity of HawaiiHonoluluHawaiiUSA
- Center for Microbiome Analysis through Island Knowledge and InvestigationUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| |
Collapse
|
92
|
Sprockett DD, Price JD, Juritsch AF, Schmaltz RJ, Real MV, Goldman SL, Sheehan M, Ramer-Tait AE, Moeller AH. Home-site advantage for host species-specific gut microbiota. SCIENCE ADVANCES 2023; 9:eadf5499. [PMID: 37184968 PMCID: PMC10184861 DOI: 10.1126/sciadv.adf5499] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023]
Abstract
Mammalian species harbor compositionally distinct gut microbial communities, but the mechanisms that maintain specificity of symbionts to host species remain unclear. Here, we show that natural selection within house mice (Mus musculus domesticus) drives deterministic assembly of the house-mouse gut microbiota from mixtures of native and non-native microbiotas. Competing microbiotas from wild-derived lines of house mice and other mouse species (Mus and Peromyscus spp.) within germ-free wild-type (WT) and Rag1-knockout (Rag1-/-) house mice revealed widespread fitness advantages for native gut bacteria. Native bacterial lineages significantly outcompeted non-native lineages in both WT and Rag1-/- mice, indicating home-site advantage for native microbiota independent of host adaptive immunity. However, a minority of native Bacteriodetes and Firmicutes favored by selection in WT hosts were not favored or disfavored in Rag1-/- hosts, indicating that Rag1 mediates fitness advantages of these strains. This study demonstrates home-site advantage for native gut bacteria, consistent with local adaptation of gut microbiota to their mammalian species.
Collapse
Affiliation(s)
- Daniel D. Sprockett
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Jeffrey D. Price
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Anthony F. Juritsch
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Robert J. Schmaltz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Madalena V. F. Real
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Samantha L. Goldman
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Michael Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
93
|
Vos M. Accessory microbiomes. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37167086 DOI: 10.1099/mic.0.001332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In microbiome research, considerable effort has been invested in finding core microbiomes, which have been hypothesized to contain the species most important for host function. Much less attention has been paid to microbiome members that are present in only a subset of hosts. Such accessory microbiomes must in large part consist of species that have no effect on fitness, but some will have deleterious effects on fitness (pathogens), and it is also possible that some accessory microbiome members benefit an ecologically distinct subset of hosts. This short paper discusses what we know about accessory microbiomes, specifically by comparing it with the concept of accessory genomes.
Collapse
Affiliation(s)
- Michiel Vos
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter, Penryn Campus, TR10 9FE, Penryn, UK
| |
Collapse
|
94
|
Li F, Li X, Cheng CC, Bujdoš D, Tollenaar S, Simpson DJ, Tasseva G, Perez-Muñoz ME, Frese S, Gänzle MG, Walter J, Zheng J. A phylogenomic analysis of Limosilactobacillus reuteri reveals ancient and stable evolutionary relationships with rodents and birds and zoonotic transmission to humans. BMC Biol 2023; 21:53. [PMID: 36907868 PMCID: PMC10010030 DOI: 10.1186/s12915-023-01541-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Gut microbes play crucial roles in the development and health of their animal hosts. However, the evolutionary relationships of gut microbes with vertebrate hosts, and the consequences that arise for the ecology and lifestyle of the microbes are still insufficiently understood. Specifically, the mechanisms by which strain-level diversity evolved, the degree by which lineages remain stably associated with hosts, and how their evolutionary history influences their ecological performance remain a critical gap in our understanding of vertebrate-microbe symbiosis. RESULTS This study presents the characterization of an extended collection of strains of Limosilactobacillus reuteri and closely related species from a wide variety of hosts by phylogenomic and comparative genomic analyses combined with colonization experiments in mice to gain insight into the long-term evolutionary relationship of a bacterial symbiont with vertebrates. The phylogenetic analysis of L. reuteri revealed early-branching lineages that primarily consist of isolates from rodents (four lineages) and birds (one lineage), while lineages dominated by strains from herbivores, humans, pigs, and primates arose more recently and were less host specific. Strains from rodent lineages, despite their phylogenetic divergence, showed tight clustering in gene-content-based analyses. These L. reuteri strains but not those ones from non-rodent lineages efficiently colonize the forestomach epithelium of germ-free mice. The findings support a long-term evolutionary relationships of L. reuteri lineages with rodents and a stable host switch to birds. Associations of L. reuteri with other host species are likely more dynamic and transient. Interestingly, human isolates of L. reuteri cluster phylogenetically closely with strains from domesticated animals, such as chickens and herbivores, suggesting zoonotic transmissions. CONCLUSIONS Overall, this study demonstrates that the evolutionary relationship of a vertebrate gut symbiont can be stable in particular hosts over time scales that allow major adaptations and specialization, but also emphasizes the diversity of symbiont lifestyles even within a single bacterial species. For L. reuteri, symbiont lifestyles ranged from autochthonous, likely based on vertical transmission and stably aligned to rodents and birds over evolutionary time, to allochthonous possibly reliant on zoonotic transmission in humans. Such information contributes to our ability to use these microbes in microbial-based therapeutics.
