51
|
Atkin ND, Raimer HM, Wang Z, Zang C, Wang YH. Assessing acute myeloid leukemia susceptibility in rearrangement-driven patients by DNA breakage at topoisomerase II and CCCTC-binding factor/cohesin binding sites. Genes Chromosomes Cancer 2021; 60:808-821. [PMID: 34405474 PMCID: PMC8511143 DOI: 10.1002/gcc.22993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022] Open
Abstract
An initiating DNA double strand break (DSB) event precedes the formation of cancer-driven chromosomal abnormalities, such as gene rearrangements. Therefore, measuring DNA breaks at rearrangement-participating regions can provide a unique tool to identify and characterize susceptible individuals. Here, we developed a highly sensitive and low-input DNA break mapping method, the first of its kind for patient samples. We then measured genome-wide DNA breakage in normal cells of acute myeloid leukemia (AML) patients with KMT2A (previously MLL) rearrangements, compared to that of nonfusion AML individuals, as a means to evaluate individual susceptibility to gene rearrangements. DNA breakage at the KMT2A gene region was significantly greater in fusion-driven remission individuals, as compared to nonfusion individuals. Moreover, we identified select topoisomerase II (TOP2)-sensitive and CCCTC-binding factor (CTCF)/cohesin-binding sites with preferential DNA breakage in fusion-driven patients. Importantly, measuring DSBs at these sites, in addition to the KMT2A gene region, provided greater predictive power when assessing individual break susceptibility. We also demonstrated that low-dose etoposide exposure further elevated DNA breakage at these regions in fusion-driven AML patients, but not in nonfusion patients, indicating that these sites are preferentially sensitive to TOP2 activity in fusion-driven AML patients. These results support that mapping of DSBs in patients enables discovery of novel break-prone regions and monitoring of individuals susceptible to chromosomal abnormalities, and thus cancer. This will build the foundation for early detection of cancer-susceptible individuals, as well as those preferentially susceptible to therapy-related malignancies caused by treatment with TOP2 poisons.
Collapse
MESH Headings
- Binding Sites/genetics
- CCCTC-Binding Factor/blood
- CCCTC-Binding Factor/genetics
- Cell Cycle Proteins/blood
- Cell Cycle Proteins/genetics
- Chondroitin Sulfate Proteoglycans/blood
- Chondroitin Sulfate Proteoglycans/genetics
- Chromosomal Proteins, Non-Histone/blood
- Chromosomal Proteins, Non-Histone/genetics
- Chromosome Aberrations
- DNA Breaks, Double-Stranded/drug effects
- DNA Repair/genetics
- DNA Topoisomerases, Type II/blood
- DNA Topoisomerases, Type II/genetics
- DNA-Binding Proteins/blood
- DNA-Binding Proteins/genetics
- Etoposide/pharmacology
- Female
- Gene Rearrangement/genetics
- Genome, Human/genetics
- HeLa Cells
- Histone-Lysine N-Methyltransferase/blood
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- Myeloid-Lymphoid Leukemia Protein/blood
- Myeloid-Lymphoid Leukemia Protein/genetics
- Oncogene Proteins, Fusion/genetics
- Poly-ADP-Ribose Binding Proteins/blood
- Poly-ADP-Ribose Binding Proteins/genetics
- Cohesins
Collapse
Affiliation(s)
- Naomi D. Atkin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
| | - Heather M. Raimer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
| |
Collapse
|
52
|
Patel ZM, Hughes TR. Global properties of regulatory sequences are predicted by transcription factor recognition mechanisms. Genome Biol 2021; 22:285. [PMID: 34620190 PMCID: PMC8496038 DOI: 10.1186/s13059-021-02503-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 09/16/2021] [Indexed: 01/07/2023] Open
Abstract
Background Mammalian genomes contain millions of putative regulatory sequences, which are delineated by binding of multiple transcription factors. The degree to which spacing and orientation constraints among transcription factor binding sites contribute to the recognition and identity of regulatory sequence is an unresolved but important question that impacts our understanding of genome function and evolution. Global mechanisms that underlie phenomena including the size of regulatory sequences, their uniqueness, and their evolutionary turnover remain poorly described. Results Here, we ask whether models incorporating different degrees of spacing and orientation constraints among transcription factor binding sites are broadly consistent with several global properties of regulatory sequence. These properties include length, sequence diversity, turnover rate, and dominance of specific TFs in regulatory site identity and cell type specification. Models with and without spacing and orientation constraints are generally consistent with all observed properties of regulatory sequence, and with regulatory sequences being fundamentally small (~ 1 nucleosome). Uniqueness of regulatory regions and their rapid evolutionary turnover are expected under all models examined. An intriguing issue we identify is that the complexity of eukaryotic regulatory sites must scale with the number of active transcription factors, in order to accomplish observed specificity. Conclusions Models of transcription factor binding with or without spacing and orientation constraints predict that regulatory sequences should be fundamentally short, unique, and turn over rapidly. We posit that the existence of master regulators may be, in part, a consequence of evolutionary pressure to limit the complexity and increase evolvability of regulatory sites. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02503-y.
Collapse
Affiliation(s)
- Zain M Patel
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
53
|
Han DSC, Ni M, Chan RWY, Wong DKL, Hiraki LT, Volpi S, Jiang P, Lui KO, Chan KCA, Chiu RWK, Lo YMD. Nuclease deficiencies alter plasma cell-free DNA methylation profiles. Genome Res 2021; 31:2008-2021. [PMID: 34470801 PMCID: PMC8559716 DOI: 10.1101/gr.275426.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022]
Abstract
The effects of DNASE1L3 or DNASE1 deficiency on cell-free DNA (cfDNA) methylation were explored in plasma of mice deficient in these nucleases and in DNASE1L3-deficient humans. Compared to wild-type cfDNA, cfDNA in DNASE1L3-deficient mice was significantly hypomethylated, while cfDNA in DNASE1-deficient mice was hypermethylated. The cfDNA hypomethylation in DNASE1L3-deficient mice was due to increased fragmentation and representation from open chromatin regions (OCRs) and CpG islands (CGIs). These findings were absent in DNASE1-deficient mice, demonstrating the preference of DNASE1 to cleave in hypomethylated OCRs and CGIs. We also observed a substantial decrease of fragment ends at methylated CpGs in the absence of DNASE1L3, thereby demonstrating that DNASE1L3 prefers to cleave at methylated CpGs. Furthermore, we found that methylation levels of cfDNA varied by fragment size in a periodic pattern, with cfDNA of specific sizes being more hypomethylated and enriched for OCRs and CGIs. These findings were confirmed in DNASE1L3-deficient human cfDNA. Thus, we have found that nuclease-mediated cfDNA fragmentation markedly affects cfDNA methylation level on a genome-wide scale. This work provides a foundational understanding of the relationship between methylation, nuclease biology, and cfDNA fragmentation.
Collapse
Affiliation(s)
- Diana S C Han
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Meng Ni
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Rebecca W Y Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Danny K L Wong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Linda T Hiraki
- Division of Rheumatology, The Hospital for Sick Children, Toronto, Ontario M5G 1X5, Canada
| | - Stefano Volpi
- Clinica Pediatrica e Reumatologia, Centro per le malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, 16147 Genova, Italy.,Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, 16132 Genova, Italy
| | - Peiyong Jiang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Kathy O Lui
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - K C Allen Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Rossa W K Chiu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
54
|
Shareef SJ, Bevill SM, Raman AT, Aryee MJ, van Galen P, Hovestadt V, Bernstein BE. Extended-representation bisulfite sequencing of gene regulatory elements in multiplexed samples and single cells. Nat Biotechnol 2021; 39:1086-1094. [PMID: 33958785 PMCID: PMC8434949 DOI: 10.1038/s41587-021-00910-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
The biological roles of DNA methylation have been elucidated by profiling methods based on whole-genome or reduced-representation bisulfite sequencing, but these approaches do not efficiently survey the vast numbers of non-coding regulatory elements in mammalian genomes. Here we present an extended-representation bisulfite sequencing (XRBS) method for targeted profiling of DNA methylation. Our design strikes a balance between expanding coverage of regulatory elements and reproducibly enriching informative CpG dinucleotides in promoters, enhancers and CTCF binding sites. Barcoded DNA fragments are pooled before bisulfite conversion, allowing multiplex processing and technical consistency in low-input samples. Application of XRBS to single leukemia cells enabled us to evaluate genetic copy number variations and methylation variability across individual cells. Our analysis highlights heterochromatic H3K9me3 regions as having the highest cell-to-cell variability in their methylation, likely reflecting inherent epigenetic instability of these late-replicating regions, compounded by differences in cell cycle stages among sampled cells.
Collapse
Affiliation(s)
- Sarah J. Shareef
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Samantha M. Bevill
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ayush T. Raman
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Martin J. Aryee
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peter van Galen
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Division of Hematology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Volker Hovestadt
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA.,Co-corresponding (, )
| | - Bradley E. Bernstein
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Co-corresponding (, )
| |
Collapse
|
55
|
Alharbi AB, Schmitz U, Bailey CG, Rasko JEJ. CTCF as a regulator of alternative splicing: new tricks for an old player. Nucleic Acids Res 2021; 49:7825-7838. [PMID: 34181707 PMCID: PMC8373115 DOI: 10.1093/nar/gkab520] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Three decades of research have established the CCCTC-binding factor (CTCF) as a ubiquitously expressed chromatin organizing factor and master regulator of gene expression. A new role for CTCF as a regulator of alternative splicing (AS) has now emerged. CTCF has been directly and indirectly linked to the modulation of AS at the individual transcript and at the transcriptome-wide level. The emerging role of CTCF-mediated regulation of AS involves diverse mechanisms; including transcriptional elongation, DNA methylation, chromatin architecture, histone modifications, and regulation of splicing factor expression and assembly. CTCF thereby appears to not only co-ordinate gene expression regulation but contributes to the modulation of transcriptomic complexity. In this review, we highlight previous discoveries regarding the role of CTCF in AS. In addition, we summarize detailed mechanisms by which CTCF mediates AS regulation. We propose opportunities for further research designed to examine the possible fate of CTCF-mediated alternatively spliced genes and associated biological consequences. CTCF has been widely acknowledged as the 'master weaver of the genome'. Given its multiple connections, further characterization of CTCF's emerging role in splicing regulation might extend its functional repertoire towards a 'conductor of the splicing orchestra'.
