51
|
Laude HC, Caval V, Bouzidi MS, Li X, Jamet F, Henry M, Suspène R, Wain-Hobson S, Vartanian JP. The rabbit as an orthologous small animal model for APOBEC3A oncogenesis. Oncotarget 2018; 9:27809-27822. [PMID: 29963239 PMCID: PMC6021247 DOI: 10.18632/oncotarget.25593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022] Open
Abstract
APOBEC3 are cytidine deaminases that convert cytidine to uridine residues. APOBEC3A and APOBEC3B enzymes able to target genomic DNA are involved in oncogenesis of a sizeable proportion of human cancers. While the APOBEC3 locus is conserved in mammals, it encodes from 1–7 genes. APOBEC3A is conserved in most mammals, although absent in pigs, cats and throughout Rodentia whereas APOBEC3B is restricted to the Primate order. Here we show that the rabbit APOBEC3 locus encodes two genes of which APOBEC3A enzyme is strictly orthologous to human APOBEC3A. The rabbit enzyme is expressed in the nucleus and the cytoplasm, it can deaminate cytidine, 5-methcytidine residues, nuclear DNA and induce double-strand DNA breaks. The rabbit APOBEC3A enzyme is negatively regulated by the rabbit TRIB3 pseudokinase protein which is guardian of genome integrity, just like its human counterpart. This indicates that the APOBEC3A/TRIB3 pair is conserved over approximately 100 million years. The rabbit APOBEC3A gene is widely expressed in rabbit tissues, unlike human APOBEC3A. These data demonstrate that rabbit could be used as a small animal model for studying APOBEC3 driven oncogenesis.
Collapse
Affiliation(s)
- Hélène C Laude
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, France
| | - Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, France
| | - Mohamed S Bouzidi
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, France
| | - Xiongxiong Li
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, France.,Lanzhou Institute of Biological Products Co., Ltd (LIBP), subsidiary company of China National Biotec Group Company Limited (CNBG), Lanzhou 730046, China
| | - Florence Jamet
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, France
| | - Michel Henry
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, France
| | - Rodolphe Suspène
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, France
| | | |
Collapse
|
52
|
Singh H, Gangakhedkar RR. Occurrence of APOBEC3G variations in West Indian HIV patients. Microb Pathog 2018; 121:325-330. [PMID: 29864532 DOI: 10.1016/j.micpath.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
Abstract
The genetic variations in APOBEC3G gene are correlated with HIV disease progression. These variations differ in different ethnic groups. The prevalence of APOBEC3G (-90C/G, -571G/C) variations have not been studied in Indian population. Hence, we assessed the occurrence of APOBEC3G polymorphisms in HIV patients and its association with acquisition of HIV and disease progression. Polymorphisms in APOBEC3G were genotyped in a total of 153 HIV patients, naïve to ARV and 156 healthy controls by PCR-RFLP method. In single locus model, the frequency of distribution of APOBEC3G -90CG, -571 GC genotypes were higher in HIV patients as compared to healthy controls (57.5% vs. 50.0%, OR = 1.22; 17.0% vs. 12.8%, OR = 1.39). In double locus model, the dominant -571 GC + CC genotype was distributed at a much higher frequency in HIV patients as compared to healthy controls (18.3% vs. 14.1%, OR = 1.50). The frequency of APOBEC3G -571CC and CC + GC genotypes were higher in early HIV disease stage as compared to healthy controls (23.9% vs. 12.8%, OR = 2.23, P = 0.08; 28.3% vs. 14.1%, OR = 2.40, P = 0.04). APOBEC3G-571 GC and GC + CC genotypes were more prevalent in HIV patients consuming tobacco and alcohol as compared to non-users (22.7% vs. 15.3%, OR = 1.71, P = 0.56; 27.3% vs. 16.5%, OR = 1.90, P = 0.39 and 31.6% vs. 13.6%, OR = 2.31, P = 0.08; 36.8% vs14.8%, OR = 2.49, P = 0.04, respectively). In conclusion, APOBEC3G-571G/C polymorphism was associated with the early stage of HIV infection and could potentially influence HIV disease progression in alcohol users. The distribution of APOBEC3G polymorphisms and its haplotypes were not significantly different between HIV patients and healthy controls.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, National AIDS Research Institute, Pune, 411026, India.
| | - R R Gangakhedkar
- Department of Clinical Sciences, National AIDS Research Institute, Pune, 411026, India
| |
Collapse
|
53
|
Salter JD, Smith HC. Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands. Trends Biochem Sci 2018; 43:606-622. [PMID: 29803538 PMCID: PMC6073885 DOI: 10.1016/j.tibs.2018.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022]
Abstract
The 11-member APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of zinc-dependent cytidine deaminases bind to RNA and single-stranded DNA (ssDNA) and, in specific contexts, modify select (deoxy)cytidines to (deoxy)uridines. In this review, we describe advances made through high-resolution co-crystal structures of APOBECs bound to mono- or oligonucleotides that reveal potential substrate-specific binding sites at the active site and non-sequence-specific nucleic acid binding sites distal to the active site. We also discuss the effect of APOBEC oligomerization on functionality. Future structural studies will need to address how ssDNA binding away from the active site may enhance catalysis and the mechanism by which RNA binding may modulate catalytic activity on ssDNA. APOBEC proteins catalyze deamination of cytidine or deoxycytidine in either a sequence-specific or semi-specific manner on either DNA or RNA. APOBECs each possess the cytidine deaminase core fold, but sequence and structural differences among loops surrounding the zinc-dependent active site impart differences in sequence-dependent target preferences, binding affinity, catalytic rate, and regulation of substrate access to the active site among the 11 family members. APOBECs also regulate the deamination reaction through additional nucleic acid substrate binding sites located within surface grooves or patches of positive electrostatic potential that are distal to the active site but may do so nonspecifically. Binding of nonsubstrate RNA and RNA-mediated oligomerization by APOBECs that deaminate ssDNA downregulates catalytic activity but also controls APOBEC subcellular or virion localization. The presence of a second, though noncatalytic, cytidine deaminase domain for some APOBECs and the ability of some APOBECs to oligomerize add additional molecular surfaces for positive or negative regulation of catalysis through nucleic acid binding.
