51
|
Wang Z, Yang Q, Tan Y, Tang Y, Ye J, Yuan B, Yu W. Cancer-Associated Fibroblasts Suppress Cancer Development: The Other Side of the Coin. Front Cell Dev Biol 2021; 9:613534. [PMID: 33614646 PMCID: PMC7890026 DOI: 10.3389/fcell.2021.613534] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the main stromal components of cancer, representing a group of heterogeneous cells. Many studies indicate that CAFs promote tumor development. Besides, evidence of the tumor suppression effects of CAFs keeps on merging. In the tumor microenvironment, multiple stimuli can activate fibroblasts. Notably, this does not necessarily mean the activated CAFs become strong tumor promoters immediately. The varying degree of CAFs activation makes quiescent CAFs, tumor-restraining CAFs, and tumor-promoting CAFs. Quiescent CAFs and tumor-restraining CAFs are more present in early-stage cancer, while comparatively, more tumor-promoting CAFs present in advanced-stage cancer. The underlying mechanism that balances tumor promotion or tumor inhibition effects of CAFs is mostly unknown. This review focus on the inhibitory effects of CAFs on cancer development. We describe the heterogeneous origin, markers, and metabolism in the CAFs population. Transgenetic mouse models that deplete CAFs or deplete CAFs activation signaling in the tumor stroma present direct evidence of CAFs protective effects against cancer. Moreover, we outline CAFs subpopulation and CAFs derived soluble factors that act as a tumor suppressor. Single-cell RNA-sequencing on CAFs population provides us new insight to classify CAFs subsets. Understanding the full picture of CAFs will help translate CAFs biology from bench to bedside and develop new strategies to improve precision cancer therapy.
Collapse
Affiliation(s)
- Zhanhuai Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Yang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinuo Tan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Tang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Yuan
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Wei Yu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
52
|
Sasaki Y, Takagane K, Konno T, Itoh G, Kuriyama S, Yanagihara K, Yashiro M, Yamada S, Murakami S, Tanaka M. Expression of asporin reprograms cancer cells to acquire resistance to oxidative stress. Cancer Sci 2021; 112:1251-1261. [PMID: 33393151 PMCID: PMC7935789 DOI: 10.1111/cas.14794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022] Open
Abstract
Asporin (ASPN), a small leucine‐rich proteoglycan expressed predominantly by cancer associated fibroblasts (CAFs), plays a pivotal role in tumor progression. ASPN is also expressed by some cancer cells, but its biological significance is unclear. Here, we investigated the effects of ASPN expression in gastric cancer cells. Overexpression of ASPN in 2 gastric cancer cell lines, HSC‐43 and 44As3, led to increased migration and invasion capacity, accompanied by induction of CD44 expression and activation of Rac1 and MMP9. ASPN expression increased resistance of HSC‐43 cells to oxidative stress by reducing the amount of mitochondrial reactive oxygen species. ASPN induced expression of the transcription factor HIF1α and upregulated lactate dehydrogenase A (LDHA) and PDH‐E1α, suggesting that ASPN reprograms HSC‐43 cells to undergo anaerobic glycolysis and suppresses ROS generation in mitochondria, which has been observed in another cell line HSC‐44PE. By contrast, 44As3 cells expressed high levels of HIF1α in response to oxidant stress and escaped apoptosis regardless of ASPN expression. Examination of xenografts in the gastric wall of ASPN–/– mice revealed that growth of HSC‐43 tumors with increased micro blood vessel density was significantly accelerated by ASPN; however, ASPN increased the invasion depth of both HSC‐43 and 44As3 tumors. These results suggest that ASPN has 2 distinct effects on cancer cells: HIF1α‐mediated resistance to oxidative stress via reprogramming of glucose metabolism, and activation of CD44‐Rac1 and MMP9 to promote cell migration and invasion. Therefore, ASPN may be a new therapeutic target in tumor fibroblasts and cancer cells in some gastric carcinomas.
Collapse
Affiliation(s)
- Yuto Sasaki
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan.,Department of Life Science, Faculty and Graduate School of Engineering and Resource Science, Akita University, Akita, Japan
| | - Kurara Takagane
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Takumi Konno
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan.,Department of Life Science, Faculty and Graduate School of Engineering and Resource Science, Akita University, Akita, Japan
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
53
|
Han D, Wang L, Chen B, Zhao W, Liang Y, Li Y, Zhang H, Liu Y, Wang X, Chen T, Li C, Song X, Luo D, Li Z, Yang Q. USP1-WDR48 deubiquitinase complex enhances TGF-β induced epithelial-mesenchymal transition of TNBC cells via stabilizing TAK1. Cell Cycle 2021; 20:320-331. [PMID: 33461373 PMCID: PMC7889205 DOI: 10.1080/15384101.2021.1874695] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive histological subtype of breast cancer and is characterized by poor outcomes and a lack of specific-targeted therapies. Transforming growth factor-β (TGF-β) acts as the key cytokine in the epithelial-mesenchymal transition (EMT) and the metastasis of TNBC. However, the regulatory mechanisms of the TGF-β signaling pathway remain largely unknown. In this study, we identified that the USP1/WDR48 complex could effectively enhance TGF-β-mediated EMT and migration of TNBC cells. Furthermore, lower phosphorylation of Smad2/3, Erk, Jnk, and p38 was noted on the suppression of the expression of endogenous USP1 or WDR48. Moreover, the USP1-WDR48 complex was found to downregulate the polyubiquitination of TAK1 and mediate its in vitro stability. Therefore, our findings have shed a light on the novel role of the USP1/WDR48 complex in promoting TGF-β-induced EMT and migration in TNBC via in vitro stabilization of TAK1.
Collapse
Affiliation(s)
- Dianwen Han
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
| | - Yiran Liang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yaming Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hanwen Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Liu
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaolong Wang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Tong Chen
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaojin Song
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Dan Luo
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zheng Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
- Research Institute of Breast Cancer, Shandong University, Jinan, China
| |
Collapse
|
54
|
The Tumor Microenvironment as a Driving Force of Breast Cancer Stem Cell Plasticity. Cancers (Basel) 2020; 12:cancers12123863. [PMID: 33371274 PMCID: PMC7766255 DOI: 10.3390/cancers12123863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Breast cancer stem cells are a subset of transformed cells that sustain tumor growth and can metastasize to secondary organs. Since metastasis accounts for most cancer deaths, it is of paramount importance to understand the cellular and molecular mechanisms that regulate this subgroup of cells. The tumor microenvironment (TME) is the habitat in which transformed cells evolve, and it is composed by many different cell types and the extracellular matrix (ECM). A body of evidence strongly indicates that microenvironmental cues modulate stemness in breast cancer, and that the coevolution of the TME and cancer stem cells determine the fate of breast tumors. In this review, we summarize the studies providing links between the TME and the breast cancer stem cell phenotype and we discuss their specific interactions with immune cell subsets, stromal cells, and the ECM. Abstract Tumor progression involves the co-evolution of transformed cells and the milieu in which they live and expand. Breast cancer stem cells (BCSCs) are a specialized subset of cells that sustain tumor growth and drive metastatic colonization. However, the cellular hierarchy in breast tumors is rather plastic, and the capacity to transition from one cell state to another depends not only on the intrinsic properties of transformed cells, but also on the interplay with their niches. It has become evident that the tumor microenvironment (TME) is a major player in regulating the BCSC phenotype and metastasis. The complexity of the TME is reflected in its number of players and in the interactions that they establish with each other. Multiple types of immune cells, stromal cells, and the extracellular matrix (ECM) form an intricate communication network with cancer cells, exert a highly selective pressure on the tumor, and provide supportive niches for BCSC expansion. A better understanding of the mechanisms regulating these interactions is crucial to develop strategies aimed at interfering with key BCSC niche factors, which may help reducing tumor heterogeneity and impair metastasis.
Collapse
|
55
|
Ring A, Kaur P, Lang JE. EP300 knockdown reduces cancer stem cell phenotype, tumor growth and metastasis in triple negative breast cancer. BMC Cancer 2020; 20:1076. [PMID: 33167919 PMCID: PMC7653866 DOI: 10.1186/s12885-020-07573-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with basal features, lacking the expression of receptors targeted successfully in other breast cancer subtypes. Treatment response to adjuvant and neoadjuvant chemotherapy is often short-lived and metastatic spread occurs at higher rates than other subtypes within the first five years after diagnosis. TNBCs exhibit stem cell features and are enriched for cancer stem cell (CSC) populations. E1A Binding Protein P300 (EP300) is a large protein with multiple cellular functions, including as an effector in stem cell biology. METHODS We used a genetic knockdown (KD) model of EP300 in TNBC cell lines to investigate the effect on CSC phenotype, tumor growth and metastasis. Side population assay and tumorsphere suspension culture were used in vitro. Xenograft mouse models were used for in vivo studies. We performed in silico analysis of publicly available gene expression data sets to investigate CSC gene expression and molecular pathways as well as survival outcomes associated with EP300 expression in patients with TNBC and basal-like BC. RESULTS EP300 KD abolished the CSC phenotype by reducing ABCG2 expression, side population cells and tumorsphere formation capacity in vitro as well as tumor formation in a xenograft mouse model in vivo. Metastatic capacity was markedly reduced in EP300 KD cells in vivo, with no detection of circulating tumor cells. TCGA data analysis demonstrated that genes positively correlated with EP300 expression in TNBC and basal-like BC were associated with CSC biology. Survival analysis demonstrated that EP300 expression predicts poor recurrence free survival in TNBC and basal BC. CONCLUSION We report a novel oncogenic role for EP300 in driving CSC phenotype representing a potential target to address tumor initiation and metastatic spread in TNBC and basal-like BC. EP300 might serve as a prognostic marker and potential therapeutic target in TNBC.
Collapse
Affiliation(s)
- Alexander Ring
- Division of Surgical Oncology, Department of Surgery and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA, USA. .,Present Address: Department of Medical Oncology and Hematology, Universitätsspital Zürich, Rämistrasse 100, 8091, Zurich, Switzerland.
| | - Pushpinder Kaur
- Division of Surgical Oncology, Department of Surgery and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Julie E Lang
- Division of Surgical Oncology, Department of Surgery and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
56
|
Lee YT, Tan YJ, Falasca M, Oon CE. Cancer-Associated Fibroblasts: Epigenetic Regulation and Therapeutic Intervention in Breast Cancer. Cancers (Basel) 2020; 12:E2949. [PMID: 33066013 PMCID: PMC7600259 DOI: 10.3390/cancers12102949] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related mortality in women worldwide. Cancer-associated fibroblasts (CAFs) are a heterogeneous population of cells in the solid tumour microenvironment. These cells are positively linked to breast cancer progression. Breast CAFs can be categorised into distinct subtypes according to their roles in breast carcinogenesis. Epigenetic modifications change gene expression patterns as a consequence of altered chromatin configuration and DNA accessibility to transcriptional machinery, without affecting the primary structure of DNA. Epigenetic dysregulation in breast CAFs may enhance breast cancer cell survival and ultimately lead to therapeutic resistance. A growing body of evidence has described epigenetic modulators that target histones, DNA, and miRNA as a promising approach to treat cancer. This review aims to summarise the current findings on the mechanisms involved in the epigenetic regulation in breast CAFs and discusses the potential therapeutic strategies via targeting these factors.
Collapse
Affiliation(s)
- Yeuan Ting Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia; (Y.T.L.); (Y.J.T.)
| | - Yi Jer Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia; (Y.T.L.); (Y.J.T.)
