51
|
Budak G, Dash S, Srivastava R, Lachke SA, Janga SC. Express: A database of transcriptome profiles encompassing known and novel transcripts across multiple development stages in eye tissues. Exp Eye Res 2018; 168:57-68. [PMID: 29337142 DOI: 10.1016/j.exer.2018.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 01/23/2023]
Abstract
Advances in sequencing have facilitated nucleotide-resolution genome-wide transcriptomic profiles across multiple mouse eye tissues. However, these RNA sequencing (RNA-seq) based eye developmental transcriptomes are not organized for easy public access, making any further analysis challenging. Here, we present a new database "Express" (http://www.iupui.edu/∼sysbio/express/) that unifies various mouse lens and retina RNA-seq data and provides user-friendly visualization of the transcriptome to facilitate gene discovery in the eye. We obtained RNA-seq data encompassing 7 developmental stages of lens in addition to that on isolated lens epithelial and fibers, as well as on 11 developmental stages of retina/isolated retinal rod photoreceptor cells from publicly available wild-type mouse datasets. These datasets were pre-processed, aligned, quantified and normalized for expression levels of known and novel transcripts using a unified expression quantification framework. Express provides heatmap and browser view allowing easy navigation of the genomic organization of transcripts or gene loci. Further, it allows users to search candidate genes and export both the visualizations and the embedded data to facilitate downstream analysis. We identified total of >81,000 transcripts in the lens and >178,000 transcripts in the retina across all the included developmental stages. This analysis revealed that a significant number of the retina-expressed transcripts are novel. Expression of several transcripts in the lens and retina across multiple developmental stages was independently validated by RT-qPCR for established genes such as Pax6 and Lhx2 as well as for new candidates such as Elavl4, Rbm5, Pabpc1, Tia1 and Tubb2b. Thus, Express serves as an effective portal for analyzing pruned RNA-seq expression datasets presently collected for the lens and retina. It will allow a wild-type context for the detailed analysis of targeted gene-knockout mouse ocular defect models and facilitate the prioritization of candidate genes from Exome-seq data of eye disease patients.
Collapse
Affiliation(s)
- Gungor Budak
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 719 Indiana Ave Ste 319, Walker Plaza Building, Indianapolis, IN 46202, United States
| | - Soma Dash
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Rajneesh Srivastava
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 719 Indiana Ave Ste 319, Walker Plaza Building, Indianapolis, IN 46202, United States
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States; Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, United States
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 719 Indiana Ave Ste 319, Walker Plaza Building, Indianapolis, IN 46202, United States; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), 410 West 10th Street, Indianapolis, IN, 46202, United States; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, 975 West Walnut Street, Indianapolis, IN, 46202, United States.
| |
Collapse
|
52
|
Díaz-Martínez M, Benito-Jardón L, Alonso L, Koetz-Ploch L, Hernando E, Teixidó J. miR-204-5p and miR-211-5p Contribute to BRAF Inhibitor Resistance in Melanoma. Cancer Res 2017; 78:1017-1030. [PMID: 29229605 DOI: 10.1158/0008-5472.can-17-1318] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/03/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022]
Abstract
Melanoma treatment with the BRAF V600E inhibitor vemurafenib provides therapeutic benefits but the common emergence of drug resistance remains a challenge. We generated A375 melanoma cells resistant to vemurafenib with the goal of investigating changes in miRNA expression patterns that might contribute to resistance. Increased expression of miR-204-5p and miR-211-5p occurring in vemurafenib-resistant cells was determined to impact vemurafenib response. Their expression was rapidly affected by vemurafenib treatment through RNA stabilization. Similar effects were elicited by MEK and ERK inhibitors but not AKT or Rac inhibitors. Ectopic expression of both miRNA in drug-naïve human melanoma cells was sufficient to confer vemurafenib resistance and more robust tumor growth in vivo Conversely, silencing their expression in resistant cells inhibited cell growth. Joint overexpression of miR-204-5p and miR-211-5p durably stimulated Ras and MAPK upregulation after vemurafenib exposure. Overall, our findings show how upregulation of miR-204-5p and miR-211-5p following vemurafenib treatment enables the emergence of resistance, with potential implications for mechanism-based strategies to improve vemurafenib responses.Significance: Identification of miRNAs that enable resistance to BRAF inhibitors in melanoma suggests a mechanism-based strategy to limit resistance and improve clinical outcomes. Cancer Res; 78(4); 1017-30. ©2017 AACR.
Collapse
Affiliation(s)
- Marta Díaz-Martínez
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Lucía Benito-Jardón
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Lola Alonso
- Bioinformatics and Biostatistics Unit, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Lisa Koetz-Ploch
- Department of Pathology, New York University School of Medicine, NYU Langone Medical Center, New York, NY
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, NYU Langone Medical Center, New York, NY
| | - Joaquin Teixidó
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
53
|
Barbato S, Marrocco E, Intartaglia D, Pizzo M, Asteriti S, Naso F, Falanga D, Bhat RS, Meola N, Carissimo A, Karali M, Prosser HM, Cangiano L, Surace EM, Banfi S, Conte I. MiR-211 is essential for adult cone photoreceptor maintenance and visual function. Sci Rep 2017; 7:17004. [PMID: 29209045 PMCID: PMC5717140 DOI: 10.1038/s41598-017-17331-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/16/2017] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are key post-transcriptional regulators of gene expression that play an important role in the control of fundamental biological processes in both physiological and pathological conditions. Their function in retinal cells is just beginning to be elucidated, and a few have been found to play a role in photoreceptor maintenance and function. MiR-211 is one of the most abundant miRNAs in the developing and adult eye. However, its role in controlling vertebrate visual system development, maintenance and function so far remain incompletely unexplored. Here, by targeted inactivation in a mouse model, we identify a critical role of miR-211 in cone photoreceptor function and survival. MiR-211 knockout (-/-) mice exhibited a progressive cone dystrophy accompanied by significant alterations in visual function. Transcriptome analysis of the retina from miR-211-/- mice during cone degeneration revealed significant alteration of pathways related to cell metabolism. Collectively, this study highlights for the first time the impact of miR-211 function in the retina and significantly contributes to unravelling the role of specific miRNAs in cone photoreceptor function and survival.
Collapse
Affiliation(s)
- Sara Barbato
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Daniela Intartaglia
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Mariateresa Pizzo
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Sabrina Asteriti
- Department of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - Federica Naso
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Danila Falanga
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Rajeshwari S Bhat
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Nicola Meola
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
- Aarhus University, Department of Molecular Biology and Genetics, C.F. Møllers Allé 3 building 1130, 422-8000, Aarhus C, Denmark
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Marianthi Karali
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
- Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, University "Luigi Vanvitelli", via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Lorenzo Cangiano
- Department of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy
| | - Enrico Maria Surace
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy.
- Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, University "Luigi Vanvitelli", via Luigi De Crecchio 7, 80138, Naples, Italy.
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy.
| |
Collapse
|
54
|
Thiel G, Rubil S, Lesch A, Guethlein LA, Rössler OG. Transient receptor potential TRPM3 channels: Pharmacology, signaling, and biological functions. Pharmacol Res 2017; 124:92-99. [DOI: 10.1016/j.phrs.2017.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022]
|
55
|
Swisa A, Avrahami D, Eden N, Zhang J, Feleke E, Dahan T, Cohen-Tayar Y, Stolovich-Rain M, Kaestner KH, Glaser B, Ashery-Padan R, Dor Y. PAX6 maintains β cell identity by repressing genes of alternative islet cell types. J Clin Invest 2016; 127:230-243. [PMID: 27941241 DOI: 10.1172/jci88015] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in β cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of β cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of β cell genes, thus maintaining mature β cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human β cells. We conclude that reduced expression of PAX6 in metabolically stressed β cells may contribute to β cell failure and α cell dysfunction in diabetes.
Collapse
|
56
|
Sun J, Zhao Y, McGreal R, Cohen-Tayar Y, Rockowitz S, Wilczek C, Ashery-Padan R, Shechter D, Zheng D, Cvekl A. Pax6 associates with H3K4-specific histone methyltransferases Mll1, Mll2, and Set1a and regulates H3K4 methylation at promoters and enhancers. Epigenetics Chromatin 2016; 9:37. [PMID: 27617035 PMCID: PMC5018195 DOI: 10.1186/s13072-016-0087-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 08/31/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pax6 is a key regulator of the entire cascade of ocular lens formation through specific binding to promoters and enhancers of batteries of target genes. The promoters and enhancers communicate with each other through DNA looping mediated by multiple protein-DNA and protein-protein interactions and are marked by specific combinations of histone posttranslational modifications (PTMs). Enhancers are distinguished from bulk chromatin by specific modifications of core histone H3, including H3K4me1 and H3K27ac, while promoters show increased H3K4me3 PTM. Previous studies have shown the presence of Pax6 in as much as 1/8 of lens-specific enhancers but a much smaller fraction of tissue-specific promoters. Although Pax6 is known to interact with EP300/p300 histone acetyltransferase responsible for generation of H3K27ac, a potential link between Pax6 and histone H3K4 methylation remains to be established. RESULTS Here we show that Pax6 co-purifies with H3K4 methyltransferase activity in lens cell nuclear extracts. Proteomic studies show that Pax6 immunoprecipitates with Set1a, Mll1, and Mll2 enzymes, and their associated proteins, i.e., Wdr5, Rbbp5, Ash2l, and Dpy30. ChIP-seq studies using chromatin prepared from mouse lens and cultured lens cells demonstrate that Pax6-bound regions are mostly enriched with H3K4me2 and H3K4me1 in enhancers and promoters, though H3K4me3 marks only Pax6-containing promoters. The shRNA-mediated knockdown of Pax6 revealed down-regulation of a set of direct target genes, including Cap2, Farp1, Pax6, Plekha1, Prox1, Tshz2, and Zfp536. Pax6 knockdown was accompanied by reduced H3K4me1 at enhancers and H3K4me3 at promoters, with little or no changes of the H3K4me2 modifications. These changes were prominent in Plekha1, a gene regulated by Pax6 in both lens and retinal pigmented epithelium. CONCLUSIONS Our study supports a general model of Pax6-mediated recruitment of histone methyltransferases Mll1 and Mll2 to lens chromatin, especially at distal enhancers. Genome-wide data in lens show that Pax6 binding correlates with H3K4me2, consistent with the idea that H3K4me2 PTMs correlate with the binding of transcription factors. Importantly, partial reduction of Pax6 induces prominent changes in local H3K4me1 and H3K4me3 modification. Together, these data open the field to mechanistic studies of Pax6, Mll1, Mll2, and H3K4me1/2/3 dynamics at distal enhancers and promoters of developmentally controlled genes.