Collapse
Affiliation(s)
- Jason D Salter
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA.
| | - Harold C Smith
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
54
|
Asymmetric Modification of Hepatitis B Virus (HBV) Genomes by an Endogenous Cytidine Deaminase inside HBV Cores Informs a Model of Reverse Transcription. J Virol 2018; 92:JVI.02190-17. [PMID: 29491156 DOI: 10.1128/jvi.02190-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/20/2018] [Indexed: 02/07/2023] Open
Abstract
Cytidine deaminases inhibit replication of a broad range of DNA viruses by deaminating cytidines on single-stranded DNA (ssDNA) to generate uracil. While several lines of evidence have revealed hepatitis B virus (HBV) genome editing by deamination, it is still unclear which nucleic acid intermediate of HBV is modified. Hepatitis B virus has a relaxed circular double-stranded DNA (rcDNA) genome that is reverse transcribed within virus cores from a RNA template. The HBV genome also persists as covalently closed circular DNA (cccDNA) in the nucleus of an infected cell. In the present study, we found that in HBV-producing HepAD38 and HepG2.2.15 cell lines, endogenous cytidine deaminases edited 10 to 25% of HBV rcDNA genomes, asymmetrically with almost all mutations on the 5' half of the minus strand. This region corresponds to the last half of the minus strand to be protected by plus-strand synthesis. Within this half of the genome, the number of mutations peaks in the middle. Overexpressed APOBEC3A and APOBEC3G could be packaged in HBV capsids but did not change the amount or distribution of mutations. We found no deamination on pregenomic RNA (pgRNA), indicating that an intact genome is encapsidated and deaminated during or after reverse transcription. The deamination pattern suggests a model of rcDNA synthesis in which pgRNA and then newly synthesized minus-sense single-stranded DNA are protected from deaminase by interaction with the virus capsid; during plus-strand synthesis, when enough dsDNA has been synthesized to displace the remaining minus strand from the capsid surface, the single-stranded DNA becomes deaminase sensitive.IMPORTANCE Host-induced mutation of the HBV genome by APOBEC proteins may be a path to clearing the virus. We examined cytidine-to-thymidine mutations in the genomes of HBV particles grown in the presence or absence of overexpressed APOBEC proteins. We found that genomes were subjected to deamination activity during reverse transcription, which takes place within the virus capsid. These observations provide a direct insight into the mechanics of reverse transcription, suggesting that newly synthesized dsDNA displaces ssDNA from the capsid walls, making the ssDNA accessible to deaminase activity.
Collapse
|
55
|
Human-APOBEC3G-dependent restriction of porcine endogenous retrovirus replication is mediated by cytidine deamination and inhibition of DNA strand transfer during reverse transcription. Arch Virol 2018; 163:1907-1914. [PMID: 29610985 DOI: 10.1007/s00705-018-3822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/18/2018] [Indexed: 10/17/2022]
Abstract
Although human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, hA3G)-mediated deamination is the major mechanism used to restrict the infectivity of a broad range of retroviruses, it is unclear whether porcine endogenous retrovirus (PERV) is affected by hA3G or porcine A3F (poA3F). To determine whether DNA deamination is required for hA3G- and poA3F-dependent inhibition of PERV transmission, we developed VSV-pseudotype PERV-B expressing hA3G, mutant hA3G-E67Q (encapsidation and RNA binding activity-deficient), mutant hA3G-E259Q (deaminase-deficient), or poA3F. hA3G-E67Q decreased virus infectivity by ~ 93% compared to the ~ 99% decrease of viral infectivity by wild-type hA3G, while hA3G-E259Q decreased the infectivity of PERV-B by ~ 35%. These data suggest that cytidine deamination activity is crucial for efficient restriction of PERV by hA3G, but cytidine deamination cannot fully explain the inactivation of PERV by hA3G. Furthermore, differential DNA denaturation PCR (3D-PCR) products from 293T cells infected with PERV-B expressing hA3G mutants were sequenced. G-to-A hypermutation was detected at a frequency of 4.1% for hA3G, 3.4% for hA3G-E67Q, and 4.7% for poA3F. These results also suggest that hA3G and poA3F inhibit PERV by a deamination-dependent mechanism. To examine the effect of hA3G on the production of PERV DNA, genomic DNA was extracted from 293T cells 12 h after infection with PERV expressing hA3G, and this DNA was used as template for real-time PCR. A 50% decrease in minus strand strong stop (-sss) DNA synthesis/transfer was observed in the presence of hA3G. Based on these results, we conclude that hA3G may restrict PERV by both deamination-dependent mechanisms and inhibition of DNA strand transfer during PERV reverse transcription.
Collapse
|
56
|
Minakawa Y, Shimizu A, Matsuno Y, Yoshioka KI. Genomic Destabilization Triggered by Replication Stress during Senescence. Cancers (Basel) 2017. [PMCID: PMC5704177 DOI: 10.3390/cancers9110159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Most cancers develop after middle age, and are often associated with multiple mutations and genomic instability, implying that genomic destabilization is critical for age-related tumor development. In this manuscript, we review current knowledge regarding (1) the senescent cellular background, which is associated with a higher risk of genomic destabilization; and (2) the contributions of genomic destabilization to cancer development.
Collapse
Affiliation(s)
- Yusuke Minakawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (Y.M.); (A.S.); (Y.M.)
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Atsuhiro Shimizu
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (Y.M.); (A.S.); (Y.M.)
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Japan
| | - Yusuke Matsuno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (Y.M.); (A.S.); (Y.M.)
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Ken-ichi Yoshioka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (Y.M.); (A.S.); (Y.M.)