Collapse
Affiliation(s)
- Adel B Alharbi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
56
|
Gu A, Cho HJ, Sheffield NC. Bedshift: perturbation of genomic interval sets. Genome Biol 2021; 22:238. [PMID: 34416909 PMCID: PMC8379854 DOI: 10.1186/s13059-021-02440-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
Functional genomics experiments, like ChIP-Seq or ATAC-Seq, produce results that are summarized as a region set. There is no way to objectively evaluate the effectiveness of region set similarity metrics. We present Bedshift, a tool for perturbing BED files by randomly shifting, adding, and dropping regions from a reference file. The perturbed files can be used to benchmark similarity metrics, as well as for other applications. We highlight differences in behavior between metrics, such as that the Jaccard score is most sensitive to added or dropped regions, while coverage score is most sensitive to shifted regions.
Collapse
Affiliation(s)
- Aaron Gu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Computer Science, University of Virginia School of Engineering, Charlottesville, VA, USA
| | - Hyun Jae Cho
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Computer Science, University of Virginia School of Engineering, Charlottesville, VA, USA
| | - Nathan C Sheffield
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
57
|
Grand RS, Burger L, Gräwe C, Michael AK, Isbel L, Hess D, Hoerner L, Iesmantavicius V, Durdu S, Pregnolato M, Krebs AR, Smallwood SA, Thomä N, Vermeulen M, Schübeler D. BANP opens chromatin and activates CpG-island-regulated genes. Nature 2021; 596:133-137. [PMID: 34234345 DOI: 10.1038/s41586-021-03689-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
The majority of gene transcripts generated by RNA polymerase II in mammalian genomes initiate at CpG island (CGI) promoters1,2, yet our understanding of their regulation remains limited. This is in part due to the incomplete information that we have on transcription factors, their DNA-binding motifs and which genomic binding sites are functional in any given cell type3-5. In addition, there are orphan motifs without known binders, such as the CGCG element, which is associated with highly expressed genes across human tissues and enriched near the transcription start site of a subset of CGI promoters6-8. Here we combine single-molecule footprinting with interaction proteomics to identify BTG3-associated nuclear protein (BANP) as the transcription factor that binds this element in the mouse and human genome. We show that BANP is a strong CGI activator that controls essential metabolic genes in pluripotent stem and terminally differentiated neuronal cells. BANP binding is repelled by DNA methylation of its motif in vitro and in vivo, which epigenetically restricts most binding to CGIs and accounts for differential binding at aberrantly methylated CGI promoters in cancer cells. Upon binding to an unmethylated motif, BANP opens chromatin and phases nucleosomes. These findings establish BANP as a critical activator of a set of essential genes and suggest a model in which the activity of CGI promoters relies on methylation-sensitive transcription factors that are capable of chromatin opening.
Collapse
Affiliation(s)
- Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Cathrin Gräwe
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Leslie Hoerner
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Sevi Durdu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marco Pregnolato
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| | - Arnaud R Krebs
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Nicolas Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
58
|
Michael AK, Thomä NH. Reading the chromatinized genome. Cell 2021; 184:3599-3611. [PMID: 34146479 DOI: 10.1016/j.cell.2021.05.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Eukaryotic DNA-binding proteins operate in the context of chromatin, where nucleosomes are the elementary building blocks. Nucleosomal DNA is wrapped around a histone core, thereby rendering a large fraction of the DNA surface inaccessible to DNA-binding proteins. Nevertheless, first responders in DNA repair and sequence-specific transcription factors bind DNA target sites obstructed by chromatin. While early studies examined protein binding to histone-free DNA, it is only now beginning to emerge how DNA sequences are interrogated on nucleosomes. These readout strategies range from the release of nucleosomal DNA from histones, to rotational/translation register shifts of the DNA motif, and nucleosome-specific DNA binding modes that differ from those observed on naked DNA. Since DNA motif engagement on nucleosomes strongly depends on position and orientation, we argue that motif location and nucleosome positioning co-determine protein access to DNA in transcription and DNA repair.
Collapse
Affiliation(s)
- Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
59
|
Quantification, Dynamic Visualization, and Validation of Bias in ATAC-Seq Data with ataqv. Cell Syst 2021; 10:298-306.e4. [PMID: 32213349 DOI: 10.1016/j.cels.2020.02.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/15/2019] [Accepted: 02/25/2020] [Indexed: 12/17/2022]
Abstract
The assay for transposase-accessible chromatin using sequencing (ATAC-seq) has become the preferred method for mapping chromatin accessibility due to its time and input material efficiency. However, it can be difficult to evaluate data quality and identify sources of technical bias across samples. Here, we present ataqv, a computational toolkit for efficiently measuring, visualizing, and comparing quality control (QC) results across samples and experiments. We use ataqv to analyze 2,009 public ATAC-seq datasets; their QC metrics display a 10-fold range. Tn5 dosage experiments and statistical modeling show that technical variation in the ratio of Tn5 transposase to nuclei and sequencing flowcell density induces systematic bias in ATAC-seq data by changing the enrichment of reads across functional genomic annotations including promoters, enhancers, and transcription-factor-bound regions, with the notable exception of CTCF. ataqv can be integrated into existing computational pipelines and is freely available at https://github.com/ParkerLab/ataqv/.
Collapse
|
60
|
Hedley JG, Teif VB, Kornyshev AA. Nucleosome-induced homology recognition in chromatin. J R Soc Interface 2021; 18:20210147. [PMID: 34129789 PMCID: PMC8205524 DOI: 10.1098/rsif.2021.0147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
One of the least understood properties of chromatin is the ability of its similar regions to recognize each other through weak interactions. Theories based on electrostatic interactions between helical macromolecules suggest that the ability to recognize sequence homology is an innate property of the non-ideal helical structure of DNA. However, this theory does not account for the nucleosomal packing of DNA. Can homologous DNA sequences recognize each other while wrapped up in the nucleosomes? Can structural homology arise at the level of nucleosome arrays? Here, we present a theoretical model for the recognition potential well between chromatin fibres sliding against each other. This well is different from the one predicted for bare DNA; the minima in energy do not correspond to literal juxtaposition, but are shifted by approximately half the nucleosome repeat length. The presence of this potential well suggests that nucleosome positioning may induce mutual sequence recognition between chromatin fibres and facilitate the formation of chromatin nanodomains. This has implications for nucleosome arrays enclosed between CTCF-cohesin boundaries, which may form stiffer stem-like structures instead of flexible entropically favourable loops. We also consider switches between chromatin states, e.g. through acetylation/deacetylation of histones, and discuss nucleosome-induced recognition as a precursory stage of genetic recombination.
Collapse
Affiliation(s)
- Jonathan G. Hedley
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - Vladimir B. Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Alexei A. Kornyshev
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| |
Collapse
|
61
|
At the Crossroad of Gene Regulation and Genome Organization: Potential Roles for ATP-Dependent Chromatin Remodelers in the Regulation of CTCF-Mediated 3D Architecture. BIOLOGY 2021; 10:biology10040272. [PMID: 33801596 PMCID: PMC8066914 DOI: 10.3390/biology10040272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary The way DNA is packaged in the nucleus of a cell is important for when and how genes are expressed. There are many levels of packaging, and new techniques have revealed that long-range interactions are important for both promoting and restricting the transcription of genes. Some long-range interactions are mediated by physical loops in the genome where, like a rubber band, the ring-shaped cohesin complex loops sections of DNA bound by CCCTC-binding factor (CTCF). Both cohesin and CTCF act on DNA, and increasing evidence indicates that their function is inhibited by nucleosomes bound to the DNA. In this review, we summarize the current knowledge of how individual chromatin remodelers, which utilize ATP to move nucleosomes on DNA, facilitate or inhibit cohesin/CTCF-dependent looping interactions. Abstract In higher order organisms, the genome is assembled into a protein-dense structure called chromatin. Chromatin is spatially organized in the nucleus through hierarchical folding, which is tightly regulated both in cycling cells and quiescent cells. Assembly and folding are not one-time events in a cell’s lifetime; rather, they are subject to dynamic shifts to allow changes in transcription, DNA replication, or DNA damage repair. Chromatin is regulated at many levels, and recent tools have permitted the elucidation of specific factors involved in the maintenance and regulation of the three-dimensional (3D) genome organization. In this review/perspective, we aim to cover the potential, but relatively unelucidated, crosstalk between 3D genome architecture and the ATP-dependent chromatin remodelers with a specific focus on how the architectural proteins CTCF and cohesin are regulated by chromatin remodeling.
Collapse
|
62
|
D'Oliveira Albanus R, Kyono Y, Hensley J, Varshney A, Orchard P, Kitzman JO, Parker SCJ. Chromatin information content landscapes inform transcription factor and DNA interactions. Nat Commun 2021; 12:1307. [PMID: 33637709 PMCID: PMC7910283 DOI: 10.1038/s41467-021-21534-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
Interactions between transcription factors and chromatin are fundamental to genome organization and regulation and, ultimately, cell state. Here, we use information theory to measure signatures of organized chromatin resulting from transcription factor-chromatin interactions encoded in the patterns of the accessible genome, which we term chromatin information enrichment (CIE). We calculate CIE for hundreds of transcription factor motifs across human samples and identify two classes: low and high CIE. The 10-20% of common and tissue-specific high CIE transcription factor motifs, associate with higher protein-DNA residence time, including different binding site subclasses of the same transcription factor, increased nucleosome phasing, specific protein domains, and the genetic control of both chromatin accessibility and gene expression. These results show that variations in the information encoded in chromatin architecture reflect functional biological variation, with implications for cell state dynamics and memory.