Collapse
Affiliation(s)
- Jian Sun
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Rebecca McGreal
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA ; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Yamit Cohen-Tayar
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol school of Neuroscience, Tel-Aviv University, Tel Aviv, 69978 Israel
| | - Shira Rockowitz
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Carola Wilczek
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol school of Neuroscience, Tel-Aviv University, Tel Aviv, 69978 Israel
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA ; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461 USA ; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA ; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
57
|
The dual regulatory role of miR-204 in cancer. Tumour Biol 2016; 37:11667-11677. [PMID: 27438705 PMCID: PMC5080331 DOI: 10.1007/s13277-016-5144-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of endogenous, small (about 22 nucleotides) non-coding RNAs which negatively regulate gene expressions. As one of them, miR-204 originates from the sixth intron of the transient receptor potential melastatin 3 (TRPM3) gene. Therefore, expression of miR-204 is under the control of the TRPM3 promoter and regulated by genetic and epigenetic mechanisms. miR-204 has been found to play the important roles in development of eyes and adipogenesis. Its pathological functions have been observed in a few diseases including pulmonary arterial hypertension, diabetes, and various types of cancers. It is believed that miR-204 acts as a tumor-suppressor via promoting apoptosis, conferring the resistance of cancer cells to chemotherapy, and suppressing the self-renewal of cancer stem cells (CSCs) and the epithelial to mesenchymal transition (EMT). Expression of miR-204 is repressed by its targets XRN1 and TRKB in prostate cancer and endometrial carcinoma, respectively; therefore, they establish an oncogenic feedback loops that play an important role promoting development of cancer. In this review, we summarize our current knowledge regarding miR-204, including its expression, regulation and biological functions, especially focusing our discussion on its role in tumor development and tumor progression.
Collapse
|
58
|
Dash S, Siddam AD, Barnum CE, Janga SC, Lachke SA. RNA-binding proteins in eye development and disease: implication of conserved RNA granule components. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:527-57. [PMID: 27133484 DOI: 10.1002/wrna.1355] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/21/2016] [Indexed: 01/16/2023]
Abstract
The molecular biology of metazoan eye development is an area of intense investigation. These efforts have led to the surprising recognition that although insect and vertebrate eyes have dramatically different structures, the orthologs or family members of several conserved transcription and signaling regulators such as Pax6, Six3, Prox1, and Bmp4 are commonly required for their development. In contrast, our understanding of posttranscriptional regulation in eye development and disease, particularly regarding the function of RNA-binding proteins (RBPs), is limited. We examine the present knowledge of RBPs in eye development in the insect model Drosophila as well as several vertebrate models such as fish, frog, chicken, and mouse. Interestingly, of the 42 RBPs that have been investigated for their expression or function in vertebrate eye development, 24 (~60%) are recognized in eukaryotic cells as components of RNA granules such as processing bodies, stress granules, or other specialized ribonucleoprotein (RNP) complexes. We discuss the distinct developmental and cellular events that may necessitate potential RBP/RNA granule-associated RNA regulon models to facilitate posttranscriptional control of gene expression in eye morphogenesis. In support of these hypotheses, three RBPs and RNP/RNA granule components Tdrd7, Caprin2, and Stau2 are linked to ocular developmental defects such as congenital cataract, Peters anomaly, and microphthalmia in human patients or animal models. We conclude by discussing the utility of interdisciplinary approaches such as the bioinformatics tool iSyTE (integrated Systems Tool for Eye gene discovery) to prioritize RBPs for deriving posttranscriptional regulatory networks in eye development and disease. WIREs RNA 2016, 7:527-557. doi: 10.1002/wrna.1355 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Soma Dash
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Archana D Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Carrie E Barnum
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Sarath Chandra Janga
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University & Purdue University Indianapolis, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| |
Collapse
|
59
|
Cvekl A, Callaerts P. PAX6: 25th anniversary and more to learn. Exp Eye Res 2016; 156:10-21. [PMID: 27126352 DOI: 10.1016/j.exer.2016.04.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/12/2016] [Accepted: 04/22/2016] [Indexed: 01/29/2023]
Abstract
The DNA-binding transcription factor PAX6 was cloned 25 years ago by multiple teams pursuing identification of human and mouse eye disease causing genes, cloning vertebrate homologues of pattern-forming regulatory genes identified in Drosophila, or abundant eye-specific transcripts. Since its discovery in 1991, genetic, cellular, molecular and evolutionary studies on Pax6 mushroomed in the mid 1990s leading to the transformative thinking regarding the genetic program orchestrating both early and late stages of eye morphogenesis as well as the origin and evolution of diverse visual systems. Since Pax6 is also expressed outside of the eye, namely in the central nervous system and pancreas, a number of important insights into the development and function of these organs have been amassed. In most recent years, genome-wide technologies utilizing massively parallel DNA sequencing have begun to provide unbiased insights into the regulatory hierarchies of specification, determination and differentiation of ocular cells and neurogenesis in general. This review is focused on major advancements in studies on mammalian eye development driven by studies of Pax6 genes in model organisms and future challenges to harness the technology-driven opportunities to reconstruct, step-by-step, the transition from naïve ectoderm, neuroepithelium and periocular mesenchyme/neural crest cells into the three-dimensional architecture of the eye.
Collapse
Affiliation(s)
- Ales Cvekl
- The Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; The Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, K.U. Leuven, VIB, 3000, Leuven, Belgium.
| |
Collapse
|
60
|
Anand D, Lachke SA. Systems biology of lens development: A paradigm for disease gene discovery in the eye. Exp Eye Res 2016; 156:22-33. [PMID: 26992779 DOI: 10.1016/j.exer.2016.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/19/2022]
Abstract
Over the past several decades, the biology of the developing lens has been investigated using molecular genetics-based approaches in various vertebrate model systems. These efforts, involving target gene knockouts or knockdowns, have led to major advances in our understanding of lens morphogenesis and the pathological basis of cataracts, as well as of other lens related eye defects. In particular, we now have a functional understanding of regulators such as Pax6, Six3, Sox2, Oct1 (Pou2f1), Meis1, Pnox1, Zeb2 (Sip1), Mab21l1, Foxe3, Tfap2a (Ap2-alpha), Pitx3, Sox11, Prox1, Sox1, c-Maf, Mafg, Mafk, Hsf4, Fgfrs, Bmp7, and Tdrd7 in this tissue. However, whether these individual regulators interact or their targets overlap, and the significance of such interactions during lens morphogenesis, is not well defined. The arrival of high-throughput approaches for gene expression profiling (microarrays, RNA-sequencing (RNA-seq), etc.), which can be coupled with chromatin immunoprecipitation (ChIP) or RNA immunoprecipitation (RIP) assays, along with improved computational resources and publically available datasets (e.g. those containing comprehensive protein-protein, protein-DNA information), presents new opportunities to advance our understanding of the lens tissue on a global systems level. Such systems-level knowledge will lead to the derivation of the underlying lens gene regulatory network (GRN), defined as a circuit map of the regulator-target interactions functional in lens development, which can be applied to expedite cataract gene discovery. In this review, we cover the various systems-level approaches such as microarrays, RNA-seq, and ChIP that are already being applied to lens studies and discuss strategies for assembling and interpreting these vast amounts of high-throughput information for effective dispersion to the scientific community. In particular, we discuss strategies for effective interpretation of this new information in the context of the rich knowledge obtained through the application of traditional single-gene focused experiments on the lens. Finally, we discuss our vision for integrating these diverse high-throughput datasets in a single web-based user-friendly tool iSyTE (integrated Systems Tool for Eye gene discovery) - a resource that is already proving effective in the identification and characterization of genes linked to lens development and cataract. We anticipate that application of a similar approach to other ocular tissues such as the retina and the cornea, and even other organ systems, will significantly impact disease gene discovery.
Collapse
Affiliation(s)
- Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA; Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
61
|
Zhang SJ, Li YF, Tan RR, Tsoi B, Huang WS, Huang YH, Tang XL, Hu D, Yao N, Yang X, Kurihara H, Wang Q, He RR. A new gestational diabetes mellitus model: hyperglycemia-induced eye malformation via inhibition of Pax6 in the chick embryo. Dis Model Mech 2016; 9:177-86. [PMID: 26744353 PMCID: PMC4770145 DOI: 10.1242/dmm.022012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/26/2015] [Indexed: 12/23/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the leading causes of fetal malformations. However, few models have been developed to study the underlying mechanisms of GDM-induced fetal eye malformation. In this study, a high concentration of glucose (0.2 mmol per egg) was injected into the air sac of chick embryos on embryo development day (EDD) 1 to develop a hyperglycemia model. Results showed that 47.3% of embryonic eye malformation happened on EDD 5. In this model, the key genes regulating eye development, Pax6, Six3 and Otx2, were downregulated by hyperglycemia. Among these genes, the expression of Pax6 was the most vulnerable to hyperglycemia, being suppressed by 70%. A reduction in Pax6 gene expression induced eye malformation in chick embryos. However, increased expression of Pax6 in chick embryos could rescue hyperglycemia-induced eye malformation. Hyperglycemia stimulated O-linked N-acetylglucosaminylation, which caused oxidative stress in chick embryos. Pax6 was found to be vulnerable to free radicals, but the antioxidant edaravone could restore Pax6 expression and reverse eye malformation. These results illustrated a successful establishment of a new chick embryo model to study the molecular mechanism of hyperglycemia-induced eye malformation. The suppression of the Pax6 gene is probably mediated by oxidative stress and could be a crucial target for the therapy of GDM-induced embryonic eye malformation. Summary: Hyperglycemia inhibited Pax6 via oxidative stress and impaired eye development in the chick embryo, a new gestational diabetes mellitus model.