- Correspondence:
| |
Collapse
|
57
|
Chen Y, Hu J, Cai X, Huang Y, Zhou X, Tu Z, Hu J, Tavis JE, Tang N, Huang A, Hu Y. APOBEC3B edits HBV DNA and inhibits HBV replication during reverse transcription. Antiviral Res 2017; 149:16-25. [PMID: 29129707 DOI: 10.1016/j.antiviral.2017.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/24/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022]
Abstract
Hepatitis B virus is a partially double-stranded DNA virus that replicates by reverse transcription, which occurs within viral core particles in the cytoplasm. The cytidine deaminase APOBEC3B is a cellular restriction factor for HBV. Recently, it was reported that APOBEC3B can edit HBV cccDNA in the nucleus, causing its degradation. However, whether and how it can edit HBV core-associated DNAs during reverse transcription is unclear. Our studies to address this question revealed the following: First, silencing endogenous APOBEC3B in an HBV infection system lead to upregulation of HBV replication. Second, APOBEC3B can inhibit replication of HBV isolates from genotypes (gt) A, B, C, and D as determined by employing transfection of plasmids expressing isolates from four different HBV genotypes. For HBV inhibition, APOBEC3B-mediated inhibition of replication primarily depends on the C-terminal active site of APOBEC3B. In addition, employing the HBV RNaseH-deficient D702A mutant and a polymerase-deficient YMHA mutant, we demonstrated that APOBEC3B can edit both the HBV minus- and plus-strand DNAs, but not the pregenomic RNA in core particles. Furthermore, we found by co-immunoprecipitation assays that APOBEC3B can interact with HBV core protein in an RNA-dependent manner. Our results provide evidence that APOBEC3B can interact with HBV core protein and edit HBV DNAs during reverse transcription. These data suggest that APOBEC3B exerts multifaceted antiviral effects against HBV.
Collapse
Affiliation(s)
- Yanmeng Chen
- Key Laboratory of Molecular Biology on Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, People's Republic of China
| | - Jie Hu
- Key Laboratory of Molecular Biology on Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, People's Republic of China
| | - Xuefei Cai
- Key Laboratory of Molecular Biology on Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, People's Republic of China
| | - Yao Huang
- Key Laboratory of Molecular Biology on Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, People's Republic of China
| | - Xing Zhou
- Key Laboratory of Molecular Biology on Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, People's Republic of China
| | - Zeng Tu
- Key Laboratory of Molecular Biology on Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, People's Republic of China
| | - Jieli Hu
- Key Laboratory of Molecular Biology on Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, People's Republic of China
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University Liver Center, Saint Louis University School of Medicine, 1100 S. Grand Blvd., Saint Louis, MO 63104, USA
| | - Ni Tang
- Key Laboratory of Molecular Biology on Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, People's Republic of China
| | - Ailong Huang
- Key Laboratory of Molecular Biology on Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, People's Republic of China.
| | - Yuan Hu
- Key Laboratory of Molecular Biology on Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, People's Republic of China.
| |
Collapse
|
58
|
Ortega-Prieto AM, Dorner M. Immune Evasion Strategies during Chronic Hepatitis B and C Virus Infection. Vaccines (Basel) 2017; 5:E24. [PMID: 28862649 PMCID: PMC5620555 DOI: 10.3390/vaccines5030024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are a major global healthcare problem with more than 240 million and 70 million infected, respectively. Both viruses persist within the liver and result in progressive liver disease, resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma. Strikingly, this pathogenesis is largely driven by immune responses, unable to clear an established infection, rather than by the viral pathogens themselves. Even though disease progression is very similar in both infections, HBV and HCV have evolved distinct mechanisms, by which they ensure persistence within the host. Whereas HCV utilizes a cloak-and-dagger approach, disguising itself as a lipid-like particle and immediately crippling essential pattern-recognition pathways, HBV has long been considered a "stealth" virus, due to the complete absence of innate immune responses during infection. Recent developments and access to improved model systems, however, revealed that even though it is among the smallest human-tropic viruses, HBV may, in addition to evading host responses, employ subtle immune evasion mechanisms directed at ensuring viral persistence in the absence of host responses. In this review, we compare the different strategies of both viruses to ensure viral persistence by actively interfering with viral recognition and innate immune responses.
Collapse
Affiliation(s)
| | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
59
|
Roles of APOBEC3A and APOBEC3B in Human Papillomavirus Infection and Disease Progression. Viruses 2017; 9:v9080233. [PMID: 28825669 PMCID: PMC5580490 DOI: 10.3390/v9080233] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023] Open
Abstract
The apolipoprotein B messenger RNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) family of cytidine deaminases plays an important role in the innate immune response to viral infections by editing viral genomes. However, the cytidine deaminase activity of APOBEC3 enzymes also induces somatic mutations in host genomes, which may drive cancer progression. Recent studies of human papillomavirus (HPV) infection and disease outcome highlight this duality. HPV infection is potently inhibited by one family member, APOBEC3A. Expression of APOBEC3A and APOBEC3B is highly elevated by the HPV oncoproteins E6 and E7 during persistent virus infection and disease progression. Furthermore, there is a high prevalence of APOBEC3A and APOBEC3B mutation signatures in HPV-associated cancers. These findings suggest that induction of an APOBEC3-mediated antiviral response during HPV infection may inadvertently contribute to cancer mutagenesis and virus evolution. Here, we discuss current understanding of APOBEC3A and APOBEC3B biology in HPV restriction, evolution, and associated cancer mutagenesis.
Collapse
|
60
|
Chen Z, Eggerman TL, Bocharov AV, Baranova IN, Vishnyakova TG, Kurlander R, Patterson AP. Heat shock proteins stimulate APOBEC-3-mediated cytidine deamination in the hepatitis B virus. J Biol Chem 2017. [PMID: 28637869 DOI: 10.1074/jbc.m116.760637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic subunit 3 (APOBEC-3) enzymes are cytidine deaminases that are broadly and constitutively expressed. They are often up-regulated during carcinogenesis and candidate genes for causing the major single-base substitution in cancer-associated DNA mutations. Moreover, APOBEC-3s are involved in host innate immunity against many viruses. However, how APOBEC-3 mutational activity is regulated in normal and pathological conditions remains largely unknown. Heat shock protein levels are often elevated in both carcinogenesis and viral infection and are associated with DNA mutations. Here, using mutational analyses of hepatitis B virus (HBV), we found that Hsp90 stimulates deamination activity of APOBEC-3G (A3G), A3B, and A3C during co-expression in human liver HepG2 cells. Hsp90 directly stimulated A3G deamination activity when the purified proteins were used in in vitro reactions. Hsp40, -60, and -70 also had variable stimulatory effects in the cellular assay, but not in vitro Sequencing analyses further demonstrated that Hsp90 increased both A3G cytosine mutation efficiency on HBV DNA and total HBV mutation frequency. In addition, Hsp90 shifted A3G's cytosine region selection in HBV DNA and increased A3G's 5' nucleoside preference for deoxycytidine (5'-CC). Furthermore, the Hsp90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin dose dependently inhibited A3G and A3B mutational activity on HBV viral DNA. Hsp90 knockdown by siRNA or by Hsp90 active-site mutation also decreased A3G activity. These results indicate that heat shock proteins, in particular Hsp90, stimulate APOBEC-3-mediated DNA deamination activity, suggesting a potential physiological role in carcinogenesis and viral innate immunity.