Collapse
Affiliation(s)
| | - Yasuhiro Kyono
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, USA
- Tempus Labs, Inc. Chicago, IL, Chicago, USA
| | - John Hensley
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, USA
| | - Arushi Varshney
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, USA
| | - Peter Orchard
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, USA
| | - Jacob O Kitzman
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, USA
| | - Stephen C J Parker
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
63
|
Abstract
The ATAC-seq assay has emerged as the most useful, versatile, and widely adaptable method for profiling accessible chromatin regions and tracking the activity of cis-regulatory elements (cREs) in eukaryotes. Thanks to its great utility, it is now being applied to map active chromatin in the context of a very wide diversity of biological systems and questions. In the course of these studies, considerable experience working with ATAC-seq data has accumulated and a standard set of computational tasks that need to be carried for most ATAC-seq analyses has emerged. Here, we review and provide examples of common such analytical procedures (including data processing, quality control, peak calling, identifying differentially accessible open chromatin regions, and variable transcription factor (TF) motif accessibility) and discuss recommended optimal practices.
Collapse
|
64
|
Lee I, Razaghi R, Gilpatrick T, Molnar M, Gershman A, Sadowski N, Sedlazeck FJ, Hansen KD, Simpson JT, Timp W. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat Methods 2020; 17:1191-1199. [PMID: 33230324 PMCID: PMC7704922 DOI: 10.1038/s41592-020-01000-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/17/2020] [Indexed: 12/30/2022]
Abstract
Probing epigenetic features on DNA has tremendous potential to advance our understanding of the phased epigenome. In this study, we use nanopore sequencing to evaluate CpG methylation and chromatin accessibility simultaneously on long strands of DNA by applying GpC methyltransferase to exogenously label open chromatin. We performed nanopore sequencing of nucleosome occupancy and methylome (nanoNOMe) on four human cell lines (GM12878, MCF-10A, MCF-7 and MDA-MB-231). The single-molecule resolution allows footprinting of protein and nucleosome binding, and determination of the combinatorial promoter epigenetic signature on individual molecules. Long-read sequencing makes it possible to robustly assign reads to haplotypes, allowing us to generate a fully phased human epigenome, consisting of chromosome-level allele-specific profiles of CpG methylation and chromatin accessibility. We further apply this to a breast cancer model to evaluate differential methylation and accessibility between cancerous and noncancerous cells.
Collapse
Affiliation(s)
- Isac Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Roham Razaghi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Timothy Gilpatrick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Molnar
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Ariel Gershman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
| | - Norah Sadowski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Kasper D Hansen
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Jared T Simpson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
65
|
Hansen AS. CTCF as a boundary factor for cohesin-mediated loop extrusion: evidence for a multi-step mechanism. Nucleus 2020; 11:132-148. [PMID: 32631111 PMCID: PMC7566886 DOI: 10.1080/19491034.2020.1782024] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/10/2023] Open
Abstract
Mammalian genome structure is closely linked to function. At the scale of kilobases to megabases, CTCF and cohesin organize the genome into chromatin loops. Mechanistically, cohesin is proposed to extrude chromatin loops bidirectionally until it encounters occupied CTCF DNA-binding sites. Curiously, loops form predominantly between CTCF binding sites in a convergent orientation. How CTCF interacts with and blocks cohesin extrusion in an orientation-specific manner has remained a mechanistic mystery. Here, we review recent papers that have shed light on these processes and suggest a multi-step interaction between CTCF and cohesin. This interaction may first involve a pausing step, where CTCF halts cohesin extrusion, followed by a stabilization step of the CTCF-cohesin complex, resulting in a chromatin loop. Finally, we discuss our own recent studies on an internal RNA-Binding Region (RBRi) in CTCF to elucidate its role in regulating CTCF clustering, target search mechanisms and chromatin loop formation and future challenges.
Collapse
Affiliation(s)
- Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
66
|
Maji A, Padinhateeri R, Mitra MK. The Accidental Ally: Nucleosome Barriers Can Accelerate Cohesin-Mediated Loop Formation in Chromatin. Biophys J 2020; 119:2316-2325. [PMID: 33181117 PMCID: PMC7732762 DOI: 10.1016/j.bpj.2020.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 01/26/2023] Open
Abstract
An important question in the context of the three-dimensional organization of chromosomes is the mechanism of formation of large loops between distant basepairs. Recent experiments suggest that the formation of loops might be mediated by loop extrusion factor proteins such as cohesin. Experiments on cohesin have shown that cohesins walk diffusively on the DNA and that nucleosomes act as obstacles to the diffusion, lowering the permeability and hence reducing the effective diffusion constant. An estimation of the times required to form the loops of typical sizes seen in Hi-C experiments using these low-effective-diffusion constants leads to times that are unphysically large. The puzzle then is the following: how does a cohesin molecule diffusing on the DNA backbone achieve speeds necessary to form the large loops seen in experiments? We propose a simple answer to this puzzle and show that although at low densities, nucleosomes act as barriers to cohesin diffusion, beyond a certain concentration they can reduce loop formation times because of a subtle interplay between the nucleosome size and the mean linker length. This effect is further enhanced on considering stochastic binding kinetics of nucleosomes on the DNA backbone and leads to predictions of lower loop formation times than might be expected from a naive obstacle picture of nucleosomes.
Collapse
Affiliation(s)
- Ajoy Maji
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Mithun K Mitra
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
67
|
Nora EP, Caccianini L, Fudenberg G, So K, Kameswaran V, Nagle A, Uebersohn A, Hajj B, Saux AL, Coulon A, Mirny LA, Pollard KS, Dahan M, Bruneau BG. Molecular basis of CTCF binding polarity in genome folding. Nat Commun 2020; 11:5612. [PMID: 33154377 PMCID: PMC7645679 DOI: 10.1038/s41467-020-19283-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/07/2020] [Indexed: 11/09/2022] Open
Abstract
Current models propose that boundaries of mammalian topologically associating domains (TADs) arise from the ability of the CTCF protein to stop extrusion of chromatin loops by cohesin. While the orientation of CTCF motifs determines which pairs of CTCF sites preferentially stabilize loops, the molecular basis of this polarity remains unclear. By combining ChIP-seq and single molecule live imaging we report that CTCF positions cohesin, but does not control its overall binding dynamics on chromatin. Using an inducible complementation system, we find that CTCF mutants lacking the N-terminus cannot insulate TADs properly. Cohesin remains at CTCF sites in this mutant, albeit with reduced enrichment. Given the orientation of CTCF motifs presents the N-terminus towards cohesin as it translocates from the interior of TADs, these observations explain how the orientation of CTCF binding sites translates into genome folding patterns.
Collapse
Affiliation(s)
- Elphège P Nora
- Gladstone Institutes, San Francisco, CA, 94158, USA.
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, 94158, USA.
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Laura Caccianini
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 26 Rue D'Ulm, Paris, 75005, France
| | | | - Kevin So
- Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Vasumathi Kameswaran
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, 94158, USA
| | - Abigail Nagle
- Gladstone Institutes, San Francisco, CA, 94158, USA
- University of Washington, Seattle, WA, USA
| | - Alec Uebersohn
- Gladstone Institutes, San Francisco, CA, 94158, USA
- University of California Berkeley, Berkeley, CA, USA
| | - Bassam Hajj
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 26 Rue D'Ulm, Paris, 75005, France
| | - Agnès Le Saux
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Mammalian Developmental Epigenetics group, F-75005, Paris, France
- Sorbonne Université, F-75005, Paris, France
| | - Antoine Coulon
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 26 Rue D'Ulm, Paris, 75005, France
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Nuclear Dynamics unit, F-75005, Paris, France
| | - Leonid A Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Epidemiology & Biostatistics, Institute for Human Genetics, Quantitative Biology Institute, and Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Maxime Dahan
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 26 Rue D'Ulm, Paris, 75005, France
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, 94158, USA.
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, 94158, USA.
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
68
|
Magaña-Acosta M, Valadez-Graham V. Chromatin Remodelers in the 3D Nuclear Compartment. Front Genet 2020; 11:600615. [PMID: 33329746 PMCID: PMC7673392 DOI: 10.3389/fgene.2020.600615] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodeling complexes (CRCs) use ATP hydrolysis to maintain correct expression profiles, chromatin stability, and inherited epigenetic states. More than 20 CRCs have been described to date, which encompass four large families defined by their ATPase subunits. These complexes and their subunits are conserved from yeast to humans through evolution. Their activities depend on their catalytic subunits which through ATP hydrolysis provide the energy necessary to fulfill cellular functions such as gene transcription, DNA repair, and transposon silencing. These activities take place at the first levels of chromatin compaction, and CRCs have been recognized as essential elements of chromatin dynamics. Recent studies have demonstrated an important role for these complexes in the maintenance of higher order chromatin structure. In this review, we present an overview of the organization of the genome within the cell nucleus, the different levels of chromatin compaction, and importance of the architectural proteins, and discuss the role of CRCs and how their functions contribute to the dynamics of the 3D genome organization.
Collapse
Affiliation(s)
- Mauro Magaña-Acosta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
69
|
Wen Z, Zhang L, Ruan H, Li G. Histone variant H2A.Z regulates nucleosome unwrapping and CTCF binding in mouse ES cells. Nucleic Acids Res 2020; 48:5939-5952. [PMID: 32392318 PMCID: PMC7293034 DOI: 10.1093/nar/gkaa360] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/27/2020] [Accepted: 04/29/2020] [Indexed: 01/28/2023] Open
Abstract
Nucleosome is the basic structural unit of chromatin, and its dynamics plays critical roles in the regulation of genome functions. However, how the nucleosome structure is regulated by histone variants in vivo is still largely uncharacterized. Here, by employing Micrococcal nuclease (MNase) digestion of crosslinked chromatin followed by chromatin immunoprecipitation (ChIP) and paired-end sequencing (MNase-X-ChIP-seq), we mapped unwrapping states of nucleosomes containing histone variant H2A.Z in mouse embryonic stem (ES) cells. We found that H2A.Z nucleosomes are more enriched with unwrapping states compared with canonical nucleosomes. Interestingly, +1 H2A.Z nucleosomes with 30–80 bp DNA is correlated with less active genes compared with +1 H2A.Z nucleosomes with 120–140 bp DNA. We confirmed the unwrapping of H2A.Z nucleosomes under native condition by re-ChIP of H2A.Z and H2A after CTCF CUT&RUN in mouse ES cells. Importantly, we found that depletion of H2A.Z results in decreased unwrapping of H3.3 nucleosomes and increased CTCF binding. Taken together, through MNase-X-ChIP-seq, we showed that histone variant H2A.Z regulates nucleosome unwrapping in vivo and that its function in regulating transcription or CTCF binding is correlated with unwrapping states of H2A.Z nucleosomes.