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia; (Y.T.L.); (Y.J.T.)
| |
Collapse
|
57
|
Son HJ, Choi EJ, Yoo NJ, Lee SH. Cancer-related gene mutations of ASPN in colon cancers. Pathol Res Pract 2020; 216:153154. [PMID: 32836054 DOI: 10.1016/j.prp.2020.153154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Hyun Ji Son
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Eun Ji Choi
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Nam Jin Yoo
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Sug Hyung Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea; Department of Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea.
| |
Collapse
|
58
|
Musa M, Ali A. Cancer-associated fibroblasts of colorectal cancer and their markers: updates, challenges and translational outlook. Future Oncol 2020; 16:2329-2344. [PMID: 32687721 DOI: 10.2217/fon-2020-0384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Accumulation of cancer-associated fibroblasts (CAFs) in the tumor microenvironment is associated with poor prognosis and recurrence of colorectal cancer (CRC). Despite their prominent roles in colorectal carcinogenesis, there is a lack of robust and specific markers to classify the heterogeneous and highly complex CAF populations. This has resulted in confusing and misleading definitions of CAFs in cancer niche. Advancements in molecular biology approaches have open doors to reliable CAF marker detection methods in various solid tumors. These discoveries would contribute to more efficient screening, monitoring and targeted therapy of CRC thus potentially will reduce cancer morbidity and mortality rates. This review highlights current scenarios, dilemma, translational potentials of CAF biomarker and future therapeutic applications involving CAF marker identification in CRC.
Collapse
Affiliation(s)
- Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Adli Ali
- Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Wilayah Persekutuan, 56000 Kuala Lumpur, Malaysia.,Department of Paediatrics, Oxford University, Level 2, Children's Hospital, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| |
Collapse
|
59
|
Fenlon M, Short C, Xu J, Malkoff N, Mahdi E, Hough M, Glazier A, Lee C, Asahina K, Wang KS. Prominin-1-expressing hepatic progenitor cells induce fibrogenesis in murine cholestatic liver injury. Physiol Rep 2020; 8:e14508. [PMID: 32686913 PMCID: PMC7370750 DOI: 10.14814/phy2.14508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 01/13/2023] Open
Abstract
Cholestatic liver injury is associated with intrahepatic biliary fibrosis, which can progress to cirrhosis. Resident hepatic progenitor cells (HPCs) expressing Prominin-1 (Prom1 or CD133) become activated and participate in the expansion of cholangiocytes known as the ductular reaction. Previously, we demonstrated that in biliary atresia, Prom1(+) HPCs are present within developing fibrosis and that null mutation of Prom1 significantly abrogates fibrogenesis. Here, we hypothesized that these activated Prom1-expressing HPCs promote fibrogenesis in cholestatic liver injury. Using Prom1CreERT2-nLacZ/+ ;Rosa26Lsl-GFP/+ mice, we traced the fate of Prom1-expressing HPCs in the growth of the neonatal and adult livers and in biliary fibrosis induced by bile duct ligation (BDL). Prom1-expressing cell lineage labeling with Green Fluorescent Protein (GFP) on postnatal day 1 exhibited an expanded population as well as bipotent differentiation potential toward both hepatocytes and cholangiocytes at postnatal day 35. However, in the adult liver, they lost hepatocyte differentiation potential. Upon cholestatic liver injury, adult Prom1-expressing HPCs gave rise to both PROM1(+) and PROM1(-) cholangiocytes contributing to ductular reaction without hepatocyte or myofibroblast differentiation. RNA-sequencing analysis of GFP(+) Prom1-expressing HPC lineage revealed a persistent cholangiocyte phenotype and evidence of Transforming Growth Factor-β pathway activation. When Prom1-expressing cells were ablated with induced Diphtheria toxin in Prom1CreERT-nLacZ/+ ;Rosa26DTA/+ mice, we observed a decrease in ductular reactions and biliary fibrosis typically present in BDL as well as decreased expression of numerous fibrogenic gene markers. Our data indicate that Prom1-expressing HPCs promote biliary fibrosis associated with activation of myofibroblasts in cholestatic liver injury.
Collapse
Affiliation(s)
- Michael Fenlon
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| | - Celia Short
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| | - Jiabo Xu
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| | - Nicolas Malkoff
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| | - Elaa Mahdi
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| | - Michelle Hough
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| | - Alison Glazier
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| | - Calvin Lee
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| | - Kinji Asahina
- Southern California Research Center for ALPD & CirrhosisDepartment of PathologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Kasper S. Wang
- Developmental Biology, Regenerative Medicine, and Stem Cell ProgramThe Saban Research InstituteChildren’s Hospital of Los AngelesLos AngelesCAUSA
| |
Collapse
|
60
|
Chen L, Wang M, Lin Z, Yao M, Wang W, Cheng S, Li B, Zhang Y, Yin Q. Mild microwave ablation combined with HSP90 and TGF‑β1 inhibitors enhances the therapeutic effect on osteosarcoma. Mol Med Rep 2020; 22:906-914. [PMID: 32468060 PMCID: PMC7339669 DOI: 10.3892/mmr.2020.11173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 04/08/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumour and the second leading cause of cancer-related death in children and adolescents. Microwave ablation has an excellent therapeutic effect on bone tumours by instantaneously increasing the temperature in the tumour; however, there is a risk of damaging the surrounding healthy tissues by exposure to a high temperature when the treatment power is too large. In the present study, two anti-tumour reagents, a heat shock protein 90 (HSP90) inhibitor (PF-04929113) and a transforming growth factor-β1 (TGF-β1) inhibitor (SB-525334) were employed to enhance the therapeutic effect of mild-power microwave ablation. It was revealed that microwaving to 48°C combined with HSP90 and TGF-β1 inhibitors significantly increased the apoptotic rate of VX2 cells. The same results were observed during in vivo experiments using New Zealand rabbits to model osteosarcoma. In addition, the results indicated that the expression of cytochrome c, caspase-3 and caspase-9 were upregulated in response to the treatment, which indicated that the mitochondrial apoptotic signalling pathway had been activated. These findings may provide a novel strategy for the development of microwave ablation in osteosarcoma treatment, which could effectively kill tumour cells without damaging the surrounding normal tissues.
Collapse
Affiliation(s)
- Lingling Chen
- The Graduate School of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ming Wang
- The Graduate School of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zefeng Lin
- Guangdong Key Laboratories of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Mengyu Yao
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Wanshun Wang
- Guangdong Key Laboratories of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Shi Cheng
- The Graduate School of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Binglin Li
- Guangdong Key Laboratories of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Yu Zhang
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Qingshui Yin
- The Graduate School of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
61
|
Salimifard S, Masjedi A, Hojjat-Farsangi M, Ghalamfarsa G, Irandoust M, Azizi G, Mohammadi H, Keramati MR, Jadidi-Niaragh F. Cancer associated fibroblasts as novel promising therapeutic targets in breast cancer. Pathol Res Pract 2020; 216:152915. [PMID: 32146002 DOI: 10.1016/j.prp.2020.152915] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most important women-related malignancies, which is incurable (particularly in advanced stages) and tumor microenvironment is a number one accused part in the inefficiency of current anti-breast cancer therapeutic strategies. The tumor microenvironment is composed of various cellular and acellular components, which provide an optimum condition for freely expanding cancer cells in various cancer types, particularly breast cancer. Cancer-associated fibroblasts (CAFs) are one of the main cell types in the breast tumor region, which can promote various tumor-promoting processes such as expansion, angiogenesis, metastasis and drug resistance. CAFs directly (by cell-to-cell communication) and indirectly (through secreting soluble factors) can exert their tumorigenic functions. We try to elucidate the immunobiology of CAFs, their origin, function, and heterogeneity in association with their role in various cancer-promoting processes in breast cancer. Based on current knowledge, we believe that the origin of CAFs, their subsets, and their specific expressed biomarkers determine their pro- or anti-tumor functions. Therefore, targeting CAF without considering their specific functions may lead to a deleterious outcome. We propose to find and characterize each subtype of CAFs in association with its specific function in different stages of breast cancer to develop novel promising therapeutic approaches against the right CAF subtype.
Collapse
Affiliation(s)
- Sevda Salimifard
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Masjedi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahzad Irandoust
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Reza Keramati
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
62
|
Lu X, Fu H, Chen R, Wang Y, Zhan Y, Song G, Hu T, Xia C, Tian X, Zhang B. Phosphoinositide specific phospholipase Cγ1 inhibition-driven autophagy caused cell death in human lung adenocarcinoma A549 cells in vivo and in vitro. Int J Biol Sci 2020; 16:1427-1440. [PMID: 32210730 PMCID: PMC7085223 DOI: 10.7150/ijbs.42962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
Our previous studies indicated that phosphoinositide specific phospholipase Cγ1 (PLCγ1) was involved in autophagy induction in colon and hepatic carcinoma cells. However, whether and how PLCγ1 regulation in human lung adenocarcinoma is linked to autophagy remains unclear. Here, we assessed the protein expression of PLCγ1 in human lung adenocarcinoma tissue using immunohistochemistry assay and the relationship between PLCG1 and autophagy in The Cancer Genome Atlas Network (TCGA) using Spearman correlation analysis and GSEA software. Furthermore, the interaction between PLCγ1 and autophagy-related signal molecules was investigated in human lung adenocarcinoma A549 cells treated with different inhibitors or transduction with lentivirus-mediated PLCγ1 gene short-hairpin RNA (shRNA) vectors using MTT, clonogenicity, Transwell migration, RT-PCR, Caspase-3, mitochondrial transmembrane potential, and western blotting assays, as well as transmission electron microscope technique. Additionally, the effect of shRNA/PLCγ1 alone or combined with autophagic activator Lithium Chloride (LiCl) on tumor growth and metastasis was measured using immunohistochemistry and assays in A549 xenograft nude mouse model. The results showed that increased PLCγ1 expression occurred frequently in human lung adenocarcinoma tissue with higher grades of T in TNM staging classification. PLCγ1 significantly enriched in autophagic process and regulation, which negatively regulating autophagy was enriched in higher expression of PLCγ1. PLCγ1 inhibition partially reduced cell proliferation and migration of A549 cells, with an increased autophagic flux involving alterations of AMPKα, mTOR, and ERK levels. However, PLCγ1 inhibition-driven autophagy led to cell death without depending on Caspase-3 and RIP1. Additionally, the abrogation of PLCγ1 signaling by shRNA and combination with autophagic activator LiCl could efficaciously suppress tumor growth and metastasis in A549 xenograft nude mice, in combination with a decrease in P62 level. These findings collectively suggest that reduction of cell proliferation and migration by PLCγ1 inhibition could be partially attributed to PLCγ1 inhibition-driven autophagic cell death (ACD). It highlights the potential role of a combination between targeting PLCγ1 and autophagy pathway in anti-tumor therapy, which may be an efficacious new strategy to overcome the autophagy addition of tumor and acquired resistance to current therapy.
Collapse
Affiliation(s)
- Xiaohong Lu
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Haijing Fu
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Rui Chen
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Yue Wang
- Zhongshan Hospital, Xiamen University,361004, Xiamen, Fujian, China
| | - Yanyan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Chun Xia
- Zhongshan Hospital, Xiamen University,361004, Xiamen, Fujian, China
| | - Xuemei Tian
- School of Life Sciences, South China Normal University, 510631, Guangzhou, Gangdong, China
| | - Bing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| |
Collapse
|
63
|
Zhao Y, Li J, Li D, Wang Z, Zhao J, Wu X, Sun Q, Lin PP, Plum P, Damanakis A, Gebauer F, Zhou M, Zhang Z, Schlösser H, Jauch KW, Nelson PJ, Bruns CJ. Tumor biology and multidisciplinary strategies of oligometastasis in gastrointestinal cancers. Semin Cancer Biol 2020; 60:334-343. [PMID: 31445220 DOI: 10.1016/j.semcancer.2019.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
Abstract
More than 70% of gastrointestinal (GI) cancers are diagnosed with metastases, leading to poor prognosis. For some cancer patients with limited sites of metastatic tumors, the term oligometastatic disease (OMD) has been coined as opposed to systemic polymetastasis (PMD) disease. Stephan Paget first described an organ-specific pattern of metastasis in 1889, now known as the "seed and soil" theory where distinct cancer types are found to metastasize to different tumor-specific sites. Our understanding of the biology of tumor metastasis and specifically the molecular mechanisms driving their formation are still limited, in particular, as it relates to the genesis of oligometastasis. In the following review, we discuss recent advances in general understanding of this metastatic behavior including the role of specific signaling pathways, various molecular features and biomarkers, as well as the interaction of carcinoma cells with their tissue microenvironments (both primary and metastatic niches). The unique features that underlie OMD provide potential targets for localized therapy. As it relates to clinical practice, OMD is emerging as treatable with surgical resection and/or other local therapy options. Strategies currently being applied in the clinical management of OMD will be discussed including surgical, radiation-based therapy, ablation procedures, and the results of emerging clinical trials involving immunotherapy.