Collapse
Affiliation(s)
- Zhigang Chen
- From the Department of Laboratory Medicine, Clinical Center
| | - Thomas L Eggerman
- From the Department of Laboratory Medicine, Clinical Center.,the Division of Diabetes, Endocrinology, and Metabolic Diseases, NIDDK, and
| | | | | | | | | | - Amy P Patterson
- From the Department of Laboratory Medicine, Clinical Center, .,NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
61
|
APOBEC3B and IL-6 form a positive feedback loop in hepatocellular carcinoma cells. SCIENCE CHINA-LIFE SCIENCES 2017. [DOI: 10.1007/s11427-016-9058-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
62
|
Suspène R, Mussil B, Laude H, Caval V, Berry N, Bouzidi MS, Thiers V, Wain-Hobson S, Vartanian JP. Self-cytoplasmic DNA upregulates the mutator enzyme APOBEC3A leading to chromosomal DNA damage. Nucleic Acids Res 2017; 45:3231-3241. [PMID: 28100701 PMCID: PMC5389686 DOI: 10.1093/nar/gkx001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 12/23/2022] Open
Abstract
Foreign and self-cytoplasmic DNA are recognized by numerous DNA sensor molecules leading to the production of type I interferons. Such DNA agonists should be degraded otherwise cells would be chronically stressed. Most human APOBEC3 cytidine deaminases can initiate catabolism of cytoplasmic mitochondrial DNA. Using the human myeloid cell line THP-1 with an interferon inducible APOBEC3A gene, we show that cytoplasmic DNA triggers interferon α and β production through the RNA polymerase III transcription/RIG-I pathway leading to massive upregulation of APOBEC3A. By catalyzing C→U editing in single stranded DNA fragments, the enzyme prevents them from re-annealing so attenuating the danger signal. The price to pay is chromosomal DNA damage in the form of CG→TA mutations and double stranded DNA breaks which, in the context of chronic inflammation, could drive cells down the path toward cancer.
Collapse
Affiliation(s)
- Rodolphe Suspène
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Bianka Mussil
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
- Unit of Infection Models, German Primate Centre, Kellnerweg 4, 37077 Goettingen, Germany
| | - Hélène Laude
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Noémie Berry
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Mohamed S. Bouzidi
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Valérie Thiers
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| |
Collapse
|
63
|
Hepatitis B virus X protein is capable of down-regulating protein level of host antiviral protein APOBEC3G. Sci Rep 2017; 7:40783. [PMID: 28098260 PMCID: PMC5241686 DOI: 10.1038/srep40783] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/09/2016] [Indexed: 12/17/2022] Open
Abstract
The apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) family proteins bind RNA and single-stranded DNA, and create C-to-U base modifications through cytidine deaminase activity. APOBEC3G restricts human immunodeficiency virus 1 (HIV-1) infection by creating hypermutations in proviral DNA, while HIV-1-encoded vif protein antagonizes such restriction by targeting APOBEC3G for degradation. APOBEC3G also inhibits hepatitis B virus (HBV): APOBEC3G co-expression inhibits HBV replication and evidences exist indicating APOBEC3G-mediated HBV hypermutations in patients. HBV encodes a small non-structural X protein (HBx) with a recognized activating effect on HBV life cycle. In this work, we report the discovery that HBx selectively and dose-dependently decreases the protein level of co-expressed APOBEC3G in transfected Huh-7 cells. The effect was shown to take place post-translationally, but does not rely on protein degradation via proteasome or lysosome. Further work demonstrated that intracellular APOBEC3G is normally exported via exosome secretion and inhibition of exosome biogenesis causes retention of intracellular APOBEC3G. Finally, HBx co-expression specifically enhanced externalization of APOBEC3G via exosomes, resulting in decrease of intracellular APOBEC3G protein level. These data suggest the possibility that in addition to other mechanisms, HBx-mediated activation of HBV might also involve antagonizing of intracellular restriction factor APOBEC3G through promotion of its export.
Collapse
|
64
|
He XT, Xu HQ, Wang XM, He XS, Niu JQ, Gao PJ. Association between polymorphisms of the APOBEC3G gene and chronic hepatitis B viral infection and hepatitis B virus-related hepatocellular carcinoma. World J Gastroenterol 2017; 23:232-241. [PMID: 28127197 PMCID: PMC5236503 DOI: 10.3748/wjg.v23.i2.232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/31/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the relationship between five A3G gene single nucleotide polymorphisms and the incidence of hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC).
METHODS This association study was designed as a retrospective study, including 657 patients with chronic HBV infection (CHB) and 299 healthy controls. All subjects were ethnic Han Chinese. Chronic HBV-infected patients recruited between 2012 and 2015 at The First Hospital of Jilin University (Changchun) were further classified into HBV-related HCC patients (n = 287) and non-HCC patients (n = 370). Frequency matching by age and sex was performed for each group. Human genomic DNA was extracted from whole blood. Gene polymorphisms were identified using a mass spectroscopic method.
RESULTS There were no significant differences between the genotype and allele frequencies of the rs7291971, rs5757465 and rs5757463 A3G gene polymorphisms, and risk of CHB and HBV-related HCC. The AG genotype and G allele for rs8177832 were significantly related to a decreased risk of CHB (OR = 0.67, 95%CI: 0.47-0.96; OR = 0.69, 95%CI: 0.50-0.95, respectively) and HCC (OR = 0.53, 95%CI: 0.34-0.84; OR = 0.58, 95%CI: 0.39-0.87, respectively). A significant relationship was found between rs2011861 computed tomography, TT genotypes and increased risk of HCC (OR = 1.69, 95%CI: 1.02-2.80; OR = 1.82, 95%CI: 1.08-3.06, respectively). Haplotype analyses showed three protective and four risk haplotypes for HCC. Also, one protective haplotype was found against CHB.