Collapse
Affiliation(s)
- Zengqi Wen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liwei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haihe Ruan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
70
|
Wu Q, Liu P, Wang L. Many facades of CTCF unified by its coding for three-dimensional genome architecture. J Genet Genomics 2020; 47:407-424. [PMID: 33187878 DOI: 10.1016/j.jgg.2020.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/15/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
CCCTC-binding factor (CTCF) is a multifunctional zinc finger protein that is conserved in metazoan species. CTCF is consistently found to play an important role in many diverse biological processes. CTCF/cohesin-mediated active chromatin 'loop extrusion' architects three-dimensional (3D) genome folding. The 3D architectural role of CTCF underlies its multifarious functions, including developmental regulation of gene expression, protocadherin (Pcdh) promoter choice in the nervous system, immunoglobulin (Ig) and T-cell receptor (Tcr) V(D)J recombination in the immune system, homeobox (Hox) gene control during limb development, as well as many other aspects of biology. Here, we review the pleiotropic functions of CTCF from the perspective of its essential role in 3D genome architecture and topological promoter/enhancer selection. We envision the 3D genome as an enormous complex architecture, with tens of thousands of CTCF sites as connecting nodes and CTCF proteins as mysterious bonds that glue together genomic building parts with distinct articulation joints. In particular, we focus on the internal mechanisms by which CTCF controls higher order chromatin structures that manifest its many façades of physiological and pathological functions. We also discuss the dichotomic role of CTCF sites as intriguing 3D genome nodes for seemingly contradictory 'looping bridges' and 'topological insulators' to frame a beautiful magnificent house for a cell's nuclear home.
Collapse
Affiliation(s)
- Qiang Wu
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China.
| | - Peifeng Liu
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Leyang Wang
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| |
Collapse
|
71
|
Kaaij LJT, Mohn F, van der Weide RH, de Wit E, Bühler M. The ChAHP Complex Counteracts Chromatin Looping at CTCF Sites that Emerged from SINE Expansions in Mouse. Cell 2020; 178:1437-1451.e14. [PMID: 31491387 DOI: 10.1016/j.cell.2019.08.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/29/2019] [Accepted: 08/02/2019] [Indexed: 12/27/2022]
Abstract
CCCTC-binding factor (CTCF) and cohesin are key players in three-dimensional chromatin organization. The topologically associating domains (TADs) demarcated by CTCF are remarkably well conserved between species, although genome-wide CTCF binding has diverged substantially following transposon-mediated motif expansions. Therefore, the CTCF consensus motif poorly predicts TADs, and additional factors must modulate CTCF binding and subsequent TAD formation. Here, we demonstrate that the ChAHP complex (CHD4, ADNP, HP1) competes with CTCF for a common set of binding motifs. In Adnp knockout cells, novel insulated regions are formed at sites normally bound by ChAHP, whereas proximal canonical boundaries are weakened. These data reveal that CTCF-mediated loop formation is modulated by a distinct zinc-finger protein complex. Strikingly, ChAHP-bound loci are mainly situated within less diverged SINE B2 transposable elements. This implicates ChAHP in maintenance of evolutionarily conserved spatial chromatin organization by buffering novel CTCF binding sites that emerged through SINE expansions.
Collapse
Affiliation(s)
- Lucas J T Kaaij
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| | - Fabio Mohn
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| | - Robin H van der Weide
- Division of Gene Regulation, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland.
| |
Collapse
|
72
|
Teif VB, Gould TJ, Clarkson CT, Boyd L, Antwi EB, Ishaque N, Olins AL, Olins DE. Linker histone epitopes are hidden by in situ higher-order chromatin structure. Epigenetics Chromatin 2020; 13:26. [PMID: 32505195 PMCID: PMC7276084 DOI: 10.1186/s13072-020-00345-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histone H1 is the most mobile histone in the cell nucleus. Defining the positions of H1 on chromatin in situ, therefore, represents a challenge. Immunoprecipitation of formaldehyde-fixed and sonicated chromatin, followed by DNA sequencing (xChIP-seq), is traditionally the method for mapping histones onto DNA elements. But since sonication fragmentation precedes ChIP, there is a consequent loss of information about chromatin higher-order structure. Here, we present a new method, xxChIP-seq, employing antibody binding to fixed intact in situ chromatin, followed by extensive washing, a second fixation, sonication and immunoprecipitation. The second fixation is intended to prevent the loss of specifically bound antibody during washing and subsequent sonication and to prevent antibody shifting to epitopes revealed by the sonication process. In many respects, xxChIP-seq is comparable to immunostaining microscopy, which also involves interaction of the primary antibody with fixed and permeabilized intact cells. The only epitopes displayed after immunostaining are the "exposed" epitopes, not "hidden" by the fixation of chromatin higher-order structure. Comparison of immunoprecipitated fragments between xChIP-seq versus xxChIP-seq should indicate which epitopes become inaccessible with fixation and identify their associated DNA elements. RESULTS We determined the genomic distribution of histone variants H1.2 and H1.5 in human myeloid leukemia cells HL-60/S4 and compared their epitope exposure by both xChIP-seq and xxChIP-seq, as well as high-resolution microscopy, illustrating the influences of preserved chromatin higher-order structure in situ. We found that xChIP and xxChIP H1 signals are in general negatively correlated, with differences being more pronounced near active regulatory regions. Among the intriguing observations, we find that transcription-related regions and histone PTMs (i.e., enhancers, promoters, CpG islands, H3K4me1, H3K4me3, H3K9ac, H3K27ac and H3K36me3) exhibit significant deficiencies (depletions) in H1.2 and H1.5 xxChIP-seq reads, compared to xChIP-seq. These observations suggest the existence of in situ transcription-related chromatin higher-order structures stabilized by formaldehyde. CONCLUSION Comparison of H1 xxChIP-seq to H1 xChIP-seq allows the development of hypotheses on the chromosomal localization of (stabilized) higher-order structure, indicated by the generation of "hidden" H1 epitopes following formaldehyde crosslinking. Changes in H1 epitope exposure surrounding averaged chromosomal binding sites or epigenetic modifications can also indicate whether these sites have chromatin higher-order structure. For example, comparison between averaged active or inactive promoter regions suggests that both regions can acquire stabilized higher-order structure with hidden H1 epitopes. However, the H1 xChIP-seq comparison cannot define their differences. Application of the xxChIP-seq versus H1 xChIP-seq method is particularly relevant to chromatin-associated proteins, such as linker histones, that play dynamic roles in establishing chromatin higher-order structure.
Collapse
Affiliation(s)
- Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Travis J Gould
- Department of Physics & Astronomy, Bates College, Lewiston, ME, USA
| | | | - Logan Boyd
- Department of Physics & Astronomy, Bates College, Lewiston, ME, USA.,StarBird Technologies, LLC, Brunswick, ME, USA
| | - Enoch B Antwi
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Molecular and Cellular Engineering, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, Freiburg im Breisgau, 79104 , Germany
| | - Naveed Ishaque
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Digital Health Centre, Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, Berlin, 10178 , Germany
| | - Ada L Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME, 04103, USA
| | - Donald E Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME, 04103, USA.
| |
Collapse
|
73
|
Ginno PA, Gaidatzis D, Feldmann A, Hoerner L, Imanci D, Burger L, Zilbermann F, Peters AHFM, Edenhofer F, Smallwood SA, Krebs AR, Schübeler D. A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. Nat Commun 2020; 11:2680. [PMID: 32471981 PMCID: PMC7260214 DOI: 10.1038/s41467-020-16354-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
DNA methylation is considered a stable epigenetic mark, yet methylation patterns can vary during differentiation and in diseases such as cancer. Local levels of DNA methylation result from opposing enzymatic activities, the rates of which remain largely unknown. Here we developed a theoretical and experimental framework enabling us to infer methylation and demethylation rates at 860,404 CpGs in mouse embryonic stem cells. We find that enzymatic rates can vary as much as two orders of magnitude between CpGs with identical steady-state DNA methylation. Unexpectedly, de novo and maintenance methylation activity is reduced at transcription factor binding sites, while methylation turnover is elevated in transcribed gene bodies. Furthermore, we show that TET activity contributes substantially more than passive demethylation to establishing low methylation levels at distal enhancers. Taken together, our work unveils a genome-scale map of methylation kinetics, revealing highly variable and context-specific activity for the DNA methylation machinery.
Collapse
Affiliation(s)
- Paul Adrian Ginno
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Angelika Feldmann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Leslie Hoerner
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dilek Imanci
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Frank Edenhofer
- Leopold-Franzens-University Innsbruck & CMBI, Innsbruck, Austria
| | | | - Arnaud R Krebs
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- EMBL Heidelberg, Heidelberg, Germany
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
74
|
Kadota S, Ou J, Shi Y, Lee JT, Sun J, Yildirim E. Nucleoporin 153 links nuclear pore complex to chromatin architecture by mediating CTCF and cohesin binding. Nat Commun 2020; 11:2606. [PMID: 32451376 PMCID: PMC7248104 DOI: 10.1038/s41467-020-16394-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/01/2020] [Indexed: 12/28/2022] Open
Abstract
Nucleoporin proteins (Nups) have been proposed to mediate spatial and temporal chromatin organization during gene regulation. Nevertheless, the molecular mechanisms in mammalian cells are not well understood. Here, we report that Nucleoporin 153 (NUP153) interacts with the chromatin architectural proteins, CTCF and cohesin, and mediates their binding across cis-regulatory elements and TAD boundaries in mouse embryonic stem (ES) cells. NUP153 depletion results in altered CTCF and cohesin binding and differential gene expression - specifically at the bivalent developmental genes. To investigate the molecular mechanism, we utilize epidermal growth factor (EGF)-inducible immediate early genes (IEGs). We find that NUP153 controls CTCF and cohesin binding at the cis-regulatory elements and POL II pausing during the basal state. Furthermore, efficient IEG transcription relies on NUP153. We propose that NUP153 links the nuclear pore complex (NPC) to chromatin architecture allowing genes that are poised to respond rapidly to developmental cues to be properly modulated.