Collapse
Affiliation(s)
- Shi-Jie Zhang
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yi-Fang Li
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rui-Rong Tan
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Bun Tsoi
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen-Shan Huang
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yi-Hua Huang
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiao-Long Tang
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Dan Hu
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Nan Yao
- Guangdong Research Institute of Traditional Chinese Medicine Manufacturing Technology, Guangzhou 510095, China
| | - Xuesong Yang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Hiroshi Kurihara
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Rong-Rong He
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
62
|
Jönsson ME, Nelander Wahlestedt J, Åkerblom M, Kirkeby A, Malmevik J, Brattaas PL, Jakobsson J, Parmar M. Comprehensive analysis of microRNA expression in regionalized human neural progenitor cells reveals microRNA-10 as a caudalizing factor. Development 2016; 142:3166-77. [PMID: 26395143 PMCID: PMC4582174 DOI: 10.1242/dev.122747] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MicroRNAs (miRNAs) have been implicated in regulating multiple processes during brain development in various species. However, the function of miRNAs in human brain development remains largely unexplored. Here, we provide a comprehensive analysis of miRNA expression of regionalized neural progenitor cells derived from human embryonic stem cells and human foetal brain. We found miR-92b-3p and miR-130b-5p to be specifically associated with neural progenitors and several miRNAs that display both age-specific and region-specific expression patterns. Among these miRNAs, we identified miR-10 to be specifically expressed in the human hindbrain and spinal cord, while being absent from rostral regions. We found that miR-10 regulates a large number of genes enriched for functions including transcription, actin cytoskeleton and ephrin receptor signalling. When overexpressed, miR-10 influences caudalization of human neural progenitor cells. Together, these data confirm a role for miRNAs in establishing different human neural progenitor populations. This dataset also provides a comprehensive resource for future studies investigating the functional role of different miRNAs in human brain development. Summary: The profiling of neural progenitors derived from human ESCs and foetal brain shows that miRNAs display region-specific expression patterns, suggesting that they contribute to establishing regional identity.
Collapse
Affiliation(s)
- Marie E Jönsson
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Jenny Nelander Wahlestedt
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Malin Åkerblom
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Agnete Kirkeby
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Josephine Malmevik
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Per Ludvik Brattaas
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Johan Jakobsson
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| |
Collapse
|
63
|
Apopo S, Liu H, Jing L, Du X, Xie S, Gong Y, Xu R, Li S. Identification and profiling of microRNAs associated with white and black plumage pigmentation in the white and black feather bulbs of ducks by RNA sequencing. Anim Genet 2015; 46:627-635. [PMID: 26369256 DOI: 10.1111/age.12343] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs) play important roles in many biological processes by regulating gene expression at the post-transcriptional level. However, the mechanism by which specific miRNAs may regulate plumage pigmentation has remained largely elusive. In this study, we sequenced miRNAs using Solexa sequencing and then performed a detailed analysis of their expression profiles between the black and white feather bulbs of ducks from Cui Hei, Kaiya, Liancheng pure breeds and a Kaiya-Liancheng F2 population. mirdeep2 software identified 121 conserved and eight novel miRNAs. Five differentially expressed miRNAs between the two tissues types were also identified by degseq software. Notably, miR-204 was predominantly expressed in black feather bulbs. To further validate the sequencing data, we applied stem-loop quantitative PCR of ten known miRNAs based on the identified sequences. Furthermore, in exploring the temporal expression pattern of miR-204, we performed profiling in nine duck tissues. The targets of these miRNAs were predicted using a PITA algorithm and were later grouped based on Gene Ontology and KEGG pathway analysis using the DAVID website. The melanogenesis pathway was among the identified signalling pathways, implying key roles of these miRNAs in plumage pigmentation. Expression analysis of the target genes in the melanogenesis pathways was also performed. This study provides the foundation for subsequent studies on the prospective practical role for such miRNAs in post-transcriptional gene regulation linked to plumage pigmentation.
Collapse
Affiliation(s)
- S Apopo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - H Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - L Jing
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - X Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - S Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Y Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - R Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - S Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| |
Collapse
|
64
|
Abstract
Background Pax6, a highly conserved multifunctional transcription factor, has been critical for neurogenesis and neuronal plasticity. It is presumed that if level of Pax6 approaches either low or null, critical genes responsible for maintaining functional status of neurons or glia would be modulated. Purpose Therefore, it has been intended to explore possibility of either direct or indirect influence of Pax6 in neurodegeneration. Methods The cell lines having origin of murine embryonic fibroblast (Pax6-non expressing, NIH3T3-cell line), murine neuroblastoma (Pax6-expressing brain-derived, Neuro-2a-cell line), and human glioblastoma-astrocytoma (U87MG) were cultured and maintained in a CO2 incubator at 37°C and 5% CO2 in DMEM containing 10% fetal bovine serum. The knockdown of endogenous Pax6 in Neuro-2a cells was achieved through siRNA based gene knock-down approach. The efficiency and validation of knock-down was done by real time PCR. The knock-down of Pax6 was successfully achieved. Results The levels of expression of transcripts of some of the proposed putative markers of neurodegeneration like Pax6, S100β, GFAP, BDNF, NGN2, p73α, p73δ, LDH, SOD, and Catalase were analyzed in Pax6 knockdown condition for analysis of role of Pax6 in neurodegeneration. Since the Pax6 has been proposed to bind to promoter sequences of catalase, and catalase suppresses TGFβ, relative lower levels of catalase in Neuro-2a and U-87MG as compared to NIH-3T3 indicates a possible progressive dominant negative impact of Pax6. However, presence of SOD and LDH indicates alternative protective mechanism. Conclusion Presence of BDNF and TGFβ indicates association between them in glioblastoma-astrocytoma. Therefore, Pax6 seems to be involved directly with p53 and TGFβ mediated pathways and indirectly with redox-sensitive pathway regulation. The neurodegenerative markers S100β, GFAP, BDNF, NGN2, p73α, p73δ, observed downregulated in Pax6 knockdown condition suggest Pax6-mediated regulation of these markers. Observations enlighten Pax6-mediated influences on cascades of genes involved in growth, differentiation and maturation of neurons and glia.
Collapse
|
65
|
Sundermeier TR, Palczewski K. The impact of microRNA gene regulation on the survival and function of mature cell types in the eye. FASEB J 2015; 30:23-33. [PMID: 26399786 DOI: 10.1096/fj.15-279745] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/14/2015] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) regulate multiple genes, often within the same pathway, fine-tuning expression of key factors and stabilizing gene networks against aberrant fluctuations. The demanding physiologic functions of photoreceptor cells and the retinal pigmented epithelium necessitate precise gene regulation to maintain their homeostasis and function, thus rendering these postmitotic cells vulnerable to premature death in retinal degenerative disorders. Recent studies of the physiologic impact of miRNAs in these cells clearly demonstrate that miRNAs are an essential component of that gene regulation. These important advances provide the foundation for future exploration of miRNA-regulated gene networks in the eye to facilitate the development of miRNA-targeted therapeutics to combat blinding diseases.
Collapse
Affiliation(s)
- Thomas R Sundermeier
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
66
|
Khan SY, Hackett SF, Lee MCW, Pourmand N, Talbot CC, Riazuddin SA. Transcriptome Profiling of Developing Murine Lens Through RNA Sequencing. Invest Ophthalmol Vis Sci 2015. [PMID: 26225632 DOI: 10.1167/iovs.14-16253] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Transcriptome is the entire repertoire of transcripts present in a cell at any particular time. We undertook a next-generation whole transcriptome sequencing approach to gain insight into the transcriptional landscape of the developing mouse lens. METHODS We ascertained mouse lenses at six developmental time points including two embryonic (E15 and E18) and four postnatal stages (P0, P3, P6, and P9). The ocular tissue at each time point was maintained as two distinct pools serving as biological replicates for each developmental stage. The mRNA and small RNA libraries were paired-end sequenced on Illumina HiSeq 2000 and subsequently analyzed using bioinformatics tools. RESULTS Mapping of mRNA and small RNA libraries generated 187.56 and 154.22 million paired-end reads, respectively. We detected a total of 14,465 genes in the mouse ocular lens at the above-mentioned six developmental stages. Of these, 46 genes exhibited a 40-fold differential (higher or lower) expression at one the five developmental stages (E18, P0, P3, P6, and P9) compared with their expression level at E15. Likewise, small RNA profiling identified 379 microRNAs (miRNAs) expressed in mouse lens at six developmental time points. Of these, 49 miRNAs manifested an 8-fold differential (higher or lower) expression at one the five developmental stages, as mentioned above compared with their expression level at E15. CONCLUSIONS We report a comprehensive profile of developing murine lens transcriptome including both mRNA and miRNA through next-generation RNA sequencing. A complete repository of the lens transcriptome of six developmental time points will be monumental in elucidating processes essential for the development of the ocular lens and maintenance of its transparency.