CONCLUSION This study indicates that the A3G rs8177832 polymorphism is associated with a decreased risk of CHB infection and HCC, while the rs2011861 polymorphism is associated with an increased risk of HCC.
Collapse
|
65
|
In Vivo Examination of Mouse APOBEC3- and Human APOBEC3A- and APOBEC3G-Mediated Restriction of Parvovirus and Herpesvirus Infection in Mouse Models. J Virol 2016; 90:8005-12. [PMID: 27356895 DOI: 10.1128/jvi.00973-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/20/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED APOBEC3 knockout and human APOBEC3A and -3G transgenic mice were tested for their ability to be infected by the herpesviruses herpes simplex virus 1 and murine herpesvirus 68 and the parvovirus minute virus of mice (MVM). Knockout, APOBEC3A and APOBEC3G transgenic, and wild-type mice were equally infected by the herpesviruses, while APOBEC3A but not mouse APOBEC3 conferred resistance to MVM. No viruses showed evidence of cytidine deamination by mouse or human APOBEC3s. These data suggest that in vitro studies implicating APOBEC3 proteins in virus resistance may not reflect their role in vivo IMPORTANCE It is well established that APOBEC3 proteins in different species are a critical component of the host antiretroviral defense. Whether these proteins also function to inhibit other viruses is not clear. There have been a number of in vitro studies suggesting that different APOBEC3 proteins restrict herpesviruses and parvoviruses, among others, but whether they also work in vivo has not been demonstrated. Our studies looking at the role of mouse and human APOBEC3 proteins in transgenic and knockout mouse models of viral infection suggest that these restriction factors are not broadly antiviral and demonstrate the importance of testing their activity in vivo.
Collapse
|
66
|
Seeger C, Sohn JA. Complete Spectrum of CRISPR/Cas9-induced Mutations on HBV cccDNA. Mol Ther 2016; 24:1258-66. [PMID: 27203444 PMCID: PMC5088770 DOI: 10.1038/mt.2016.94] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) causes chronic infections that cannot yet be cured. The virus persists in infected hepatocytes, because covalently closed circular DNA (cccDNA), the template for the transcription of viral RNAs, is stable in nondividing cells. Antiviral therapies with nucleoside analogues inhibit HBV DNA synthesis in capsids in the cytoplasm of infected hepatocytes, but do not destroy nuclear cccDNA. Because over 200 million people are still infected, a cure for chronic hepatitis B (CHB) has become one of the major challenges in antiviral therapy. As a first step toward the development of curative therapies, we previously demonstrated that the CRISPR/Cas9 system can be used to functionally inactivate cccDNA derived from infectious HBV. Moreover, some evidence suggests that certain cytokines might induce an APOBEC-mediated cascade leading to the destruction of cccDNA. In this report we investigated whether a combination of the two mechanisms could act synergistically to inactivate cccDNA. Using next generation sequencing (NGS), we determined the complete spectrum of mutations in cccDNA following Cas9 cleavage and repair by nonhomologous end joining (NHEJ). We found that over 90% of HBV DNA was cleaved by Cas9. In addition our results showed that editing of HBV DNA after Cas9 cleavage is at least 15,000 times more efficient that APOBEC-mediated cytosine deamination following treatment of infected cells with interferon alpha (IFNα). We also found that a previously used method to detect cytosine deaminated DNA, termed 3D-PCR, overestimates the amount and frequency of edited HBV DNA. Taken together, our results demonstrated that the CRISPR/Cas9 system is so far the best method to functionally inactivate HBV cccDNA and provide a cure for CHB.
Collapse
Affiliation(s)
- Christoph Seeger
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Ji A Sohn
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
67
|
Luo X, Huang Y, Chen Y, Tu Z, Hu J, Tavis JE, Huang A, Hu Y. Association of Hepatitis B Virus Covalently Closed Circular DNA and Human APOBEC3B in Hepatitis B Virus-Related Hepatocellular Carcinoma. PLoS One 2016; 11:e0157708. [PMID: 27310677 PMCID: PMC4911053 DOI: 10.1371/journal.pone.0157708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic Hepatitis B Virus (HBV) infections can progresses to liver cirrhosis and hepatocellular carcinoma (HCC). The HBV covalently-closed circular DNA cccDNA is a key to HBV persistence, and its degradation can be induced by the cellular deaminase APOBEC3. This study aimed to measure the distribution of intrahepatic cccDNA levels and evaluate the association between levels of cccDNA and APOBEC3 in HCC patients. Among 49 HCC patients, 35 matched cancerous and contiguous noncancerous liver tissues had detectable cccDNA, and the median intrahepatic cccDNA in the cancerous tissues (CT) was significantly lower than in the contiguous noncancerous tissues (CNCT) (p = 0.0033). RCA (rolling circle amplification), followed by 3D-PCR identified positive amplification in 27 matched HCC patients. Sequence analysis indicated G to A mutations accumulated to higher levels in CT samples compared to CNCT samples, and the dinucleotide context showed preferred editing in the GpA context. Among 7 APOBEC3 genes, APOBEC3B was the only one up-regulated in cancerous tissues both at the transcriptional and protein levels (p < 0.05). This implies APOBEC3B may contribute to cccDNA editing and subsequent degradation in cancerous tissues.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/virology
- Case-Control Studies
- Cytidine Deaminase/genetics
- Cytidine Deaminase/metabolism
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Gene Expression
- Hepatitis B virus/genetics
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/complications
- Host-Pathogen Interactions
- Humans
- Hydrolysis
- Liver/enzymology
- Liver/pathology
- Liver/virology
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/virology
- Male
- Middle Aged
- Minor Histocompatibility Antigens/genetics
- Minor Histocompatibility Antigens/metabolism
Collapse
Affiliation(s)
- Xuan Luo
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yao Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yanmeng Chen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zeng Tu
- Department of Microbiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jieli Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - John E. Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University Liver Center, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ailong Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, People’s Republic of China
- * E-mail: (AH); (YH)
| | - Yuan Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
- * E-mail: (AH); (YH)
| |
Collapse
|
68
|
Bouzidi MS, Caval V, Suspène R, Hallez C, Pineau P, Wain-Hobson S, Vartanian JP. APOBEC3DE Antagonizes Hepatitis B Virus Restriction Factors APOBEC3F and APOBEC3G. J Mol Biol 2016; 428:3514-28. [PMID: 27289067 DOI: 10.1016/j.jmb.2016.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/05/2023]
Abstract
The APOBEC3 locus consists of seven genes (A3A-A3C, A3DE, A3F-A3H) that encode DNA cytidine deaminases. These enzymes deaminate single-stranded DNA, the result being DNA peppered with CG →TA mutations preferentially in the context of 5'TpC with the exception of APOBEC3G (A3G), which prefers 5'CpC dinucleotides. Hepatitis B virus (HBV) DNA is vulnerable to genetic editing by APOBEC3 cytidine deaminases, A3G being a major restriction factor. APOBEC3DE (A3DE) stands out in that it is catalytically inactive due to a fixed Tyr320Cys substitution in the C-terminal domain. As A3DE is closely related to A3F and A3G, which can form homo- and heterodimers and multimers, the impact of A3DE on HBV replication via modulation of other APOBEC3 restriction factors was investigated. A3DE binds to itself, A3F, and A3G and antagonizes A3F and, to a lesser extent, A3G restriction of HBV replication. A3DE suppresses A3F and A3G from HBV particles, leading to enhanced HBV replication. Ironically, while being part of a cluster of innate restriction factors, the A3DE phenotype is proviral. As the gorilla genome encodes the same Tyr320Cys substitution, this proviral phenotype seems to have been selected for.