Collapse
Affiliation(s)
- Shinichi Kadota
- Department of Cell Biology, Duke Medical Center, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
- Regeneration Next, Duke University, Durham, NC, 27710, USA
| | - Jianhong Ou
- Department of Cell Biology, Duke Medical Center, Durham, NC, 27710, USA
- Regeneration Next, Duke University, Durham, NC, 27710, USA
| | - Yuming Shi
- Department of Cell Biology, Duke Medical Center, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
- Regeneration Next, Duke University, Durham, NC, 27710, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Jiayu Sun
- Department of Cell Biology, Duke Medical Center, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
- Regeneration Next, Duke University, Durham, NC, 27710, USA
| | - Eda Yildirim
- Department of Cell Biology, Duke Medical Center, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University, Durham, NC, 27710, USA.
- Regeneration Next, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
75
|
Krietenstein N, Abraham S, Venev SV, Abdennur N, Gibcus J, Hsieh THS, Parsi KM, Yang L, Maehr R, Mirny LA, Dekker J, Rando OJ. Ultrastructural Details of Mammalian Chromosome Architecture. Mol Cell 2020; 78:554-565.e7. [PMID: 32213324 DOI: 10.1016/j.molcel.2020.03.003] [Citation(s) in RCA: 348] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 11/18/2022]
Abstract
Over the past decade, 3C-related methods have provided remarkable insights into chromosome folding in vivo. To overcome the limited resolution of prior studies, we extend a recently developed Hi-C variant, Micro-C, to map chromosome architecture at nucleosome resolution in human ESCs and fibroblasts. Micro-C robustly captures known features of chromosome folding including compartment organization, topologically associating domains, and interactions between CTCF binding sites. In addition, Micro-C provides a detailed map of nucleosome positions and localizes contact domain boundaries with nucleosomal precision. Compared to Hi-C, Micro-C exhibits an order of magnitude greater dynamic range, allowing the identification of ∼20,000 additional loops in each cell type. Many newly identified peaks are localized along extrusion stripes and form transitive grids, consistent with their anchors being pause sites impeding cohesin-dependent loop extrusion. Our analyses comprise the highest-resolution maps of chromosome folding in human cells to date, providing a valuable resource for studies of chromosome organization.
Collapse
Affiliation(s)
- Nils Krietenstein
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sameer Abraham
- Insitute for Medical Engineering and Sciences and Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Center for 3D Structure and Physics of the Genome, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Sergey V Venev
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nezar Abdennur
- Insitute for Medical Engineering and Sciences and Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Center for 3D Structure and Physics of the Genome, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Johan Gibcus
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tsung-Han S Hsieh
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Krishna Mohan Parsi
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Liyan Yang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - René Maehr
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Leonid A Mirny
- Insitute for Medical Engineering and Sciences and Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Center for 3D Structure and Physics of the Genome, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Job Dekker
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
76
|
Shipony Z, Marinov GK, Swaffer MP, Sinnott-Armstrong NA, Skotheim JM, Kundaje A, Greenleaf WJ. Long-range single-molecule mapping of chromatin accessibility in eukaryotes. Nat Methods 2020; 17:319-327. [PMID: 32042188 PMCID: PMC7968351 DOI: 10.1038/s41592-019-0730-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Mapping open chromatin regions has emerged as a widely used tool for identifying active regulatory elements in eukaryotes. However, existing approaches, limited by reliance on DNA fragmentation and short-read sequencing, cannot provide information about large-scale chromatin states or reveal coordination between the states of distal regulatory elements. We have developed a method for profiling the accessibility of individual chromatin fibers, a single-molecule long-read accessible chromatin mapping sequencing assay (SMAC-seq), enabling the simultaneous, high-resolution, single-molecule assessment of chromatin states at multikilobase length scales. Our strategy is based on combining the preferential methylation of open chromatin regions by DNA methyltransferases with low sequence specificity, in this case EcoGII, an N6-methyladenosine (m6A) methyltransferase, and the ability of nanopore sequencing to directly read DNA modifications. We demonstrate that aggregate SMAC-seq signals match bulk-level accessibility measurements, observe single-molecule nucleosome and transcription factor protection footprints, and quantify the correlation between chromatin states of distal genomic elements.
Collapse
Affiliation(s)
- Zohar Shipony
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | | | | | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
77
|
Beads on a string-nucleosome array arrangements and folding of the chromatin fiber. Nat Struct Mol Biol 2020; 27:109-118. [PMID: 32042149 DOI: 10.1038/s41594-019-0368-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
Abstract
Understanding how the genome is structurally organized as chromatin is essential for understanding its function. Here, we review recent developments that allowed the readdressing of old questions regarding the primary level of chromatin structure, the arrangement of nucleosomes along the DNA and the folding of the nucleosome fiber in nuclear space. In contrast to earlier views of nucleosome arrays as uniformly regular and folded, recent findings reveal heterogeneous array organization and diverse modes of folding. Local structure variations reflect a continuum of functional states characterized by differences in post-translational histone modifications, associated chromatin-interacting proteins and nucleosome-remodeling enzymes.
Collapse
|
78
|
Han DSC, Ni M, Chan RWY, Chan VWH, Lui KO, Chiu RWK, Lo YMD. The Biology of Cell-free DNA Fragmentation and the Roles of DNASE1, DNASE1L3, and DFFB. Am J Hum Genet 2020; 106:202-214. [PMID: 32004449 PMCID: PMC7010979 DOI: 10.1016/j.ajhg.2020.01.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cell-free DNA (cf.DNA) is a powerful noninvasive biomarker for cancer and prenatal testing, and it circulates in plasma as short fragments. To elucidate the biology of cf.DNA fragmentation, we explored the roles of deoxyribonuclease 1 (DNASE1), deoxyribonuclease 1 like 3 (DNASE1L3), and DNA fragmentation factor subunit beta (DFFB) with mice deficient in each of these nucleases. By analyzing the ends of cf.DNA fragments in each type of nuclease-deficient mice with those in wild-type mice, we show that each nuclease has a specific cutting preference that reveals the stepwise process of cf.DNA fragmentation. Essentially, we demonstrate that cf.DNA is generated first intracellularly with DFFB, intracellular DNASE1L3, and other nucleases. Then, cf.DNA fragmentation continues extracellularly with circulating DNASE1L3 and DNASE1. With the use of heparin to disrupt the nucleosomal structure, we also show that the 10 bp periodicity originates from the cutting of DNA within an intact nucleosomal structure. Altogether, this work establishes a model of cf.DNA fragmentation.
Collapse
Affiliation(s)
- Diana S C Han
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Meng Ni
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Rebecca W Y Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Vicken W H Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Kathy O Lui
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Rossa W K Chiu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
79
|
Troll CJ, Kapp J, Rao V, Harkins KM, Cole C, Naughton C, Morgan JM, Shapiro B, Green RE. A ligation-based single-stranded library preparation method to analyze cell-free DNA and synthetic oligos. BMC Genomics 2019; 20:1023. [PMID: 31881841 PMCID: PMC6935139 DOI: 10.1186/s12864-019-6355-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
Background Cell-free DNA (cfDNA), present in circulating blood plasma, contains information about prenatal health, organ transplant reception, and cancer presence and progression. Originally developed for the genomic analysis of highly degraded ancient DNA, single-stranded DNA (ssDNA) library preparation methods are gaining popularity in the field of cfDNA analysis due to their efficiency and ability to convert short, fragmented DNA into sequencing libraries without altering DNA ends. However, current ssDNA methods are costly and time-consuming. Results Here we present an efficient ligation-based single-stranded library preparation method that is engineered to produce complex libraries in under 2.5 h from as little as 1 nanogram of input DNA without alteration to the native ends of template molecules. Our method, called Single Reaction Single-stranded LibrarY or SRSLY, ligates uniquely designed Next-Generation Sequencing (NGS) adapters in a one-step combined phosphorylation/ligation reaction that foregoes end-polishing. Using synthetic DNA oligos and cfDNA, we demonstrate the efficiency and utility of this approach and compare with existing double-stranded and single-stranded approaches for library generation. Finally, we demonstrate that cfDNA NGS data generated from SRSLY can be used to analyze DNA fragmentation patterns to deduce nucleosome positioning and transcription factor binding. Conclusions SRSLY is a versatile tool for converting short and fragmented DNA molecules, like cfDNA fragments, into sequencing libraries while retaining native lengths and ends.
Collapse
Affiliation(s)
| | - Joshua Kapp
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Varsha Rao
- Claret Bioscience LLC, Santa Cruz, CA, 95060, USA
| | | | - Charles Cole
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | | | | | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA.,Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
80
|
Clarkson CT, Deeks EA, Samarista R, Mamayusupova H, Zhurkin VB, Teif VB. CTCF-dependent chromatin boundaries formed by asymmetric nucleosome arrays with decreased linker length. Nucleic Acids Res 2019; 47:11181-11196. [PMID: 31665434 PMCID: PMC6868436 DOI: 10.1093/nar/gkz908] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 11/24/2022] Open
Abstract
The CCCTC-binding factor (CTCF) organises the genome in 3D through DNA loops and in 1D by setting boundaries isolating different chromatin states, but these processes are not well understood. Here we investigate chromatin boundaries in mouse embryonic stem cells, defined by the regions with decreased Nucleosome Repeat Length (NRL) for ∼20 nucleosomes near CTCF sites, affecting up to 10% of the genome. We found that the nucleosome-depleted region (NDR) near CTCF is asymmetrically located >40 nucleotides 5'-upstream from the centre of CTCF motif. The strength of CTCF binding to DNA and the presence of cohesin is correlated with the decrease of NRL near CTCF, and anti-correlated with the level of asymmetry of the nucleosome array. Individual chromatin remodellers have different contributions, with Snf2h having the strongest effect on the NRL decrease near CTCF and Chd4 playing a major role in the symmetry breaking. Upon differentiation, a subset of preserved, common CTCF sites maintains asymmetric nucleosome pattern and small NRL. The sites which lost CTCF upon differentiation are characterized by nucleosome rearrangement 3'-downstream, with unchanged NDR 5'-upstream of CTCF motifs. Boundaries of topologically associated chromatin domains frequently contain several inward-oriented CTCF motifs whose effects, described above, add up synergistically.
