51
|
Sun G, Chen J, Ding Y, Wren JD, Xu F, Lu L, Wang Y, Wang DW, Zhang XA. A Bioinformatics Perspective on the Links Between Tetraspanin-Enriched Microdomains and Cardiovascular Pathophysiology. Front Cardiovasc Med 2021; 8:630471. [PMID: 33860000 PMCID: PMC8042132 DOI: 10.3389/fcvm.2021.630471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Tetraspanins and integrins are integral membrane proteins. Tetraspanins interact with integrins to modulate the dynamics of adhesion, migration, proliferation, and signaling in the form of membrane domains called tetraspanin-enriched microdomains (TEMs). TEMs also contain other cell adhesion proteins like immunoglobulin superfamily (IgSF) proteins and claudins. Cardiovascular functions of these TEM proteins have emerged and remain to be further revealed. Objectives: The aims of this study are to explore the roles of these TEM proteins in the cardiovascular system using bioinformatics tools and databases and to highlight the TEM proteins that may functionally associate with cardiovascular physiology and pathology. Methods: For human samples, three databases-GTEx, NCBI-dbGaP, and NCBI-GEO-were used for the analyses. The dbGaP database was used for GWAS analysis to determine the association between target genes and human phenotypes. GEO is an NCBI public repository that archives genomics data. GTEx was used for the analyses of tissue-specific mRNA expression levels and eQTL. For murine samples, GeneNetwork was used to find gene-phenotype correlations and gene-gene correlations of expression levels in mice. The analysis of cardiovascular data was the focus of this study. Results: Some integrins and tetraspanins, such as ITGA8 and Cd151, are highly expressed in the human cardiovascular system. TEM components are associated with multiple cardiovascular pathophysiological events in humans. GWAS and GEO analyses showed that human Cd82 and ITGA9 are associated with blood pressure. Data from mice also suggest that various cardiovascular phenotypes are correlated with integrins and tetraspanins. For instance, Cd82 and ITGA9, again, have correlations with blood pressure in mice. Conclusion: ITGA9 is related to blood pressure in both species. KEGG analysis also linked ITGA9 to metabolism and MAPK signaling pathway. This work provides an example of using integrated bioinformatics approaches across different species to identify the connections of structurally and/or functionally related molecules to certain categories of diseases.
Collapse
Affiliation(s)
- Ge Sun
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Junxiong Chen
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yingjun Ding
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jonathan D. Wren
- Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Fuyi Xu
- University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lu Lu
- University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yan Wang
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Dao-wen Wang
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xin A. Zhang
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
52
|
Ashbrook DG, Arends D, Prins P, Mulligan MK, Roy S, Williams EG, Lutz CM, Valenzuela A, Bohl CJ, Ingels JF, McCarty MS, Centeno AG, Hager R, Auwerx J, Lu L, Williams RW. A platform for experimental precision medicine: The extended BXD mouse family. Cell Syst 2021; 12:235-247.e9. [PMID: 33472028 PMCID: PMC7979527 DOI: 10.1016/j.cels.2020.12.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
The challenge of precision medicine is to model complex interactions among DNA variants, phenotypes, development, environments, and treatments. We address this challenge by expanding the BXD family of mice to 140 fully isogenic strains, creating a uniquely powerful model for precision medicine. This family segregates for 6 million common DNA variants-a level that exceeds many human populations. Because each member can be replicated, heritable traits can be mapped with high power and precision. Current BXD phenomes are unsurpassed in coverage and include much omics data and thousands of quantitative traits. BXDs can be extended by a single-generation cross to as many as 19,460 isogenic F1 progeny, and this extended BXD family is an effective platform for testing causal modeling and for predictive validation. BXDs are a unique core resource for the field of experimental precision medicine.
Collapse
Affiliation(s)
- David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Danny Arends
- Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan G Williams
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Cathleen M Lutz
- Mouse Repository and the Rare and Orphan Disease Center, the Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Alicia Valenzuela
- Mouse Repository and the Rare and Orphan Disease Center, the Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Casey J Bohl
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jesse F Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Melinda S McCarty
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arthur G Centeno
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Reinmar Hager
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
53
|
Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease. Am J Hum Genet 2021; 108:411-430. [PMID: 33626337 DOI: 10.1016/j.ajhg.2021.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/04/2021] [Indexed: 02/08/2023] Open
Abstract
Genetic factors underlying coronary artery disease (CAD) have been widely studied using genome-wide association studies (GWASs). However, the functional understanding of the CAD loci has been limited by the fact that a majority of GWAS variants are located within non-coding regions with no functional role. High cholesterol and dysregulation of the liver metabolism such as non-alcoholic fatty liver disease confer an increased risk of CAD. Here, we studied the function of non-coding single-nucleotide polymorphisms in CAD GWAS loci located within liver-specific enhancer elements by identifying their potential target genes using liver cis-eQTL analysis and promoter Capture Hi-C in HepG2 cells. Altogether, 734 target genes were identified of which 121 exhibited correlations to liver-related traits. To identify potentially causal regulatory SNPs, the allele-specific enhancer activity was analyzed by (1) sequence-based computational predictions, (2) quantification of allele-specific transcription factor binding, and (3) STARR-seq massively parallel reporter assay. Altogether, our analysis identified 1,277 unique SNPs that display allele-specific regulatory activity. Among these, susceptibility enhancers near important cholesterol homeostasis genes (APOB, APOC1, APOE, and LIPA) were identified, suggesting that altered gene regulatory activity could represent another way by which genetic variation regulates serum lipoprotein levels. Using CRISPR-based perturbation, we demonstrate how the deletion/activation of a single enhancer leads to changes in the expression of many target genes located in a shared chromatin interaction domain. Our integrative genomics approach represents a comprehensive effort in identifying putative causal regulatory regions and target genes that could predispose to clinical manifestation of CAD by affecting liver function.
Collapse
|
54
|
von Scheidt M, Zhao Y, de Aguiar Vallim TQ, Che N, Wierer M, Seldin MM, Franzén O, Kurt Z, Pang S, Bongiovanni D, Yamamoto M, Edwards PA, Ruusalepp A, Kovacic JC, Mann M, Björkegren JLM, Lusis AJ, Yang X, Schunkert H. Transcription Factor MAFF (MAF Basic Leucine Zipper Transcription Factor F) Regulates an Atherosclerosis Relevant Network Connecting Inflammation and Cholesterol Metabolism. Circulation 2021; 143:1809-1823. [PMID: 33626882 DOI: 10.1161/circulationaha.120.050186] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Coronary artery disease (CAD) is a multifactorial condition with both genetic and exogenous causes. The contribution of tissue-specific functional networks to the development of atherosclerosis remains largely unclear. The aim of this study was to identify and characterize central regulators and networks leading to atherosclerosis. METHODS Based on several hundred genes known to affect atherosclerosis risk in mouse (as demonstrated in knockout models) and human (as shown by genome-wide association studies), liver gene regulatory networks were modeled. The hierarchical order and regulatory directions of genes within the network were based on Bayesian prediction models, as well as experimental studies including chromatin immunoprecipitation DNA-sequencing, chromatin immunoprecipitation mass spectrometry, overexpression, small interfering RNA knockdown in mouse and human liver cells, and knockout mouse experiments. Bioinformatics and correlation analyses were used to clarify associations between central genes and CAD phenotypes in both human and mouse. RESULTS The transcription factor MAFF (MAF basic leucine zipper transcription factor F) interacted as a key driver of a liver network with 3 human genes at CAD genome-wide association studies loci and 11 atherosclerotic murine genes. Most importantly, expression levels of the low-density lipoprotein receptor (LDLR) gene correlated with MAFF in 600 CAD patients undergoing bypass surgery (STARNET [Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task]) and a hybrid mouse diversity panel involving 105 different inbred mouse strains. Molecular mechanisms of MAFF were tested in noninflammatory conditions and showed positive correlation between MAFF and LDLR in vitro and in vivo. Interestingly, after lipopolysaccharide stimulation (inflammatory conditions), an inverse correlation between MAFF and LDLR in vitro and in vivo was observed. Chromatin immunoprecipitation mass spectrometry revealed that the human CAD genome-wide association studies candidate BACH1 (BTB domain and CNC homolog 1) assists MAFF in the presence of lipopolysaccharide stimulation with respective heterodimers binding at the MAF recognition element of the LDLR promoter to transcriptionally downregulate LDLR expression. CONCLUSIONS The transcription factor MAFF was identified as a novel central regulator of an atherosclerosis/CAD-relevant liver network. MAFF triggered context-specific expression of LDLR and other genes known to affect CAD risk. Our results suggest that MAFF is a missing link between inflammation, lipid and lipoprotein metabolism, and a possible treatment target.
Collapse
Affiliation(s)
- Moritz von Scheidt
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany (M.v.S., S.P., H.S.).,Deutsches Zentrum für Herz- und Kreislauferkrankungen, Partner Site Munich Heart Alliance, Germany (M.v.S., D.B., H.S.)
| | | | - Thomas Q de Aguiar Vallim
- Departments of Medicine (T.Q.d.A.V., N.C., P.A.E., A.J.L.), David Geffen School of Medicine, University of California, Los Angeles.,Biological Chemistry (T.Q.d.A.V., P.A.E.), David Geffen School of Medicine, University of California, Los Angeles
| | - Nam Che
- Departments of Medicine (T.Q.d.A.V., N.C., P.A.E., A.J.L.), David Geffen School of Medicine, University of California, Los Angeles.,Microbiology, Immunology and Molecular Genetics (N.C., A.J.L.), David Geffen School of Medicine, University of California, Los Angeles.,Human Genetics (N.C., A.J.L.), David Geffen School of Medicine, University of California, Los Angeles
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany (M.W., M.M.)
| | - Marcus M Seldin
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine (M.M.S.)
| | - Oscar Franzén
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Novum, Huddinge, Sweden (O.F., J.L.M.B.)
| | - Zeyneb Kurt
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom (Z.K.)
| | - Shichao Pang
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany (M.v.S., S.P., H.S.)
| | - Dario Bongiovanni
- Deutsches Zentrum für Herz- und Kreislauferkrankungen, Partner Site Munich Heart Alliance, Germany (M.v.S., D.B., H.S.).,Department of Internal Medicine, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Germany (D.B.)
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan (M.Y.)
| | - Peter A Edwards
- Departments of Medicine (T.Q.d.A.V., N.C., P.A.E., A.J.L.), David Geffen School of Medicine, University of California, Los Angeles.,Biological Chemistry (T.Q.d.A.V., P.A.E.), David Geffen School of Medicine, University of California, Los Angeles
| | - Arno Ruusalepp
- Department of Cardiac Surgery, Tartu University Hospital, Estonia (A.R.).,Clinical Gene Networks AB, Stockholm, Sweden (A.R., J.L.M.B.)
| | - Jason C Kovacic
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (J.C.K., J.L.M.B.)