Collapse
Affiliation(s)
- Mohamed S Bouzidi
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Rodolphe Suspène
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Camille Hallez
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Pascal Pineau
- Nuclear Organization and Oncogenesis Unit, Institut Pasteur, INSERM U579, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France.
| |
Collapse
|
69
|
Marino D, Perković M, Hain A, Jaguva Vasudevan AA, Hofmann H, Hanschmann KM, Mühlebach MD, Schumann GG, König R, Cichutek K, Häussinger D, Münk C. APOBEC4 Enhances the Replication of HIV-1. PLoS One 2016; 11:e0155422. [PMID: 27249646 PMCID: PMC4889046 DOI: 10.1371/journal.pone.0155422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/28/2016] [Indexed: 12/24/2022] Open
Abstract
APOBEC4 (A4) is a member of the AID/APOBEC family of cytidine deaminases. In this study we found a high mRNA expression of A4 in human testis. In contrast, there were only low levels of A4 mRNA detectable in 293T, HeLa, Jurkat or A3.01 cells. Ectopic expression of A4 in HeLa cells resulted in mostly cytoplasmic localization of the protein. To test whether A4 has antiviral activity similar to that of proteins of the APOBEC3 (A3) subfamily, A4 was co-expressed in 293T cells with wild type HIV-1 and HIV-1 luciferase reporter viruses. We found that A4 did not inhibit the replication of HIV-1 but instead enhanced the production of HIV-1 in a dose-dependent manner and seemed to act on the viral LTR. A4 did not show detectable cytidine deamination activity in vitro and weakly interacted with single-stranded DNA. The presence of A4 in virus producer cells enhanced HIV-1 replication by transiently transfected A4 or stably expressed A4 in HIV-susceptible cells. APOBEC4 was capable of similarly enhancing transcription from a broad spectrum of promoters, regardless of whether they were viral or mammalian. We hypothesize that A4 may have a natural role in modulating host promoters or endogenous LTR promoters.
Collapse
Affiliation(s)
- Daniela Marino
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Mario Perković
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Anika Hain
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ananda A. Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Henning Hofmann
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Michael D. Mühlebach
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
- Product Testing of Immunological Medicinal Products for Veterinary Uses, Paul-Ehrlich-Institute, Langen, Germany
| | - Gerald G. Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, Langen, Germany
- Sanford Burnham Prebys Medical Discovery Institute, Immunity and Pathogenesis Program, La Jolla, California, United States of America
| | - Klaus Cichutek
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
- * E-mail:
| |
Collapse
|
70
|
Honda T. Links between Human LINE-1 Retrotransposons and Hepatitis Virus-Related Hepatocellular Carcinoma. Front Chem 2016; 4:21. [PMID: 27242996 PMCID: PMC4863659 DOI: 10.3389/fchem.2016.00021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/22/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 80% of liver cancers, the third most frequent cause of cancer mortality. The most prevalent risk factors for HCC are infections by hepatitis B or hepatitis C virus. Findings suggest that hepatitis virus-related HCC might be a cancer in which LINE-1 retrotransposon, often termed L1, activity plays a potential role. Firstly, hepatitis viruses can suppress host defense factors that also control L1 mobilization. Secondly, many recent studies also have indicated that hypomethylation of L1 affects the prognosis of HCC patients. Thirdly, endogenous L1 retrotransposition was demonstrated to activate oncogenic pathways in HCC. Fourthly, several L1 chimeric transcripts with host or viral genes are found in hepatitis virus-related HCC. Such lines of evidence suggest a linkage between L1 retrotransposons and hepatitis virus-related HCC. Here, I briefly summarize current understandings of the association between hepatitis virus-related HCC and L1. Then, I discuss potential mechanisms of how hepatitis viruses drive the development of HCC via L1 retrotransposons. An increased understanding of the contribution of L1 to hepatitis virus-related HCC may provide unique insights related to the development of novel therapeutics for this disease.