Collapse
Affiliation(s)
- Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xudong Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Christopher C Cheng
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Dalimil Bujdoš
- School of Microbiology, and Department of Medicine, APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Stephanie Tollenaar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - David J Simpson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Guergana Tasseva
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Maria Elisa Perez-Muñoz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Steven Frese
- Department of Nutrition, University of Nevada, Reno, NV, 89557, USA
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada. .,Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada. .,School of Microbiology, and Department of Medicine, APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
95
|
Quan Y, Zhang KX, Zhang HY. The gut microbiota links disease to human genome evolution. Trends Genet 2023; 39:451-461. [PMID: 36872184 DOI: 10.1016/j.tig.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023]
Abstract
A large number of studies have established a causal relationship between the gut microbiota and human disease. In addition, the composition of the microbiota is substantially influenced by the human genome. Modern medical research has confirmed that the pathogenesis of various diseases is closely related to evolutionary events in the human genome. Specific regions of the human genome known as human accelerated regions (HARs) have evolved rapidly over several million years since humans diverged from a common ancestor with chimpanzees, and HARs have been found to be involved in some human-specific diseases. Furthermore, the HAR-regulated gut microbiota has undergone rapid changes during human evolution. We propose that the gut microbiota may serve as an important mediator linking diseases to human genome evolution.
Collapse
Affiliation(s)
- Yuan Quan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ke-Xin Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hong-Yu Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
96
|
Brown BRP, Goheen JR, Newsome SD, Pringle RM, Palmer TM, Khasoha LM, Kartzinel TR. Host phylogeny and functional traits differentiate gut microbiomes in a diverse natural community of small mammals. Mol Ecol 2023; 32:2320-2334. [PMID: 36740909 DOI: 10.1111/mec.16874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/27/2022] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Differences in the bacterial communities inhabiting mammalian gut microbiomes tend to reflect the phylogenetic relatedness of their hosts, a pattern dubbed phylosymbiosis. Although most research on this pattern has compared the gut microbiomes of host species across biomes, understanding the evolutionary and ecological processes that generate phylosymbiosis requires comparisons across phylogenetic scales and under similar ecological conditions. We analysed the gut microbiomes of 14 sympatric small mammal species in a semi-arid African savanna, hypothesizing that there would be a strong phylosymbiotic pattern associated with differences in their body sizes and diets. Consistent with phylosymbiosis, microbiome dissimilarity increased with phylogenetic distance among hosts, ranging from congeneric sets of mice and hares that did not differ significantly in microbiome composition to species from different taxonomic orders that had almost no gut bacteria in common. While phylosymbiosis was detected among just the 11 species of rodents, it was substantially weaker at this scale than in comparisons involving all 14 species together. In contrast, microbiome diversity and composition were generally more strongly correlated with body size, dietary breadth, and dietary overlap in comparisons restricted to rodents than in those including all lineages. The starkest divides in microbiome composition thus reflected the broad evolutionary divergence of hosts, regardless of body size or diet, while subtler microbiome differences reflected variation in ecologically important traits of closely related hosts. Strong phylosymbiotic patterns arose deep in the phylogeny, and ecological filters that promote functional differentiation of cooccurring host species may disrupt or obscure this pattern near the tips.