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany (M.W., M.M.)
| | - Johan L M Björkegren
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Novum, Huddinge, Sweden (O.F., J.L.M.B.).,Clinical Gene Networks AB, Stockholm, Sweden (A.R., J.L.M.B.).,Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (J.C.K., J.L.M.B.)
| | - Aldons J Lusis
- Departments of Medicine (T.Q.d.A.V., N.C., P.A.E., A.J.L.), David Geffen School of Medicine, University of California, Los Angeles.,Microbiology, Immunology and Molecular Genetics (N.C., A.J.L.), David Geffen School of Medicine, University of California, Los Angeles.,Human Genetics (N.C., A.J.L.), David Geffen School of Medicine, University of California, Los Angeles
| | - Xia Yang
- Department of Integrative Biology and Physiology, Institute for Quantitative and Computational Biosciences (Y.Z., X.Y.), David Geffen School of Medicine, University of California, Los Angeles
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany (M.v.S., S.P., H.S.).,Deutsches Zentrum für Herz- und Kreislauferkrankungen, Partner Site Munich Heart Alliance, Germany (M.v.S., D.B., H.S.)
| |
Collapse
|
55
|
Iglesias-Carres L, Hughes MD, Steele CN, Ponder MA, Davy KP, Neilson AP. Use of dietary phytochemicals for inhibition of trimethylamine N-oxide formation. J Nutr Biochem 2021; 91:108600. [PMID: 33577949 DOI: 10.1016/j.jnutbio.2021.108600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/01/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
Trimethylamine-N-oxide (TMAO) has been reported as a risk factor for atherosclerosis development, as well as for other cardiovascular disease (CVD) pathologies. The objective of this review is to provide a useful summary on the use of phytochemicals as TMAO-reducing agents. This review discusses the main mechanisms by which TMAO promotes CVD, including the modulation of lipid and bile acid metabolism, and the promotion of endothelial dysfunction and oxidative stress. Current knowledge on the available strategies to reduce TMAO formation are discussed, highlighting the effect and potential of phytochemicals. Overall, phytochemicals (i.e., phenolic compounds or glucosinolates) reduce TMAO formation by modulating gut microbiota composition and/or function, inhibiting host's capacity to metabolize TMA to TMAO, or a combination of both. Perspectives for design of future studies involving phytochemicals as TMAO-reducing agents are discussed. Overall, the information provided by this review outlines the current state of the art of the role of phytochemicals as TMAO reducing agents, providing valuable insight to further advance in this field of study.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC
| | - Michael D Hughes
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Cortney N Steele
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Monica A Ponder
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Kevin P Davy
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Andrew P Neilson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC.
| |
Collapse
|
56
|
Regional Variation in Genetic Control of Atherosclerosis in Hyperlipidemic Mice. G3-GENES GENOMES GENETICS 2020; 10:4679-4689. [PMID: 33109727 PMCID: PMC7718748 DOI: 10.1534/g3.120.401856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is a polygenic disorder that often affects multiple arteries. Carotid arteries are common sites for evaluating subclinical atherosclerosis, and aortic root is the standard site for quantifying atherosclerosis in mice. We compared genetic control of atherosclerosis between the two sites in the same cohort derived from two phenotypically divergent Apoe-null (Apoe -/-) mouse strains. Female F2 mice were generated from C57BL/6 (B6) and C3H/He (C3H) Apoe -/- mice and fed 12 weeks of Western diet. Atherosclerotic lesions in carotid bifurcation and aortic root and plasma levels of fasting lipids and glucose were measured. 153 genetic markers across the genome were typed. All F2 mice developed aortic atherosclerosis, while 1/5 formed no or little carotid lesions. Genome-wide scans revealed 3 significant loci on chromosome (Chr) 1, Chr15, 6 suggestive loci for aortic atherosclerosis, 2 significant loci on Chr6, Chr12, and 6 suggestive loci for carotid atherosclerosis. Only 2 loci for aortic lesions showed colocalization with loci for carotid lesions. Carotid lesion sizes were moderately correlated with aortic lesion sizes (r = 0.303; P = 4.6E-6), but they showed slight or no association with plasma HDL, non-HDL cholesterol, triglyceride, or glucose levels among F2 mice. Bioinformatics analyses prioritized Cryge as a likely causal gene for Ath30, Cdh6 and Dnah5 as causal genes for Ath22 Our data demonstrate vascular site-specific effects of genetic factors on atherosclerosis in the same animals and highlight the need to extend studies of atherosclerosis to sites beyond aortas of mice.
Collapse
|
57
|
Atherosclerosis in Different Vascular Locations Unbiasedly Approached with Mouse Genetics. Genes (Basel) 2020; 11:genes11121427. [PMID: 33260687 PMCID: PMC7760563 DOI: 10.3390/genes11121427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/01/2023] Open
Abstract
Atherosclerosis in different vascular locations leads to distinct clinical consequences, such as ischemic stroke and myocardial infarction. Genome-wide association studies in humans revealed that genetic loci responsible for carotid plaque and coronary artery disease were not overlapping, suggesting that distinct genetic pathways might be involved for each location. While elevated plasma cholesterol is a common risk factor, plaque development in different vascular beds is influenced by hemodynamics and intrinsic vascular integrity. Despite the limitation of species differences, mouse models provide platforms for unbiased genetic approaches. Mouse strain differences also indicate that susceptibility to atherosclerosis varies, depending on vascular locations, and that the location specificity is genetically controlled. Quantitative trait loci analyses in mice suggested candidate genes, including Mertk and Stab2, although how each gene affects the location-specific atherosclerosis needs further elucidation. Another unbiased approach of single-cell transcriptome analyses revealed the presence of a small subpopulation of vascular smooth muscle cells (VSMCs), which are “hyper-responsive” to inflammatory stimuli. These cells are likely the previously-reported Sca1+ progenitor cells, which can differentiate into multiple lineages in plaques. Further spatiotemporal analyses of the progenitor cells are necessary, since their distribution pattern might be associated with the location-dependent plaque development.
Collapse
|
58
|
Karunakaran D, Nguyen MA, Geoffrion M, Vreeken D, Lister Z, Cheng HS, Otte N, Essebier P, Wyatt H, Kandiah JW, Jung R, Alenghat FJ, Mompeon A, Lee R, Pan C, Gordon E, Rasheed A, Lusis AJ, Liu P, Matic LP, Hedin U, Fish JE, Guo L, Kolodgie F, Virmani R, van Gils JM, Rayner KJ. RIPK1 Expression Associates With Inflammation in Early Atherosclerosis in Humans and Can Be Therapeutically Silenced to Reduce NF-κB Activation and Atherogenesis in Mice. Circulation 2020; 143:163-177. [PMID: 33222501 DOI: 10.1161/circulationaha.118.038379] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic activation of the innate immune system drives inflammation and contributes directly to atherosclerosis. We previously showed that macrophages in the atherogenic plaque undergo RIPK3 (receptor-interacting serine/threonine-protein kinase 3)-MLKL (mixed lineage kinase domain-like protein)-dependent programmed necroptosis in response to sterile ligands such as oxidized low-density lipoprotein and damage-associated molecular patterns and that necroptosis is active in advanced atherosclerotic plaques. Upstream of the RIPK3-MLKL necroptotic machinery lies RIPK1 (receptor-interacting serine/threonine-protein kinase 1), which acts as a master switch that controls whether the cell undergoes NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells)-dependent inflammation, caspase-dependent apoptosis, or necroptosis in response to extracellular stimuli. We therefore set out to investigate the role of RIPK1 in the development of atherosclerosis, which is driven largely by NF-κB-dependent inflammation at early stages. We hypothesize that, unlike RIPK3 and MLKL, RIPK1 primarily drives NF-κB-dependent inflammation in early atherogenic lesions, and knocking down RIPK1 will reduce inflammatory cell activation and protect against the progression of atherosclerosis. METHODS We examined expression of RIPK1 protein and mRNA in both human and mouse atherosclerotic lesions, and used loss-of-function approaches in vitro in macrophages and endothelial cells to measure inflammatory responses. We administered weekly injections of RIPK1 antisense oligonucleotides to Apoe-/- mice fed a cholesterol-rich (Western) diet for 8 weeks. RESULTS We find that RIPK1 expression is abundant in early-stage atherosclerotic lesions in both humans and mice. Treatment with RIPK1 antisense oligonucleotides led to a reduction in aortic sinus and en face lesion areas (47.2% or 58.8% decrease relative to control, P<0.01) and plasma inflammatory cytokines (IL-1α [interleukin 1α], IL-17A [interleukin 17A], P<0.05) in comparison with controls. RIPK1 knockdown in macrophages decreased inflammatory genes (NF-κB, TNFα [tumor necrosis factor α], IL-1α) and in vivo lipopolysaccharide- and atherogenic diet-induced NF-κB activation. In endothelial cells, knockdown of RIPK1 prevented NF-κB translocation to the nucleus in response to TNFα, where accordingly there was a reduction in gene expression of IL1B, E-selectin, and monocyte attachment. CONCLUSIONS We identify RIPK1 as a central driver of inflammation in atherosclerosis by its ability to activate the NF-κB pathway and promote inflammatory cytokine release. Given the high levels of RIPK1 expression in human atherosclerotic lesions, our study suggests RIPK1 as a future therapeutic target to reduce residual inflammation in patients at high risk of coronary artery disease.
Collapse
Affiliation(s)
- Denuja Karunakaran
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.).,Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia (D.K., N.O., P.E., E.G.)
| | - My-Anh Nguyen
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada (M.-A.N., K.J.R.)
| | - Michele Geoffrion
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Dianne Vreeken
- Leiden University Medical Center, The Netherlands (D.V., J.M.v.G.)
| | - Zachary Lister
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Henry S Cheng
- Toronto General Research Hospital Institute, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C.)
| | - Nicola Otte
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia (D.K., N.O., P.E., E.G.)
| | - Patricia Essebier
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia (D.K., N.O., P.E., E.G.)
| | - Hailey Wyatt
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Joshua W Kandiah
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Richard Jung
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Francis J Alenghat
- Cardiology, Department of Medicine, University of Chicago, IL (F.J.A., J.E.F.)
| | - Ana Mompeon
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Richard Lee
- Cardiovascular Antisense Drug Discovery Group, Ionis Pharmaceuticals, Carlsbad, CA (R.L.)
| | - Calvin Pan
- David Geffen School of Medicine, University of California Los Angeles (C.P., A.J.L.)
| | - Emma Gordon
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia (D.K., N.O., P.E., E.G.)
| | - Adil Rasheed
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Aldons J Lusis
- David Geffen School of Medicine, University of California Los Angeles (C.P., A.J.L.)
| | - Peter Liu
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Ljubica Perisic Matic
- Vascular Surgery Division, Department of Molecular Medicine and Surgery, Karolinska Institute, Sweden (L.P.M.)
| | | | - Jason E Fish
- Cardiology, Department of Medicine, University of Chicago, IL (F.J.A., J.E.F.)
| | - Liang Guo
- CVPath Institute Inc., Gaithersburg, MD (L.G., F.K., R.V.)
| | - Frank Kolodgie
- CVPath Institute Inc., Gaithersburg, MD (L.G., F.K., R.V.)
| | - Renu Virmani
- CVPath Institute Inc., Gaithersburg, MD (L.G., F.K., R.V.)
| | | | - Katey J Rayner
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada (M.-A.N., K.J.R.)
| |
Collapse
|
59
|
Mutual Interplay of Host Immune System and Gut Microbiota in the Immunopathology of Atherosclerosis. Int J Mol Sci 2020; 21:ijms21228729. [PMID: 33227973 PMCID: PMC7699263 DOI: 10.3390/ijms21228729] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is the key for the initiation and progression of atherosclerosis. Accumulating evidence has revealed that an altered gut microbiome (dysbiosis) triggers both local and systemic inflammation to cause chronic inflammatory diseases, including atherosclerosis. There have been some microbiome-relevant pro-inflammatory mechanisms proposed to link the relationships between dysbiosis and atherosclerosis such as gut permeability disruption, trigger of innate immunity from lipopolysaccharide (LPS), and generation of proatherogenic metabolites, such as trimethylamine N-oxide (TMAO). Meanwhile, immune responses, such as inflammasome activation and cytokine production, could reshape both composition and function of the microbiota. In fact, the immune system delicately modulates the interplay between microbiota and atherogenesis. Recent clinical trials have suggested the potential of immunomodulation as a treatment strategy of atherosclerosis. Here in this review, we present current knowledge regarding to the roles of microbiota in contributing atherosclerotic pathogenesis and highlight translational perspectives by discussing the mutual interplay between microbiota and immune system on atherogenesis.
Collapse
|
60
|
Salloum JS, Garsetti DE, Rogers MB. Genetic background influences the impact of KLOTHO deficiency. Physiol Genomics 2020; 52:512-516. [PMID: 32956023 DOI: 10.1152/physiolgenomics.00094.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genetic background is a key but sometimes overlooked factor that profoundly impacts disease susceptibility and presentation in both humans and disease models. Here we show that deficiency of KLOTHO protein, an important renal regulator of mineral homeostasis and a cofactor for FGF23, causes different phenotypes in 129S1/SvlmJ (129) and C57BL/6J (B6) mouse strains. The 129 strain is more severely affected, with decreased longevity, decreased body weight, and increased amounts of kidney calcification compared with B6 mice. Reciprocal F1 crosses of the strains also indicate a parentage effect on the Klotho phenotype with F1 KLOTHO-deficient progeny of B6 mothers and 129 fathers having more kidney calcification than progeny of 129 mothers and B6 fathers. Comparing and contrasting the genetic architecture leading to different phenotypes associated with specific inbred mouse strains may reveal previously unrecognized and important metabolic interactions affecting chronic kidney disease.