Collapse
Affiliation(s)
| | - Emma A Deeks
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Biological Sciences BSc Program, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Ralph Samarista
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Wellcome Trust Vacation Student
| | - Hulkar Mamayusupova
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Victor B Zhurkin
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
81
|
Abstract
Cellular heterogeneity, which was initially defined for tumor cells, is a fundamental property of all cellular systems, ranging from genetic diversity to cell-to-cell variation driven by stochastic molecular interactions involved all cellular processes. Different cells display substantial variation in gene expression and in response to environmental signaling even in an apparently homogeneous population of cells. Recent studies started to reveal the underlying mechanisms for cellular heterogeneity, particularly related to the states of chromatin. Accumulating evidence suggests that CTCF, an important factor regulating chromatin organization, plays a key role in the control of gene expression variation by stabilizing enhancer–promoter interaction.
Collapse
Affiliation(s)
- Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
82
|
Owens N, Papadopoulou T, Festuccia N, Tachtsidi A, Gonzalez I, Dubois A, Vandormael-Pournin S, Nora EP, Bruneau BG, Cohen-Tannoudji M, Navarro P. CTCF confers local nucleosome resiliency after DNA replication and during mitosis. eLife 2019; 8:e47898. [PMID: 31599722 PMCID: PMC6844645 DOI: 10.7554/elife.47898] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
The access of Transcription Factors (TFs) to their cognate DNA binding motifs requires a precise control over nucleosome positioning. This is especially important following DNA replication and during mitosis, both resulting in profound changes in nucleosome organization over TF binding regions. Using mouse Embryonic Stem (ES) cells, we show that the TF CTCF displaces nucleosomes from its binding site and locally organizes large and phased nucleosomal arrays, not only in interphase steady-state but also immediately after replication and during mitosis. Correlative analyses suggest this is associated with fast gene reactivation following replication and mitosis. While regions bound by other TFs (Oct4/Sox2), display major rearrangement, the post-replication and mitotic nucleosome positioning activity of CTCF is not unique: Esrrb binding regions are also characterized by persistent nucleosome positioning. Therefore, selected TFs such as CTCF and Esrrb act as resilient TFs governing the inheritance of nucleosome positioning at regulatory regions throughout the cell-cycle.
Collapse
Affiliation(s)
- Nick Owens
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Equipe Labellisée LIGUE Contre le CancerParisFrance
| | - Thaleia Papadopoulou
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Equipe Labellisée LIGUE Contre le CancerParisFrance
| | - Nicola Festuccia
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Equipe Labellisée LIGUE Contre le CancerParisFrance
| | - Alexandra Tachtsidi
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Equipe Labellisée LIGUE Contre le CancerParisFrance
- Sorbonne Université, Collège DoctoralParisFrance
| | - Inma Gonzalez
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Equipe Labellisée LIGUE Contre le CancerParisFrance
| | - Agnes Dubois
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Equipe Labellisée LIGUE Contre le CancerParisFrance
| | - Sandrine Vandormael-Pournin
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Early Mammalian Development and Stem Cell Biology, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR 3738ParisFrance
| | - Elphège P Nora
- Gladstone InstitutesSan FranciscoUnited States
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoUnited States
| | - Benoit G Bruneau
- Gladstone InstitutesSan FranciscoUnited States
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoUnited States
- Department of PediatricsUniversity of California, San FranciscoSan FranciscoUnited States
| | - Michel Cohen-Tannoudji
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Early Mammalian Development and Stem Cell Biology, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR 3738ParisFrance
| | - Pablo Navarro
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell BiologyInstitut Pasteur, CNRS UMR3738ParisFrance
- Equipe Labellisée LIGUE Contre le CancerParisFrance
| |
Collapse
|
83
|
Nanan KK, Sturgill DM, Prigge MF, Thenoz M, Dillman AA, Mandler MD, Oberdoerffer S. TET-Catalyzed 5-Carboxylcytosine Promotes CTCF Binding to Suboptimal Sequences Genome-wide. iScience 2019; 19:326-339. [PMID: 31404833 PMCID: PMC6699469 DOI: 10.1016/j.isci.2019.07.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/23/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023] Open
Abstract
The mechanisms supporting dynamic regulation of CTCF-binding sites remain poorly understood. Here we describe the TET-catalyzed 5-methylcytosine derivative, 5-carboxylcytosine (5caC), as a factor driving new CTCF binding within genomic DNA. Through a combination of in vivo and in vitro approaches, we reveal that 5caC generally strengthens CTCF association with DNA and facilitates binding to suboptimal sequences. Dramatically, profiling of CTCF binding in a cellular model that accumulates genomic 5caC identified ~13,000 new CTCF sites. The new sites were enriched for overlapping 5caC and were marked by an overall reduction in CTCF motif strength. As CTCF has multiple roles in gene expression, these findings have wide-reaching implications and point to induced 5caC as a potential mechanism to achieve differential CTCF binding in cells.
Collapse
Affiliation(s)
- Kyster K Nanan
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David M Sturgill
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria F Prigge
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Morgan Thenoz
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allissa A Dillman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mariana D Mandler
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
84
|
Nucleosome positioning and spacing: from genome-wide maps to single arrays. Essays Biochem 2019; 63:5-14. [PMID: 31015380 DOI: 10.1042/ebc20180058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 01/07/2023]
Abstract
The positioning of nucleosomes relative to DNA and their neighboring nucleosomes represents a fundamental layer of chromatin organization. Changes in nucleosome positioning and spacing affect the accessibility of DNA to regulatory factors and the formation of higher order chromatin structures. Sequencing of mononucleosomal fragments allowed mapping nucleosome positions on a genome-wide level in many organisms. This revealed that successions of evenly spaced and well-positioned nucleosomes-so called phased nucleosome arrays-occur at the 5' end of many active genes and in the vicinity of transcription factor and other protein binding sites. Phased arrays arise from the interplay of barrier elements on the DNA, which position adjacent nucleosomes, and the nucleosome spacing activity of ATP-dependent chromatin remodelers. A shortcoming of classic mononucleosomal mapping experiments is that they only reveal nucleosome spacing and array regularity at select sites in the genome with well-positioned nucleosomes. However, new technological approaches elucidate nucleosome array structure throughout the genome and with single-cell resolution. In the future, it will be interesting to see whether changes in nucleosome array regularity and spacing contribute to the formation of higher order chromatin structures and the spatial organization of the genome in vivo.
Collapse
|
85
|
Datta S, Patel M, Patel D, Singh U. Distinct DNA Sequence Preference for Histone Occupancy in Primary and Transformed Cells. Cancer Inform 2019; 18:1176935119843835. [PMID: 31037026 PMCID: PMC6475841 DOI: 10.1177/1176935119843835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/24/2019] [Indexed: 11/15/2022] Open
Abstract
Genome-wide occupancy of several histone modifications in various cell types has been studied using chromatin immunoprecipitation (ChIP) sequencing. Histone occupancy depends on DNA sequence features like inter-strand symmetry of base composition and periodic occurrence of TT/AT. However, whether DNA sequence motifs act as an additional effector of histone occupancy is not known. We have analyzed the presence of DNA sequence motifs in publicly available ChIP-sequence datasets for different histone modifications. Our results show that DNA sequence motifs are associated with histone occupancy, some of which are different between primary and transformed cells. The motifs for primary and transformed cells showed different levels of GC-richness and proximity to transcription start sites (TSSs). The TSSs associated with transformed or primary cell-specific motifs showed different levels of TSS flank transcription in primary and transformed cells. Interestingly, TSSs with a motif-linked occupancy of H2AFZ, a component of positioned nucleosomes, showed a distinct pattern of RNA Polymerase II (POLR2A) occupancy and TSS flank transcription in primary and transformed cells. These results indicate that DNA sequence features dictate differential histone occupancy in primary and transformed cells, and the DNA sequence motifs affect transcription through regulation of histone occupancy.
Collapse
Affiliation(s)
| | | | - Divyesh Patel
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Umashankar Singh
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| |
Collapse
|
86
|
Hainer SJ, Bošković A, McCannell KN, Rando OJ, Fazzio TG. Profiling of Pluripotency Factors in Single Cells and Early Embryos. Cell 2019; 177:1319-1329.e11. [PMID: 30955888 DOI: 10.1016/j.cell.2019.03.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/13/2019] [Accepted: 03/05/2019] [Indexed: 02/09/2023]
Abstract
Cell fate decisions are governed by sequence-specific transcription factors (TFs) that act in small populations of cells within developing embryos. To understand their functions in vivo, it is important to identify TF binding sites in these cells. However, current methods cannot profile TFs genome-wide at or near the single-cell level. Here we adapt the cleavage under targets and release using nuclease (CUT&RUN) method to profile TFs in low cell numbers, including single cells and individual pre-implantation embryos. Single-cell experiments suggest that only a fraction of TF binding sites are occupied in most cells, in a manner broadly consistent with measurements of peak intensity from multi-cell studies. We further show that chromatin binding by the pluripotency TF NANOG is highly dependent on the SWI/SNF chromatin remodeling complex in individual blastocysts but not in cultured cells. Ultra-low input CUT&RUN (uliCUT&RUN) therefore enables interrogation of TF binding from rare cell populations of particular importance in development or disease.
Collapse
Affiliation(s)
- Sarah J Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Ana Bošković
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kurtis N McCannell
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
87
|
tRNA Genes Affect Chromosome Structure and Function via Local Effects. Mol Cell Biol 2019; 39:MCB.00432-18. [PMID: 30718362 DOI: 10.1128/mcb.00432-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/18/2019] [Indexed: 11/20/2022] Open
Abstract
The genome is packaged and organized in an ordered, nonrandom manner, and specific chromatin segments contact nuclear substructures to mediate this organization. tRNA genes (tDNAs) are binding sites for transcription factors and architectural proteins and are thought to play an important role in the organization of the genome. In this study, we investigate the roles of tDNAs in genomic organization and chromosome function by editing a chromosome so that it lacked any tDNAs. Surprisingly our analyses of this tDNA-less chromosome show that loss of tDNAs does not grossly affect chromatin architecture or chromosome tethering and mobility. However, loss of tDNAs affects local nucleosome positioning and the binding of SMC proteins at these loci. The absence of tDNAs also leads to changes in centromere clustering and a reduction in the frequency of long-range HML-HMR heterochromatin clustering with concomitant effects on gene silencing. We propose that the tDNAs primarily affect local chromatin structure, which results in effects on long-range chromosome architecture.