Collapse
Affiliation(s)
- Shahid Y Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Sean F Hackett
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mei-Chong W Lee
- Departpart of Biomolecular Engineering, University of California, Santa Cruz, California, United States
| | - Nader Pourmand
- Departpart of Biomolecular Engineering, University of California, Santa Cruz, California, United States
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
67
|
Sun J, Rockowitz S, Chauss D, Wang P, Kantorow M, Zheng D, Cvekl A. Chromatin features, RNA polymerase II and the comparative expression of lens genes encoding crystallins, transcription factors, and autophagy mediators. Mol Vis 2015; 21:955-73. [PMID: 26330747 PMCID: PMC4551281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/26/2015] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Gene expression correlates with local chromatin structure. Our studies have mapped histone post-translational modifications, RNA polymerase II (pol II), and transcription factor Pax6 in lens chromatin. These data represent the first genome-wide insights into the relationship between lens chromatin structure and lens transcriptomes and serve as an excellent source for additional data analysis and refinement. The principal lens proteins, the crystallins, are encoded by predominantly expressed mRNAs; however, the regulatory mechanisms underlying their high expression in the lens remain poorly understood. METHODS The formaldehyde-assisted identification of regulatory regions (FAIRE-Seq) was employed to analyze newborn lens chromatin. ChIP-seq and RNA-seq data published earlier (GSE66961) have been used to assist in FAIRE-seq data interpretation. RNA transcriptomes from murine lens epithelium, lens fibers, erythrocytes, forebrain, liver, neurons, and pancreas were compared to establish the gene expression levels of the most abundant mRNAs versus median gene expression across other differentiated cells. RESULTS Normalized RNA expression data from multiple tissues show that crystallins rank among the most highly expressed genes in mammalian cells. These findings correlate with the extremely high abundance of pol II all across the crystallin loci, including crystallin genes clustered on chromosomes 1 and 5, as well as within regions of "open" chromatin, as identified by FAIRE-seq. The expression levels of mRNAs encoding DNA-binding transcription factors (e.g., Foxe3, Hsf4, Maf, Pax6, Prox1, Sox1, and Tfap2a) revealed that their transcripts form "clusters" of abundant mRNAs in either lens fibers or lens epithelium. The expression of three autophagy regulatory mRNAs, encoding Tfeb, FoxO1, and Hif1α, was found within a group of lens preferentially expressed transcription factors compared to the E12.5 forebrain. CONCLUSIONS This study reveals novel features of lens chromatin, including the remarkably high abundance of pol II at the crystallin loci that exhibit features of "open" chromatin. Hsf4 ranks among the most abundant fiber cell-preferred DNA-binding transcription factors. Notable transcripts, including Atf4, Ctcf, E2F4, Hey1, Hmgb1, Mycn, RXRβ, Smad4, Sp1, and Taf1 (transcription factors) and Ctsd, Gabarapl1, and Park7 (autophagy regulators) have been identified with high levels of expression in lens fibers, which suggests specific roles in lens fiber cell terminal differentiation.
Collapse
Affiliation(s)
- Jian Sun
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Shira Rockowitz
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Daniel Chauss
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL
| | - Ping Wang
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY
| | - Marc Kantorow
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY,Department of Neurology, Albert Einstein College of Medicine, Bronx, NY,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
68
|
Ypsilanti AR, Rubenstein JLR. Transcriptional and epigenetic mechanisms of early cortical development: An examination of how Pax6 coordinates cortical development. J Comp Neurol 2015; 524:609-29. [PMID: 26304102 DOI: 10.1002/cne.23866] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 12/26/2022]
Abstract
The development of the cortex is an elaborate process that integrates a plethora of finely tuned molecular processes ranging from carefully regulated gradients of transcription factors, dynamic changes in the chromatin landscape, or formation of protein complexes to elicit and regulate transcription. Combined with cellular processes such as cell type specification, proliferation, differentiation, and migration, all of these developmental processes result in the establishment of an adult mammalian cortex with its typical lamination and regional patterning. By examining in-depth the role of one transcription factor, Pax6, on the regulation of cortical development, its integration in the regulation of chromatin state, and its regulation by cis-regulatory elements, we aim to demonstrate the importance of integrating each level of regulation in our understanding of cortical development.
Collapse
Affiliation(s)
- Athéna R Ypsilanti
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, California
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
69
|
Tan RR, Zhang SJ, Li YF, Tsoi B, Huang WS, Yao N, Hong M, Zhai YJ, Mao ZF, Tang LP, Kurihara H, Wang Q, He RR. Proanthocyanidins Prevent High Glucose-Induced Eye Malformation by Restoring Pax6 Expression in Chick Embryo. Nutrients 2015; 7:6567-81. [PMID: 26262640 PMCID: PMC4555138 DOI: 10.3390/nu7085299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/24/2015] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the leading causes of offspring malformations, in which eye malformation is an important disease. It has raised demand for therapy to improve fetal outcomes. In this study, we used chick embryo to establish a GDM model to study the protective effects of proanthocyanidins on eye development. Chick embryos were exposed to high glucose (0.2 mmol/egg) on embryo development day (EDD) 1. Proanthocyanidins (1 and 10 nmol/egg) were injected into the air sac on EDD 0. Results showed that both dosages of proanthocyanidins could prevent the eye malformation and rescue the high glucose-induced oxidative stress significantly, which the similar effects were showed in edaravone. However, proanthocyanidins could not decrease the glucose concentration of embryo eye. Moreover, the key genes regulating eye development, Pax6, was down-regulated by high glucose. Proanthocyanidins could restore the suppressed expression of Pax6. These results indicated proanthocyanidins might be a promising natural agent to prevent high glucose-induced eye malformation by restoring Pax6 expression.
Collapse
Affiliation(s)
- Rui-Rong Tan
- Anti-stress and Health Center, Pharmacy College, Jinan University, Guangzhou 510632, China.
| | - Shi-Jie Zhang
- Anti-stress and Health Center, Pharmacy College, Jinan University, Guangzhou 510632, China.
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Yi-Fang Li
- Anti-stress and Health Center, Pharmacy College, Jinan University, Guangzhou 510632, China.
| | - Bun Tsoi
- Anti-stress and Health Center, Pharmacy College, Jinan University, Guangzhou 510632, China.
| | - Wen-Shan Huang
- Anti-stress and Health Center, Pharmacy College, Jinan University, Guangzhou 510632, China.
| | - Nan Yao
- Guangdong Research Institute of Traditional Chinese Medicine Manufacturing Technology, Guangzhou 510095, Guangdong, China.
| | - Mo Hong
- Anti-stress and Health Center, Pharmacy College, Jinan University, Guangzhou 510632, China.
| | - Yu-Jia Zhai
- Anti-stress and Health Center, Pharmacy College, Jinan University, Guangzhou 510632, China.
| | - Zhong-Fu Mao
- Anti-stress and Health Center, Pharmacy College, Jinan University, Guangzhou 510632, China.
| | - Lu-Ping Tang
- Anti-stress and Health Center, Pharmacy College, Jinan University, Guangzhou 510632, China.
| | - Hiroshi Kurihara
- Anti-stress and Health Center, Pharmacy College, Jinan University, Guangzhou 510632, China.
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Rong-Rong He
- Anti-stress and Health Center, Pharmacy College, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
70
|
Ohana R, Weiman-Kelman B, Raviv S, Tamm ER, Pasmanik-Chor M, Rinon A, Netanely D, Shamir R, Solomon AS, Ashery-Padan R. MicroRNAs are essential for differentiation of the retinal pigmented epithelium and maturation of adjacent photoreceptors. Development 2015; 142:2487-98. [PMID: 26062936 DOI: 10.1242/dev.121533] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 06/03/2015] [Indexed: 12/21/2022]
Abstract
Dysfunction of the retinal pigmented epithelium (RPE) results in degeneration of photoreceptors and vision loss and is correlated with common blinding disorders in humans. Although many protein-coding genes are known to be expressed in RPE and are important for its development and maintenance, virtually nothing is known about the in vivo roles of non-coding transcripts. The expression patterns of microRNAs (miRNAs) have been analyzed in a variety of ocular tissues, and a few were implicated to play role in RPE based on studies in cell lines. Here, through RPE-specific conditional mutagenesis of Dicer1 or Dgcr8 in mice, the importance of miRNAs for RPE differentiation was uncovered. miRNAs were found to be dispensable for maintaining RPE fate and survival, and yet they are essential for the acquisition of important RPE properties such as the expression of genes involved in the visual cycle pathway, pigmentation and cell adhesion. Importantly, miRNAs of the RPE are required for maturation of adjacent photoreceptors, specifically for the morphogenesis of the outer segments. The alterations in the miRNA and mRNA profiles in the Dicer1-deficient RPE point to a key role of miR-204 in regulation of the RPE differentiation program in vivo and uncover the importance of additional novel RPE miRNAs. This study reveals the combined regulatory activity of miRNAs that is required for RPE differentiation and for the development of the adjacent neuroretina.
Collapse
Affiliation(s)
- Reut Ohana
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Benjamin Weiman-Kelman
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shaul Raviv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, D-93053 Regensburg, Germany
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ariel Rinon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dvir Netanely
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Arie S Solomon
- The Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
71
|
|
72
|
Sun J, Rockowitz S, Xie Q, Ashery-Padan R, Zheng D, Cvekl A. Identification of in vivo DNA-binding mechanisms of Pax6 and reconstruction of Pax6-dependent gene regulatory networks during forebrain and lens development. Nucleic Acids Res 2015; 43:6827-46. [PMID: 26138486 PMCID: PMC4538810 DOI: 10.1093/nar/gkv589] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/23/2015] [Indexed: 01/18/2023] Open
Abstract
The transcription factor Pax6 is comprised of the paired domain (PD) and homeodomain (HD). In the developing forebrain, Pax6 is expressed in ventricular zone precursor cells and in specific subpopulations of neurons; absence of Pax6 results in disrupted cell proliferation and cell fate specification. Pax6 also regulates the entire lens developmental program. To reconstruct Pax6-dependent gene regulatory networks (GRNs), ChIP-seq studies were performed using forebrain and lens chromatin from mice. A total of 3514 (forebrain) and 3723 (lens) Pax6-containing peaks were identified, with ∼70% of them found in both tissues and thereafter called 'common' peaks. Analysis of Pax6-bound peaks identified motifs that closely resemble Pax6-PD, Pax6-PD/HD and Pax6-HD established binding sequences. Mapping of H3K4me1, H3K4me3, H3K27ac, H3K27me3 and RNA polymerase II revealed distinct types of tissue-specific enhancers bound by Pax6. Pax6 directly regulates cortical neurogenesis through activation (e.g. Dmrta1 and Ngn2) and repression (e.g. Ascl1, Fezf2, and Gsx2) of transcription factors. In lens, Pax6 directly regulates cell cycle exit via components of FGF (Fgfr2, Prox1 and Ccnd1) and Wnt (Dkk3, Wnt7a, Lrp6, Bcl9l, and Ccnd1) signaling pathways. Collectively, these studies provide genome-wide analysis of Pax6-dependent GRNs in lens and forebrain and establish novel roles of Pax6 in organogenesis.