Collapse
Affiliation(s)
- Bianca R P Brown
- Department of Ecology, Evolutionary & Organismal Biology, Brown University, Providence, Rhode Island, USA.,Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA.,Mpala Research Centre, Nanyuki, Kenya
| | - Jacob R Goheen
- Mpala Research Centre, Nanyuki, Kenya.,Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Robert M Pringle
- Mpala Research Centre, Nanyuki, Kenya.,Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Todd M Palmer
- Mpala Research Centre, Nanyuki, Kenya.,Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Leo M Khasoha
- Mpala Research Centre, Nanyuki, Kenya.,Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Tyler R Kartzinel
- Department of Ecology, Evolutionary & Organismal Biology, Brown University, Providence, Rhode Island, USA.,Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA.,Mpala Research Centre, Nanyuki, Kenya
| |
Collapse
|
97
|
A microbial tale of farming, invasion and conservation: on the gut bacteria of European and American mink in Western Europe. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
98
|
Nasonia-microbiome associations: a model for evolutionary hologenomics research. Trends Parasitol 2023; 39:101-112. [PMID: 36496327 DOI: 10.1016/j.pt.2022.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
In recent years, with the development of microbial research technologies, microbiota research has received widespread attention. The parasitoid wasp genus Nasonia is a good model organism for studying insect behavior, development, evolutionary genetics, speciation, and symbiosis. This review describes key advances and progress in the field of the Nasonia-microbiome interactions. We provide an overview of the advantages of Nasonia as a model organism for microbiome studies, list research methods to study the Nasonia microbiome, and discuss recent discoveries in Nasonia microbiome research. This summary of the complexities of Nasonia-microbiome relationships will help to contribute to a better understanding of the interactions between animals and their microbiomes and establish a clear research direction for Nasonia-microbiome interactions in the future.
Collapse
|
99
|
Manassero V, Vannini C. Protists' microbiome: A fine-scale, snap-shot field study on the ciliate Euplotes. Eur J Protistol 2023; 87:125952. [PMID: 36610375 DOI: 10.1016/j.ejop.2022.125952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023]
Abstract
Host-microbiome relationships play a fundamental role in the evolution and ecology of any living being. As unicellular organisms, protists represent a unique eukaryotic model to investigate selection mechanisms of the prokaryotic microbiome at the cellular level. Field investigations are central to disentangle relative importance of selective drivers in nature. Here we performed an analysis on data from a snap-shot field study reported previously on bacterial microbiomes associated to natural populations of protist ciliates of the genus Euplotes to detect at a fine scale any influence of habitat and/or host identity in microbiome selection. Comparative analyses revealed environment at a relatively large scale (sampling area) as the main driving factor in shaping prokaryotic communities' structures. No evidence of habitat as key-factor emerged when a smaller spatial scale was considered (pond/channel or site). When only microbiomes of ciliates from the same site were compared, a clear assessment on the influence of host identity at the species level was not achieved, probably due to the small and unbalanced number of individuals for the two considered host species. Starting from this point, wider sampling campaigns will contribute in the future to depict a general view of the drivers influencing the prokaryotic microbiomes of natural protist populations.
Collapse
Affiliation(s)
| | - Claudia Vannini
- Department of Biology, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
100
|
Zhang W, Xie J, Xia S, Fan X, Schmitz-Esser S, Zeng B, Zheng L, Huang H, Wang H, Zhong J, Zhang Z, Zhang L, Jiang M, Hou R. Evaluating a potential model to analyze the function of the gut microbiota of the giant panda. Front Microbiol 2022; 13:1086058. [PMID: 36605506 PMCID: PMC9808404 DOI: 10.3389/fmicb.2022.1086058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
To contribute to the conservation of endangered animals, the utilization of model systems is critical to analyze the function of their gut microbiota. In this study, the results of a fecal microbial transplantation (FMT) experiment with germ-free (GF) mice receiving giant panda or horse fecal microbiota showed a clear clustering by donor microbial communities in GF mice, which was consistent with the results of blood metabolites from these mice. At the genus level, FMT re-established approximately 9% of the giant panda donor microbiota in GF mice compared to about 32% for the horse donor microbiota. In line with this, the difference between the panda donor microbiota and panda-mice microbiota on whole-community level was significantly larger than that between the horse donor microbiota and the horse-mice microbiota. These results were consistent with source tracking analysis that found a significantly higher retention rate of the horse donor microbiota (30.9%) than the giant panda donor microbiota (4.0%) in GF mice where the microbiota remained stable after FMT. Further analyzes indicated that the possible reason for the low retention rate of the panda donor microbiota in GF mice was a low relative abundance of Clostridiaceae in the panda donor microbiota. Our results indicate that the donor microbiota has a large effect on GF mice microbiota after FMT.
Collapse
Affiliation(s)
- Wenping Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | - Junjin Xie
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Qinghai-Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shan Xia
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, Sichuan, China
| | - Xueyang Fan
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | | | - Benhua Zeng
- Department of Infectious Diseases, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lijun Zheng
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | - He Huang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | - Hairui Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | - Jincheng Zhong
- Qinghai-Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhihe Zhang
- Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Liang Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | - Mingfeng Jiang
- Qinghai-Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, Sichuan, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| |
Collapse
|