Collapse
|
88
|
Teo YV, Capri M, Morsiani C, Pizza G, Faria AMC, Franceschi C, Neretti N. Cell-free DNA as a biomarker of aging. Aging Cell 2019; 18:e12890. [PMID: 30575273 PMCID: PMC6351822 DOI: 10.1111/acel.12890] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/12/2018] [Accepted: 11/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cell-free DNA (cfDNA) is present in the circulating plasma and other body fluids and is known to originate mainly from apoptotic cells. Here, we provide the first in vivo evidence of global and local chromatin changes in human aging by analyzing cfDNA from the blood of individuals of different age groups. Our results show that nucleosome signals inferred from cfDNA are consistent with the redistribution of heterochromatin observed in cellular senescence and aging in other model systems. In addition, we detected a relative cfDNA loss at several genomic locations, such as transcription start and termination sites, 5'UTR of L1HS retrotransposons and dimeric AluY elements with age. Our results also revealed age and deteriorating health status correlate with increased enrichment of signals from cells in different tissues. In conclusion, our results show that the sequencing of circulating cfDNA from human blood plasma can be used as a noninvasive methodology to study age-associated changes to the epigenome in vivo.
Collapse
Affiliation(s)
- Yee Voan Teo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Miriam Capri
- CIG Interdepartmental Centre "Galvani", University of Bologna, Bologna, Italy
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cristina Morsiani
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Grazia Pizza
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
| |
Collapse
|
89
|
Sekiya T, Kato K, Kawaguchi A, Nagata K. Involvement of CTCF in transcription regulation of EGR1 at early G1 phase as an architecture factor. Sci Rep 2019; 9:329. [PMID: 30674949 PMCID: PMC6344568 DOI: 10.1038/s41598-018-36753-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Early growth response 1 (EGR1) is a transcription factor and regulates cellular processes such as proliferation, differentiation, and apoptosis. The expression of EGR1 is rapidly induced in response to several stimuli, and it activates the expression of downstream target genes involved in signaling cascades. EGR1 gene is also known to be transcribed in early G1 phase. However, the regulation of EGR1 transcription in early G1 phase is not clarified well. Here we found that CCCTC-binding factor (CTCF), a chromatin binding protein, is required to transcribe EGR1 gene at the onset of early G1 phase. We found that CTCF mediated the formation of higher-order chromatin structures among CTCF binding sites located in the EGR1 locus. Disruption of the CTCF-dependent higher-order chromatin structure using nuclease-dead Cas9 (dCas9)-mediated interference reduced the EGR1 transcription in early G1 phase. Collectively, we propose that CTCF has functional roles for the temporal expression of EGR1 in early G1 phase through regulation of higher-order chromatin structure organization.
Collapse
Affiliation(s)
- Takeshi Sekiya
- Department of Infection Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan.,Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan.,Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
90
|
Oomen ME, Hansen AS, Liu Y, Darzacq X, Dekker J. CTCF sites display cell cycle-dependent dynamics in factor binding and nucleosome positioning. Genome Res 2019; 29:236-249. [PMID: 30655336 PMCID: PMC6360813 DOI: 10.1101/gr.241547.118] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022]
Abstract
CCCTC-binding factor (CTCF) plays a key role in the formation of topologically associating domains (TADs) and loops in interphase. During mitosis TADs are absent, but how TAD formation is dynamically controlled during the cell cycle is not known. Several contradicting observations have been made regarding CTCF binding to mitotic chromatin using both genomics- and microscopy-based techniques. Here, we have used four different assays to address this debate. First, using 5C, we confirmed that TADs and CTCF loops are readily detected in interphase, but absent during prometaphase. Second, ATAC-seq analysis showed that CTCF sites display greatly reduced accessibility and lose the CTCF footprint in prometaphase, suggesting loss of CTCF binding and rearrangement of the nucleosomal array around the binding motif. In contrast, transcription start sites remain accessible in prometaphase, although adjacent nucleosomes can also become repositioned and occupy at least a subset of start sites during mitosis. Third, loss of site-specific CTCF binding was directly demonstrated using CUT&RUN. Histone modifications and histone variants are maintained in mitosis, suggesting a role in bookmarking of active CTCF sites. Finally, live-cell imaging, fluorescence recovery after photobleaching, and single molecule tracking showed that almost all CTCF chromatin binding is lost in prometaphase. Combined, our results demonstrate loss of CTCF binding to CTCF sites during prometaphase and rearrangement of the chromatin landscape around CTCF motifs. This, combined with loss of cohesin, would contribute to the observed loss of TADs and CTCF loops during mitosis and reveals that CTCF sites, key architectural cis-elements, display cell cycle stage–dependent dynamics in factor binding and nucleosome positioning.
Collapse
Affiliation(s)
- Marlies E Oomen
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Anders S Hansen
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, California 94720, USA
| | - Yu Liu
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, California 94720, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
91
|
Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR, Weirauch MT. The Human Transcription Factors. Cell 2019; 172:650-665. [PMID: 29425488 DOI: 10.1016/j.cell.2018.01.029] [Citation(s) in RCA: 1861] [Impact Index Per Article: 310.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
Transcription factors (TFs) recognize specific DNA sequences to control chromatin and transcription, forming a complex system that guides expression of the genome. Despite keen interest in understanding how TFs control gene expression, it remains challenging to determine how the precise genomic binding sites of TFs are specified and how TF binding ultimately relates to regulation of transcription. This review considers how TFs are identified and functionally characterized, principally through the lens of a catalog of over 1,600 likely human TFs and binding motifs for two-thirds of them. Major classes of human TFs differ markedly in their evolutionary trajectories and expression patterns, underscoring distinct functions. TFs likewise underlie many different aspects of human physiology, disease, and variation, highlighting the importance of continued effort to understand TF-mediated gene regulation.
Collapse
Affiliation(s)
- Samuel A Lambert
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Arttu Jolma
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Laura F Campitelli
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Pratyush K Das
- Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland
| | - Yimeng Yin
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Mihai Albu
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jussi Taipale
- Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland; Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden; Department of Biochemistry, Cambridge University, Cambridge CB2 1GA, United Kingdom.
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada.
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
92
|
Abstract
Studies of 3D chromatin organization have suggested that chromosomes are hierarchically organized into large compartments composed of smaller domains called topologically associating domains (TADs). Recent evidence suggests that compartments are smaller than previously thought and that the transcriptional or chromatin state is responsible for interactions leading to the formation of small compartmental domains in all organisms. In vertebrates, CTCF forms loop domains, probably via an extrusion process involving cohesin. CTCF loops cooperate with compartmental domains to establish the 3D organization of the genome. The continuous extrusion of the chromatin fibre by cohesin may also be responsible for the establishment of enhancer-promoter interactions and stochastic aspects of the transcription process. These observations suggest that the 3D organization of the genome is an emergent property of chromatin and its components, and thus may not be only a determinant but also a consequence of its function.
Collapse
|
93
|
Fu S, Wang Q, Moore JE, Purcaro MJ, Pratt HE, Fan K, Gu C, Jiang C, Zhu R, Kundaje A, Lu A, Weng Z. Differential analysis of chromatin accessibility and histone modifications for predicting mouse developmental enhancers. Nucleic Acids Res 2018; 46:11184-11201. [PMID: 30137428 PMCID: PMC6265487 DOI: 10.1093/nar/gky753] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/15/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022] Open
Abstract
Enhancers are distal cis-regulatory elements that modulate gene expression. They are depleted of nucleosomes and enriched in specific histone modifications; thus, calling DNase-seq and histone mark ChIP-seq peaks can predict enhancers. We evaluated nine peak-calling algorithms for predicting enhancers validated by transgenic mouse assays. DNase and H3K27ac peaks were consistently more predictive than H3K4me1/2/3 and H3K9ac peaks. DFilter and Hotspot2 were the best DNase peak callers, while HOMER, MUSIC, MACS2, DFilter and F-seq were the best H3K27ac peak callers. We observed that the differential DNase or H3K27ac signals between two distant tissues increased the area under the precision-recall curve (PR-AUC) of DNase peaks by 17.5-166.7% and that of H3K27ac peaks by 7.1-22.2%. We further improved this differential signal method using multiple contrast tissues. Evaluated using a blind test, the differential H3K27ac signal method substantially improved PR-AUC from 0.48 to 0.75 for predicting heart enhancers. We further validated our approach using postnatal retina and cerebral cortex enhancers identified by massively parallel reporter assays, and observed improvements for both tissues. In summary, we compared nine peak callers and devised a superior method for predicting tissue-specific mouse developmental enhancers by reranking the called peaks.
Collapse
Affiliation(s)
- Shaliu Fu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qin Wang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jill E Moore
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael J Purcaro
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Henry E Pratt
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kaili Fan
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Cuihua Gu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Cizhong Jiang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ruixin Zhu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Anshul Kundaje
- Department of Genetics, School of Medicine, Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Aiping Lu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiping Weng
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
94
|
Pedone F, Mazzei F, Santoni D. A study of the impact of DNA helical rise on protein-DNA interaction. Genomics 2018; 111:1620-1628. [PMID: 30453062 DOI: 10.1016/j.ygeno.2018.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/26/2018] [Accepted: 11/10/2018] [Indexed: 11/19/2022]
Abstract
Nucleosomes are not uniformly distributed along DNA and their positioning (termed "nucleosomal landscape") can be derived using data available for several genomes. In this study we analyzed DNA helical rise profiles through a tetranucleotide code, and we defined the nucleosomal landscape of several sequences forming dinucleosomes and of the sequences of huntingtin, myotonic dystrophy type 1 and fragile mental retardation 2 genes, which contained several repeated sequences. We also analyzed the profiles of some sequences interacting with transcription factors or with RNA polymerase II. In the genomes of Cenorhabditis elegans, Mus musculus and Homo sapiens we found profiles with extremely low helical rise values, characteristic of nucleosome free regions. We defined these regions as "holes" and found that their presence correlates with lamina associated domains sequences. Altogether, this study shows that DNA helical rise profile may have a role in gene expression modulation and in shaping chromosomal structure.