Collapse
Affiliation(s)
- Jian Sun
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shira Rockowitz
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qing Xie
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, 69978 Ramat Aviv, Tel Aviv, Israel
| | - Deyou Zheng
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ales Cvekl
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
73
|
Liang D, Li J, Wu Y, Zhen L, Li C, Qi M, Wang L, Deng F, Huang J, Lv F, Liu Y, Ma X, Yu Z, Zhang Y, Chen YH. miRNA-204 drives cardiomyocyte proliferation via targeting Jarid2. Int J Cardiol 2015; 201:38-48. [PMID: 26298346 DOI: 10.1016/j.ijcard.2015.06.163] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/11/2015] [Accepted: 06/29/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVES In mammals, the heart grows by hypertrophy but not proliferation of cardiomyocytes after birth. The paucity of cardiomyocyte proliferation limits cardiac regeneration in a variety of heart diseases. To explore the efficient strategies that drive cardiomyocyte proliferation, we employed in vitro and in vivo models to investigate the function of miRNA-204, which was demonstrated to regulate the proliferation and differentiation of human cardiac progenitor cells in our previous study. METHODS AND RESULTS miRNA-204 overexpression markedly promoted cardiomyocyte proliferation in both neonatal and adult rat cardiomyocytes in vitro. Transgenic mice with the cardiac-specific overexpression of miRNA-204 exhibited excessive cardiomyocyte proliferation throughout the embryonic and adult stages, leading to a pronounced increase in ventricular mass. Accordingly, the cell cycle regulators, including Cyclin A, Cyclin B, Cyclin D2, Cyclin E, CDC2 and PCNA, were upregulated in miRNA-204 transgenic embryonic hearts. Furthermore, we demonstrated that miRNA-204 directly targeted Jarid2. Knockdown of Jarid2 mimicked the pro-proliferative effect of miRNA-204 overexpression on cultured rat cardiomyocytes, whereas enhanced expression of Jarid2 conferred the myocytes with substantial resistance to proliferation by miRNA-204 overexpression. CONCLUSION Our findings identify a conserved role for miRNA-204 in regulating cardiomyocyte proliferation by targeting the Jarid2 signaling pathway.
Collapse
Affiliation(s)
- Dandan Liang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Jun Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Yahan Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Lixiao Zhen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Changming Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Man Qi
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Lijie Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Fangfei Deng
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Jian Huang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Fei Lv
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Yi Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Xiue Ma
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Zuoren Yu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai 200120, China
| | - Yi-Han Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
74
|
Cvekl A, McGreal R, Liu W. Lens Development and Crystallin Gene Expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:129-67. [PMID: 26310154 DOI: 10.1016/bs.pmbts.2015.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The eye and lens represent excellent models to understand embryonic development at cellular and molecular levels. Initial 3D formation of the eye depends on a reciprocal invagination of the lens placode/optic vesicle to form the eye primordium, i.e., the optic cup partially surrounding the lens vesicle. Subsequently, the anterior part of the lens vesicle gives rise to the lens epithelium, while the posterior cells of the lens vesicle differentiate into highly elongated lens fibers. Lens fiber differentiation involves cytoskeletal rearrangements, cellular elongation, accumulation of crystallin proteins, production of extracellular matrix for the lens capsule, and degradation of organelles. This chapter summarizes recent advances in lens development and provides insights into the regulatory mechanisms and differentiation at the level of chromatin structure and dynamics, the emerging field of noncoding RNAs, and novel strategies to fill the gaps in our understanding of lens development.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Rebecca McGreal
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Wei Liu
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
75
|
MiR-204 is responsible for inherited retinal dystrophy associated with ocular coloboma. Proc Natl Acad Sci U S A 2015; 112:E3236-45. [PMID: 26056285 DOI: 10.1073/pnas.1401464112] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ocular developmental disorders, including the group classified as microphthalmia, anophthalmia, and coloboma (MAC) and inherited retinal dystrophies, collectively represent leading causes of hereditary blindness. Characterized by extreme genetic and clinical heterogeneity, the separate groups share many common genetic causes, in particular relating to pathways controlling retinal and retinal pigment epithelial maintenance. To understand these shared pathways and delineate the overlap between these groups, we investigated the genetic cause of an autosomal dominantly inherited condition of retinal dystrophy and bilateral coloboma, present in varying degrees in a large, five-generation family. By linkage analysis and exome sequencing, we identified a previously undescribed heterozygous mutation, n.37 C > T, in the seed region of microRNA-204 (miR-204), which segregates with the disease in all affected individuals. We demonstrated that this mutation determines significant alterations of miR-204 targeting capabilities via in vitro assays, including transcriptome analysis. In vivo injection, in medaka fish (Oryzias latipes), of the mutated miR-204 caused a phenotype consistent with that observed in the family, including photoreceptor alterations with reduced numbers of both cones and rods as a result of increased apoptosis, thereby confirming the pathogenic effect of the n.37 C > T mutation. Finally, knockdown assays in medaka fish demonstrated that miR-204 is necessary for normal photoreceptor function. Overall, these data highlight the importance of miR-204 in the regulation of ocular development and maintenance and provide the first evidence, to our knowledge, of its contribution to eye disease, likely through a gain-of-function mechanism.
Collapse
|
76
|
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease without effective treatment. Despite decades of research and the development of novel treatments, PAH remains a fatal disease, suggesting an urgent need for better understanding of the pathogenesis of PAH. Recent studies suggest that microRNAs (miRNAs) are dysregulated in patients with PAH and in experimental pulmonary hypertension. Furthermore, normalization of a few miRNAs is reported to inhibit experimental pulmonary hypertension. We have reviewed the current knowledge about miRNA biogenesis, miRNA expression pattern, and their roles in regulation of pulmonary artery smooth muscle cells, endothelial cells, and fibroblasts. We have also identified emerging trends in our understanding of the role of miRNAs in the pathogenesis of PAH and propose future studies that might lead to novel therapeutic strategies for the treatment of PAH.
Collapse
Affiliation(s)
- Guofei Zhou
- 1 Department of Pediatrics, University of Illinois at Chicago; and
| | | | | |
Collapse
|
77
|
Raghunath A, Perumal E. Micro-RNAs and Their Roles in Eye Disorders. Ophthalmic Res 2015; 53:169-86. [DOI: 10.1159/000371853] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/04/2015] [Indexed: 11/19/2022]
|
78
|
Pillai-Kastoori L, Wen W, Morris AC. Keeping an eye on SOXC proteins. Dev Dyn 2015; 244:367-376. [PMID: 25476579 PMCID: PMC4344926 DOI: 10.1002/dvdy.24235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/10/2014] [Accepted: 11/28/2014] [Indexed: 12/17/2022] Open
Abstract
The formation of a mature, functional eye requires a complex series of cell proliferation, migration, induction among different germinal layers, and cell differentiation. These processes are regulated by extracellular cues such as the Wnt/BMP/Hh/Fgf signaling pathways, as well as cell intrinsic transcription factors that specify cell fate. In this review article, we provide an overview of stages of embryonic eye morphogenesis, extrinsic and intrinsic factors that are required for each stage, and pediatric ocular diseases that are associated with defective eye development. In addition, we focus on recent findings about the roles of the SOXC proteins in regulating vertebrate ocular development and implicating SOXC mutations in human ocular malformations.
Collapse
Affiliation(s)
| | - Wen Wen
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
79
|
Held K, Voets T, Vriens J. TRPM3 in temperature sensing and beyond. Temperature (Austin) 2015; 2:201-13. [PMID: 27227024 PMCID: PMC4844244 DOI: 10.4161/23328940.2014.988524] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 12/13/2022] Open
Abstract
TRPM3, also known as melastatin 2 (MLSN2), LTRPC3 (long TRPC3) and KIAA1616, is a member of the TRPM subfamily of transient receptor potential (TRP) ion channels. The channel was originally identified as a volume-regulated ion channel that can be activated upon reduction of the extracellular osmolality. Later, the channel was proposed to be involved in the modulation of insulin release in pancreatic islets. However, new evidence has uncovered a role of TRPM3 as a thermosensitive nociceptor channel implicated in the detection of noxious heat. The channel is functionally expressed in a subset of neurons of the somatosensory system and can be activated by heat. The purpose of the present review is to summarize existing knowledge of the expression, biophysics and pharmacology of TRPM3 and to serve as a guide for future studies aimed at improving the understanding of the mechanism of thermosensation and proposed physiological functions of TRPM3.