Collapse
Affiliation(s)
- Jawad S Salloum
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey
| | - Diane E Garsetti
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey
| | - Melissa B Rogers
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
61
|
Tang Y, Shah TA, Yurkow EJ, Rogers MB. MicroRNA Profiles in Calcified and Healthy Aorta Differ: Therapeutic Impact of miR-145 and miR-378. Physiol Genomics 2020; 52:517-529. [PMID: 32956022 DOI: 10.1152/physiolgenomics.00074.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our goal was to elucidate microRNAs (miRNAs) that may repress the excess bone morphogenetic protein (BMP) signaling observed during pathological calcification in the Klotho mouse model of kidney disease. We hypothesized that restoring healthy levels of miRNAs that post-transcriptionally repress osteogenic calcific factors may decrease aortic calcification. Our relative abundance profiles of miRNAs in healthy aorta differ greatly from those in calcified mouse aorta. Many of these miRNAs are predicted to regulate proteins involved in BMP signaling and may control osteogenesis. Two differentially regulated miRNAs, miR-145 and miR-378, were selected based on three criteria: reduced levels in calcified aorta, the ability to target more than one protein in the BMP signaling pathway, and conservation of targeted sequences between humans and mice. Forced expression using a lentiviral vector demonstrated that restoring normal levels repressed the synthesis of BMP2 and other pro-osteogenic proteins and inhibited pathological aortic calcification in Klotho mice with renal insufficiency. This study identified miRNAs that may impact BMP signaling in both sexes and demonstrated the efficacy of selected miRNAs in reducing aortic calcification in vivo. Calcification of the aorta and the aortic valve resulting from abnormal osteogenesis is common in those with kidney disease, diabetes, and high cholesterol. Such vascular osteogenesis is a clinically significant feature. The calcification modulating miRNAs described here are candidates for biomarkers and "miRNA replacement therapies" in the context of chronic kidney disease and other pro-calcific conditions.
Collapse
Affiliation(s)
- Ying Tang
- Rutgers - New Jersey Medical School, Microbiology, Biochemistry, & Molecular Genetics, Newark, NJ, United States
| | - Tapan A Shah
- Rutgers - New Jersey Medical School, Microbiology, Biochemistry, & Molecular Genetics, Newark, NJ, United States
| | - Edward J Yurkow
- Rutgers University Molecular Imaging Center (RUMIC), Rutgers University, Piscataway, NJ, United States
| | - Melissa B Rogers
- Rutgers - New Jersey Medical School, Microbiology, Biochemistry, & Molecular Genetics, Newark, NJ, United States
| |
Collapse
|
62
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall and the primary underlying cause of cardiovascular disease. Data from in vivo imaging, cell-lineage tracing and knockout studies in mice, as well as clinical interventional studies and advanced mRNA sequencing techniques, have drawn attention to the role of T cells as critical drivers and modifiers of the pathogenesis of atherosclerosis. CD4+ T cells are commonly found in atherosclerotic plaques. A large body of evidence indicates that T helper 1 (TH1) cells have pro-atherogenic roles and regulatory T (Treg) cells have anti-atherogenic roles. However, Treg cells can become pro-atherogenic. The roles in atherosclerosis of other TH cell subsets such as TH2, TH9, TH17, TH22, follicular helper T cells and CD28null T cells, as well as other T cell subsets including CD8+ T cells and γδ T cells, are less well understood. Moreover, some T cells seem to have both pro-atherogenic and anti-atherogenic functions. In this Review, we summarize the knowledge on T cell subsets, their functions in atherosclerosis and the process of T cell homing to atherosclerotic plaques. Much of our understanding of the roles of T cells in atherosclerosis is based on findings from experimental models. Translating these findings into human disease is challenging but much needed. T cells and their specific cytokines are attractive targets for developing new preventive and therapeutic approaches including potential T cell-related therapies for atherosclerosis.
Collapse
Affiliation(s)
- Ryosuke Saigusa
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Holger Winkels
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
63
|
Vedder VL, Aherrahrou Z, Erdmann J. Dare to Compare. Development of Atherosclerotic Lesions in Human, Mouse, and Zebrafish. Front Cardiovasc Med 2020; 7:109. [PMID: 32714944 PMCID: PMC7344238 DOI: 10.3389/fcvm.2020.00109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases, such as atherosclerosis, are the leading cause of death worldwide. Although mice are currently the most commonly used model for atherosclerosis, zebrafish are emerging as an alternative, especially for inflammatory and lipid metabolism studies. Here, we review the history of in vivo atherosclerosis models and highlight the potential for future studies on inflammatory responses in lipid deposits in zebrafish, based on known immune reactions in humans and mice, in anticipation of new zebrafish models with more advanced atherosclerotic plaques.
Collapse
Affiliation(s)
- Viviana L Vedder
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| |
Collapse
|
64
|
Papandreou C, Moré M, Bellamine A. Trimethylamine N-Oxide in Relation to Cardiometabolic Health-Cause or Effect? Nutrients 2020; 12:E1330. [PMID: 32392758 PMCID: PMC7284902 DOI: 10.3390/nu12051330] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO) is generated in a microbial-mammalian co-metabolic pathway mainly from the digestion of meat-containing food and dietary quaternary amines such as phosphatidylcholine, choline, betaine, or L-carnitine. Fish intake provides a direct significant source of TMAO. Human observational studies previously reported a positive relationship between plasma TMAO concentrations and cardiometabolic diseases. Discrepancies and inconsistencies of recent investigations and previous studies questioned the role of TMAO in these diseases. Several animal studies reported neutral or even beneficial effects of TMAO or its precursors in cardiovascular disease model systems, supporting the clinically proven beneficial effects of its precursor, L-carnitine, or a sea-food rich diet (naturally containing TMAO) on cardiometabolic health. In this review, we summarize recent preclinical and epidemiological evidence on the effects of TMAO, in order to shed some light on the role of TMAO in cardiometabolic diseases, particularly as related to the microbiome.
Collapse
|
65
|
Novakovic M, Rout A, Kingsley T, Kirchoff R, Singh A, Verma V, Kant R, Chaudhary R. Role of gut microbiota in cardiovascular diseases. World J Cardiol 2020; 12:110-122. [PMID: 32431782 PMCID: PMC7215967 DOI: 10.4330/wjc.v12.i4.110] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
The human gut is colonized by a community of microbiota, primarily bacteria, that exist in a symbiotic relationship with the host. Intestinal microbiota-host interactions play a critical role in the regulation of human physiology. Deleterious changes to the composition of gut microbiota, referred to as gut dysbiosis, has been linked to the development and progression of numerous diseases, including cardiovascular disease (CVD). Imbalances in host-microbial interaction impair homeostatic mechanisms that regulate health and can activate multiple pathways leading to CVD risk factor progression. Most CVD risk factors, including aging, obesity, dietary patterns, and a sedentary lifestyle, have been shown to induce gut dysbiosis. Dysbiosis is associated with intestinal inflammation and reduced integrity of the gut barrier, which in turn increases circulating levels of bacterial structural components and microbial metabolites, including trimethylamine-N-oxide and short-chain fatty acids, that may facilitate the development of CVD. This article reviews the normal function and composition of the gut microbiome, mechanisms leading to the leaky gut syndrome, its mechanistic link to CVD and potential novel therapeutic approaches aimed towards restoring gut microbiome and CVD prevention. As CVD is the leading cause of deaths globally, investigating the gut microbiota as a locus of intervention presents a novel and clinically relevant avenue for future research.
Collapse
Affiliation(s)
- Marko Novakovic
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD 21215, United States
| | - Amit Rout
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD 21215, United States
| | - Thomas Kingsley
- Department of Internal Medicine, Division of Hospital Internal Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Robert Kirchoff
- Department of Internal Medicine, Division of Hospital Internal Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Amteshwar Singh
- Department of Internal Medicine, Division of Hospital Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Vipin Verma
- Department of Internal Medicine, Medical University of South Carolina/AnMed Campus, Charleston, SC 29425, United States
| | - Ravi Kant
- Division of Endocrinology, Diabetes and Nutrition, Medical University of South Carolina/Anmed Campus, Anderson, SC 29621, United States
| | - Rahul Chaudhary
- Department of Internal Medicine, Division of Hospital Internal Medicine, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
66
|
In Search for Genes Related to Atherosclerosis and Dyslipidemia Using Animal Models. Int J Mol Sci 2020; 21:ijms21062097. [PMID: 32197550 PMCID: PMC7139774 DOI: 10.3390/ijms21062097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a multifactorial chronic disease that affects large arteries and may lead to fatal consequences. According to current understanding, inflammation and lipid accumulation are the two key mechanisms of atherosclerosis development. Animal models based on genetically modified mice have been developed to investigate these aspects. One such model is low-density lipoprotein (LDL) receptor knockout (KO) mice (ldlr-/-), which are characterized by a moderate increase of plasma LDL cholesterol levels. Another widely used genetically modified mouse strain is apolipoprotein-E KO mice (apoE-/-) that lacks the primary lipoprotein required for the uptake of lipoproteins through the hepatic receptors, leading to even greater plasma cholesterol increase than in ldlr-/- mice. These and other animal models allowed for conducting genetic studies, such as genome-wide association studies, microarrays, and genotyping methods, which helped identifying more than 100 mutations that contribute to atherosclerosis development. However, translation of the results obtained in animal models for human situations was slow and challenging. At the same time, genetic studies conducted in humans were limited by low sample sizes and high heterogeneity in predictive subclinical phenotypes. In this review, we summarize the current knowledge on the use of KO mice for identification of genes implicated in atherosclerosis and provide a list of genes involved in atherosclerosis-associated inflammatory pathways and their brief characteristics. Moreover, we discuss the approaches for candidate gene search in animals and humans and discuss the progress made in the field of epigenetic studies that appear to be promising for identification of novel biomarkers and therapeutic targets.
Collapse
|
67
|
Mouse Systems Genetics as a Prelude to Precision Medicine. Trends Genet 2020; 36:259-272. [PMID: 32037011 DOI: 10.1016/j.tig.2020.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
Mouse models have been instrumental in understanding human disease biology and proposing possible new treatments. The precise control of the environment and genetic composition of mice allows more rigorous observations, but limits the generalizability and translatability of the results into human applications. In the era of precision medicine, strategies using mouse models have to be revisited to effectively emulate human populations. Systems genetics is one promising paradigm that may promote the transition to novel precision medicine strategies. Here, we review the state-of-the-art resources and discuss how mouse systems genetics helps to understand human diseases and to advance the development of precision medicine, with an emphasis on the existing resources and strategies.
Collapse
|
68
|
Basu D, Bornfeldt KE. Hypertriglyceridemia and Atherosclerosis: Using Human Research to Guide Mechanistic Studies in Animal Models. Front Endocrinol (Lausanne) 2020; 11:504. [PMID: 32849290 PMCID: PMC7423973 DOI: 10.3389/fendo.2020.00504] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Human studies support a strong association between hypertriglyceridemia and atherosclerotic cardiovascular disease (CVD). However, whether a causal relationship exists between hypertriglyceridemia and increased CVD risk is still unclear. One plausible explanation for the difficulty establishing a clear causal role for hypertriglyceridemia in CVD risk is that lipolysis products of triglyceride-rich lipoproteins (TRLs), rather than the TRLs themselves, are the likely mediators of increased CVD risk. This hypothesis is supported by studies of rare mutations in humans resulting in impaired clearance of such lipolysis products (remnant lipoprotein particles; RLPs). Several animal models of hypertriglyceridemia support this hypothesis and have provided additional mechanistic understanding. Mice deficient in lipoprotein lipase (LPL), the major vascular enzyme responsible for TRL lipolysis and generation of RLPs, or its endothelial anchor GPIHBP1, are severely hypertriglyceridemic but develop only minimal atherosclerosis as compared with animal models deficient in apolipoprotein (APO) E, which is required to clear TRLs and RLPs. Likewise, animal models convincingly show that increased clearance of TRLs and RLPs by LPL activation (achieved by inhibition of APOC3, ANGPTL3, or ANGPTL4 action, or increased APOA5) results in protection from atherosclerosis. Mechanistic studies suggest that RLPs are more atherogenic than large TRLs because they more readily enter the artery wall, and because they are enriched in cholesterol relative to triglycerides, which promotes pro-atherogenic effects in lesional cells. Other mechanistic studies show that hepatic receptors (LDLR and LRP1) and APOE are critical for RLP clearance. Thus, studies in animal models have provided additional mechanistic insight and generally agree with the hypothesis that RLPs derived from TRLs are highly atherogenic whereas hypertriglyceridemia due to accumulation of very large TRLs in plasma is not markedly atherogenic in the absence of TRL lipolysis products.