Collapse
Affiliation(s)
- Tomoyuki Honda
- Department of Viral Oncology, Institute for Virus Research, Kyoto UniversityKyoto, Japan; Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of MedicineSuita, Japan
| |
Collapse
|
71
|
Liu WB, Wu JF, Du Y, Cao GW. Cancer Evolution-Development: experience of hepatitis B virus-induced hepatocarcinogenesis. ACTA ACUST UNITED AC 2016; 23:e49-56. [PMID: 26966413 DOI: 10.3747/co.23.2836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here, we present the basic concept and theoretical framework of a scientific hypothesis called Cancer Evolution-Development ("Cancer Evo-Dev"), based on our recent studies of the molecular mechanisms by which chronic infection with the hepatitis B virus induces hepatocarcinogenesis, together with related advances in that field. Several aspects central to our hypothesis are presented: ■ Immune imbalance-caused by the interaction of genetic predispositions and environmental exposures such as viral infection-is responsible for the maintenance of chronic non-resolving inflammation. Non-resolving inflammation promotes the occurrence and progression of cancers, characterized by an evolutionary process of "mutation-selection-adaptation" for both viruses and host cells.■ Under a microenvironment of non-resolving inflammation, proinflammatory factors promote mutations in viral or host genomes by transactivation of the expression of cytidine deaminases and their analogues. Most cells with genomic mutations and mutated viruses are eliminated in the competition for survival in the inflammatory microenvironment. Only a small percentage of the mutated cells that alter their survival signal pathways and exhibit the characteristics of "stem-ness" can survive and function as cancer-initiating cells.■ Cancers generally develop with properties of "backward evolution" and "retro-differentiation," indicating the indispensability of stem-like signal pathways in the evolution and development of cancers. The hypothesis of Cancer Evo-Dev not only lays the theoretical foundation for understanding the mechanisms by which inflammation promotes the development of cancers, but also plays an important role in specific prophylaxis, prediction, early diagnosis, and targeted treatment of cancers.
Collapse
Affiliation(s)
- W B Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, P.R.C
| | - J F Wu
- Department of Epidemiology, Second Military Medical University, Shanghai, P.R.C
| | - Y Du
- Department of Epidemiology, Second Military Medical University, Shanghai, P.R.C
| | - G W Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, P.R.C
| |
Collapse
|
72
|
|
73
|
Wen J, Song C, Jiang D, Jin T, Dai J, Zhu L, An J, Liu Y, Ma S, Qin N, Liang C, Chen J, Jiang Y, Yang L, Liu J, Liu L, Geng T, Chen C, Jiang J, Chen J, Zhu F, Zhu Y, Yu L, Shen H, Zhai X, Xu J, Hu Z. Hepatitis B virus genotype, mutations, human leukocyte antigen polymorphisms and their interactions in hepatocellular carcinoma: a multi-centre case-control study. Sci Rep 2015; 5:16489. [PMID: 26568165 PMCID: PMC4644975 DOI: 10.1038/srep16489] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/14/2015] [Indexed: 12/25/2022] Open
Abstract
Three genome-wide association studies (GWAS) have been conducted on the genetic susceptibility of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), two of which consistently identified tagging single nucleotide polymorphisms (SNPs) around HLA-DQ/DR. In contrast, large multi-centre association studies between HBV genotype, mutations and the risk of HCC are relatively rare, and their interactions with host variants are even less. We performed a multi-centre study of 1,507 HBV-related HCC cases and 1,560 HBV persistent carriers as controls to evaluate the effects of HBV genotype, mutations, GWAS-identified HLA-DQ/DR SNPs (rs9272105 and rs9275319) and their interactions on HCC risk. We found HBV genotype C was more frequent in HBV-related HCC. And 11 HBV hotspot mutations were independently and significantly associated with HCC risk. We also detected significant interactions of rs9272105 with both the HBV genotype and mutations. Through stepwise regression analysis, HBV genotype, the 11 mutations, HLA-DQ/DR SNPs, and the interaction of rs9272105 with mutation A1752G were all entered into the HCC prediction model, and the area under the curve for the panel including the HLA-DQ/DR SNPs, HBV genotype and mutations was 0.840. The HBV genotype, the mutations and the HLA-DQ/DR SNPs may serve as biomarkers for the surveillance of HBV persistent carriers.
Collapse
Affiliation(s)
- Juan Wen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Nanjing, China
| | - Ci Song
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Deke Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Fudan Center for genetic Epidemiology and Center for Genetic Translational Medicine and Prevention, Fudan University, Shanghai, China
| | - Tianbo Jin
- School of Life Sciences, Northwest University, Xi’an, China
- National Engineering Research Center for Miniaturized Detection Systems, Xi’an, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Liguo Zhu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Province Center for Disease Prevention and Control, Nanjing, China
| | - Jiaze An
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yao Liu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Shijie Ma
- Department of Gastroenterology, Huai’an First People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Na Qin
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheng Liang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiaping Chen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Linlin Yang
- Department of Hepatobiliary Surgery, Nantong Tumor Hospital, Nantong, China
| | - Jibin Liu
- Department of Hepatobiliary Surgery, Nantong Tumor Hospital, Nantong, China
| | - Li Liu
- Digestive Endoscopy Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Geng
- National Engineering Research Center for Miniaturized Detection Systems, Xi’an, China
| | - Chao Chen
- School of Life Sciences, Northwest University, Xi’an, China
- National Engineering Research Center for Miniaturized Detection Systems, Xi’an, China
| | - Jie Jiang
- Jiangsu Province Center for Disease Prevention and Control, Nanjing, China
| | - Jianguo Chen
- Department of Epidemiology, Qidong Liver Cancer Institute, Qidong, China
- Tumor Institute, Nantong Tumor Hospital, Nantong, China
| | - Fengcai Zhu
- Jiangsu Province Center for Disease Prevention and Control, Nanjing, China
| | - Yefei Zhu
- Jiangsu Province Center for Disease Prevention and Control, Nanjing, China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiangjun Zhai
- Jiangsu Province Center for Disease Prevention and Control, Nanjing, China
| | - Jianfeng Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Fudan Center for genetic Epidemiology and Center for Genetic Translational Medicine and Prevention, Fudan University, Shanghai, China
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
74
|
Stavrou S, Ross SR. APOBEC3 Proteins in Viral Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:4565-70. [PMID: 26546688 PMCID: PMC4638160 DOI: 10.4049/jimmunol.1501504] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apolipoprotein B editing complex 3 family members are cytidine deaminases that play important roles in intrinsic responses to infection by retroviruses and have been implicated in the control of other viruses, such as parvoviruses, herpesviruses, papillomaviruses, hepatitis B virus, and retrotransposons. Although their direct effect on modification of viral DNA has been clearly demonstrated, whether they play additional roles in innate and adaptive immunity to viruses is less clear. We review the data regarding the various steps in the innate and adaptive immune response to virus infection in which apolipoprotein B editing complex 3 proteins have been implicated.