Collapse
Key Words
- Clt, Clotrimazole
- DHEA, Dehydroepiandrosterone
- DRG, Dorsal root ganglion
- DeSPH, D-erythro-sphingosine
- PCR, Polymerase chain reaction
- PPAR-γ, Peroxisome proliferator-activator receptor - γ
- PS, Pregnenolone sulfate
- Q10, 10-degree temperature coefficient
- RT, Room temperature
- TG, Trigeminal ganglion
- TRP channel
- TRP, Transient receptor potential
- TRPM, Transient receptor potential melastatin
- TRPM3
- TRPV, Transient receptor potential vanilloid
- nociceptor
- sensory system
- temperature sensing
- ΔG, Gibbs free energy
- ΔH, Enthalpy
- ΔS, Entropy
Collapse
Affiliation(s)
- Katharina Held
- Laboratory of Experimental Gynecology; KU Leuven; Leuven, Belgium; Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe); KU Leuven; Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe); KU Leuven ; Leuven, Belgium
| | - Joris Vriens
- Laboratory of Experimental Gynecology; KU Leuven ; Leuven, Belgium
| |
Collapse
|
80
|
Cvekl A, Ashery-Padan R. The cellular and molecular mechanisms of vertebrate lens development. Development 2014; 141:4432-47. [PMID: 25406393 PMCID: PMC4302924 DOI: 10.1242/dev.107953] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ocular lens is a model system for understanding important aspects of embryonic development, such as cell specification and the spatiotemporally controlled formation of a three-dimensional structure. The lens, which is characterized by transparency, refraction and elasticity, is composed of a bulk mass of fiber cells attached to a sheet of lens epithelium. Although lens induction has been studied for over 100 years, recent findings have revealed a myriad of extracellular signaling pathways and gene regulatory networks, integrated and executed by the transcription factor Pax6, that are required for lens formation in vertebrates. This Review summarizes recent progress in the field, emphasizing the interplay between the diverse regulatory mechanisms employed to form lens progenitor and precursor cells and highlighting novel opportunities to fill gaps in our understanding of lens tissue morphogenesis.
Collapse
Affiliation(s)
- Aleš Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, 69978 Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
81
|
Zhang Y, Zhang X, Lu H. Aberrant activation of p53 due to loss of MDM2 or MDMX causes early lens dysmorphogenesis. Dev Biol 2014; 396:19-30. [PMID: 25263199 DOI: 10.1016/j.ydbio.2014.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 12/28/2022]
Abstract
Although forming a heterodimer or heterooligomer is essential for MDM2 and MDMX to fully control p53 during early embryogenesis, deletion of either MDM2 or MDMX in specific tissues using the loxp-Cre system reveals phenotypic diversity during organ morphogenesis, which can be completely rescued by loss of p53, suggesting the spatiotemporal independence and specificity of the regulation of p53 by MDM2 and MDMX. In this study, we investigated the role of the MDM2-MDMX-p53 pathway in the developing lens that is a relatively independent region integrating cell proliferation, differentiation and apoptosis. Using the mice expressing Cre recombinase specifically in the lens epithelial cells (LECs) beginning at E9.5, we demonstrated that deletion of either MDM2 or MDMX induces apoptosis of LEC and reduces cell proliferation, resulting in lens developmental defect that finally progresses into aphakia. Specifically, the lens defect caused by MDM2 deletion was evident at E10, occurring earlier than that caused by MDMX deletion. These lens defects were completely rescued by loss of two alleles of p53, but not one allele of p53. These results demonstrate that both MDM2 and MDMX are required for monitoring p53 activity during lens development, and they may function independently or synergistically to control p53 and maintain normal lens morphogenesis.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Xin Zhang
- Departments of Ophthalmology, Pathology & Cell Biology, Columbia University, 635 W. 165th Street, EI902A, New York, NY 10032, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
82
|
Pourrajab F, Babaei Zarch M, BaghiYazdi M, Hekmatimoghaddam S, Zare-Khormizi MR. MicroRNA-based system in stem cell reprogramming; differentiation/dedifferentiation. Int J Biochem Cell Biol 2014; 55:318-28. [PMID: 25150833 DOI: 10.1016/j.biocel.2014.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 12/26/2022]
Abstract
Stem cells (SCs) have self-renew ability and give rise to committed progenitors of a single or multiple lineages. Elucidating the genetic circuits that govern SCs to self-renew and to differentiate is essential to understand the roles of SCs and promise of these cells in regenerative medicine. MicroRNAs are widespread agents playing critical roles in regulatory networks of transcriptional expression and have been strongly linked with SCs for simultaneous maintenance of pluripotency properties such as self-renewal. This review aims to provide state-of-the-art presentations on microRNA-dependent molecular mechanisms contribute to the maintenance of pluripotency. Understanding the microRNA signature interactions, in conjunction with cell signaling, is critical for development of improved strategies to reprogram differentiated cells or direct differentiation of pluripotent cells.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Clinical Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | - Mohammad BaghiYazdi
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | |
Collapse
|
83
|
Bennett TM, Mackay DS, Siegfried CJ, Shiels A. Mutation of the melastatin-related cation channel, TRPM3, underlies inherited cataract and glaucoma. PLoS One 2014; 9:e104000. [PMID: 25090642 PMCID: PMC4121231 DOI: 10.1371/journal.pone.0104000] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/04/2014] [Indexed: 11/19/2022] Open
Abstract
Inherited forms of cataract are a clinically important and genetically heterogeneous cause of visual impairment that usually present at an early age with or without systemic and/or other ocular abnormalities. Here we have identified a new locus for inherited cataract and high-tension glaucoma with variable anterior segment defects, and characterized an underlying mutation in the gene coding for transient receptor potential cation channel, subfamily M, member-3 (TRPM3, melastatin-2). Genome-wide linkage analysis mapped the ocular disease locus to the pericentric region of human chromosome 9. Whole exome and custom-target next-generation sequencing detected a heterozygous A-to-G transition in exon-3 of TRPM3 that co-segregated with disease. As a consequence of alternative splicing this missense mutation was predicted to result in the substitution of isoleucine-to-methionine at codon 65 (c.195A>G; p.I65 M) of TRPM3 transcript variant 9, and at codon 8 (c.24A>G; p.I8 M) of a novel TRPM3 transcript variant expressed in human lens. In both transcript variants the I-to-M substitution was predicted in silico to exert damaging effects on protein function. Furthermore, transient expression studies of a recombinant TRPM3-GFP reporter product predicted that the I-to-M substitution introduced an alternative translation start-site located 89 codons upstream from the native initiator methionine found in eight other TRPM3 transcript variants (1-8). Collectively, these studies have provided the first evidence that TRPM3 is associated with inherited ocular disease in humans, and further provide support for the important role of this cation channel in normal eye development.
Collapse
Affiliation(s)
- Thomas M. Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Donna S. Mackay
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Carla J. Siegfried
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
84
|
Abstract
MicroRNAs (miRNAs) are transcriptional and posttranscriptional regulators involved in nearly all known biological processes in distant eukaryotic clades. Their discovery and functional characterization have broadened our understanding of biological regulatory mechanisms in animals and plants. They show both evolutionary conserved and unique features across Metazoa. Here, we present the current status of the knowledge about the role of miRNA in development, growth, and physiology of teleost fishes, in comparison to other vertebrates. Infraclass Teleostei is the most abundant group among vertebrate lineage. Fish are an important component of aquatic ecosystems and human life, being the prolific source of animal proteins worldwide and a vertebrate model for biomedical research. We review miRNA biogenesis, regulation, modifications, and mechanisms of action. Specific sections are devoted to the role of miRNA in teleost development, organogenesis, tissue differentiation, growth, regeneration, reproduction, endocrine system, and responses to environmental stimuli. Each section discusses gaps in the current knowledge and pinpoints the future directions of research on miRNA in teleosts.
Collapse
Affiliation(s)
| | - Igor Babiak
- Faculty of Aquaculture and Biosciences, University of Nordland, Bodø, Norway
| |
Collapse
|
85
|
Conte I, Merella S, Garcia-Manteiga JM, Migliore C, Lazarevic D, Carrella S, Marco-Ferreres R, Avellino R, Davidson NP, Emmett W, Sanges R, Bockett N, Van Heel D, Meroni G, Bovolenta P, Stupka E, Banfi S. The combination of transcriptomics and informatics identifies pathways targeted by miR-204 during neurogenesis and axon guidance. Nucleic Acids Res 2014; 42:7793-806. [PMID: 24895435 PMCID: PMC4081098 DOI: 10.1093/nar/gku498] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vertebrate organogenesis is critically sensitive to gene dosage and even subtle variations in the expression levels of key genes may result in a variety of tissue anomalies. MicroRNAs (miRNAs) are fundamental regulators of gene expression and their role in vertebrate tissue patterning is just beginning to be elucidated. To gain further insight into this issue, we analysed the transcriptomic consequences of manipulating the expression of miR-204 in the Medaka fish model system. We used RNA-Seq and an innovative bioinformatics approach, which combines conventional differential expression analysis with the behavior expected by miR-204 targets after its overexpression and knockdown. With this approach combined with a correlative analysis of the putative targets, we identified a wider set of miR-204 target genes belonging to different pathways. Together, these approaches confirmed that miR-204 has a key role in eye development and further highlighted its putative function in neural differentiation processes, including axon guidance as supported by in vivo functional studies. Together, our results demonstrate the advantage of integrating next-generation sequencing and bioinformatics approaches to investigate miRNA biology and provide new important information on the role of miRNAs in the control of axon guidance and more broadly in nervous system development.