Collapse
Affiliation(s)
- Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY, United States
| | - Karin E. Bornfeldt
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- *Correspondence: Karin E. Bornfeldt
| |
Collapse
|
69
|
Maazi H, Hartiala JA, Suzuki Y, Crow AL, Shafiei Jahani P, Lam J, Patel N, Rigas D, Han Y, Huang P, Eskin E, Lusis AJ, Gilliland FD, Akbari O, Allayee H. A GWAS approach identifies Dapp1 as a determinant of air pollution-induced airway hyperreactivity. PLoS Genet 2019; 15:e1008528. [PMID: 31869344 PMCID: PMC6944376 DOI: 10.1371/journal.pgen.1008528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/06/2020] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways with contributions from genes, environmental exposures, and their interactions. While genome-wide association studies (GWAS) in humans have identified ~200 susceptibility loci, the genetic factors that modulate risk of asthma through gene-environment (GxE) interactions remain poorly understood. Using the Hybrid Mouse Diversity Panel (HMDP), we sought to identify the genetic determinants of airway hyperreactivity (AHR) in response to diesel exhaust particles (DEP), a model traffic-related air pollutant. As measured by invasive plethysmography, AHR under control and DEP-exposed conditions varied 3-4-fold in over 100 inbred strains from the HMDP. A GWAS with linear mixed models mapped two loci significantly associated with lung resistance under control exposure to chromosomes 2 (p = 3.0x10-6) and 19 (p = 5.6x10-7). The chromosome 19 locus harbors Il33 and is syntenic to asthma association signals observed at the IL33 locus in humans. A GxE GWAS for post-DEP exposure lung resistance identified a significantly associated locus on chromosome 3 (p = 2.5x10-6). Among the genes at this locus is Dapp1, an adaptor molecule expressed in immune-related and mucosal tissues, including the lung. Dapp1-deficient mice exhibited significantly lower AHR than control mice but only after DEP exposure, thus functionally validating Dapp1 as one of the genes underlying the GxE association at this locus. In summary, our results indicate that some of the genetic determinants for asthma-related phenotypes may be shared between mice and humans, as well as the existence of GxE interactions in mice that modulate lung function in response to air pollution exposures relevant to humans. The genetic factors that modulate risk of asthma through gene-environment (GxE) interactions are poorly understood, due in large part to the inherent difficulties in carrying out such studies in humans. To address these challenges, we used the Hybrid Mouse Diversity Panel to elucidate the genetic architecture of asthma-related phenotypes in mice and identify loci that are associated with airway hyperreactivity (AHR) under control exposure conditions and in response to diesel exhaust particles (DEP), as a model traffic-related air pollutant. In the absence of exposure, we identified two loci on chromosomes 2 and 19 for AHR. The locus on chromosome 19 harbors Il33 and is syntenic to association signals observed for asthma at the IL33 locus in humans. In response to DEP exposure, we mapped AHR to a region on chromosome 3 and used a genetically modified mouse model to functionally demonstrate that Dapp1 is one of the genes underlying the GxE association at this locus. Collectively, our results support the concept that some of the genetic determinants for asthma-related phenotypes may be shared between mice and humans as well as the existence of GxE interactions in mice that modulate lung function in response to air pollution exposures relevant to humans.
Collapse
Affiliation(s)
- Hadi Maazi
- Departments of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jaana A. Hartiala
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yuzo Suzuki
- Departments of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amanda L. Crow
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Pedram Shafiei Jahani
- Departments of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jonathan Lam
- Departments of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Nisheel Patel
- Departments of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Diamanda Rigas
- Departments of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yi Han
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Pin Huang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Eleazar Eskin
- Department of Computer Science and Inter-Departmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Aldons. J. Lusis
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Frank D. Gilliland
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Omid Akbari
- Departments of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (OA); (HA)
| | - Hooman Allayee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (OA); (HA)
| |
Collapse
|
70
|
Abstract
The gut microbiota is a central regulator of host metabolism. The composition and function of the gut microbiota is dynamic and affected by diet properties such as the amount and composition of lipids. Hence, dietary lipids may influence host physiology through interaction with the gut microbiota. Lipids affect the gut microbiota both as substrates for bacterial metabolic processes, and by inhibiting bacterial growth by toxic influence. The gut microbiota has been shown to affect lipid metabolism and lipid levels in blood and tissues, both in mice and humans. Furthermore, diseases linked to dyslipidemia, such as non-alcoholic liver disease and atherosclerosis, are associated with changes in gut microbiota profile. The influence of the gut microbiota on host lipid metabolism may be mediated through metabolites produced by the gut microbiota such as short-chain fatty acids, secondary bile acids and trimethylamine and by pro-inflammatory bacterially derived factors such as lipopolysaccharide. Here we will review the association between gut microbiota, dietary lipids and lipid metabolism.
Collapse
Affiliation(s)
- Marc Schoeler
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345, Gothenburg, Sweden.
| |
Collapse
|
71
|
Multiple genome analyses reveal key genes in Vitamin C and Vitamin D synthesis and transport pathways are shared. Sci Rep 2019; 9:16811. [PMID: 31727908 PMCID: PMC6856197 DOI: 10.1038/s41598-019-53074-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
Vitamin C (VC) and vitamin D (VD) have been widely used as the dietary supplements and in treatment of diseases both independently and in combination. Whether there is a connection between their pathways is critical for their therapeutic applications. Using whole-genome expression profiles, we performed multiple measures of associations, networks, eQTL mappings and expressions of key genes of interest in VC and VD functions. Several key genes in their pathways were found to be associated. Gc and Rgn play important roles connecting VC and VD pathways in mice. The r values of expression levels between Gc and Rgn in mouse spleen, liver, lung, and kidney are 0.937, 0.558, 0.901, and 0.617, respectively. The expression QTLs of Gc and Rgn are mapped onto the same locations, i.e., 68-76 MB in chromosome 7 and 26-36 MB in chromosome 9. In humans, there are positive correlations between CYP27B1 and SLC23A1 expression levels in kidney (r = 0.733) and spleen (r = 0.424). SLC23A2 and RXRA are minimally associated in both mouse and human. These data indicate that pathways of VC and VD are not independent but affect each other, and this effect is different between mice and humans during VC and VD synthesis and transportation.
Collapse
|
72
|
Zhao J, Huangfu C, Chang Z, Grainger AT, Liu Z, Shi W. Atherogenesis in the Carotid Artery with and without Interrupted Blood Flow of Two Hyperlipidemic Mouse Strains. J Vasc Res 2019; 56:241-254. [PMID: 31536996 DOI: 10.1159/000502691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Atherosclerosis in the carotid arteries is a common cause of ischemic stroke. We examined atherogenesis in the left carotid artery with and without interrupted blood flow of C57BL/6 (B6) and C3H-Apoe-deficient (Apoe-/-) mouse strains. METHODS Blood flow was interrupted by ligating the common carotid artery near its bifurcation in one group of mice and another group was not interrupted. RESULTS Without interference with blood flow, C3H-Apoe-/- mice developed no atherosclerosis in the carotid artery, while B6-Apoe-/- mice formed advanced atherosclerotic lesions (98,019 ± 10,594 μm2/section) after 12 weeks of a Western diet. When blood flow was interrupted by ligating the common carotid artery near its bifurcation, C3H-Apoe-/- mice showed fatty streak lesions 2 weeks after ligation, and by 4 weeks fibrous lesions had formed, although they were smaller than in B6-Apoe-/- mice. Neutrophil adhesion to endothelium and infiltration in lesions was observed in ligated arteries of both strains. Treatment of B6-Apoe-/- mice with antibody against neutrophils had little effect on lesion size. CONCLUSIONS These findings demonstrate the dramatic influences of genetic backgrounds and blood flow on atherogenesis in the carotid artery of hyperlipidemic mice.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.,Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chaoji Huangfu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.,Center for Disease Control and Prevention, Western Theater Command, Lanzhou, China
| | - Zhihui Chang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.,Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Andrew T Grainger
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA, .,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA,
| |
Collapse
|
73
|
Li J, Zhang W, Liu W, Rong J, Chen Y, Gu W, Zhang W. Association of Leukemia Target Genes Tet2, Bcl2, and Slc23a2 in Vitamin C Pathways. Cancer Genomics Proteomics 2019; 16:333-344. [PMID: 31467227 DOI: 10.21873/cgp.20138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/15/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Vitamin C has been used in combination with several target genes in the treatment of leukemia. Tet methylcytosine dioxygenase (Tet2), B-cell lymphoma 2 (Bcl2), and solute carrier family 23 member 2 (Slc23a2) are the major target genes in the treatment of leukemia and are relevant to vitamin C. MATERIALS AND METHODS Using whole-genome expression profiles from mouse livers, the expression quantitative trait locus (eQTL), correlation matrix, and gene network graph were constructed with probes from each of these three genes and with their relative genes. The function of key genes was examined by their pathways and reported information. The results indicated that although direct correlations among their expression levels were not strong, alternative connecting pathways were discovered. By comparing the expression levels of one probe with known sequences from each of the three genes, we identified several key genes, induced myeloid leukemia cell differentiation protein (Mcl1), far upstream element-binding protein 1 (Fubp1), and tumor protein D52-like 2 (Tpd52l2), which play important roles in acute lymphocytic leukemia and acute myelocytic leukemia. In conclusion, Alternative pathways and key genes that connect Tet2, Bcl2, and Slc23a2 for their therapeutic applications with vitamin C were identified.
Collapse
Affiliation(s)
- Jing Li
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Wenqi Zhang
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, U.S.A.,College of Basic Medicine, Hebei Medical University, Shijiazhuang, P.R. China
| | - Weidong Liu
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, U.S.A.,The First Hospital of Qiqihar City, Heilongjiang, P.R. China
| | - Jarrett Rong
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, U.S.A.,BSA Biology, Health Science Scholars Honors Program, the University of Texas at Austin, Austin, TX, U.S.A
| | - Yuhan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, U.S.A. .,Research Service, Memphis VA Medical Center, Memphis, TN, U.S.A
| | - Wei Zhang
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, U.S.A. .,Department of Pharmacology, School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, P.R. China
| |
Collapse
|
74
|
Chan MM, Yang X, Wang H, Saaoud F, Sun Y, Fong D. The Microbial Metabolite Trimethylamine N-Oxide Links Vascular Dysfunctions and the Autoimmune Disease Rheumatoid Arthritis. Nutrients 2019; 11:E1821. [PMID: 31394758 PMCID: PMC6723051 DOI: 10.3390/nu11081821] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/21/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Diet and microbiota each have a direct impact on many chronic, inflammatory, and metabolic diseases. As the field develops, a new perspective is emerging. The effects of diet may depend on the microbiota composition of the intestine. A diet that is rich in choline, red meat, dairy, or egg may promote the growth, or change the composition, of microbial species. The microbiota, in turn, may produce metabolites that increase the risk of cardiovascular disease. This article reviews our current understanding of the effects of the molecule trimethylamine-N-oxide (TMAO) obtained from food or produced by the microbiota. We review the mechanisms of actions of TMAO, and studies that associate it with cardiovascular and chronic kidney diseases. We introduce a novel concept: TMAO is one among a group of selective uremic toxins that may rise to high levels in the circulation or accumulate in various organs. Based on this information, we evaluate how TMAO may harm, by exacerbating inflammation, or may protect, by attenuating amyloid formation, in autoimmune diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Marion M Chan
- Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| | - Xiaofeng Yang
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Dunne Fong
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
75
|
Leon-Mimila P, Wang J, Huertas-Vazquez A. Relevance of Multi-Omics Studies in Cardiovascular Diseases. Front Cardiovasc Med 2019; 6:91. [PMID: 31380393 PMCID: PMC6656333 DOI: 10.3389/fcvm.2019.00091] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death around the world. Despite the larger number of genes and loci identified, the precise mechanisms by which these genes influence risk of cardiovascular disease is not well understood. Recent advances in the development and optimization of high-throughput technologies for the generation of "omics data" have provided a deeper understanding of the processes and dynamic interactions involved in human diseases. However, the integrative analysis of "omics" data is not straightforward and represents several logistic and computational challenges. In spite of these difficulties, several studies have successfully applied integrative genomics approaches for the investigation of novel mechanisms and plasma biomarkers involved in cardiovascular diseases. In this review, we summarized recent studies aimed to understand the molecular framework of these diseases using multi-omics data from mice and humans. We discuss examples of omics studies for cardiovascular diseases focused on the integration of genomics, epigenomics, transcriptomics, and proteomics. This review also describes current gaps in the study of complex diseases using systems genetics approaches as well as potential limitations and future directions of this emerging field.