Collapse
Affiliation(s)
- Yue Zhao
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Department of General, Visceral und Vascular Surgery, Otto von Guericke University, Magdeburg, Germany.
| | - Jiahui Li
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Dai Li
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Department of Anethesiology, Changhai Hospital, Naval Medical University, Shanghai, PR China
| | - Zhefang Wang
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Jiangang Zhao
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Xiaolin Wu
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Qiye Sun
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | | | - Patrick Plum
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Institute for Pathology, University Hospital Cologne, Cologne, Germany
| | - Alexander Damanakis
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Florian Gebauer
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Menglong Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hans Schlösser
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology (CIO) Achen, Bonn, Cologne and Düsseldorf, Cologne, Germany
| | - Karl-Walter Jauch
- Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Peter J Nelson
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Christiane J Bruns
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Center for Integrated Oncology (CIO) Achen, Bonn, Cologne and Düsseldorf, Cologne, Germany.
| |
Collapse
|
64
|
Tahir MS, Nguyen LT, Schulz BL, Boe-Hansen GA, Thomas MG, Moore SS, Lau LY, Fortes MRS. Proteomics Recapitulates Ovarian Proteins Relevant to Puberty and Fertility in Brahman Heifers ( Bos indicus L.). Genes (Basel) 2019; 10:E923. [PMID: 31726744 PMCID: PMC6895798 DOI: 10.3390/genes10110923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
High fertility and early puberty in Bos indicus heifers are desirable and genetically correlated traits in beef production. The hypothalamus-pituitary-ovarian (HPO) axis synthesizes steroid hormones, which contribute to the shift from the pre-pubertal state into the post-pubertal state and influence subsequent fertility. Understanding variations in abundance of proteins that govern steroid synthesis and ovarian signaling pathways remains crucial to understanding puberty and fertility. We used whole ovaries of six pre-pubertal and six post-pubertal Brahman heifers to conduct differential abundance analyses of protein profiles between the two physiological states. Extracted proteins were digested into peptides followed by identification and quantification with massspectrometry (MS) by sequential window acquisition of all instances of theoretical fragment ion mass spectrometry (SWATH-MS). MS and statistical analysis identified 566 significantly differentially abundant (DA) proteins (adjusted p < 0.05), which were then analyzed for gene ontology and pathway enrichment. Our data indicated an up-regulation of steroidogenic proteins contributing to progesterone synthesis at luteal phase post-puberty. Proteins related to progesterone signaling, TGF-β, retinoic acid, extracellular matrix, cytoskeleton, and pleiotrophin signaling were DA in this study. The DA proteins probably relate to the formation and function of the corpus luteum, which is only present after ovulation, post-puberty. Some DA proteins might also be related to granulosa cells signaling, which regulates oocyte maturation or arrest in ovaries prior to ovulation. Ten DA proteins were coded by genes previously associated with reproductive traits according to the animal quantitative trait loci (QTL) database. In conclusion, the DA proteins and their pathways were related to ovarian activity in Bos indicus cattle. The genes that code for these proteins may explain some known QTLs and could be targeted in future genetic studies.
Collapse
Affiliation(s)
- Muhammad S. Tahir
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Loan T. Nguyen
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Queensland, Australia; (L.T.N.); (S.S.M.)
| | - Benjamin L. Schulz
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Gry A. Boe-Hansen
- School of Veterinary Sciences, University of Queensland, Brisbane 4343, Queensland, Australia;
| | - Milton G. Thomas
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA;
| | - Stephen S. Moore
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Queensland, Australia; (L.T.N.); (S.S.M.)
| | - Li Yieng Lau
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| |
Collapse
|
65
|
Zhan S, Li J, Ge W. Multifaceted Roles of Asporin in Cancer: Current Understanding. Front Oncol 2019; 9:948. [PMID: 31608236 PMCID: PMC6771297 DOI: 10.3389/fonc.2019.00948] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
The small leucine-rich proteoglycan (SLRP) family consists of 18 members categorized into five distinct classes, the traditional classes I–III, and the non-canonical classes IV–V. Unlike the other class I SLRPs (decorin and biglycan), asporin contains a unique and conserved stretch of aspartate (D) residues in its N terminus, and germline polymorphisms in the D-repeat-length are associated with osteoarthritis and prostate cancer progression. Since the first discovery of asporin in 2001, previous studies have focused mainly on its roles in bone and joint diseases, including osteoarthritis, intervertebral disc degeneration and periodontal ligament mineralization. Recently, asporin gene expression was also reported to be dysregulated in tumor tissues of different types of cancer, and to act as oncogene in pancreatic, colorectal, gastric, and prostate cancers, and some types of breast cancer, though it is also reported to function as a tumor suppressor gene in triple-negative breast cancer. Furthermore, asporin is also positively or negatively correlated with tumor proliferation, migration, invasion, and patient prognosis through its regulation of different signaling pathways, including the TGF-β, EGFR, and CD44 pathways. In this review, we seek to elucidate the signaling pathways and functions regulated by asporin in different types of cancer and to highlight some important issues that require investigation in future research.
Collapse
Affiliation(s)
- Shaohua Zhan
- National Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
66
|
Laplagne C, Domagala M, Le Naour A, Quemerais C, Hamel D, Fournié JJ, Couderc B, Bousquet C, Ferrand A, Poupot M. Latest Advances in Targeting the Tumor Microenvironment for Tumor Suppression. Int J Mol Sci 2019; 20:E4719. [PMID: 31547627 PMCID: PMC6801830 DOI: 10.3390/ijms20194719] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
The tumor bulk is composed of a highly heterogeneous population of cancer cells, as well as a large variety of resident and infiltrating host cells, extracellular matrix proteins, and secreted proteins, collectively known as the tumor microenvironment (TME). The TME is essential for driving tumor development by promoting cancer cell survival, migration, metastasis, chemoresistance, and the ability to evade the immune system responses. Therapeutically targeting tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), regulatory T-cells (T-regs), and mesenchymal stromal/stem cells (MSCs) is likely to have an impact in cancer treatment. In this review, we focus on describing the normal physiological functions of each of these cell types and their behavior in the cancer setting. Relying on the specific surface markers and secreted molecules in this context, we review the potential targeting of these cells inducing their depletion, reprogramming, or differentiation, or inhibiting their pro-tumor functions or recruitment. Different approaches were developed for this targeting, namely, immunotherapies, vaccines, small interfering RNA, or small molecules.
Collapse
Affiliation(s)
- Chloé Laplagne
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Marcin Domagala
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Augustin Le Naour
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut Claudius Regaud, IUCT-Oncopole, 31000 Toulouse, France.
| | - Christophe Quemerais
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Dimitri Hamel
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut de Recherche en Santé Digestive, Inserm U1220, INRA, ENVT, 31024 Toulouse, France.
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Bettina Couderc
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut Claudius Regaud, IUCT-Oncopole, 31000 Toulouse, France.
| | - Corinne Bousquet
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Audrey Ferrand
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut de Recherche en Santé Digestive, Inserm U1220, INRA, ENVT, 31024 Toulouse, France.
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| |
Collapse
|
67
|
Gong J, Xu X, Zhang X, Zhou Y. LncRNA MIR4435-2HG is a potential early diagnostic marker for ovarian carcinoma. Acta Biochim Biophys Sin (Shanghai) 2019; 51:953-959. [PMID: 31435668 DOI: 10.1093/abbs/gmz085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
LncRNA MIR4435-2HG is characterized as an oncogene in lung cancer. However, its role in ovarian carcinoma (OC) is unclear. In this study, we aimed to investigate the role of MIR4435-2HG in OC. We found that both MIR4435-2HG and transforming growth factor beta 1 (TGF-β1) were upregulated in OC. MIR4435-2HG is associated with tumor metastasis but not with tumor size. Upregulation of MIR4435-2HG distinguished early stage (Stage I and II) OC patients from healthy controls. Correlation analysis showed that plasma levels of MIR4435-2HG and TGF-β1 were positively correlated only in OC patients. qPCR and western blot analysis results showed that MIR4435-2HG overexpression led to upregulation of TGF-β1 in OC cells, while TGF-β1 treatment did not significantly affect MIR4435-2HG expression. Transwell invasion and migration assays showed that MIR4435-2HG and TGF-β1 promoted the invasion and migration of OC cells while TGF-β inhibitor suppressed the invasion and migration of these cells. Further analysis of the Transwell invasion and migration assay results showed that TGF-β inhibitor reduced the effects of MIR4435-2HG overexpression. Therefore, our results suggested that lncRNA MIR4435-2HG may promote OC by upregulating TGF-β1. Further characterization of the functions of MIR4435-2HG in OC may provide novel targets for cancer therapies.
Collapse
Affiliation(s)
- Jianming Gong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaoyang Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuanli Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yingqiao Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
68
|
Hughes RM, Simons BW, Khan H, Miller R, Kugler V, Torquato S, Theodros D, Haffner MC, Lotan T, Huang J, Davicioni E, An SS, Riddle RC, Thorek DLJ, Garraway IP, Fertig EJ, Isaacs JT, Brennen WN, Park BH, Hurley PJ. Asporin Restricts Mesenchymal Stromal Cell Differentiation, Alters the Tumor Microenvironment, and Drives Metastatic Progression. Cancer Res 2019; 79:3636-3650. [PMID: 31123087 PMCID: PMC6734938 DOI: 10.1158/0008-5472.can-18-2931] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
Tumor progression to metastasis is not cancer cell autonomous, but rather involves the interplay of multiple cell types within the tumor microenvironment. Here we identify asporin (ASPN) as a novel, secreted mesenchymal stromal cell (MSC) factor in the tumor microenvironment that regulates metastatic development. MSCs expressed high levels of ASPN, which decreased following lineage differentiation. ASPN loss impaired MSC self-renewal and promoted terminal cell differentiation. Mechanistically, secreted ASPN bound to BMP-4 and restricted BMP-4-induced MSC differentiation prior to lineage commitment. ASPN expression was distinctly conserved between MSC and cancer-associated fibroblasts (CAF). ASPN expression in the tumor microenvironment broadly impacted multiple cell types. Prostate tumor allografts in ASPN-null mice had a reduced number of tumor-associated MSCs, fewer cancer stem cells, decreased tumor vasculature, and an increased percentage of infiltrating CD8+ T cells. ASPN-null mice also demonstrated a significant reduction in lung metastases compared with wild-type mice. These data establish a role for ASPN as a critical MSC factor that extensively affects the tumor microenvironment and induces metastatic progression. SIGNIFICANCE: These findings show that asporin regulates key properties of mesenchymal stromal cells, including self-renewal and multipotency, and asporin expression by reactive stromal cells alters the tumor microenvironment and promotes metastatic progression.
Collapse
Affiliation(s)
- Robert M Hughes
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Brian W Simons
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Hamda Khan
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Rebecca Miller
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Valentina Kugler
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Samantha Torquato
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Debebe Theodros
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Michael C Haffner
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Tamara Lotan
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jessie Huang
- The Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Elai Davicioni
- Genome Dx Biosciences, Inc., Vancouver, British Columbia, Canada
| | - Steven S An
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- The Whiting School of Engineering, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ryan C Riddle
- The Department of Orthopedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniel L J Thorek
- The Department of Radiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Isla P Garraway
- The Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Elana J Fertig
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - John T Isaacs
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - W Nathaniel Brennen
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ben H Park
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Whiting School of Engineering, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Paula J Hurley
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland.