Collapse
Affiliation(s)
- Ivan Conte
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Stefania Merella
- Center For Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milan, Italy
| | - Jose Manuel Garcia-Manteiga
- Center For Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milan, Italy
| | - Chiara Migliore
- CBM Scrl, c/o Area Science Park, Basovizza, 30143 Trieste, Italy
| | - Dejan Lazarevic
- Center For Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milan, Italy
| | - Sabrina Carrella
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Raquel Marco-Ferreres
- Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM, c/Nicolas Cabrera 1, Madrid 28049, Spain CIBER de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain
| | - Raffaella Avellino
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Nathan Paul Davidson
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Warren Emmett
- UCL Cancer Institute, Huntley Street, University College London, London WC1E 6BT, UK
| | - Remo Sanges
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Nicholas Bockett
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - David Van Heel
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Germana Meroni
- CBM Scrl, c/o Area Science Park, Basovizza, 30143 Trieste, Italy
| | - Paola Bovolenta
- Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM, c/Nicolas Cabrera 1, Madrid 28049, Spain CIBER de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain
| | - Elia Stupka
- Center For Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milan, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy
| |
Collapse
|
86
|
Ferrer M, Corneo B, Davis J, Wan Q, Miyagishima KJ, King R, Maminishkis A, Marugan J, Sharma R, Shure M, Temple S, Miller S, Bharti K. A multiplex high-throughput gene expression assay to simultaneously detect disease and functional markers in induced pluripotent stem cell-derived retinal pigment epithelium. Stem Cells Transl Med 2014; 3:911-22. [PMID: 24873859 DOI: 10.5966/sctm.2013-0192] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There is continuing interest in the development of lineage-specific cells from induced pluripotent stem (iPS) cells for use in cell therapies and drug discovery. Although in most cases differentiated cells show features of the desired lineage, they retain fetal gene expression and do not fully mature into "adult-like" cells. Such cells may not serve as an effective therapy because, once implanted, immature cells pose the risk of uncontrolled growth. Therefore, there is a need to optimize lineage-specific stem cell differentiation protocols to produce cells that no longer express fetal genes and have attained "adult-like" phenotypes. Toward that goal, it is critical to develop assays that simultaneously measure cell function and disease markers in high-throughput format. Here, we use a multiplex high-throughput gene expression assay that simultaneously detects endogenous expression of multiple developmental, functional, and disease markers in iPS cell-derived retinal pigment epithelium (RPE). We optimized protocols to differentiate iPS cell-derived RPE that was then grown in 96- and 384-well plates. As a proof of principle, we demonstrate differential expression of eight genes in iPS cells, iPS cell-derived RPE at two different differentiation stages, and primary human RPE using this multiplex assay. The data obtained from the multiplex gene expression assay are significantly correlated with standard quantitative reverse transcription-polymerase chain reaction-based measurements, confirming the ability of this high-throughput assay to measure relevant gene expression changes. This assay provides the basis to screen for compounds that improve RPE function and maturation and target disease pathways, thus providing the basis for effective treatments of several retinal degenerative diseases.
Collapse
Affiliation(s)
- Marc Ferrer
- NIH Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Barbara Corneo
- Neural Stem Cell Institute, Rennselaer, New York, NY, USA
| | - Janine Davis
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD, USA
| | - Qin Wan
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD, USA
| | | | - Rebecca King
- NIH Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Arvydas Maminishkis
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, NIH, Bethesda, MD, USA
| | - Juan Marugan
- NIH Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Ruchi Sharma
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD, USA
| | | | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, New York, NY, USA
| | - Sheldon Miller
- Section on Epithelial and Retinal Physiology, National Eye Institute, NIH, Bethesda, MD, USA
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, Bethesda, MD, USA.
| |
Collapse
|
87
|
Raviv S, Bharti K, Rencus-Lazar S, Cohen-Tayar Y, Schyr R, Evantal N, Meshorer E, Zilberberg A, Idelson M, Reubinoff B, Grebe R, Rosin-Arbesfeld R, Lauderdale J, Lutty G, Arnheiter H, Ashery-Padan R. PAX6 regulates melanogenesis in the retinal pigmented epithelium through feed-forward regulatory interactions with MITF. PLoS Genet 2014; 10:e1004360. [PMID: 24875170 PMCID: PMC4038462 DOI: 10.1371/journal.pgen.1004360] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 03/24/2014] [Indexed: 12/19/2022] Open
Abstract
During organogenesis, PAX6 is required for establishment of various progenitor subtypes within the central nervous system, eye and pancreas. PAX6 expression is maintained in a variety of cell types within each organ, although its role in each lineage and how it acquires cell-specific activity remain elusive. Herein, we aimed to determine the roles and the hierarchical organization of the PAX6-dependent gene regulatory network during the differentiation of the retinal pigmented epithelium (RPE). Somatic mutagenesis of Pax6 in the differentiating RPE revealed that PAX6 functions in a feed-forward regulatory loop with MITF during onset of melanogenesis. PAX6 both controls the expression of an RPE isoform of Mitf and synergizes with MITF to activate expression of genes involved in pigment biogenesis. This study exemplifies how one kernel gene pivotal in organ formation accomplishes a lineage-specific role during terminal differentiation of a single lineage. It is currently poorly understood how a single developmental transcription regulator controls early specification as well as a broad range of highly specialized differentiation schemes. PAX6 is one of the most extensively investigated factors in central nervous system development, yet its role in execution of lineage-specific programs remains mostly elusive. Here, we directly investigated the involvement of PAX6 in the differentiation of one lineage, the retinal pigmented epithelium (RPE), a neuroectodermal-derived tissue that is essential for retinal development and function. We revealed that PAX6 accomplishes its role through a unique regulatory interaction with the transcription factor MITF, a master regulator of the pigmentation program. During the differentiation of the RPE, PAX6 regulates the expression of an RPE-specific isoform of Mitf and importantly, at the same time, PAX6 functions together with MITF to directly activate the expression of downstream genes required for pigment biogenesis. These findings provide comprehensive insight into the gene hierarchy that controls RPE development: from a kernel gene (a term referring to the upper-most gene in the gene regulatory network) that is broadly expressed during CNS development through a lineage-specific transcription factor that together with the kernel gene creates cis-regulatory input that contributes to transcriptionally activate a battery of terminal differentiation genes.
Collapse
Affiliation(s)
- Shaul Raviv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sigal Rencus-Lazar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yamit Cohen-Tayar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Schyr
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naveh Evantal
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alona Zilberberg
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maria Idelson
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy & Department of Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Benjamin Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy & Department of Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rhonda Grebe
- Wilmer Ophthalmological Institute, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, Georgia, United States of America
| | - Gerard Lutty
- Wilmer Ophthalmological Institute, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Heinz Arnheiter
- Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, Maryland, United States of America
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
88
|
Blake JA, Ziman MR. Pax genes: regulators of lineage specification and progenitor cell maintenance. Development 2014; 141:737-51. [PMID: 24496612 DOI: 10.1242/dev.091785] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pax genes encode a family of transcription factors that orchestrate complex processes of lineage determination in the developing embryo. Their key role is to specify and maintain progenitor cells through use of complex molecular mechanisms such as alternate RNA splice forms and gene activation or inhibition in conjunction with protein co-factors. The significance of Pax genes in development is highlighted by abnormalities that arise from the expression of mutant Pax genes. Here, we review the molecular functions of Pax genes during development and detail the regulatory mechanisms by which they specify and maintain progenitor cells across various tissue lineages. We also discuss mechanistic insights into the roles of Pax genes in regeneration and in adult diseases, including cancer.
Collapse
Affiliation(s)
- Judith A Blake
- School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | | |
Collapse
|
89
|
Blandino G, Fazi F, Donzelli S, Kedmi M, Sas-Chen A, Muti P, Strano S, Yarden Y. Tumor suppressor microRNAs: a novel non-coding alliance against cancer. FEBS Lett 2014; 588:2639-52. [PMID: 24681102 DOI: 10.1016/j.febslet.2014.03.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023]
Abstract
Tumor initiation and progression are the outcomes of a stepwise accumulation of genetic alterations. Among these, gene amplification and aberrant expression of oncogenic proteins, as well as deletion or inactivation of tumor suppressor genes, represent hallmark steps. Mounting evidence collected over the last few years has identified different populations of non-coding RNAs as major players in tumor suppression in almost all cancer types. Elucidating the diverse molecular mechanisms underlying the roles of non-coding RNAs in tumor progression might provide illuminating insights, potentially able to assist improved diagnosis, better staging and effective treatments of human cancers. Here we focus on several groups of tumor suppressor microRNAs, whose downregulation exerts a profound oncologic impact and might be harnessed for the benefit of cancer patients.
Collapse
Affiliation(s)
- Giovanni Blandino
- Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy.
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Sara Donzelli
- Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Merav Kedmi
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot, Israel
| | - Aldema Sas-Chen
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot, Israel
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center-McMaster University Hamilton, Ontario, Canada
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Yosef Yarden
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot, Israel
| |
Collapse
|
90
|
Ma ZL, Wang G, Cheng X, Chuai M, Kurihara H, Lee KKH, Yang X. Excess caffeine exposure impairs eye development during chick embryogenesis. J Cell Mol Med 2014; 18:1134-43. [PMID: 24636305 PMCID: PMC4508153 DOI: 10.1111/jcmm.12260] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 01/22/2014] [Indexed: 12/17/2022] Open
Abstract
Caffeine has been an integral component of our diet and medicines for centuries. It is now known that over consumption of caffeine has detrimental effects on our health, and also disrupts normal foetal development in pregnant mothers. In this study, we investigated the potential teratogenic effect of caffeine over-exposure on eye development in the early chick embryo. Firstly, we demonstrated that caffeine exposure caused chick embryos to develop asymmetrical microphthalmia and induced the orbital bone to develop abnormally. Secondly, caffeine exposure perturbed Pax6 expression in the retina of the developing eye. In addition, it perturbed the migration of HNK-1+ cranial neural crest cells. Pax6 is an important gene that regulates eye development, so altering the expression of this gene might be the cause for the abnormal eye development. Thirdly, we found that reactive oxygen species (ROS) production was significantly increased in eye tissues following caffeine treatment, and that the addition of anti-oxidant vitamin C could rescue the eyes from developing abnormally in the presence of caffeine. This suggests that excess ROS induced by caffeine is one of the mechanisms involved in the teratogenic alterations observed in the eye during embryogenesis. In sum, our experiments in the chick embryo demonstrated that caffeine is a potential teratogen. It causes asymmetrical microphthalmia to develop by increasing ROS production and perturbs Pax6 expression.