Collapse
Affiliation(s)
| | | | - Adriana Huertas-Vazquez
- Division of Cardiology, David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
76
|
Affiliation(s)
- Godfrey S Getz
- From the Department of Pathology (G.S.G.), The University of Chicago, IL
| | - Catherine A Reardon
- Ben May Institute for Cancer Research (C.A.R.), The University of Chicago, IL
| |
Collapse
|
77
|
Korshunov VA, Quinn B, Faiyaz A, Ahmed R, Sowden MP, Doyley MM, Berk BC. Strain-selective efficacy of sacubitril/valsartan on carotid fibrosis in response to injury in two inbred mouse strains. Br J Pharmacol 2019; 176:2795-2807. [PMID: 31077344 DOI: 10.1111/bph.14708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Sacubitril/valsartan (Sac/val) is more effective than valsartan in lowering BP and mortality in patients with heart failure. Here, we proposed that Sac/val treatment would be more effective in preventing pathological vascular remodelling in 129X1/SvJ (129X1), than in C57BL/6J (B6) inbred mice. EXPERIMENTAL APPROACH Sac/val (60 mg·kg-1 ·day-1 ) and valsartan (27 mg·kg-1 ·day-1 ) were given as prophylactic or therapeutic treatments, to 129X1 or B6 mice with carotid artery ligation for 14 days. Blood flow was measured by ultrasound. Ex vivo, carotid tissue was analysed with histological and morphometric techniques, together with RNA sequencing and gene ontology. KEY RESULTS Sac/val was more effective than valsartan in lowering BP in 129X1 compared with B6 mice. Liver expression of CYP2C9 and plasma cGMP levels were similar across treatments. A reduction in carotid thickening after prophylactic treatment with valsartan or Sac/val also resulted in significant arterial shrinkage in B6 mice. In 129X1 mice, Sac/val and prophylactic treatment with valsartan had no effect on carotid thickening but preserved carotid size. BP lowering significantly correlated with a decline in carotid stiffness (R2 = .37, P = .0096) in 129X1 but not in B6 mice. The gene expression signature associated with hyalurononglucosaminidase activity was down-regulated in injured arteries after both regimens of Sac/val only in 129X1 mice. Administration of Sac/val but not valsartan significantly reduced deposition of hyaluronic acid and carotid fibrosis in 129X1 mice. CONCLUSION AND IMPLICATIONS These results underscore the importance of the genetic background in the efficacy of the Sac/val on vascular fibrosis.
Collapse
Affiliation(s)
- Vyacheslav A Korshunov
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York
| | - Breandan Quinn
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York
| | - Abrar Faiyaz
- Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Rifat Ahmed
- Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Mark P Sowden
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Bradford C Berk
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York.,Neurorestoration Institute, University of Rochester, Rochester, New York
| |
Collapse
|
78
|
Moore JH, Mackay TFC, Williams SM. Testing the assumptions of parametric linear models: the need for biological data mining in disciplines such as human genetics. BioData Min 2019; 12:6. [PMID: 30792817 PMCID: PMC6371539 DOI: 10.1186/s13040-019-0194-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/03/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jason H. Moore
- Department of Biostatistics and Epidemiology, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6021 USA
| | - Trudy F. C. Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646 USA
| | - Scott M. Williams
- Department of Epidemiology and Biostatistics, Case-Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| |
Collapse
|
79
|
Coffey AR, Kanke M, Smallwood TL, Albright J, Pitman W, Gharaibeh RZ, Hua K, Gertz E, Biddinger SB, Temel RE, Pomp D, Sethupathy P, Bennett BJ. microRNA-146a-5p association with the cardiometabolic disease risk factor TMAO. Physiol Genomics 2019; 51:59-71. [PMID: 30633643 DOI: 10.1152/physiolgenomics.00079.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Trimethylamine-N-oxide (TMAO), a microbial choline metabolism byproduct that is processed in the liver and excreted into circulation, is associated with increased atherosclerotic lesion formation and cardiovascular disease risk. Genetic regulators of TMAO levels are largely unknown. In the present study, we used 288 mice from a genetically heterogeneous mouse population [Diversity Outbred (DO)] to determine hepatic microRNA associations with TMAO in the context of an atherogenic diet. We also validated findings in two additional animal models of atherosclerosis: liver-specific insulin receptor knockout mice fed a chow diet (LIRKO) and African green monkeys fed high-fat/high-cholesterol diet. Small RNA-sequencing analysis in DO mice, LIRKO mice, and African green monkeys identified only one hepatic microRNA (miR-146a-5p) that is aberrantly expressed across all three models. Moreover, miR-146a-5p levels are associated with circulating TMAO after atherogenic diet in each of these models. We also performed high-resolution genetic mapping and identified a novel quantitative trait locus on Chromosome 12 for TMAO levels. This interval includes two genes, Numb and Dlst, which are inversely correlated with both miR-146a and TMAO and are predicted targets of miR-146a. Both of these genes have been validated as direct targets of miR-146a, though in other cellular contexts. This is the first report to our knowledge of a link between miR-146 and TMAO. Our findings suggest that miR-146-5p, as well as one or more genes at the Chromosome 12 QTL (possibly Numb or Dlst), is strongly linked to TMAO levels and likely involved in the control of atherosclerosis.
Collapse
Affiliation(s)
- Alisha R Coffey
- Curriculum in Genetics and Molecular Biology, University of North Carolina , Chapel Hill, North Carolina
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University , Ithaca, New York
| | - Tangi L Smallwood
- Curriculum in Genetics and Molecular Biology, University of North Carolina , Chapel Hill, North Carolina
| | - Jody Albright
- Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina
| | - Wendy Pitman
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University , Ithaca, New York
| | - Raad Z Gharaibeh
- Department of Bioinformatics, University of North Carolina , Charlotte, North Carolina
| | - Kunjie Hua
- Department of Genetics, University of North Carolina , Chapel Hill, North Carolina
| | - Erik Gertz
- US Department of Agriculture, Agricultural Research Service Western Human Nutrition Research Center, Obesity and Metabolism Unit, Davis, California
| | - Sudha B Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Ryan E Temel
- Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky
| | - Daniel Pomp
- Department of Genetics, University of North Carolina , Chapel Hill, North Carolina
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University , Ithaca, New York
| | - Brian J Bennett
- US Department of Agriculture, Agricultural Research Service Western Human Nutrition Research Center, Obesity and Metabolism Unit, Davis, California
| |
Collapse
|
80
|
Pamir N, Pan C, Plubell DL, Hutchins PM, Tang C, Wimberger J, Irwin A, Vallim TQDA, Heinecke JW, Lusis AJ. Genetic control of the mouse HDL proteome defines HDL traits, function, and heterogeneity. J Lipid Res 2019; 60:594-608. [PMID: 30622162 PMCID: PMC6399512 DOI: 10.1194/jlr.m090555] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
HDLs are nanoparticles with more than 80 associated proteins, phospholipids, cholesterol, and cholesteryl esters. The potential inverse relation of HDL to coronary artery disease (CAD) and the effects of HDL on myriad other inflammatory conditions warrant a better understanding of the genetic basis of the HDL proteome. We conducted a comprehensive genetic analysis of the regulation of the proteome of HDL isolated from a panel of 100 diverse inbred strains of mice (the hybrid mouse diversity panel) and examined protein composition and efflux capacity to identify novel factors that affect the HDL proteome. Genetic analysis revealed widely varied HDL protein levels across the strains. Some of this variation was explained by local cis-acting regulation, termed cis-protein quantitative trait loci (QTLs). Variations in apoA-II and apoC-3 affected the abundance of multiple HDL proteins, indicating a coordinated regulation. We identified modules of covarying proteins and defined a protein-protein interaction network that describes the protein composition of the naturally occurring subspecies of HDL in mice. Sterol efflux capacity varied up to 3-fold across the strains, and HDL proteins displayed distinct correlation patterns with macrophage and ABCA1-specific cholesterol efflux capacity and cholesterol exchange, suggesting that subspecies of HDL participate in discrete functions. The baseline and stimulated sterol efflux capacity phenotypes were associated with distinct QTLs with smaller effect size, suggesting a multigenetic regulation. Our results highlight the complexity of HDL particles by revealing the high degree of heterogeneity and intercorrelation, some of which is associated with functional variation, and support the concept that HDL-cholesterol alone is not an accurate measure of HDL’s properties, such as protection against CAD.
Collapse
Affiliation(s)
- Nathalie Pamir
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR
| | - Calvin Pan
- Departments of Genetics University of California at Los Angeles, Los Angeles, CA
| | - Deanna L Plubell
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR
| | | | - Chongren Tang
- Department of Medicine University of Washington, Seattle, WA
| | - Jake Wimberger
- Department of Medicine University of Washington, Seattle, WA
| | - Angela Irwin
- Department of Medicine University of Washington, Seattle, WA
| | | | - Jay W Heinecke
- Department of Medicine University of Washington, Seattle, WA
| | - Aldons J Lusis
- Departments of Genetics University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|
81
|
Kutryb-Zajac B, Bulinska A, Zabielska MA, Mierzejewska P, Slominska EM, Smolenski RT. Vascular extracellular adenosine metabolism in mice correlates with susceptibility to atherosclerosis. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:653-662. [PMID: 30587087 DOI: 10.1080/15257770.2018.1489051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal models are widely used in atherosclerosis research. The most useful, economic and valid is mouse genetic model of this pathology. Purinergic signaling is an important mechanism regulating processes involved in the vascular inflammation and atherosclerosis. The aim of this study was to measure vascular activities of nucleotide and adenosine-degrading ecto-enzymes in different strains of mice and to compare them to atherosclerotic susceptibility. The vascular extracellular nucleotide catabolism pathway was analyzed in 6-month-old male genetically unmodified mouse strains: FVB/NJ, DBA/2J, BALB/c, C57Bl/6J and mouse knock-outs on C57Bl/6J background for LDLR (LDLR-/-) and for ApoE and LDLR (ApoE-/-LDLR-/-). LDLR-/- mice were a model of moderate hypercholesterolemia, while ApoE-/-LDLR-/- mice, a model of severe hypercholesterolemia with advanced atherosclerosis. FVB/NJ, DBA/2J and BALB/c mice showed high rates of vascular extracellular AMP hydrolysis and low activity of adenosine deamination. In turn, all mice with the C57Bl/6J background expressed diminished activity of vascular AMP hydrolysis. Mice with genetically-induced hyperlipidemia and atherosclerosis on the C57Bl/6J background revealed increased ecto-adenosine deaminase activity. Mouse strains that were resistant to atherosclerosis (FVB/NJ, DBA/2J, BALB/c) exhibited a protective extracellular vascular ecto-enzyme pattern directed toward the production of anti-inflammatory and anti-atherosclerotic adenosine. In turn, mice with genetically induced hypercholesterolemia and atherosclerosis expressed disturbed activities of ecto-5'nucleotidase and ecto-adenosine deaminase related to decreased production and increased degradation of extracellular adenosine.