- The Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
69
|
Gieniec KA, Butler LM, Worthley DL, Woods SL. Cancer-associated fibroblasts-heroes or villains? Br J Cancer 2019; 121:293-302. [PMID: 31289350 PMCID: PMC6738083 DOI: 10.1038/s41416-019-0509-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 01/05/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) were originally presumed to represent a homogeneous population uniformly driving tumorigenesis, united by their morphology and peritumoural location. Our understanding of CAFs has since been shaped by sophisticated in vitro and in vivo experiments, pathological association and, more recently, ablation, and it is now widely appreciated that CAFs form a group of highly heterogeneous cells with no single overarching marker. Studies have demonstrated that the CAF population contains different subtypes based on the expression of marker proteins with the capacity to promote or inhibit cancer, with their biological role as accomplices or adversaries dependent on many factors, including the cancer stage. So, while CAFs have been endlessly shown to promote the growth, survival and spread of tumours via improvements in functionality and an altered secretome, they are also capable of retarding tumorigenesis via largely unknown mechanisms. It is important to reconcile these disparate results so that the functions of, or factors produced by, tumour-promoting subtypes can be specifically targeted to improve cancer patient outcomes. This review will dissect out CAF complexity and CAF-directed cancer treatment strategies in order to provide a case for future, rational therapies.
Collapse
Affiliation(s)
- Krystyna A Gieniec
- School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Lisa M Butler
- School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Daniel L Worthley
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Susan L Woods
- School of Medicine, University of Adelaide, Adelaide, SA, Australia. .,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
70
|
Nallanthighal S, Heiserman JP, Cheon DJ. The Role of the Extracellular Matrix in Cancer Stemness. Front Cell Dev Biol 2019; 7:86. [PMID: 31334229 PMCID: PMC6624409 DOI: 10.3389/fcell.2019.00086] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
As our understanding of cancer cell biology progresses, it has become clear that tumors are a heterogenous mixture of different cell populations, some of which contain so called "cancer stem cells" (CSCs). Hallmarks of CSCs include self-renewing capability, tumor-initiating capacity and chemoresistance. The extracellular matrix (ECM), a major structural component of the tumor microenvironment, is a highly dynamic structure and increasing evidence suggests that ECM proteins establish a physical and biochemical niche for CSCs. In cancer, abnormal ECM dynamics occur due to disrupted balance between ECM synthesis and secretion and altered expression of matrix-remodeling enzymes. Tumor-derived ECM is biochemically distinct in its composition and is stiffer compared to normal ECM. In this review, we will provide a brief overview of how different components of the ECM modulate CSC properties then discuss how physical, mechanical, and biochemical cues from the ECM drive cancer stemness. Given the fact that current CSC targeting therapies face many challenges, a better understanding of CSC-ECM interactions will be crucial to identify more effective therapeutic strategies to eliminate CSCs.
Collapse
Affiliation(s)
| | | | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
71
|
Abstract
The tumour microenvironment, also termed the tumour stroma or tumour mesenchyme, includes fibroblasts, immune cells, blood vessels and the extracellular matrix and substantially influences the initiation, growth and dissemination of gastrointestinal cancer. Cancer-associated fibroblasts (CAFs) are one of the critical components of the tumour mesenchyme and not only provide physical support for epithelial cells but also are key functional regulators in cancer, promoting and retarding tumorigenesis in a context-dependent manner. In this Review, we outline the emerging understanding of gastrointestinal CAFs with a particular emphasis on their origin and heterogeneity, as well as their function in cancer cell proliferation, tumour immunity, angiogenesis, extracellular matrix remodelling and drug resistance. Moreover, we discuss the clinical implications of CAFs as biomarkers and potential targets for prevention and treatment of patients with gastrointestinal cancer.
Collapse
|
72
|
Liubomirski Y, Lerrer S, Meshel T, Morein D, Rubinstein-Achiasaf L, Sprinzak D, Wiemann S, Körner C, Ehrlich M, Ben-Baruch A. Notch-Mediated Tumor-Stroma-Inflammation Networks Promote Invasive Properties and CXCL8 Expression in Triple-Negative Breast Cancer. Front Immunol 2019; 10:804. [PMID: 31105691 PMCID: PMC6492532 DOI: 10.3389/fimmu.2019.00804] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 03/26/2019] [Indexed: 01/12/2023] Open
Abstract
Stromal cells and pro-inflammatory cytokines play key roles in promoting the aggressiveness of triple-negative breast cancers (TNBC; Basal/Basal-like). In our previous study we demonstrated that stimulation of TNBC and mesenchymal stem cells (MSCs) co-cultures by the pro-inflammatory cytokine tumor necrosis factor α (TNFα) has led to increased metastasis-related properties in vitro and in vivo. In this context, elevated release of the pro-metastatic chemokines CXCL8 (IL-8) and CCL5 (RANTES) was noted in TNFα- and interleukin-1β (IL-1β)-stimulated TNBC:MSC co-cultures; the process was partly (CXCL8) and entirely (CCL5) dependent on physical contacts between the two cell types. Here, we demonstrate that DAPT, inhibitor of γ-secretase that participates in activation of Notch receptors, inhibited the migration and invasion of TNBC cells that were grown in “Contact” co-cultures with MSCs or with patient-derived cancer-associated fibroblasts (CAFs), in the presence of TNFα. DAPT also inhibited the contact-dependent induction of CXCL8, but not of CCL5, in TNFα- and IL-1β-stimulated TNBC:MSC/CAF co-cultures; some level of heterogeneity between the responses of different TNBC cell lines was noted, with MDA-MB-231:MSC/CAF co-cultures being the most sensitive to DAPT. Patient dataset studies comparing basal tumors to luminal-A tumors, and mRNA analyses of Notch receptors in TNBC and luminal-A cells pointed at Notch1 as possible mediator of CXCL8 increase in TNFα-stimulated TNBC:stroma “Contact” co-cultures. Accordingly, down-regulation of Notch1 in TNBC cells by siRNA has substantially reduced the contact-dependent elevation in CXCL8 in TNFα- and also in IL-1β-stimulated TNBC:MSC “Contact” co-cultures. Then, studies in which CXCL8 or p65 (NF-κB pathway) were down-regulated (siRNAs; CRISPR/Cas9) in TNBC cells and/or MSCs, indicated that upon TNFα stimulation of “Contact” co-cultures, p65 was activated and led to CXCL8 production mainly in TNBC cells. Moreover, our findings indicated that when tumor cells interacted with stromal cells in the presence of pro-inflammatory stimuli, TNFα-induced p65 activation has led to elevated Notch1 expression and activation, which then gave rise to elevated production of CXCL8. Overall, tumor:stroma interactions set the stage for Notch1 activation by pro-inflammatory signals, leading to CXCL8 induction and consequently to pro-metastatic activities. These observations may have important clinical implications in designing novel therapy combinations in TNBC.
Collapse
Affiliation(s)
- Yulia Liubomirski
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shalom Lerrer
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tsipi Meshel
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dina Morein
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Linor Rubinstein-Achiasaf
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry & Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcelo Ehrlich
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
73
|
Liubomirski Y, Lerrer S, Meshel T, Rubinstein-Achiasaf L, Morein D, Wiemann S, Körner C, Ben-Baruch A. Tumor-Stroma-Inflammation Networks Promote Pro-metastatic Chemokines and Aggressiveness Characteristics in Triple-Negative Breast Cancer. Front Immunol 2019; 10:757. [PMID: 31031757 PMCID: PMC6473166 DOI: 10.3389/fimmu.2019.00757] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) plays key roles in promoting disease progression in the aggressive triple-negative subtype of breast cancer (TNBC; Basal/Basal-like). Here, we took an integrative approach and determined the impact of tumor-stroma-inflammation networks on pro-metastatic phenotypes in TNBC. With the TCGA dataset we found that the pro-inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β), as well as their target pro-metastatic chemokines CXCL8 (IL-8), CCL2 (MCP-1), and CCL5 (RANTES) were expressed at significantly higher levels in basal patients than luminal-A patients. Then, we found that TNFα- or IL-1β-stimulated co-cultures of TNBC cells (MDA-MB-231, MDA-MB-468, BT-549) with mesenchymal stem cells (MSCs) expressed significantly higher levels of CXCL8 compared to non-stimulated co-cultures or each cell type alone, with or without cytokine stimulation. CXCL8 was also up-regulated in TNBC co-cultures with breast cancer-associated fibroblasts (CAFs) derived from patients. CCL2 and CCL5 also reached the highest expression levels in TNFα/IL-1β-stimulated TNBC:MSC/CAF co-cultures. The elevations in CXCL8 and CCL2 expression partly depended on direct physical contacts between the tumor cells and the MSCs/CAFs, whereas CCL5 up-regulation was entirely dependent on cell-to-cell contacts. Supernatants of TNFα-stimulated TNBC:MSC "Contact" co-cultures induced robust endothelial cell migration and sprouting. TNBC cells co-cultured with MSCs and TNFα gained migration-related morphology and potent migratory properties; they also became more invasive when co-cultured with MSCs/CAFs in the presence of TNFα. Using siRNA to CXCL8, we found that CXCL8 was significantly involved in mediating the pro-metastatic activities gained by TNFα-stimulated TNBC:MSC "Contact" co-cultures: angiogenesis, migration-related morphology of the tumor cells, as well as cancer cell migration and invasion. Importantly, TNFα stimulation of TNBC:MSC "Contact" co-cultures in vitro has increased the aggressiveness of the tumor cells in vivo, leading to higher incidence of mice with lung metastases than non-stimulated TNBC:MSC co-cultures. Similar tumor-stromal-inflammation networks established in-culture with luminal-A cells demonstrated less effective or differently-active pro-metastatic functions than those of TNBC cells. Overall, our studies identify novel tumor-stroma-inflammation networks that may promote TNBC aggressiveness by increasing the pro-malignancy potential of the TME and of the tumor cells themselves, and reveal key roles for CXCL8 in mediating these metastasis-promoting activities.
Collapse
Affiliation(s)
- Yulia Liubomirski
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shalom Lerrer
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tsipi Meshel
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Linor Rubinstein-Achiasaf
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dina Morein
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Adit Ben-Baruch
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
74
|
Li H, Zhang Z, Chen L, Sun X, Zhao Y, Guo Q, Zhu S, Li P, Min L, Zhang S. Cytoplasmic Asporin promotes cell migration by regulating TGF-β/Smad2/3 pathway and indicates a poor prognosis in colorectal cancer. Cell Death Dis 2019; 10:109. [PMID: 30728352 PMCID: PMC6365561 DOI: 10.1038/s41419-019-1376-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/29/2018] [Accepted: 01/17/2019] [Indexed: 01/10/2023]
Abstract
Previous studies revealed that Asporin (ASPN) is a potential mediator in the development of various types of cancer as a secreted stroma protein, but the function of ASPN inside the cancer cells remains largely unknown. Here, we demonstrated a higher expression level of ASPN in colorectal cancer (CRC) than matched normal tissues, and 25% (2/8) CRC showed copy number variation (CNV) gain/amplification in ASPN gene. Both higher ASPN expression levels and ASPN CNV gain/amplification indicated a worse prognosis in CRC patients. ASPN can promote proliferation, migration, and invasion of CRC cells, and inhibit apoptosis by activating Akt/Erk and TGF-β/Smad2/3 signalings. Further investigations revealed that ASPN interacts with Smad2/3, facilitates its translocation into nucleus, and up-regulates the expression of Epithelial-mesenchymal transition (EMT) related genes. Rescue assays confirmed that TGF-β signaling is essential for the effects of ASPN on promoting CRC cell migration and invasion. In conclusion, ASPN promotes the migration and invasion of CRC cells via TGF-β/Smad2/3 pathway and could serve as a potential prognostic biomarker in CRC patients.
Collapse
Affiliation(s)
- Hengcun Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China
| | - Zheng Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China
| | - Lei Chen
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China
| | - Xiujing Sun
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China
| | - Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China
| | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China.