Collapse
Affiliation(s)
- Francesco Pedone
- Department of Biology and Biotechnology, "Sapienza" University, P.le A. Moro 5, Rome 00185, Italy.
| | - Filomena Mazzei
- Environment and Health Department, Istituto Superiore di Sanità,V.le Regina Elena 299, Rome 00161, Italy.
| | - Daniele Santoni
- National Research Council of Italy, Institute for System Analysis and Computer Science "Antonio Ruberti", Via dei Taurini 19, Rome 00185, Italy.
| |
Collapse
|
95
|
Guiro J, Murphy S. Regulation of expression of human RNA polymerase II-transcribed snRNA genes. Open Biol 2018; 7:rsob.170073. [PMID: 28615474 PMCID: PMC5493778 DOI: 10.1098/rsob.170073] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
In addition to protein-coding genes, RNA polymerase II (pol II) transcribes numerous genes for non-coding RNAs, including the small-nuclear (sn)RNA genes. snRNAs are an important class of non-coding RNAs, several of which are involved in pre-mRNA splicing. The molecular mechanisms underlying expression of human pol II-transcribed snRNA genes are less well characterized than for protein-coding genes and there are important differences in expression of these two gene types. Here, we review the DNA features and proteins required for efficient transcription of snRNA genes and co-transcriptional 3′ end formation of the transcripts.
Collapse
Affiliation(s)
- Joana Guiro
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
96
|
Genome-wide Rules of Nucleosome Phasing in Drosophila. Mol Cell 2018; 72:661-672.e4. [DOI: 10.1016/j.molcel.2018.09.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/27/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
|
97
|
Zimmerman D, Patel K, Hall M, Elmer J. Enhancement of transgene expression by nuclear transcription factor Y and CCCTC-binding factor. Biotechnol Prog 2018; 34:1581-1588. [PMID: 30294957 DOI: 10.1002/btpr.2712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/23/2022]
Abstract
If a transgene is effectively delivered to a cell, its expression may still be limited by epigenetic mechanisms that silence the transgene. Indeed, once the transgene reaches the nucleus, it may be bound by histone proteins and condensed into heterochromatin or associated with repressor proteins that block transcription. In this study, we sought to enhance transgene expression by adding binding motifs for several different epigenetic enzymes either upstream or downstream of two promoters (CMV and EF1α). Screening these plasmids revealed that luciferase expression was enhanced 10-fold (10.4 ± 5.8) by the addition of a CCAAT box just upstream of the EF1α promoter to recruit nuclear transcription factor Y (NF-Y), while inserting a CCCTC-binding factor (CTCF) motif downstream of the EF1α promoter enhanced expression at least 14-fold (14.03 ± 6.54). ChIP assays confirmed that NF-Y and CTCF bound to the motifs that were added to each plasmid, but the presence of NF-Y and CTCF did not significantly affect the levels of histone acetylation (H3K9ac) or methylation (H3K9me3). Overall, these results show that transgene expression from the EF1α promoter can be significantly increased with motifs that recruit NF-Y or CTCF. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1581-1588, 2018.
Collapse
Affiliation(s)
- Devon Zimmerman
- Dept. of Chemical Engineering, Villanova University, Villanova, PA, 19085
| | - Krupa Patel
- Dept. of Chemical Engineering, Villanova University, Villanova, PA, 19085
| | - Matthew Hall
- Dept. of Chemical Engineering, Villanova University, Villanova, PA, 19085
| | - Jacob Elmer
- Dept. of Chemical Engineering, Villanova University, Villanova, PA, 19085
| |
Collapse
|
98
|
Chen W, Liu Y, Zhu S, Chen G, Han JDJ. Inter-nucleosomal communication between histone modifications for nucleosome phasing. PLoS Comput Biol 2018; 14:e1006416. [PMID: 30188887 PMCID: PMC6126837 DOI: 10.1371/journal.pcbi.1006416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/02/2018] [Indexed: 11/20/2022] Open
Abstract
Combinatorial effects of epigenetic modifications on transcription activity have been proposed as “histone codes”. However, it is unclear whether there also exist inter-nucleosomal communications among epigenetic modifications at single nucleosome level, and if so, what functional roles they play. Meanwhile, how clear nucleosome patterns, such as nucleosome phasing and depletion, are formed at functional regions remains an intriguing enigma. To address these questions, we developed a Bayesian network model for interactions among different histone modifications across neighboring nucleosomes, based on the framework of dynamic Bayesian network (DBN). From this model, we found that robust inter-nucleosomal interactions exist around transcription start site (TSS), transcription termination sites (TTS) or around CTCF binding sites; and these inter-nucleosomal interactions are often involved in transcription regulation. In addition to these general principles, DBN also uncovered a novel specific epigenetic interaction between H2A.Z and H4K20me1 on neighboring nucleosomes, involved in nucleosome free region (NFR) and nucleosome phasing establishment or maintenance. The level of negative correlation between neighboring H2A.Z and H4K20me1 strongly correlate with the size of NFR and the strength of nucleosome phasing around TSS. Our study revealed inter-nucleosomal communications as important players in signal propagation, chromatin remodeling and transcription regulation. Nucleosomes are the basic unit of chromatin organization. At a global level, they fold up to form chromatin fibers in higher order structure to control the activation/repression states of chromatins. At a local level, especially around transcriptional starting sites (TSSs), nucleosomes play an important role in regulating gene expression by dynamically positioning to affect the recruitment of RNA polymerase II and transcriptional factors. In particular around actively transcribed TSSs, nucleosomes are regularly positioned to form a typical pattern of nucleosome phasing. As it suggests that the forming of nucleosome phasing is a synergistic behavior across the nucleosomes around TSS, we hypothesize that there exist communications, which is probably some propagations of histone modifications, between neighboring nucleosomes, as nucleosome functions are essentially due to histone modifications. Here, to address the question, we investigated the correlations of histone modifications across neighboring nucleosomes, and revealed a negative correlation between H2A.Z and H4K20me1 across neighboring nucleosomes. It is a development to the well accepted knowledge that H2A.Z and H4K20me1 are positively correlated at genome-wide level. In addition, we revealed a probable contribution of H2A.Z-H4K20me1 anti-correlation in nucleosome phasing around active TSSs, therefore, shedding light on understanding the forming of nucleosome phasing.
Collapse
Affiliation(s)
- Weizhong Chen
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Liu
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Shanshan Zhu
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guoyu Chen
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Dong J. Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
99
|
Javasky E, Shamir I, Gandhi S, Egri S, Sandler O, Rothbart SB, Kaplan N, Jaffe JD, Goren A, Simon I. Study of mitotic chromatin supports a model of bookmarking by histone modifications and reveals nucleosome deposition patterns. Genome Res 2018; 28:1455-1466. [PMID: 30166406 PMCID: PMC6169886 DOI: 10.1101/gr.230300.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 08/27/2018] [Indexed: 01/23/2023]
Abstract
Mitosis encompasses key molecular changes including chromatin condensation, nuclear envelope breakdown, and reduced transcription levels. Immediately after mitosis, the interphase chromatin structure is reestablished and transcription resumes. The reestablishment of the interphase chromatin is probably achieved by "bookmarking," i.e., the retention of at least partial information during mitosis. To gain a deeper understanding of the contribution of histone modifications to the mitotic bookmarking process, we merged proteomics, immunofluorescence, and ChIP-seq approaches. We focused on key histone modifications and employed HeLa-S3 cells as a model system. Generally, in spite of the general hypoacetylation observed during mitosis, we observed a global concordance between the genomic organization of histone modifications in interphase and mitosis, suggesting that the epigenomic landscape may serve as a component of the mitotic bookmarking process. Next, we investigated the nucleosome that enters nucleosome depleted regions (NDRs) during mitosis. We observed that in ∼60% of the NDRs, the entering nucleosome is distinct from the surrounding highly acetylated nucleosomes and appears to have either low levels of acetylation or high levels of phosphorylation in adjacent residues (since adjacent phosphorylation may interfere with the ability to detect acetylation). Inhibition of histone deacetylases (HDACs) by the small molecule TSA reverts this pattern, suggesting that these nucleosomes are specifically deacetylated during mitosis. Altogether, by merging multiple approaches, our study provides evidence to support a model where histone modifications may play a role in mitotic bookmarking and uncovers new insights into the deposition of nucleosomes during mitosis.
Collapse
Affiliation(s)
- Elisheva Javasky
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Inbal Shamir
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Shashi Gandhi
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Shawn Egri
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Oded Sandler
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Noam Kaplan
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, 31096, Israel
| | - Jacob D Jaffe
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Alon Goren
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
100
|
Abstract
Gene expression is controlled by sequence-specific transcription factors (TFs), which bind to regulatory sequences in DNA. The degree to which the arrangement of motif sites within regulatory elements determines their function remains unclear. Here, we show that the positional distribution of TF motif sites within nucleosome-depleted regions of DNA fall into six distinct classes. These patterns are highly consistent across cell types and bring together factors that have similar functional and binding properties. Furthermore, the position of motif sites appears to be related to their known functions. Our results suggest that TFs play distinct roles in forming a functional enhancer, facilitated by their position within a regulatory sequence. Gene expression is controlled by sequence-specific transcription factors (TFs), which bind to regulatory sequences in DNA. TF binding occurs in nucleosome-depleted regions of DNA (NDRs), which generally encompass regions with lengths similar to those protected by nucleosomes. However, less is known about where within these regions specific TFs tend to be found. Here, we characterize the positional bias of inferred binding sites for 103 TFs within ∼500,000 NDRs across 47 cell types. We find that distinct classes of TFs display different binding preferences: Some tend to have binding sites toward the edges, some toward the center, and some at other positions within the NDR. These patterns are highly consistent across cell types, suggesting that they may reflect TF-specific intrinsic structural or functional characteristics. In particular, TF classes with binding sites at NDR edges are enriched for those known to interact with histones and chromatin remodelers, whereas TFs with central enrichment interact with other TFs and cofactors such as p300. Our results suggest distinct regiospecific binding patterns and functions of TF classes within enhancers.
Collapse
|