Collapse
Affiliation(s)
| | - Alicja Bulinska
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | | | | | - Ewa M Slominska
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - Ryszard T Smolenski
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| |
Collapse
|
82
|
Gonzales NM, Seo J, Hernandez Cordero AI, St Pierre CL, Gregory JS, Distler MG, Abney M, Canzar S, Lionikas A, Palmer AA. Genome wide association analysis in a mouse advanced intercross line. Nat Commun 2018; 9:5162. [PMID: 30514929 PMCID: PMC6279738 DOI: 10.1038/s41467-018-07642-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
The LG/J x SM/J advanced intercross line of mice (LG x SM AIL) is a multigenerational outbred population. High minor allele frequencies, a simple genetic background, and the fully sequenced LG and SM genomes make it a powerful population for genome-wide association studies. Here we use 1,063 AIL mice to identify 126 significant associations for 50 traits relevant to human health and disease. We also identify thousands of cis- and trans-eQTLs in the hippocampus, striatum, and prefrontal cortex of ~200 mice. We replicate an association between locomotor activity and Csmd1, which we identified in an earlier generation of this AIL, and show that Csmd1 mutant mice recapitulate the locomotor phenotype. Our results demonstrate the utility of the LG x SM AIL as a mapping population, identify numerous novel associations, and shed light on the genetic architecture of mammalian behavior.
Collapse
Affiliation(s)
- Natalia M Gonzales
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Jungkyun Seo
- Center for Genomic & Computational Biology, Duke University, Durham, NC, 27708, USA
- Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, 27708, USA
| | - Ana I Hernandez Cordero
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Celine L St Pierre
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Jennifer S Gregory
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Margaret G Distler
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mark Abney
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Stefan Canzar
- Gene Center, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Arimantas Lionikas
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
83
|
Hui ST, Kurt Z, Tuominen I, Norheim F, C.Davis R, Pan C, Dirks DL, Magyar CE, French SW, Chella Krishnan K, Sabir S, Campos‐Pérez F, Méndez‐Sánchez N, Macías‐Kauffer L, León‐Mimila P, Canizales‐Quinteros S, Yang X, Beaven SW, Huertas‐Vazquez A, Lusis AJ. The Genetic Architecture of Diet-Induced Hepatic Fibrosis in Mice. Hepatology 2018; 68:2182-2196. [PMID: 29907965 PMCID: PMC6269199 DOI: 10.1002/hep.30113] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/12/2018] [Indexed: 12/21/2022]
Abstract
We report the genetic analysis of a "humanized" hyperlipidemic mouse model for progressive nonalcoholic steatohepatitis (NASH) and fibrosis. Mice carrying transgenes for human apolipoprotein E*3-Leiden and cholesteryl ester transfer protein and fed a "Western" diet were studied on the genetic backgrounds of over 100 inbred mouse strains. The mice developed hepatic inflammation and fibrosis that was highly dependent on genetic background, with vast differences in the degree of fibrosis. Histological analysis showed features characteristic of human NASH, including macrovesicular steatosis, hepatocellular ballooning, inflammatory foci, and pericellular collagen deposition. Time course experiments indicated that while hepatic triglyceride levels increased steadily on the diet, hepatic fibrosis occurred at about 12 weeks. We found that the genetic variation predisposing to NASH and fibrosis differs markedly from that predisposing to simple steatosis, consistent with a multistep model in which distinct genetic factors are involved. Moreover, genome-wide association identified distinct genetic loci contributing to steatosis and NASH. Finally, we used hepatic expression data from the mouse panel and from 68 bariatric surgery patients with normal liver, steatosis, or NASH to identify enriched biological pathways. Conclusion: The pathways showed substantial overlap between our mouse model and the human disease.
Collapse
Affiliation(s)
- Simon T. Hui
- Department of Medicine, Division of CardiologyDavid Geffen School of MedicineLos AngelesCA
| | - Zeyneb Kurt
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCA
| | - Iina Tuominen
- Department of Medicine, Division of Digestive Diseases & Pfleger Liver Institute and Center for Obesity and Metabolic Health (COMET)David Geffen School of MedicineLos AngelesCA
| | - Frode Norheim
- Department of Medicine, Division of CardiologyDavid Geffen School of MedicineLos AngelesCA
| | - Richard C.Davis
- Department of Medicine, Division of CardiologyDavid Geffen School of MedicineLos AngelesCA
| | - Calvin Pan
- Department of Medicine, Division of CardiologyDavid Geffen School of MedicineLos AngelesCA
| | - Darwin L. Dirks
- Department of Medicine, Division of CardiologyDavid Geffen School of MedicineLos AngelesCA
| | - Clara E. Magyar
- Department of Pathology & Laboratory Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCA
| | - Samuel W. French
- Department of Pathology & Laboratory Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCA
| | | | - Simon Sabir
- Department of Medicine, Division of CardiologyDavid Geffen School of MedicineLos AngelesCA
| | - Francisco Campos‐Pérez
- Clínica Integral de Cirugía para la Obesidad y Enfermedades MetabólicasHospital General Dr. Rubén LéneroMexico CityMexico
| | | | - Luis Macías‐Kauffer
- Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN)Unidad de Genómica de Poblaciones Aplicada a la SaludMexico CityMexico
| | - Paola León‐Mimila
- Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN)Unidad de Genómica de Poblaciones Aplicada a la SaludMexico CityMexico
| | - Samuel Canizales‐Quinteros
- Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN)Unidad de Genómica de Poblaciones Aplicada a la SaludMexico CityMexico
| | - Xia Yang
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCA
| | - Simon W. Beaven
- Department of Medicine, Division of Digestive Diseases & Pfleger Liver Institute and Center for Obesity and Metabolic Health (COMET)David Geffen School of MedicineLos AngelesCA
| | | | - Aldons J. Lusis
- Department of Medicine, Division of CardiologyDavid Geffen School of MedicineLos AngelesCA
| |
Collapse
|
84
|
Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol 2018; 3:1461-1471. [PMID: 30397344 PMCID: PMC6280189 DOI: 10.1038/s41564-018-0272-x] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/24/2018] [Indexed: 12/14/2022]
Abstract
Humans with metabolic and inflammatory diseases frequently harbour lower levels of butyrate-producing bacteria in their gut. However, it is not known whether variation in the levels of these organisms is causally linked with disease development and whether diet modifies the impact of these bacteria on health. Here we show that a prominent gut-associated butyrate-producing bacterial genus (Roseburia) is inversely correlated with atherosclerotic lesion development in a genetically diverse mouse population. We use germ-free apolipoprotein E-deficient mice colonized with synthetic microbial communities that differ in their capacity to generate butyrate to demonstrate that Roseburia intestinalis interacts with dietary plant polysaccharides to: impact gene expression in the intestine, directing metabolism away from glycolysis and toward fatty acid utilization; lower systemic inflammation; and ameliorate atherosclerosis. Furthermore, intestinal administration of butyrate reduces endotoxaemia and atherosclerosis development. Together, our results illustrate how modifiable diet-by-microbiota interactions impact cardiovascular disease, and suggest that interventions aimed at increasing the representation of butyrate-producing bacteria may provide protection against atherosclerosis.
Collapse
|
85
|
Wang X, Huang R, Zhang L, Li S, Luo J, Gu Y, Chen Z, Zheng Q, Chao T, Zheng W, Qi X, Wang L, Wen Y, Liang Y, Lu L. A severe atherosclerosis mouse model on the resistant NOD background. Dis Model Mech 2018; 11:11/10/dmm033852. [PMID: 30305306 PMCID: PMC6215432 DOI: 10.1242/dmm.033852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a complex disease affecting arterial blood vessels and blood flow that could result in a variety of life-threatening consequences. Disease models with diverged genomes are necessary for understanding the genetic architecture of this complex disease. Non-obese diabetic (NOD) mice are highly polymorphic and widely used for studies of type 1 diabetes and autoimmunity. Understanding atherosclerosis development in the NOD strain is of particular interest as human atherosclerosis on the diabetic and autoimmune background has not been successfully modeled. In this study, we used CRISPR/Cas9 genome editing to genetically disrupt apolipoprotein E (ApoE) and low-density lipoprotein receptor (LDLR) expression on the pure NOD background, and compared phenotype between single-gene-deleted mice and double-knockout mutants with reference to ApoE-deficient C57BL/6 mice. We found that genetic ablation of Ldlr or Apoe in NOD mice was not sufficient to establish an atherosclerosis model, in contrast to ApoE-deficient C57BL/6 mice fed a high-fat diet (HFD) for over 12 weeks. We further obtained NOD mice deficient in both LDLR and ApoE, and assessed the severity of atherosclerosis and immune response to hyperlipidemia in comparison to ApoE-deficient C57BL/6 mice. Strikingly, the double-knockout NOD mice treated with a HFD developed severe atherosclerosis with aorta narrowed by over 60% by plaques, accompanied by destruction of pancreatic islets and an inflammatory response to hyperlipidemia. Therefore, we succeeded in obtaining a genetic model with severe atherosclerosis on the NOD background, which is highly resistant to the disease. This model is useful for the study of atherosclerosis in the setting of autoimmunity.
Collapse
Affiliation(s)
- Xugang Wang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China
| | - Rong Huang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China
| | - Saichao Li
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China
| | - Jing Luo
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China
| | - Yanrong Gu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China
| | - Zhijun Chen
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China
| | - Qianqian Zheng
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China
| | - Tianzhu Chao
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China.,Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan Province 453003, China
| | - Wenping Zheng
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China
| | - Xinhui Qi
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China
| | - Li Wang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China
| | - Yinhang Wen
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China .,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China.,Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan Province 453003, China
| | - Liaoxun Lu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China .,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province 453003, China.,Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan Province 453003, China
| |
Collapse
|
86
|
Cross TWL, Kasahara K, Rey FE. Sexual dimorphism of cardiometabolic dysfunction: Gut microbiome in the play? Mol Metab 2018; 15:70-81. [PMID: 29887245 PMCID: PMC6066746 DOI: 10.1016/j.molmet.2018.05.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sex is one of the most powerful modifiers of disease development. Clear sexual dimorphism exists in cardiometabolic health susceptibility, likely due to differences in sex steroid hormones. Changes in the gut microbiome have been linked with the development of obesity, type 2 diabetes, and atherosclerosis; however, the impact of microbes in sex-biased cardiometabolic disorders remains unclear. The gut microbiome is critical for maintaining a normal estrous cycle, testosterone levels, and reproductive function. Gut microbes modulate the enterohepatic recirculation of estrogens and androgens, affecting local and systemic levels of sex steroid hormones. Gut bacteria can also generate androgens from glucocorticoids. SCOPE OF REVIEW This review summarizes current knowledge of the complex interplay between sexual dimorphism in cardiometabolic disease and the gut microbiome. MAJOR CONCLUSIONS Emerging evidence suggests the role of gut microbiome as a modifier of disease susceptibility due to sex; however, the impact on cardiometabolic disease in this complex interplay is lacking. Elucidating the role of gut microbiome on sex-biased susceptibility in cardiometabolic disease is of high relevance to public health given its high prevalence and significant financial burden.
Collapse
Affiliation(s)
- Tzu-Wen L Cross
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI, 53705, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States.
| | - Kazuyuki Kasahara
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States.
| | - Federico E Rey
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI, 53705, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States.
| |
Collapse
|
87
|
Hiyari S, Green E, Pan C, Lari S, Davar M, Davis R, Camargo PM, Tetradis S, Lusis AJ, Pirih FQ. Genomewide Association Study Identifies Cxcl Family Members as Partial Mediators of LPS-Induced Periodontitis. J Bone Miner Res 2018; 33:1450-1463. [PMID: 29637625 PMCID: PMC8434897 DOI: 10.1002/jbmr.3440] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
Periodontitis (PD) is characterized by bacterial infection and inflammation of tooth-supporting structures and can lead to tooth loss. PD affects ∼47% of the US population over age 30 years and has a heritability of about 50%. Although the host immunoinflammatory response and genetic background play a role, little is known of the underlying genetic factors. We examined natural genetic variation in lipopolysaccharide (LPS)-induced PD across a panel of inbred mouse strains, the hybrid mouse diversity panel (HMDP). We observed a strain-dependent sixfold difference in LPS-induced bone loss across the HMDP with a heritability of 53%. We performed a genomewide association study (GWAS) using FAST-LMM, which corrects for population structure, and identified loci significantly associated with PD. We examined candidate genes at a locus on chromosome 5, which suggested a relationship between LPS-induced bone loss and, together with expression data, identified Cxcl family members as associated with PD. We observed an increase in Cxcl10 protein, as well as immune cells and pro-inflammatory cytokines in C57BL/6J (high bone loss strain) but not in A/J (low bone loss strain) after LPS injections. Genetic deletion of CXCR3 (Cxcl9 and10 receptor) demonstrated a ∼50% reduction in bone loss and reduced osteoclasts after LPS injections. Furthermore, WT mice treated with AMG-487 (a CXCR3 antagonist) showed a ∼45% reduction in bone loss and decreased osteoclasts after LPS injections. We conclude that CXCR3 is a strong candidate for modulating the host response in individuals susceptible to PD. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah Hiyari
- Section of Periodontics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elissa Green
- Section of Periodontics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin Pan
- Departments of Medicine, Cardiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Soma Lari
- Section of Periodontics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mina Davar
- Section of Periodontics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard Davis
- Departments of Medicine, Cardiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paulo M Camargo
- Section of Periodontics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sotirios Tetradis
- Section of Oral Radiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aldons J Lusis
- Departments of Medicine, Cardiology, and Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Flavia Q Pirih
- Section of Periodontics, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
88
|
Using the natural variation of mouse populations to understand host-gut microbiome interactions. ACTA ACUST UNITED AC 2018; 28:61-71. [PMID: 32831858 DOI: 10.1016/j.ddmod.2019.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One approach to understanding gut microbiome-host interactions, described in this review, is to examine how natural variation in a model organism, where environmental factors can be controlled, affects the microbiome and, in turn, how the microbiome is associated with physiological or clinical traits. A variation of this approach, termed "systems genetics" is to characterize both the microbiome and the host using various high throughput technologies, such as metabolomics or gene expression of the microbiome and the host. By relating variation in the microbiome and host functions to such "molecular phenotypes", hypotheses can be generated and then experimentally tested. To model human gut microbiome-host interactions in this way, the mouse is particularly useful given the extensive body of genetic resources and experimental tools that are available.