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China.
| |
Collapse
|
75
|
Elias KM, Tsantoulis P, Tille JC, Vitonis A, Doyle LA, Hornick JL, Kaya G, Barnes L, Cramer DW, Puppa G, Stuckelberger S, Hooda J, Dietrich PY, Goggins M, Kerr CL, Birrer M, Hirsch MS, Drapkin R, Labidi-Galy SI. Primordial germ cells as a potential shared cell of origin for mucinous cystic neoplasms of the pancreas and mucinous ovarian tumors. J Pathol 2018; 246:459-469. [PMID: 30229909 DOI: 10.1002/path.5161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 08/13/2018] [Accepted: 08/25/2018] [Indexed: 12/17/2022]
Abstract
Mucinous ovarian tumors (MOTs) morphologically and epidemiologically resemble mucinous cystic neoplasms (MCNs) of the pancreas, sharing a similar stroma and both occurring disproportionately among young females. Additionally, MOTs and MCNs share similar clinical characteristics and immunohistochemical phenotypes. Exome sequencing has revealed frequent recurrent mutations in KRAS and RNF43 in both MOTs and MCNs. The cell of origin for these tumors remains unclear, but MOTs sometimes arise in the context of mature cystic teratomas and other primordial germ cell (PGC) tumors. We undertook the present study to investigate whether non-teratoma-associated MOTs and MCNs share a common cell of origin. Comparisons of the gene expression profiles of MOTs [including both the mucinous borderline ovarian tumors (MBOTs) and invasive mucinous ovarian carcinomas (MOCs)], high-grade serous ovarian carcinomas, ovarian surface epithelium, Fallopian tube epithelium, normal pancreatic tissue, pancreatic duct adenocarcinomas, MCNs, and single-cell RNA-sequencing of PGCs revealed that both MOTs and MCNs are more closely related to PGCs than to either eutopic epithelial tumors or normal epithelia. We hypothesize that MCNs may arise from PGCs that stopped in the dorsal pancreas during their descent to the gonads during early human embryogenesis, while MOTs arise from PGCs in the ovary. Together, these data suggest a common pathway for the development of MCNs and MOTs, and suggest that these tumors may be more properly classified as germ cell tumor variants. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kevin M Elias
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA.,Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Petros Tsantoulis
- Department of internal medicine specialties, Facutly of Medicine, Université de Genève, Geneva, Switzerland.,Department of Oncology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | | | - Allison Vitonis
- Department of Obstetrics and Gynecology, Epidemiology Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Leona A Doyle
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jason L Hornick
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Gurkan Kaya
- Department of internal medicine specialties, Facutly of Medicine, Université de Genève, Geneva, Switzerland.,Division of Dermatology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Laurent Barnes
- Division of Dermatology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Daniel W Cramer
- Harvard Medical School, Boston, MA, USA.,Department of Obstetrics and Gynecology, Epidemiology Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Giacomo Puppa
- Division of Pathology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Sarah Stuckelberger
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jagmohan Hooda
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Pierre-Yves Dietrich
- Department of internal medicine specialties, Facutly of Medicine, Université de Genève, Geneva, Switzerland.,Department of Oncology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Michael Goggins
- Department of Pathology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Candace L Kerr
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA
| | - Michael Birrer
- Division of Hematology-Oncology, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL, USA
| | - Michelle S Hirsch
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sana Intidhar Labidi-Galy
- Department of internal medicine specialties, Facutly of Medicine, Université de Genève, Geneva, Switzerland.,Department of Oncology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| |
Collapse
|
76
|
Yan X, Wu Y, Zhong F, Jiang Q, Zhou T, Guo Y, Yang X, Liang J, Joshua Liao D, Lan G. iTRAQ and PRM-based quantitative proteomics in T2DM-susceptible and -tolerant models of Bama mini-pig. Gene 2018; 675:119-127. [DOI: 10.1016/j.gene.2018.06.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/10/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023]
|
77
|
Åhrman E, Hallgren O, Malmström L, Hedström U, Malmström A, Bjermer L, Zhou XH, Westergren-Thorsson G, Malmström J. Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. J Proteomics 2018; 189:23-33. [DOI: 10.1016/j.jprot.2018.02.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/05/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022]
|
78
|
Lopes MB, Veríssimo A, Carrasquinha E, Casimiro S, Beerenwinkel N, Vinga S. Ensemble outlier detection and gene selection in triple-negative breast cancer data. BMC Bioinformatics 2018; 19:168. [PMID: 29728051 PMCID: PMC5936001 DOI: 10.1186/s12859-018-2149-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/04/2018] [Indexed: 01/06/2023] Open
Abstract
Background Learning accurate models from ‘omics data is bringing many challenges due to their inherent high-dimensionality, e.g. the number of gene expression variables, and comparatively lower sample sizes, which leads to ill-posed inverse problems. Furthermore, the presence of outliers, either experimental errors or interesting abnormal clinical cases, may severely hamper a correct classification of patients and the identification of reliable biomarkers for a particular disease. We propose to address this problem through an ensemble classification setting based on distinct feature selection and modeling strategies, including logistic regression with elastic net regularization, Sparse Partial Least Squares - Discriminant Analysis (SPLS-DA) and Sparse Generalized PLS (SGPLS), coupled with an evaluation of the individuals’ outlierness based on the Cook’s distance. The consensus is achieved with the Rank Product statistics corrected for multiple testing, which gives a final list of sorted observations by their outlierness level. Results We applied this strategy for the classification of Triple-Negative Breast Cancer (TNBC) RNA-Seq and clinical data from the Cancer Genome Atlas (TCGA). The detected 24 outliers were identified as putative mislabeled samples, corresponding to individuals with discrepant clinical labels for the HER2 receptor, but also individuals with abnormal expression values of ER, PR and HER2, contradictory with the corresponding clinical labels, which may invalidate the initial TNBC label. Moreover, the model consensus approach leads to the selection of a set of genes that may be linked to the disease. These results are robust to a resampling approach, either by selecting a subset of patients or a subset of genes, with a significant overlap of the outlier patients identified. Conclusions The proposed ensemble outlier detection approach constitutes a robust procedure to identify abnormal cases and consensus covariates, which may improve biomarker selection for precision medicine applications. The method can also be easily extended to other regression models and datasets. Electronic supplementary material The online version of this article (10.1186/s12859-018-2149-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta B Lopes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
| | - André Veríssimo
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
| | - Eunice Carrasquinha
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
| | - Sandra Casimiro
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, 1649-028, Portugal
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, 4058, Switzerland.,SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Susana Vinga
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal. .,INESC-ID, Instituto de Engenharia de Sistemas e Computadores - Investigação e Desenvolvimento, Rua Alves Redol 9, Lisboa, 1000-029, Portugal.
| |
Collapse
|
79
|
Chen Y, Huang S, Wu B, Fang J, Zhu M, Sun L, Zhang L, Zhang Y, Sun M, Guo L, Wang S. Transforming growth factor-β1 promotes breast cancer metastasis by downregulating miR-196a-3p expression. Oncotarget 2018; 8:49110-49122. [PMID: 28418877 PMCID: PMC5564753 DOI: 10.18632/oncotarget.16308] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/23/2017] [Indexed: 01/26/2023] Open
Abstract
Transforming growth factor-β1 is considered a key contributor to the progression of breast cancer. MicroRNAs are important factors in the development and progression of many malignancies. In the present study, upon studies of breast cancer cell lines and tissues, we showed that microRNA -196a-3p is decreased by transforming growth factor-β1 in breast cancer cells and associated with breast cancer progression. We identified neuropilin-2 as a target gene of microRNA -196a-3p and showed that it is regulated by transforming growth factor-β1. Moreover, transforming growth factor-β1-mediated inhibition of microRNA -196a-3p and activation of neuropilin-2were required for transforming growth factor-β1-induced migration and invasion of breast cancer cells. In addition, neuropilin-2 expression was suppressed in breast tumors, particularly in triple-negative breast cancers. Collectively, our findings strongly indicate that microRNA -196a-3p is a predictive biomarker of breast cancer metastasis and patient survival and a potential therapeutic target in metastatic breast cancer.
Collapse
Affiliation(s)
- Yan Chen
- Department of Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Shai Huang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Bo Wu
- Department of Surgery, The People's Hospital of Sihong County, Sihong 223900, Jiangsu Province, China
| | - Jiankai Fang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Minsheng Zhu
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Li Sun
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou 215123, China
| | - Lifeng Zhang
- Department of Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yongsheng Zhang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Maomin Sun
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou 215123, China
| | - Lingling Guo
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Shouli Wang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China.,Laboratory of Molecular Pathology, Soochow University & Sihong County People's Hospital, Suzhou 215123, China.,Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou 215006, China
| |
Collapse
|
80
|
Wang J, Yang A, Zhang J, Sun N, Li X, Li X, Liu Q, Li J, Ren X, Ke Z, Zhang R. Genetic polymorphism in the asporin gene is not a key risk factor for osteoarthritis: Evidence based on an updated cumulative meta-analysis. Exp Ther Med 2018; 15:3952-3966. [PMID: 29563989 PMCID: PMC5858083 DOI: 10.3892/etm.2018.5888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/12/2018] [Indexed: 01/07/2023] Open
Abstract
To provide an evidence-based medical basis for the treatment of osteoarthritis, a meta-analysis was performed to assess the association between asporin (ASPN) gene polymorphism and susceptibility to osteoarthritis (OA). The current study searched the literature from January 1st, 1915 through February 1st, 2017 using the Cochrane Library, PubMed, the Excerpta Medica database (EMBASE) and three main Chinese databases (VIP, CNKI and Wan Fang). Cohort and case-control studies that explored the association between different types of ASPN alleles and OA susceptibility were evaluated. The K/L grading system, clinical and radiological diagnoses were used for OA diagnosis. A random-effects model was used in a pooled analysis to adjust for heterogeneity of the included studies, and the differences between treatment groups were reported as odds ratio (OR), 95% confidence intervals (CIs) and P-values. Begg's funnel plots and Egger's tests were used to assess publication bias in the present meta-analysis. Following document retrieval and screening, a total of 10 studies were deemed eligible, including 4,842 patients and 3,661 healthy subjects. Results of the multivariate meta-regression analysis revealed that the study sample size was a source of heterogeneity between studies. The D17 allele was a risk factor for the development of OA (OR=1.33, 95% CI: 1.02–1.73, P<0.05). The other alleles were not considered as risk factors for development of OA (P>0.05). The results of the meta-analysis verified that ASPN polymorphisms were not significantly relevant to an increased OA risk. However, the mechanisms contributing to the association between ASPN polymorphisms and OA risk still require further study.
Collapse
Affiliation(s)
- Jing Wang
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, P.R. China
| | - Aimin Yang
- School of Public Health, Brown University, Providence, RI 02906, USA
| | - Jie Zhang
- School of Public Health, Brown University, Providence, RI 02906, USA
| | - Na Sun
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, P.R. China
| | - Xiangwen Li
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, P.R. China
| | - Xinghui Li
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, P.R. China
| | - Qiling Liu
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, P.R. China
| | - Jun Li
- Department of School Health, Center for Disease Control and Prevention of Xi'an, Xi'an, Shaanxi 710054, P.R. China
| | - Xiaomei Ren
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, P.R. China
| | - Zunhua Ke
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, P.R. China
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, P.R. China
| |
Collapse
|
81
|
Yang S, Xing Z, Liu T, Zhou J, Liang Q, Tang T, Cui H, Peng W, Xiong X, Wang Y. Synovial tissue quantitative proteomics analysis reveals paeoniflorin decreases LIFR and ASPN proteins in experimental rheumatoid arthritis. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:463-473. [PMID: 29551890 PMCID: PMC5844255 DOI: 10.2147/dddt.s153927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Rheumatoid arthritis (RA) is a common worldwide public health problem, which causes a chronic, systemic inflammatory disorder of synovial joints. Paeoniflorin (PA) has achieved positive results to some extent for the treatment of RA. Purpose This study aimed to reveal the potential druggable targets of PA in an experimental RA model using quantitative proteomics analysis. Study design and methods Thirty Sprague-Dawley rats were randomly divided into a normal group, model group and PA group. PA (1 mg/kg) was used to treat collagen-induced arthritis (CIA) rats for 42 days. We used isobaric tags for relative and absolute quantitation-based quantitative proteomics to analyze the synovial tissue of rats. Ingenuity pathway analysis (IPA) software was applied to process the data. The proteins that were targeted via IPA software were verified by Western blots. Results We found that PA caused 86 differentially expressed proteins (≥1.2-fold or ≤0.84-fold) compared with the CIA group. Of these varied proteins, 20 significantly changed (p<0.05) proteins referred to 41 CIA-relative top pathways after IPA pathway analysis. Thirteen of the PA-regulated pathways were anchored, which intervened in 24 biological functions. Next, network analysis revealed that leukemia inhibitory factor receptor (LIFR) and asporin (ASPN), which participate in two significant networks, contributed the most to the efficacy of PA treatment. Additionally, Western blots confirmed the aforementioned druggable targets of PA for the treatment of RA. Conclusion The results reveal that PA may treat RA by decreasing two key proteins, LIFR and ASPN. Our research helps to identify potential agents for RA treatment.