Collapse
Affiliation(s)
- Zheng-Lai Ma
- Department of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Institute of Fetal-Preterm Labor Medicine, Medical College of Jinan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
91
|
Xie Q, Ung D, Khafizov K, Fiser A, Cvekl A. Gene regulation by PAX6: structural-functional correlations of missense mutants and transcriptional control of Trpm3/miR-204. Mol Vis 2014; 20:270-82. [PMID: 24623969 PMCID: PMC3945805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/03/2014] [Indexed: 11/02/2022] Open
Abstract
PURPOSE Pax6 is a key regulatory gene for eye, brain, and pancreas development. It acts as a transcriptional activator and repressor. Loss-of-function of Pax6 results in down- and upregulation of a comparable number of genes, although many are secondary targets. Recently, we found a prototype of a Pax6-binding site that acts as a transcriptional repressor. We also identified the Trpm3 gene as a Pax6-direct target containing the miR-204 gene located in intron 6. Thus, there are multiple Pax6-dependent mechanisms of transcriptional repression in the cell. More than 50 Pax6 missense mutations have been identified in humans and mice. Two of these mutations, N50K (Leca4) and R128C (Leca2), were analyzed in depth resulting in different numbers of regulated genes and different ratios of down- and upregulated targets. Thus, additional studies of these mutants are warranted to better understand the molecular mechanisms of the mutants' action. METHODS Mutations in PAX6 and PAX6(5a), including G18W, R26G, N50K, G64V, R128C, and R242T, were generated with site-directed mutagenesis. A panel of ten luciferase reporters driven by six copies of Pax6-binding sites representing a spectrum of sites that act as repressors, moderate activators, and strong activators were used. Two additional reporters, including the Pax6-regulated enhancer from mouse Trpm3 and six copies of its individual Pax6-binding site, were also tested in P19 cells. RESULTS PAX6 (N50K) acted either as a loss-of-function or neutral mutation. In contrast, PAX6 (R128C) and (R242T) acted as loss-, neutral, and gain-of-function mutations. With three distinct reporters, the PAX6 (N50K) mutation broke the pattern of effects produced by substitutions in the surrounding helices of the N-terminal region of the paired domain. All six mutations tested acted as loss-of-function using the Trpm3 Pax6-binding site. CONCLUSIONS These studies highlight the complexity of Pax6-dependent transcriptional activation and repression mechanisms, and identify the N50K and R128C substitutions as valuable tools for testing interactions between Pax6, Pax6 (N50K), and Pax6 (R128C) with other regulatory proteins, including chromatin remodelers.
Collapse
Affiliation(s)
- Qing Xie
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY
| | - Devina Ung
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY
| | - Kamil Khafizov
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY,Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Andras Fiser
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY,Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
92
|
Abstract
Like most other members of the TRP family, the Trpm3 gene encodes proteins that form cation-permeable ion channels on the plasma membrane. However, TRPM3 proteins have several unique features that set them apart from the other members of this diverse family. The Trpm3 gene encodes for a surprisingly large number of isoforms generated mainly by alternative splicing. Only for two of the (at least) eight sites at which sequence diversity is generated the functional consequences have been elucidated, one leading to nonfunctional channels, the other one profoundly affecting the ionic selectivity. In the Trpm3 gene an intronic microRNA (miR-204) is co-transcribed with Trpm3. By regulating the expression of a multitude of genes, miR-204 increases the functional complexity of the Trpm3 locus. Over the past years, important progress has been made in discovering pharmacological tools to manipulate TRPM3 channel activity. These substances have facilitated the identification of endogenously expressed functional TRPM3 channels in nociceptive neurons, pancreatic beta cells, and vascular smooth muscle cells, among others. TRPM3 channels, which themselves are temperature sensitive, thus have been implicated in sensing noxious heat, in modulating insulin release, and in secretion of inflammatory cytokines. However, in many tissues where TRPM3 proteins are known to be expressed, no functional role has been identified for these channels so far. Because of the availability of adequate pharmacological and genetic tools, it is expected that future investigations on TRPM3 channels will unravel important new aspects and functions of these channels.
Collapse
Affiliation(s)
- Johannes Oberwinkler
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, 35037, Marburg, Germany,
| | | |
Collapse
|
93
|
Identification and characterization of FGF2-dependent mRNA: microRNA networks during lens fiber cell differentiation. G3-GENES GENOMES GENETICS 2013; 3:2239-55. [PMID: 24142921 PMCID: PMC3852386 DOI: 10.1534/g3.113.008698] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) and fibroblast growth factor (FGF) signaling regulate a wide range of cellular functions, including cell specification, proliferation, migration, differentiation, and survival. In lens, both these systems control lens fiber cell differentiation; however, a possible link between these processes remains to be examined. Herein, the functional requirement for miRNAs in differentiating lens fiber cells was demonstrated via conditional inactivation of Dicer1 in mouse (Mus musculus) lens. To dissect the miRNA-dependent pathways during lens differentiation, we used a rat (Rattus norvegicus) lens epithelial explant system, induced by FGF2 to differentiate, followed by mRNA and miRNA expression profiling. Transcriptome and miRNome analysis identified extensive FGF2-regulated cellular responses that were both independent and dependent on miRNAs. We identified 131 FGF2-regulated miRNAs. Seventy-six of these miRNAs had at least two in silico predicted and inversely regulated target mRNAs. Genes modulated by the greatest number of FGF-regulated miRNAs include DNA-binding transcription factors Nfib, Nfat5/OREBP, c-Maf, Ets1, and N-Myc. Activated FGF signaling influenced bone morphogenetic factor/transforming growth factor-β, Notch, and Wnt signaling cascades implicated earlier in lens differentiation. Specific miRNA:mRNA interaction networks were predicted for c-Maf, N-Myc, and Nfib (DNA-binding transcription factors); Cnot6, Cpsf6, Dicer1, and Tnrc6b (RNA to miRNA processing); and Ash1l, Med1/PBP, and Kdm5b/Jarid1b/Plu1 (chromatin remodeling). Three miRNAs, including miR-143, miR-155, and miR-301a, down-regulated expression of c-Maf in the 3′-UTR luciferase reporter assays. These present studies demonstrate for the first time global impact of activated FGF signaling in lens cell culture system and predicted novel gene regulatory networks connected by multiple miRNAs that regulate lens differentiation.
Collapse
|
94
|
Wolf L, Harrison W, Huang J, Xie Q, Xiao N, Sun J, Kong L, Lachke SA, Kuracha MR, Govindarajan V, Brindle PK, Ashery-Padan R, Beebe DC, Overbeek PA, Cvekl A. Histone posttranslational modifications and cell fate determination: lens induction requires the lysine acetyltransferases CBP and p300. Nucleic Acids Res 2013; 41:10199-214. [PMID: 24038357 PMCID: PMC3905850 DOI: 10.1093/nar/gkt824] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 12/15/2022] Open
Abstract
Lens induction is a classical embryologic model to study cell fate determination. It has been proposed earlier that specific changes in core histone modifications accompany the process of cell fate specification and determination. The lysine acetyltransferases CBP and p300 function as principal enzymes that modify core histones to facilitate specific gene expression. Herein, we performed conditional inactivation of both CBP and p300 in the ectodermal cells that give rise to the lens placode. Inactivation of both CBP and p300 resulted in the dramatic discontinuation of all aspects of lens specification and organogenesis, resulting in aphakia. The CBP/p300(-/-) ectodermal cells are viable and not prone to apoptosis. These cells showed reduced expression of Six3 and Sox2, while expression of Pax6 was not upregulated, indicating discontinuation of lens induction. Consequently, expression of αB- and αA-crystallins was not initiated. Mutant ectoderm exhibited markedly reduced levels of histone H3 K18 and K27 acetylation, subtly increased H3 K27me3 and unaltered overall levels of H3 K9ac and H3 K4me3. Our data demonstrate that CBP and p300 are required to establish lens cell-type identity during lens induction, and suggest that posttranslational histone modifications are integral to normal cell fate determination in the mammalian lens.
Collapse
Affiliation(s)
- Louise Wolf
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | - Wilbur Harrison
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | - Jie Huang
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | - Qing Xie
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | - Ningna Xiao
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | - Jian Sun
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | - Lingkun Kong
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | - Salil A. Lachke
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | - Murali R. Kuracha
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | - Venkatesh Govindarajan
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | - Paul K. Brindle
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | - Ruth Ashery-Padan
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | - David C. Beebe
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | - Paul A. Overbeek
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| |
Collapse
|
95
|
Farhy C, Elgart M, Shapira Z, Oron-Karni V, Yaron O, Menuchin Y, Rechavi G, Ashery-Padan R. Pax6 is required for normal cell-cycle exit and the differentiation kinetics of retinal progenitor cells. PLoS One 2013; 8:e76489. [PMID: 24073291 PMCID: PMC3779171 DOI: 10.1371/journal.pone.0076489] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
The coupling between cell-cycle exit and onset of differentiation is a common feature throughout the developing nervous system, but the mechanisms that link these processes are mostly unknown. Although the transcription factor Pax6 has been implicated in both proliferation and differentiation of multiple regions within the central nervous system (CNS), its contribution to the transition between these successive states remains elusive. To gain insight into the role of Pax6 during the transition from proliferating progenitors to differentiating precursors, we investigated cell-cycle and transcriptomic changes occurring in Pax6 (-) retinal progenitor cells (RPCs). Our analyses revealed a unique cell-cycle phenotype of the Pax6-deficient RPCs, which included a reduced number of cells in the S phase, an increased number of cells exiting the cell cycle, and delayed differentiation kinetics of Pax6 (-) precursors. These alterations were accompanied by coexpression of factors that promote (Ccnd1, Ccnd2, Ccnd3) and inhibit (P27 (kip1) and P27 (kip2) ) the cell cycle. Further characterization of the changes in transcription profile of the Pax6-deficient RPCs revealed abrogated expression of multiple factors which are known to be involved in regulating proliferation of RPCs, including the transcription factors Vsx2, Nr2e1, Plagl1 and Hedgehog signaling. These findings provide novel insight into the molecular mechanism mediating the pleiotropic activity of Pax6 in RPCs. The results further suggest that rather than conveying a linear effect on RPCs, such as promoting their proliferation and inhibiting their differentiation, Pax6 regulates multiple transcriptional networks that function simultaneously, thereby conferring the capacity to proliferate, assume multiple cell fates and execute the differentiation program into retinal lineages.
Collapse
Affiliation(s)
- Chen Farhy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Michael Elgart
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Zehavit Shapira
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Varda Oron-Karni
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orly Yaron
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yotam Menuchin
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Rechavi
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|