Collapse
|
89
|
Seldin MM, Koplev S, Rajbhandari P, Vergnes L, Rosenberg GM, Meng Y, Pan C, Phuong TMN, Gharakhanian R, Che N, Mäkinen S, Shih DM, Civelek M, Parks BW, Kim ED, Norheim F, Chella Krishnan K, Hasin-Brumshtein Y, Mehrabian M, Laakso M, Drevon CA, Koistinen HA, Tontonoz P, Reue K, Cantor RM, Björkegren JLM, Lusis AJ. A Strategy for Discovery of Endocrine Interactions with Application to Whole-Body Metabolism. Cell Metab 2018; 27:1138-1155.e6. [PMID: 29719227 PMCID: PMC5935137 DOI: 10.1016/j.cmet.2018.03.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/14/2017] [Accepted: 03/24/2018] [Indexed: 12/16/2022]
Abstract
Inter-tissue communication via secreted proteins has been established as a vital mechanism for proper physiologic homeostasis. Here, we report a bioinformatics framework using a mouse reference population, the Hybrid Mouse Diversity Panel (HMDP), which integrates global multi-tissue expression data and publicly available resources to identify and functionally annotate novel circuits of tissue-tissue communication. We validate this method by showing that we can identify known as well as novel endocrine factors responsible for communication between tissues. We further show the utility of this approach by identification and mechanistic characterization of two new endocrine factors. Adipose-derived Lipocalin-5 is shown to enhance skeletal muscle mitochondrial function, and liver-secreted Notum promotes browning of white adipose tissue, also known as "beiging." We demonstrate the general applicability of the method by providing in vivo evidence for three additional novel molecules mediating tissue-tissue interactions.
Collapse
Affiliation(s)
- Marcus M Seldin
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gregory M Rosenberg
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yonghong Meng
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin Pan
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thuy M N Phuong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Raffi Gharakhanian
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nam Che
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Selina Mäkinen
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Diana M Shih
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | - Eric D Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Margarete Mehrabian
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Heikki A Koistinen
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rita M Cantor
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Aldons J Lusis
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.
| |
Collapse
|
90
|
Wobst J, Schunkert H, Kessler T. Genetic alterations in the NO-cGMP pathway and cardiovascular risk. Nitric Oxide 2018; 76:105-112. [PMID: 29601927 DOI: 10.1016/j.niox.2018.03.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/18/2018] [Accepted: 03/26/2018] [Indexed: 12/18/2022]
Abstract
In the past ten years, several chromosomal loci have been identified by genome-wide association studies to influence the risk of coronary artery disease (CAD) and its risk factors. The GUCY1A3 gene encoding the α1 subunit of the soluble guanylyl cyclase (sGC) resides at one of these loci and has been strongly associated with blood pressure and CAD risk. More recently, further genes in the pathway encoding the endothelial nitric oxide synthase, the phosphodiesterases 3A and 5A, and the inositol 1,4,5-trisphosphate receptor I-associated protein (IRAG), i.e., NOS3, PDE3A, PDE5A, and MRVI1, respectively, were likewise identified as CAD risk genes. In this review, we highlight the genetic findings linking variants in NO-cGMP signaling and cardiovascular disease, discuss the potential underlying mechanisms which might propagate the development of atherosclerosis, and speculate about therapeutic implications.
Collapse
Affiliation(s)
- Jana Wobst
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., partner site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., partner site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
91
|
Ifrim S, Amalinei C, Cojocaru E, Matei MC. Administration of valine, leucine, and isoleucine improved plasma cholesterol and mitigated the preatherosclerotic lesions in rats fed with hypercholesterolemic diet. REV ROMANA MED LAB 2018. [DOI: 10.1515/rrlm-2017-0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Hypercholesterolemia has a major contribution to the occurrence and progression of atherosclerotic lesions. Recent studies report the involvement of branched-chain amino acids in cholesterol methabolism. The aim of this research was to evaluate the role of valine, leucine and isoleucine on the occurrence and progression of atherosclerosis in rats receiving hypercholesterolic diet. Material and methods: 50 male Wistar rats distributed into five groups with the following type of diets: group I (control) received standard diet; group II - cholesterol; group III - cholesterol and valine; group IV - cholesterol and leucine; group V - cholesterol and isoleucine. The experimental study was conducted over a period of 2 months. The animals were evaluated for the serum levels of total cholesterol at the beginning of the experiment, after 1 month and after 2 months. The collected tissue fragments of heart and aorta were prepared for the examination by optical microscopy in order to identify the atherosclerotic changes. Results: The most increased values of serum cholesterol were recorded in rats from group II (p=0.001), for the second and third evaluation. The histological examination showed early histopathological lesions on the vascular intima for the groups treated with cholesterol, valine, leucine, and isoleucine. These early changes (the occurrence of some superficial endothelial erosions, adhesion of erythrocytes and platelets) were correlated with the degree of the arterial wall damage, of the leukocytes adhesion to the arterial intima, and the discontinuities of the internal elastic lamina. Conclusion: The comparative study of the effects of the three essential amino acids revealed that valine induced a faster response than leucine and isoleucine on the improvement of biochemical parameters, but there were no significant differences between the three amino acids in terms of their protective ability, demonstrated by the histopathological lesion assessment.
Collapse
Affiliation(s)
- Simona Ifrim
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi , Romania
| | - Cornelia Amalinei
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi; Departent of Histopathology, Institute of Legal Medicine, Iasi , Romania
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi , Romania
| | - Mioara Calipsoana Matei
- Department of Preventive Medicine and Interdisciplinarity, Grigore T. Popa University of Medicine and Pharmacy - Iasi; Iasi Clinical Epidemiology Research and Training Centre; Department of Oncogenetics, Iasi , Romania
| |
Collapse
|
92
|
Robinet P, Milewicz DM, Cassis LA, Leeper NJ, Lu HS, Smith JD. Consideration of Sex Differences in Design and Reporting of Experimental Arterial Pathology Studies-Statement From ATVB Council. Arterioscler Thromb Vasc Biol 2018; 38:292-303. [PMID: 29301789 DOI: 10.1161/atvbaha.117.309524] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
There are many differences in arterial diseases between men and women, including prevalence, clinical manifestations, treatments, and prognosis. The new policy of the National Institutes of Health, which requires the inclusion of sex as a biological variable for preclinical studies, aims to foster new mechanistic insights and to enhance our understanding of sex differences in human diseases. The purpose of this statement is to suggest guidelines for designing and reporting sex as a biological variable in animal models of atherosclerosis, thoracic and abdominal aortic aneurysms, and peripheral arterial disease. We briefly review sex differences of these human diseases and their animal models, followed by suggestions on experimental design and reporting of animal studies for these vascular pathologies.
Collapse
Affiliation(s)
- Peggy Robinet
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic, OH (P.R., J.D.S.); Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston (D.M.M.); Department of Pharmacology and Nutritional Sciences (L.A.C.) and Saha Cardiovascular Research Center and Department of Physiology (H.S.L.), University of Kentucky, Lexington; and Division of Vascular Surgery, Department of Surgery, Stanford University, CA (N.J.L.)
| | - Dianna M Milewicz
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic, OH (P.R., J.D.S.); Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston (D.M.M.); Department of Pharmacology and Nutritional Sciences (L.A.C.) and Saha Cardiovascular Research Center and Department of Physiology (H.S.L.), University of Kentucky, Lexington; and Division of Vascular Surgery, Department of Surgery, Stanford University, CA (N.J.L.)
| | - Lisa A Cassis
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic, OH (P.R., J.D.S.); Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston (D.M.M.); Department of Pharmacology and Nutritional Sciences (L.A.C.) and Saha Cardiovascular Research Center and Department of Physiology (H.S.L.), University of Kentucky, Lexington; and Division of Vascular Surgery, Department of Surgery, Stanford University, CA (N.J.L.)
| | - Nicholas J Leeper
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic, OH (P.R., J.D.S.); Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston (D.M.M.); Department of Pharmacology and Nutritional Sciences (L.A.C.) and Saha Cardiovascular Research Center and Department of Physiology (H.S.L.), University of Kentucky, Lexington; and Division of Vascular Surgery, Department of Surgery, Stanford University, CA (N.J.L.)
| | - Hong S Lu
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic, OH (P.R., J.D.S.); Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston (D.M.M.); Department of Pharmacology and Nutritional Sciences (L.A.C.) and Saha Cardiovascular Research Center and Department of Physiology (H.S.L.), University of Kentucky, Lexington; and Division of Vascular Surgery, Department of Surgery, Stanford University, CA (N.J.L.)
| | - Jonathan D Smith
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic, OH (P.R., J.D.S.); Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston (D.M.M.); Department of Pharmacology and Nutritional Sciences (L.A.C.) and Saha Cardiovascular Research Center and Department of Physiology (H.S.L.), University of Kentucky, Lexington; and Division of Vascular Surgery, Department of Surgery, Stanford University, CA (N.J.L.).
| |
Collapse
|
93
|
Shu L, Arneson D, Yang X. Bioinformatics Principles for Deciphering Cardiovascular Diseases. ENCYCLOPEDIA OF CARDIOVASCULAR RESEARCH AND MEDICINE 2018:273-292. [DOI: 10.1016/b978-0-12-809657-4.99576-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
94
|
Li H, Wang X, Rukina D, Huang Q, Lin T, Sorrentino V, Zhang H, Bou Sleiman M, Arends D, McDaid A, Luan P, Ziari N, Velázquez-Villegas LA, Gariani K, Kutalik Z, Schoonjans K, Radcliffe RA, Prins P, Morgenthaler S, Williams RW, Auwerx J. An Integrated Systems Genetics and Omics Toolkit to Probe Gene Function. Cell Syst 2017; 6:90-102.e4. [PMID: 29199021 DOI: 10.1016/j.cels.2017.10.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/31/2017] [Accepted: 10/25/2017] [Indexed: 01/20/2023]
Abstract
Identifying genetic and environmental factors that impact complex traits and common diseases is a high biomedical priority. Here, we developed, validated, and implemented a series of multi-layered systems approaches, including (expression-based) phenome-wide association, transcriptome-/proteome-wide association, and (reverse-) mediation analysis, in an open-access web server (systems-genetics.org) to expedite the systems dissection of gene function. We applied these approaches to multi-omics datasets from the BXD mouse genetic reference population, and identified and validated associations between genes and clinical and molecular phenotypes, including previously unreported links between Rpl26 and body weight, and Cpt1a and lipid metabolism. Furthermore, through mediation and reverse-mediation analysis we established regulatory relations between genes, such as the co-regulation of BCKDHA and BCKDHB protein levels, and identified targets of transcription factors E2F6, ZFP277, and ZKSCAN1. Our multifaceted toolkit enabled the identification of gene-gene and gene-phenotype links that are robust and that translate well across populations and species, and can be universally applied to any populations with multi-omics datasets.