Collapse
Affiliation(s)
- Shu Yang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Tao Liu
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jing Zhou
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qinghua Liang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hanjin Cui
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Weijun Peng
- Department of Traditional Chinese Medicine, 2nd Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xingui Xiong
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
82
|
Wu H, Jing X, Cheng X, He Y, Hu L, Wu H, Ye F, Zhao R. Asporin enhances colorectal cancer metastasis through activating the EGFR/src/cortactin signaling pathway. Oncotarget 2018; 7:73402-73413. [PMID: 27705916 PMCID: PMC5341987 DOI: 10.18632/oncotarget.12336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/25/2016] [Indexed: 02/05/2023] Open
Abstract
Asporin has been implicated as an oncogene in various types of human cancers; however, the roles of asporin in the development and progression of colorectal cancer (CRC) have not yet been determined. With clinical samples, we found that asporin was highly expressed in CRC tissues compared to adjacent normal tissues and the asporin expression levels were significantly associated with lymph node metastasis status and TNM stage of the patients. Through knockdown of asporin in CRC cell lines RKO and SW620 or overexpression of asporin in cell lines HT-29 and LoVo, we found that asporin could enhance wound healing, migration and invasion abilities of the CRC cells. Further more, with the human umbilical vein endothelial cells (HUVECs) tube formation assays and the xenograft model, we found that asporin promoted the tumor growth through stimulating the VEGF signaling pathway. The portal vein injection models suggested that asporin overexpression stimulated the liver metastasis of HT29 cell line, while asporin knockdown inhibited the liver metastasis of RKO cell line. In addition, asporin was found to augment the phosphorylation of EGFR/src/cortactin signaling pathway, which might be contributed to the biological functions of asporin in CRC metastasis. These results suggested that asporin promoted the tumor growth and metastasis of CRC, and it could be a potential therapeutic target for CRC patients in future.
Collapse
Affiliation(s)
- Huo Wu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqian Jing
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Cheng
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yonggang He
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Hu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haoxuan Wu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Ye
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ren Zhao
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
83
|
Santi A, Kugeratski FG, Zanivan S. Cancer Associated Fibroblasts: The Architects of Stroma Remodeling. Proteomics 2018; 18:e1700167. [PMID: 29280568 PMCID: PMC5900985 DOI: 10.1002/pmic.201700167] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/15/2017] [Indexed: 12/24/2022]
Abstract
Fibroblasts have exceptional phenotypic plasticity and capability to secrete vast amount of soluble factors, extracellular matrix components and extracellular vesicles. While in physiological conditions this makes fibroblasts master regulators of tissue homeostasis and healing of injured tissues, in solid tumors cancer associated fibroblasts (CAFs) co-evolve with the disease, and alter the biochemical and physical structure of the tumor microenvironment, as well as the behavior of the surrounding stromal and cancer cells. Thus CAFs are fundamental regulators of tumor progression and influence response to therapeutic treatments. Increasing efforts are devoted to better understand the biology of CAFs to bring insights to develop complementary strategies to target this cell type in cancer. Here we highlight components of the tumor microenvironment that play key roles in cancer progression and invasion, and provide an extensive overview of past and emerging understanding of CAF biology as well as the contribution that MS-based proteomics has made to this field.
Collapse
Affiliation(s)
- Alice Santi
- Cancer Research UK Beatson InstituteGlasgowUK
| | | | - Sara Zanivan
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
84
|
Innovative methods for biomarker discovery in the evaluation and development of cancer precision therapies. Cancer Metastasis Rev 2018; 37:125-145. [PMID: 29392535 DOI: 10.1007/s10555-017-9710-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The discovery of biomarkers able to detect cancer at an early stage, to evaluate its aggressiveness, and to predict the response to therapy remains a major challenge in clinical oncology and precision medicine. In this review, we summarize recent achievements in the discovery and development of cancer biomarkers. We also highlight emerging innovative methods in biomarker discovery and provide insights into the challenges faced in their evaluation and validation.
Collapse
|
85
|
Huang S, Wang C, Lv Y, Liu Y, Ma J, Wang X. Correlation of expression of WWOX and JNK with clinicopathologic features in human breast carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:695-703. [PMID: 31938155 PMCID: PMC6958009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/22/2017] [Indexed: 06/10/2023]
Abstract
The aim of our study was to compare the expression levels of c-Jun N-terminal kinase (JNK) and WW domain-containing oxidoreductase (WWOX) in human breast carcinoma, to analyze the correlation between the expression of WWOX and JNK with the clinicopathologic features of human breast carcinoma, and to explore the potential mechanism of their antitumor effects. The mRNA and protein levels of WWOX and JNK in forty paired breast carcinoma tissues and the adjacent normal tissues were detected by real-time quantitative polymerase chain reaction (RT-PCR) and Western blot analysis. Protein expression was further confirmed by immunohistochemistry (IHC). The mRNA expression levels of both JNK and WWOX were downregulated in carcinoma tissues relative to those in the adjacent normal tissues, as determined by Western blot analysis and IHC (P<0.01). JNK expression was positively correlated with WWOX expression (r=0.47, P=0.002). Both WWOX and JNK play important roles in breast cancer. Therefore, the antitumor ability of WWOX and JNK could supply significant information for therapeutic strategy.
Collapse
Affiliation(s)
- Sai Huang
- Department of Breast Surgery, Qilu Hospital of Shandong University Jinan, China
| | - Chenggang Wang
- Department of Breast Surgery, Qilu Hospital of Shandong University Jinan, China
| | - Yanrong Lv
- Department of Breast Surgery, Qilu Hospital of Shandong University Jinan, China
| | - Ying Liu
- Department of Breast Surgery, Qilu Hospital of Shandong University Jinan, China
| | - Jintao Ma
- Department of Breast Surgery, Qilu Hospital of Shandong University Jinan, China
| | - Xiao Wang
- Department of Breast Surgery, Qilu Hospital of Shandong University Jinan, China
| |
Collapse
|
86
|
Huelsken J, Hanahan D. A Subset of Cancer-Associated Fibroblasts Determines Therapy Resistance. Cell 2018; 172:643-644. [DOI: 10.1016/j.cell.2018.01.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
87
|
Simkova D, Kharaishvili G, Korinkova G, Ozdian T, Suchánková-Kleplová T, Soukup T, Krupka M, Galandakova A, Dzubak P, Janikova M, Navratil J, Kahounova Z, Soucek K, Bouchal J. The dual role of asporin in breast cancer progression. Oncotarget 2018; 7:52045-52060. [PMID: 27409832 PMCID: PMC5239534 DOI: 10.18632/oncotarget.10471] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 06/29/2016] [Indexed: 12/18/2022] Open
Abstract
Asporin has been reported as a tumor suppressor in breast cancer, while asporin-activated invasion has been described in gastric cancer. According to our in silico search, high asporin expresion associates with significantly better relapse free survival (RFS) in patients with low-grade tumors but RFS is significantly worse in patients with grade 3 tumors. In line with other studies, we have confirmed asporin expression by RNA scope in situ hybridization in cancer associated fibroblasts. We have also found asporin expression in the Hs578T breast cancer cell line which we confirmed by quantitative RT-PCR and western blotting. From multiple testing, we found that asporin can be downregulated by bone morphogenetic protein 4 while upregulation may be facilited by serum-free cultivation or by three dimensional growth in stiff Alvetex scaffold. Downregulation by shRNA inhibited invasion of Hs578T as well as of CAFs and T47D cells. Invasion of asporin-negative MDA-MB-231 and BT549 breast cancer cells through collagen type I was enhanced by recombinant asporin. Besides other investigations, large scale analysis of aspartic acid repeat polymorphism will be needed for clarification of the asporin dual role in progression of breast cancer.
Collapse
Affiliation(s)
- Dana Simkova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Gvantsa Kharaishvili
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Gabriela Korinkova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Tomas Ozdian
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Tereza Suchánková-Kleplová
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Tomas Soukup
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Michal Krupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Adela Galandakova
- Department of Medical Chemistry and Biochemistry, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Petr Dzubak
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Maria Janikova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jiri Navratil
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Zuzana Kahounova
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Karel Soucek
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
88
|
Paracrine interactions of cancer-associated fibroblasts, macrophages and endothelial cells: tumor allies and foes. Curr Opin Oncol 2018; 30:45-53. [DOI: 10.1097/cco.0000000000000420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
89
|
Blomme A, Van Simaeys G, Doumont G, Costanza B, Bellier J, Otaka Y, Sherer F, Lovinfosse P, Boutry S, Palacios AP, De Pauw E, Hirano T, Yokobori T, Hustinx R, Bellahcène A, Delvenne P, Detry O, Goldman S, Nishiyama M, Castronovo V, Turtoi A. Murine stroma adopts a human-like metabolic phenotype in the PDX model of colorectal cancer and liver metastases. Oncogene 2017; 37:1237-1250. [PMID: 29242606 DOI: 10.1038/s41388-017-0018-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/22/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022]
Abstract
Cancer research is increasingly dependent of patient-derived xenograft model (PDX). However, a major point of concern regarding the PDX model remains the replacement of the human stroma with murine counterpart. In the present work we aimed at clarifying the significance of the human-to-murine stromal replacement for the fidelity of colorectal cancer (CRC) and liver metastasis (CRC-LM) PDX model. We have conducted a comparative metabolic analysis between 6 patient tumors and corresponding PDX across 4 generations. Metabolic signatures of cancer cells and stroma were measured separately by MALDI-imaging, while metabolite changes in entire tumors were quantified using mass spectrometry approach. Measurement of glucose metabolism was also conducted in vivo using [18F]-fluorodeoxyglucose (FDG) and positron emission tomography (PET). In CRC/CRC-LM PDX model, human stroma was entirely replaced at the second generation. Despite this change, MALDI-imaging demonstrated that the metabolic profiles of both stromal and cancer cells remained stable for at least four generations in comparison to the original patient material. On the tumor level, profiles of 86 water-soluble metabolites as well as 93 lipid mediators underlined the functional stability of the PDX model. In vivo PET measurement of glucose uptake (reflecting tumor glucose metabolism) supported the ex vivo observations. Our data show for the first time that CRC/CRC-LM PDX model maintains the functional stability at the metabolic level despite the early replacement of the human stroma by murine cells. The findings demonstrate that human cancer cells actively educate murine stromal cells during PDX development to adopt the human-like phenotype.
Collapse
Affiliation(s)
- Arnaud Blomme
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Gaetan Van Simaeys
- Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Charleroi (Gosselies), Brussels, Belgium
| | - Gilles Doumont
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Charleroi (Gosselies), Brussels, Belgium
| | - Brunella Costanza
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Justine Bellier
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Yukihiro Otaka
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Félicie Sherer
- Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Charleroi (Gosselies), Brussels, Belgium
| | - Pierre Lovinfosse
- Nuclear Medicine and Oncological Imaging Division, Medical Physics Department, Liège University Hospital, Liège, Belgium
| | - Sébastien Boutry
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, Mons, Belgium.,Center for Microscopy and Molecular Imaging, Université de Mons (UMONS), Charleroi (Gosselies), Belgium
| | - Ana Perez Palacios
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Touko Hirano
- Laboratory for Analytical Instruments, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takehiko Yokobori
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Roland Hustinx
- Nuclear Medicine and Oncological Imaging Division, Medical Physics Department, Liège University Hospital, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital, University of Liège, Liège, Belgium
| | - Olivier Detry
- Department of Abdominal Surgery, University Hospital, University of Liège, Liège, Belgium
| | - Serge Goldman
- Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Charleroi (Gosselies), Brussels, Belgium
| | - Masahiko Nishiyama
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium. .,Tumor Microenvironment and Resistance to Treatment Lab, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France. .,Institut du Cancer, Montpellier, Montpellier, France. .,INSERM, U1194, Montpellier, France. .,Université, Montpellier, Montpellier, France.
| |
Collapse
|
90
|
Proteomic profiling identifies markers for inflammation-related tumor-fibroblast interaction. Clin Proteomics 2017; 14:33. [PMID: 29176937 PMCID: PMC5689177 DOI: 10.1186/s12014-017-9168-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/25/2017] [Indexed: 02/08/2023] Open
Abstract
Background Cancer associated fibroblasts are activated in the tumor microenvironment and contribute to tumor progression, angiogenesis, extracellular matrix remodeling, and inflammation. Methods To identify proteins characteristic for fibroblasts in colorectal cancer we used liquid chromatography-tandem mass spectrometry to derive protein abundance from whole-tissue homogenates of human colorectal cancer/normal mucosa pairs. Alterations of protein levels were determined by two-sided t test with greater than threefold difference and an FDR of < 0.05. Public available datasets were used to predict proteins of stromal origin and link protein with mRNA regulation. Immunohistochemistry confirmed the localization of selected proteins. Results We identified a set of 24 proteins associated with inflammation, matrix organization, TGFβ receptor signaling and angiogenesis mainly originating from the stroma. Most prominent were increased abundance of SerpinB5 in the parenchyme and latent transforming growth factor β-binding protein, thrombospondin-B2, and secreted protein acidic-and-cysteine-rich in the stroma. Extracellular matrix remodeling involved collagens type VIII, XII, XIV, and VI as well as lysyl-oxidase-2. In silico analysis of mRNA levels demonstrated altered expression in the tumor and the adjacent normal tissue as compared to mucosa of healthy individuals indicating that inflammatory activation affected the surrounding tissue. Immunohistochemistry of 26 tumor specimen confirmed upregulation of SerpinB5, thrombospondin B2 and secreted protein acidic-and-cysteine-rich. Conclusions This study demonstrates the feasibility of detecting tumor- and compartment-specific protein-signatures that are functionally meaningful by proteomic profiling of whole-tissue extracts together with mining of RNA expression datasets. The results provide the basis for further exploration of inflammation-related stromal markers in larger patient cohorts and experimental models.
Collapse
|
91
|
Maccarana M, Svensson RB, Knutsson A, Giannopoulos A, Pelkonen M, Weis M, Eyre D, Warman M, Kalamajski S. Asporin-deficient mice have tougher skin and altered skin glycosaminoglycan content and structure. PLoS One 2017; 12:e0184028. [PMID: 28859141 PMCID: PMC5578652 DOI: 10.1371/journal.pone.0184028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/16/2017] [Indexed: 11/24/2022] Open
Abstract
The main structural component of connective tissues is fibrillar, cross-linked collagen whose fibrillogenesis can be modulated by Small Leucine-Rich Proteins/Proteoglycans (SLRPs). Not all SLRPs’ effects on collagen and extracellular matrix in vivo have been elucidated; one of the less investigated SLRPs is asporin. Here we describe the successful generation of an Aspn-/- mouse model and the investigation of the Aspn-/- skin phenotype. Functionally, Aspn-/- mice had an increased skin mechanical toughness, although there were no structural changes present on histology or immunohistochemistry. Electron microscopy analyses showed 7% thinner collagen fibrils in Aspn-/- mice (not statistically significant). Several matrix genes were upregulated, including collagens (Col1a1, Col1a2, Col3a1), matrix metalloproteinases (Mmp2, Mmp3) and lysyl oxidases (Lox, Loxl2), while lysyl hydroxylase (Plod2) was downregulated. Intriguingly no differences were observed in collagen protein content or in collagen cross-linking-related lysine oxidation or hydroxylation. The glycosaminoglycan content and structure in Aspn-/- skin was profoundly altered: chondroitin/dermatan sulfate was more than doubled and had an altered composition, while heparan sulfate was halved and had a decreased sulfation. Also, decorin and biglycan were doubled in Aspn-/- skin. Overall, asporin deficiency changes skin glycosaminoglycan composition, and decorin and biglycan content, which may explain the changes in skin mechanical properties.
Collapse
Affiliation(s)
- Marco Maccarana
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - René B. Svensson
- Institute of Sports Medicine, Bispebjerg Hospital, and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Anki Knutsson
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Antonis Giannopoulos
- Institute of Sports Medicine, Bispebjerg Hospital, and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Mea Pelkonen
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - David Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Matthew Warman
- Children’s Hospital Boston, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sebastian Kalamajski
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
92
|
Lončar-Brzak B, Klobučar M, Veliki-Dalić I, Sabol I, Kraljević Pavelić S, Krušlin B, Mravak-Stipetić M. Expression of small leucine-rich extracellular matrix proteoglycans biglycan and lumican reveals oral lichen planus malignant potential. Clin Oral Investig 2017; 22:1071-1082. [PMID: 28779221 DOI: 10.1007/s00784-017-2190-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this study was to examine molecular alterations on the protein level in lesions of oral lichen planus (OLP), oral squamous cell carcinoma (OSCC) and healthy mucosa. MATERIALS AND METHODS Global protein profiling methods based on liquid chromatography coupled to mass spectrometry (LC-MS) were used, with a special emphasis on evaluation of deregulated extracellular matrix molecules expression, as well as on analyses of IG2F and IGFR2 expression in healthy mucosa, OLP and OSCC tissues by comparative semi-quantitative immunohistochemistry. RESULTS Mass spectrometry-based proteomics profiling of healthy mucosa, OLP and OSCC tissues (and accompanied histologically unaltered tissues, respectively) identified 55 extracellular matrix proteins. Twenty among identified proteins were common to all groups of samples. Expression of small leucine-rich extracellular matrix proteoglycans lumican and biglycan was found both in OSCC and OLP and they were validated by Western blot analysis as putative biomarkers. A significant increase (p < 0.05) of biglycan expression in OLP-AT group was determined in comparison with OLP-T group, while lumican showed significant up-regulation (p < 0.05) in OLP-T and OSCC-T groups vs. adjacent and control tissue groups. Biglycan expression was only determined in OSCC-AT group. Immunohistochemical analysis of IGF2 and IG2FR expression revealed no significant difference among groups of samples. CONCLUSION/CLINICAL RELEVANCE Biglycan and lumican were identified as important pathogenesis biomarkers of OLP that point to its malignant potential.
Collapse
Affiliation(s)
- Božana Lončar-Brzak
- School of Dental Medicine, Department of Oral Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Klobučar
- Department of Biotechnology and Centre for High-throughput technologies, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Irena Veliki-Dalić
- Department of Pathology, Clinical Hospital for Tumours, Clinical Hospital Centre Sisters of Mercy, Zagreb, Croatia
| | - Ivan Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sandra Kraljević Pavelić
- Department of Biotechnology and Centre for High-throughput technologies, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia.
| | - Božo Krušlin
- School of Medicine, Department of Pathology, Clinical Hospital Centre Sisters of Mercy, University of Zagreb, Zagreb, Croatia
| | - Marinka Mravak-Stipetić
- School of Dental Medicine, Department of Oral Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
93
|
Bolton J, Montastier E, Carayol J, Bonnel S, Mir L, Marques MA, Astrup A, Saris W, Iacovoni J, Villa-Vialaneix N, Valsesia A, Langin D, Viguerie N. Molecular Biomarkers for Weight Control in Obese Individuals Subjected to a Multiphase Dietary Intervention. J Clin Endocrinol Metab 2017; 102:2751-2761. [PMID: 28482007 DOI: 10.1210/jc.2016-3997] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/02/2017] [Indexed: 12/18/2022]
Abstract
CONTEXT Although calorie restriction has proven beneficial for weight loss, long-term weight control is variable between individuals. OBJECTIVE To identify biomarkers of successful weight control during a dietary intervention (DI). DESIGN, SETTING, AND PARTICIPANTS Adipose tissue (AT) transcriptomes were compared between 21 obese individuals who either maintained weight loss or regained weight during the DI. Results were validated on 310 individuals from the same study using quantitative reverse transcription polymerase chain reaction and protein levels of potential circulating biomarkers measured by enzyme-linked immunosorbent assay. INTERVENTION Individuals underwent 8 weeks of low-calorie diet, then 6 months of ad libitum diet. OUTCOME MEASURE Weight changes at the end of the DI. RESULTS We evaluated six genes that had altered expression during DI, encode secreted proteins, and have not previously been implicated in weight control (EGFL6, FSTL3, CRYAB, TNMD, SPARC, IGFBP3), as well as genes for which baseline expression differed between those with good and poor weight control (ASPN, USP53). Changes in plasma concentrations of EGFL6, FSTL3, and CRYAB mirrored AT messenger RNA expression; all decreased during DI in individuals with good weight control. ASPN and USP53 had higher baseline expression in individuals who went on to have good weight control. Expression quantitative trait loci analysis found polymorphisms associated with expression levels of USP53 in AT. A regulatory network was identified in which transforming growth factor β1 (TGF-β1) was responsible for downregulation of certain genes during DI in good controllers. Interestingly, ASPN is a TGF-β1 inhibitor. CONCLUSIONS We found circulating biomarkers associated with weight control that could influence weight management strategies and genes that may be prognostic for successful weight control.