Collapse
Affiliation(s)
- Hao Li
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Xu Wang
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Daria Rukina
- Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Qingyao Huang
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Tao Lin
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Vincenzo Sorrentino
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Hongbo Zhang
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Maroun Bou Sleiman
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Danny Arends
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
| | - Aaron McDaid
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Institute of Social and Preventive Medicine, University Hospital of Lausanne, Lausanne 1010, Switzerland
| | - Peiling Luan
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Naveed Ziari
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Laura A Velázquez-Villegas
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Karim Gariani
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Zoltan Kutalik
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Institute of Social and Preventive Medicine, University Hospital of Lausanne, Lausanne 1010, Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Richard A Radcliffe
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Pjotr Prins
- University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Department of Genetics, Genomics and Informatics, University of Tennessee, Memphis, TN 38163, USA
| | - Stephan Morgenthaler
- Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee, Memphis, TN 38163, USA
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
95
|
Abstract
PURPOSE OF REVIEW Previous epidemiological studies and studies in experimental animals have provided strong evidence for the atheroprotective effect of HDL and its major apoprotein, apolipoprotein A-I (apoA-I). Identification of genetic loci associating apoA-I/HDL with cardiovascular disease is needed to establish a causal relationship. RECENT FINDINGS Pharmacological interventions to increase apoA-I or HDL cholesterol levels in humans are not associated with reduction in atherosclerosis. Genome wide association study (GWAS) studies in humans and hybrid mouse diversity panel (HMDP) studies looking for genetic variants associated with apoA-I or HDL cholesterol levels with cardiovascular disease and atherosclerosis have not provided strong evidence for their atheroprotective function. SUMMARY These findings indicate that GWAS and HMDP studies identifying possible genetic determinants of HDL and apoA-I function are needed.
Collapse
|
96
|
Nicolaou A, Northoff BH, Sass K, Ernst J, Kohlmaier A, Krohn K, Wolfrum C, Teupser D, Holdt LM. Quantitative trait locus mapping in mice identifies phospholipase Pla2g12a as novel atherosclerosis modifier. Atherosclerosis 2017; 265:197-206. [PMID: 28917158 DOI: 10.1016/j.atherosclerosis.2017.08.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS In a previous work, a female-specific atherosclerosis risk locus on chromosome (Chr) 3 was identified in an intercross of atherosclerosis-resistant FVB and atherosclerosis-susceptible C57BL/6 (B6) mice on the LDL-receptor deficient (Ldlr-/-) background. It was the aim of the current study to identify causative genes at this locus. METHODS We established a congenic mouse model, where FVB.Chr3B6/B6 mice carried an 80 Mb interval of distal Chr3 on an otherwise FVB.Ldlr-/- background, to validate the Chr3 locus. Candidate genes were identified using genome-wide expression analyses. Differentially expressed genes were validated using quantitative PCRs in F0 and F2 mice and their functions were investigated in pathophysiologically relevant cells. RESULTS Fine-mapping of the Chr3 locus revealed two overlapping, yet independent subloci for female atherosclerosis susceptibility: when transmitted by grandfathers to granddaughters, the B6 risk allele increased atherosclerosis and downregulated the expression of the secreted phospholipase Pla2g12a (2.6 and 2.2 fold, respectively); when inherited by grandmothers, the B6 risk allele induced vascular cell adhesion molecule 1 (Vcam1). Down-regulation of Pla2g12a and up-regulation of Vcam1 were validated in female FVB.Chr3B6/B6 congenic mice, which developed 2.5 greater atherosclerotic lesions compared to littermate controls (p=0.039). Pla2g12a was highly expressed in aortic endothelial cells in vivo, and knocking-down Pla2g12a expression by RNAi in cultured vascular endothelial cells or macrophages increased their adhesion to ECs in vitro. CONCLUSIONS Our data establish Pla2g12a as an atheroprotective candidate gene in mice, where high expression levels in ECs and macrophages may limit the recruitment and accumulation of these cells in nascent atherosclerotic lesions.
Collapse
Affiliation(s)
- Alexandros Nicolaou
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Bernd H Northoff
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Kristina Sass
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Jana Ernst
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Kohlmaier
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Knut Krohn
- Interdisciplinary Center for Clinical Research Leipzig (IZKF), Core-Unit DNA Technologies, University of Leipzig, Leipzig, Germany
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Daniel Teupser
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Lesca M Holdt
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany.
| |
Collapse
|
97
|
Shu L, Chan KHK, Zhang G, Huan T, Kurt Z, Zhao Y, Codoni V, Trégouët DA, Cardiogenics Consortium, Yang J, Wilson JG, Luo X, Levy D, Lusis AJ, Liu S, Yang X. Shared genetic regulatory networks for cardiovascular disease and type 2 diabetes in multiple populations of diverse ethnicities in the United States. PLoS Genet 2017; 13:e1007040. [PMID: 28957322 PMCID: PMC5634657 DOI: 10.1371/journal.pgen.1007040] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/10/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVD) and type 2 diabetes (T2D) are closely interrelated complex diseases likely sharing overlapping pathogenesis driven by aberrant activities in gene networks. However, the molecular circuitries underlying the pathogenic commonalities remain poorly understood. We sought to identify the shared gene networks and their key intervening drivers for both CVD and T2D by conducting a comprehensive integrative analysis driven by five multi-ethnic genome-wide association studies (GWAS) for CVD and T2D, expression quantitative trait loci (eQTLs), ENCODE, and tissue-specific gene network models (both co-expression and graphical models) from CVD and T2D relevant tissues. We identified pathways regulating the metabolism of lipids, glucose, and branched-chain amino acids, along with those governing oxidation, extracellular matrix, immune response, and neuronal system as shared pathogenic processes for both diseases. Further, we uncovered 15 key drivers including HMGCR, CAV1, IGF1 and PCOLCE, whose network neighbors collectively account for approximately 35% of known GWAS hits for CVD and 22% for T2D. Finally, we cross-validated the regulatory role of the top key drivers using in vitro siRNA knockdown, in vivo gene knockout, and two Hybrid Mouse Diversity Panels each comprised of >100 strains. Findings from this in-depth assessment of genetic and functional data from multiple human cohorts provide strong support that common sets of tissue-specific molecular networks drive the pathogenesis of both CVD and T2D across ethnicities and help prioritize new therapeutic avenues for both CVD and T2D.
Collapse
Affiliation(s)
- Le Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Kei Hang K. Chan
- Departments of Epidemiology and Medicine and Center for Global Cardiometabolic Health, Brown University, Providence, RI, United States of America
- Hong Kong Institute of Diabetes and Obesity, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Tianxiao Huan
- The Framingham Heart Study, Framingham, MA, USA and the Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States of America
| | - Zeyneb Kurt
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Veronica Codoni
- Sorbonne Universités, UPMC Univ. Paris 06, INSERM, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - David-Alexandre Trégouët
- Sorbonne Universités, UPMC Univ. Paris 06, INSERM, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | | | - Jun Yang
- Department of Public Health, Hangzhou Normal University School of Medicine, Hangzhou, China
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Xi Luo
- Department of Biostatistics, Brown University, Providence, RI, United States of America
| | - Daniel Levy
- The Framingham Heart Study, Framingham, MA, USA and the Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States of America
| | - Aldons J. Lusis
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Simin Liu
- Departments of Epidemiology and Medicine and Center for Global Cardiometabolic Health, Brown University, Providence, RI, United States of America
- Department of Endocrinology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States of America
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
98
|
The Genetic Architecture of Coronary Artery Disease: Current Knowledge and Future Opportunities. Curr Atheroscler Rep 2017; 19:6. [PMID: 28130654 DOI: 10.1007/s11883-017-0641-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW We provide an overview of our current understanding of the genetic architecture of coronary artery disease (CAD) and discuss areas of research that provide excellent opportunities for further exploration. RECENT FINDINGS Large-scale studies in human populations, coupled with rapid advances in genetic technologies over the last decade, have clearly established the association of common genetic variation with risk of CAD. However, the effect sizes of the susceptibility alleles are for the most part modest and collectively explain only a small fraction of the overall heritability. By comparison, evidence that rare variants make a substantial contribution to risk of CAD has been somewhat disappointing thus far, suggesting that other biological mechanisms have yet to be discovered. Emerging data suggests that novel pathways involved in the development of CAD can be identified through complementary and integrative systems genetics strategies in mice or humans. There is also convincing evidence that gut bacteria play a previously unrecognized role in the development of CAD, particularly through metabolism of certain dietary nutrients that lead to proatherogenic metabolites in the circulation. A major effort is now underway to functionally understand the newly discovered genetic and biological associations for CAD, which could lead to the development of potentially novel therapeutic strategies. Other important areas of investigation for understanding the pathophysiology of CAD, including epistatic interactions between genes or with either sex and environmental factors, have not been studied on a broad scope and represent additional opportunities for future studies.
Collapse
|
99
|
Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, Parikh S, Denholtz M, Huang Y, Yamaguchi Y, Shen H, Allayee H, Crump JG, Force TI, Lien CL, Makita T, Lusis AJ, Kumar SR, Sucov HM. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 2017; 49:1346-1353. [PMID: 28783163 DOI: 10.1038/ng.3929] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022]
Abstract
Adult mammalian cardiomyocyte regeneration after injury is thought to be minimal. Mononuclear diploid cardiomyocytes (MNDCMs), a relatively small subpopulation in the adult heart, may account for the observed degree of regeneration, but this has not been tested. We surveyed 120 inbred mouse strains and found that the frequency of adult mononuclear cardiomyocytes was surprisingly variable (>7-fold). Cardiomyocyte proliferation and heart functional recovery after coronary artery ligation both correlated with pre-injury MNDCM content. Using genome-wide association, we identified Tnni3k as one gene that influences variation in this composition and demonstrated that Tnni3k knockout resulted in elevated MNDCM content and increased cardiomyocyte proliferation after injury. Reciprocally, overexpression of Tnni3k in zebrafish promoted cardiomyocyte polyploidization and compromised heart regeneration. Our results corroborate the relevance of MNDCMs in heart regeneration. Moreover, they imply that intrinsic heart regeneration is not limited nor uniform in all individuals, but rather is a variable trait influenced by multiple genes.
Collapse
Affiliation(s)
- Michaela Patterson
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Lindsey Barske
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ben Van Handel
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christoph D Rau
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Peiheng Gan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Avneesh Sharma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shan Parikh
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matt Denholtz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Ying Huang
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Yukiko Yamaguchi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hua Shen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hooman Allayee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Thomas I Force
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ching-Ling Lien
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Takako Makita
- Developmental Neuroscience Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - S Ram Kumar
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Henry M Sucov
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
100
|
Buscher K, Ehinger E, Gupta P, Pramod AB, Wolf D, Tweet G, Pan C, Mills CD, Lusis AJ, Ley K. Natural variation of macrophage activation as disease-relevant phenotype predictive of inflammation and cancer survival. Nat Commun 2017; 8:16041. [PMID: 28737175 PMCID: PMC5527282 DOI: 10.1038/ncomms16041] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
Although mouse models exist for many immune-based diseases, the clinical translation remains challenging. Most basic and translational studies utilize only a single inbred mouse strain. However, basal and diseased immune states in humans show vast inter-individual variability. Here, focusing on macrophage responses to lipopolysaccharide (LPS), we use the hybrid mouse diversity panel (HMDP) of 83 inbred strains as a surrogate for human natural immune variation. Since conventional bioinformatics fail to analyse a population spectrum, we highlight how gene signatures for LPS responsiveness can be derived based on an Interleukin-12β and arginase expression ratio. Compared to published signatures, these gene markers are more robust to identify susceptibility or resilience to several macrophage-related disorders in humans, including survival prediction across many tumours. This study highlights natural activation diversity as a disease-relevant dimension in macrophage biology, and suggests the HMDP as a viable tool to increase translatability of mouse data to clinical settings.
Collapse
Affiliation(s)
- Konrad Buscher
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Erik Ehinger
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Pritha Gupta
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Akula Bala Pramod
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Dennis Wolf
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - George Tweet
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Calvin Pan
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Charles D. Mills
- BioMedical Consultants, Marine on St. Croix, Minnesota 55047, USA
| | - Aldons J. Lusis
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| |
Collapse
|