Collapse
Affiliation(s)
- Jennifer Bolton
- Institut National de la Santé et de la Recherche Médicale, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France
- University of Toulouse, Paul Sabatier University, 31400 Toulouse, France
| | - Emilie Montastier
- Institut National de la Santé et de la Recherche Médicale, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France
- University of Toulouse, Paul Sabatier University, 31400 Toulouse, France
- Toulouse University Hospitals, Departments of Endocrinology, Metabolism and Nutrition, 31400 Toulouse, France
| | - Jérôme Carayol
- Nestlé Institute of Health Sciences SA, CH-1015 Lausanne, Switzerland
| | - Sophie Bonnel
- Institut National de la Santé et de la Recherche Médicale, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France
- University of Toulouse, Paul Sabatier University, 31400 Toulouse, France
| | - Lucile Mir
- Institut National de la Santé et de la Recherche Médicale, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France
- University of Toulouse, Paul Sabatier University, 31400 Toulouse, France
| | - Marie-Adeline Marques
- Institut National de la Santé et de la Recherche Médicale, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France
- University of Toulouse, Paul Sabatier University, 31400 Toulouse, France
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Wim Saris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6229 Maastricht, The Netherlands
| | - Jason Iacovoni
- Institut National de la Santé et de la Recherche Médicale, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France
- University of Toulouse, Paul Sabatier University, 31400 Toulouse, France
| | - Nathalie Villa-Vialaneix
- Unité de Mathématiques et Informatique Appliquées de Toulouse, Université de Toulouse, 31326 Castanet Tolosan, France
| | - Armand Valsesia
- Nestlé Institute of Health Sciences SA, CH-1015 Lausanne, Switzerland
| | - Dominique Langin
- Institut National de la Santé et de la Recherche Médicale, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France
- University of Toulouse, Paul Sabatier University, 31400 Toulouse, France
- Toulouse University Hospitals, Departments of Endocrinology, Metabolism and Nutrition, 31400 Toulouse, France
| | - Nathalie Viguerie
- Institut National de la Santé et de la Recherche Médicale, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France
- University of Toulouse, Paul Sabatier University, 31400 Toulouse, France
| |
Collapse
|
94
|
Wang L, Wu H, Wang L, Zhang H, Lu J, Liang Z, Liu T. Asporin promotes pancreatic cancer cell invasion and migration by regulating the epithelial-to-mesenchymal transition (EMT) through both autocrine and paracrine mechanisms. Cancer Lett 2017; 398:24-36. [PMID: 28400334 DOI: 10.1016/j.canlet.2017.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/13/2017] [Accepted: 04/01/2017] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is histopathologically characterized by excessive desmoplasia induced by pancreatic stellate cells (PSCs). Asporin, an extracellular matrix (ECM) protein, is highly expressed in cancer-associated fibroblasts (CAFs). Asporin expression in PSCs and its roles in PSC-pancreatic cancer cell (PCC) interaction remain unclear. The present study firstly showed that Asporin is highly expressed in activated PSCs and is involved in PSC-mediated invasion and migration of PCCs. Exogenous Asporin interacted with the transmembrane receptor CD44 on PCCs to activate NF-κB/p65 and promoted the epithelial-mesenchymal transition (EMT) in PCCs. Furthermore, AKT and ERK pathways participated in Asporin/CD44-induced NF-κB/p65 activation in pancreatic cancer. Asporin had similar effects on PCCs via an autocrine mechanism. Consistent with our in vitro experiments, we showed that Asporin in peritumoral stroma of pancreatic cancer tissues was associated with poor clinical outcome. In conclusion, this is the first study to show that Asporin promotes EMT, invasion, and migration of PCCs by activating CD44-AKT/ERK-NF-κB pathway in paracrine and autocrine manners. Moreover, our results indicate that Asporin may be a prognostic marker and suggest that targeting the tumor microenvironment represents a promising therapeutic strategy in pancreatic cancer.
Collapse
Affiliation(s)
- Lili Wang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huanwen Wu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li Wang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hui Zhang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Junliang Lu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhiyong Liang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Tonghua Liu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
95
|
Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev 2017; 30:1002-19. [PMID: 27151975 PMCID: PMC4863733 DOI: 10.1101/gad.279737.116] [Citation(s) in RCA: 556] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor stroma is no longer seen solely as physical support for mutated epithelial cells but as an important modulator and even a driver of tumorigenicity. Within the tumor stromal milieu, heterogeneous populations of fibroblast-like cells, collectively termed carcinoma-associated fibroblasts (CAFs), are key players in the multicellular, stromal-dependent alterations that contribute to malignant initiation and progression. This review focuses on novel insights into the contributions of CAFs to disease progression, emergent events leading to the generation of CAFs, identification of CAF-specific biomarkers predictive of disease outcome, and recent therapeutic approaches aimed at blunting or reverting detrimental protumorigenic phenotypes associated with CAFs.
Collapse
Affiliation(s)
- Philippe Gascard
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Thea D Tlsty
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
96
|
Rochette A, Boufaied N, Scarlata E, Hamel L, Brimo F, Whitaker HC, Ramos-Montoya A, Neal DE, Dragomir A, Aprikian A, Chevalier S, Thomson AA. Asporin is a stromally expressed marker associated with prostate cancer progression. Br J Cancer 2017; 116:775-784. [PMID: 28152543 PMCID: PMC5355923 DOI: 10.1038/bjc.2017.15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Prostate cancer shows considerable heterogeneity in disease progression and we propose that markers expressed in tumour stroma may be reliable predictors of aggressive tumour subtypes. METHODS We have used Kaplan-Meier, univariate and multivariate analysis to correlate the expression of Asporin (ASPN) mRNA and protein with prostate cancer progression in independent cohorts. We used immunohistochemistry and H scoring to document stromal localisation of ASPN in a tissue microarray and mouse prostate cancer model, and correlated expression with reactive stroma, defined using Masson Trichrome staining. We used cell cultures of primary prostate cancer fibroblasts treated with serum-free conditioned media from prostate cancer cell lines to examine regulation of ASPN mRNA in tumour stromal cells. RESULTS We observed increased expression of ASPN mRNA in a data set derived from benign vs tumour microdissected tissue, and a correlation with biochemical recurrence using Kaplan-Meier and Cox proportional hazard analysis. ASPN protein localised to tumour stroma and elevated expression of ASPN was correlated with decreased time to biochemical recurrence, in a cohort of 326 patients with a median follow up of 9.6 years. Univariate and multivariate analysis demonstrated that ASPN was correlated with progression, as were Gleason score, and clinical stage. Additionally, ASPN expression correlated with the presence of reactive stroma, suggesting that it may be a stromal marker expressed in response to the presence of tumour cells and particularly with aggressive tumour subtypes. We observed expression of ASPN in the stroma of tumours induced by p53 inhibition in a mouse model of prostate cancer, and correlation with neuroendocrine marker expression. Finally, we demonstrated that ASPN transcript expression in normal and cancer fibroblasts was regulated by conditioned media derived from the PC3, but not LNCaP, prostate cancer cell lines. CONCLUSIONS Our results suggest that ASPN is a stromally expressed biomarker that correlates with disease progression, and is observed in reactive stroma. ASPN expression in stroma may be part of a stromal response to aggressive tumour subtypes.
Collapse
Affiliation(s)
- Annie Rochette
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Nadia Boufaied
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Eleonora Scarlata
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Lucie Hamel
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Fadi Brimo
- Department of Pathology, Division of Urology, McGill University and The McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Hayley C Whitaker
- Department of Oncology, University of Cambridge, Box 279, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Antonio Ramos-Montoya
- Department of Oncology, University of Cambridge, Box 279, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - David E Neal
- Department of Oncology, University of Cambridge, Box 279, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Alice Dragomir
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Armen Aprikian
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Simone Chevalier
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Axel A Thomson
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
97
|
Costanza B, Umelo IA, Bellier J, Castronovo V, Turtoi A. Stromal Modulators of TGF-β in Cancer. J Clin Med 2017; 6:jcm6010007. [PMID: 28067804 PMCID: PMC5294960 DOI: 10.3390/jcm6010007] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is an intriguing cytokine exhibiting dual activities in malignant disease. It is an important mediator of cancer invasion, metastasis and angiogenesis, on the one hand, while it exhibits anti-tumor functions on the other hand. Elucidating the precise role of TGF-β in malignant development and progression requires a better understanding of the molecular mechanisms involved in its tumor suppressor to tumor promoter switch. One important aspect of TGF-β function is its interaction with proteins within the tumor microenvironment. Several stromal proteins have the natural ability to interact and modulate TGF-β function. Understanding the complex interplay between the TGF-β signaling network and these stromal proteins may provide greater insight into the development of novel therapeutic strategies that target the TGF-β axis. The present review highlights our present understanding of how stroma modulates TGF-β activity in human cancers.
Collapse
Affiliation(s)
- Brunella Costanza
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
| | - Ijeoma Adaku Umelo
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
| | - Justine Bellier
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université Montpellier, Institut Régional du Cancer de Montpellier, 34298 Montpellier, France.
| |
Collapse
|
98
|
Blomme A, Cusumano P, Peulen O, Bellahcène A, Castronovo V, Turtoi A. [Asporin: the protective wall against triple-negative breast cancer]. Med Sci (Paris) 2016; 32:1019-1022. [PMID: 28008845 DOI: 10.1051/medsci/20163211020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Arnaud Blomme
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, avenue de l'Hôpital 3, 4000 Liege, Belgique
| | - Pino Cusumano
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, avenue de l'Hôpital 3, 4000 Liege, Belgique - Department of senology, university hospital (CHU), University of Liège, Liège, Belgique
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, avenue de l'Hôpital 3, 4000 Liege, Belgique
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, avenue de l'Hôpital 3, 4000 Liege, Belgique
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, avenue de l'Hôpital 3, 4000 Liege, Belgique
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, avenue de l'Hôpital 3, 4000 Liege, Belgique - Institut de Recherche en Cancérologie de Montpellier ; Inserm U1194, Montpellier F-34298, France
| |
Collapse
|
99
|
Puré E, Lo A. Can Targeting Stroma Pave the Way to Enhanced Antitumor Immunity and Immunotherapy of Solid Tumors? Cancer Immunol Res 2016; 4:269-78. [PMID: 27036971 DOI: 10.1158/2326-6066.cir-16-0011] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid tumors are complex organ-like structures. The potential of normal neighboring cells to contribute to the initiation, progression, and metastasis of epithelial-derived carcinomas has long been appreciated. However, the role of host cells has proven complex. Through multiple local and systemic mechanisms, nontransformed host cells can promote transition from a tumor-resistant to tumor-permissive environment, drive neoplastic transformation of epithelial cells, promote tumor growth, progression, and metastasis, but also constrain tumorigenesis. This complexity reflects the spatially and temporally dynamic involvement of multiple cell types and processes, including the development and recruitment of inflammatory, immune, endothelial, and mesenchymal stromal cells, and the remodeling of extracellular matrix. Our mechanistic understanding, as well as our ability to translate advances in our understanding of these mechanisms for therapeutic benefit, is rapidly advancing. Further insights will depend on delineating pathways that mediate the communication networks between inflammatory and immune cells with tumor and mesenchymal stromal cells and extracellular matrix. Here, we discuss the diversity of mesenchymal stromal cell populations and how context can dictate either their promotion or constraint of tumorigenesis. We review evidence for plasticity that allows for reprogramming of stromal cells and how tumor immunogenicity and desmoplasia influence the balance of immune-independent and immune-dependent regulation of tumor growth. The pivotal roles of matrix and mesenchymal stromal cells in modulating inflammation, antitumor immunity, and the efficacy of immune-based therapies are discussed. These concepts have emerged from data obtained from tumors of multiple organs, but we focus mostly on studies of pancreatic ductal adenocarcinomas.
Collapse
Affiliation(s)
- Ellen Puré
- University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Albert Lo
- University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
100
|
Simkova D, Kharaishvili G, Slabakova E, Murray PG, Bouchal J. Glycoprotein asporin as a novel player in tumour microenvironment and cancer progression. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:467-473. [PMID: 27605398 DOI: 10.5507/bp.2016.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/08/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Small leucine rich proteoglycans (SLRPs), major non-collagen components of the extracellular matrix (ECM), have multiple biological roles with diverse effects. Asporin, a member of the SLRPs class I, competes with other molecules in binding to collagen and affects its mineralization. Its role in cancer is only now being elucidated. METHODS The PubMed online database was used to search relevant reviews and original articles. Furthermore, altered asporin expression was analysed in publicly available genome-wide expression data at the Gene Expression Omnibus database. RESULTS Polymorphisms in the N-terminal polyaspartate domain, which binds calcium, are associated with osteoarthritis and prostate cancer. Asporin also promotes the progression of scirrhous gastric cancer where it is required for coordinated invasion by cancer associated fibroblasts and cancer cells. Besides the enhanced expression of asporin observed in multiple cancer types, such as breast, prostate, gastric, pancreas and colon cancer, tumour suppressive effects of asporin were described in triple-negative breast cancer. We also discuss a number of factors modulating asporin expression in different cell types relevant for alterations toing the tumour microenvironment. CONCLUSION The apparent contradicting tumour promoting and suppressive effects of asporin require further investigation. Deciphering the role of asporin and other SLRPs in tumour-stroma interactions is needed for a better understanding of cancer progression and potentially also for novel tumour microenvironment based therapies.
Collapse
Affiliation(s)
- Dana Simkova
- Department of Clinical and Molecular Pathology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Gvantsa Kharaishvili
- Department of Clinical and Molecular Pathology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Eva Slabakova
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Paul G Murray
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|