Collapse
Affiliation(s)
- Spyridon Stavrou
- Department of Microbiology, Abramson Cancer Center, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6142
| | - Susan R Ross
- Department of Microbiology, Abramson Cancer Center, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6142
| |
Collapse
|
75
|
Zhu JW, Liu FL, Mu D, Deng DY, Zheng YT. Increased expression and dysregulated association of restriction factors and type I interferon in HIV, HCV mono- and co-infected patients. J Med Virol 2015; 88:987-95. [PMID: 26519943 DOI: 10.1002/jmv.24419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 12/23/2022]
Abstract
Host restriction factors and type I interferon are important in limiting HIV and HCV infections, yet the role of HIV, HCV mono- and co-infection in regulating these antiviral genes expression is not clear. In this study, we measured the levels of TRIM5α, TRIM22, APOBEC3G, and IFN-α, -β mRNA expression in peripheral blood mononuclear cells of 43 HIV mono-infected, 70 HCV mono-infected and 64 HIV/HCV co-infected patients along with 98 healthy controls. We also quantified HIV and HCV viral loads in mono- and co-infected patients. The results showed that HCV, HIV mono- and co-infection differentially increased TRIM22, APOBEC3G, and IFN-α, -β mRNA expression while the mRNA expression of TRIMα was upregulated only by HCV-mono infection. HIV/HCV co-infection was associated with higher viral load, compared to either HIV or HCV mono-infection. Additionally, we showed TRIMα and TRIM22 positively correlated with IFN-α, -β, which could be dysregulated by HIV, HCV mono- and co-infection. Furthermore, we found TRIM22 negatively correlated with HCV viral load in mono-infected patients and APOBEC3G positively correlated with HCV viral load in co-infected patients. Collectively, our findings suggest the potential role of restriction factors in restricting HIV, HCV mono- and co-infection in vivo, which appears to be a therapeutic target for potential drug discovery.
Collapse
Affiliation(s)
- Jia-Wu Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Feng-Liang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dan Mu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - De-Yao Deng
- Department of Clinical Laboratory, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
76
|
Caval V, Bouzidi MS, Suspène R, Laude H, Dumargne MC, Bashamboo A, Krey T, Vartanian JP, Wain-Hobson S. Molecular basis of the attenuated phenotype of human APOBEC3B DNA mutator enzyme. Nucleic Acids Res 2015; 43:9340-9. [PMID: 26384561 PMCID: PMC4627089 DOI: 10.1093/nar/gkv935] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/08/2015] [Indexed: 12/22/2022] Open
Abstract
The human APOBEC3A and APOBEC3B genes (A3A and A3B) encode DNA mutator enzymes that deaminate cytidine and 5-methylcytidine residues in single-stranded DNA (ssDNA). They are important sources of mutations in many cancer genomes which show a preponderance of CG->TA transitions. Although both enzymes can hypermutate chromosomal DNA in an experimental setting, only A3A can induce double strand DNA breaks, even though the catalytic domains of A3B and A3A differ by only 9% at the protein level. Accordingly we sought the molecular basis underlying A3B attenuation through the generation of A3A-A3B chimeras and mutants. It transpires that the N-terminal domain facilitates A3B activity while a handful of substitutions in the catalytic C-terminal domain impacting ssDNA binding serve to attenuate A3B compared to A3A. Interestingly, functional attenuation is also observed for the rhesus monkey rhA3B enzyme compared to rhA3A indicating that this genotoxic dichotomy has been selected for and maintained for some 38 million years. Expression of all human ssDNA cytidine deaminase genes is absent in mature sperm indicating they contribute to somatic mutation and cancer but not human diversity.
Collapse
Affiliation(s)
- Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Mohamed S Bouzidi
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Rodolphe Suspène
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Hélène Laude
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Marie-Charlotte Dumargne
- Human Developmental Genetics Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Anu Bashamboo
- Human Developmental Genetics Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Thomas Krey
- Structural Virology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| |
Collapse
|
77
|
He X, Li J, Wu J, Zhang M, Gao P. Associations between activation-induced cytidine deaminase/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like cytidine deaminase expression, hepatitis B virus (HBV) replication and HBV-associated liver disease (Review). Mol Med Rep 2015; 12:6405-14. [PMID: 26398702 PMCID: PMC4626158 DOI: 10.3892/mmr.2015.4312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
The hepatitis B virus (HBV) infection is a major risk factor in the development of chronic hepatitis (CH) and hepa-tocellular carcinoma (HCC). The activation-induced cytidine deaminase (AID)/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of cytidine deaminases is significant in innate immunity, as it restricts numerous viruses, including HBV, through hypermutation-dependent and -independent mechanisms. It is important to induce covalently closed circular (ccc)DNA degradation by interferon-α without causing side effects in the infected host cell. Furthermore, organisms possess multiple mechanisms to regulate the expression of AID/APOBECs, control their enzymatic activity and restrict their access to DNA or RNA substrates. Therefore, the AID/APOBECs present promising targets for preventing and treating viral infections. In addition, gene polymorphisms of the AID/APOBEC family may alter host susceptibility to HBV acquisition and CH disease progression. Through G-to-A hypermutation, AID/APOBECs also edit HBV DNA and facilitate the mutation of HBV DNA, which may assist the virus to evolve and potentially escape from the immune responses. The AID/APOBEC family and their associated editing patterns may also exert oncogenic activity. Understanding the effects of cytidine deaminases in CH virus-induced hepatocarcinogenesis may aid with developing efficient prophylactic and therapeutic strategies against HCC.
Collapse
Affiliation(s)
- Xiuting He
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jie Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Wu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Manli Zhang
- Department of Gastroenterology, The Second Branch of The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
78
|
Félez-Sánchez M, Trösemeier JH, Bedhomme S, González-Bravo MI, Kamp C, Bravo IG. Cancer, Warts, or Asymptomatic Infections: Clinical Presentation Matches Codon Usage Preferences in Human Papillomaviruses. Genome Biol Evol 2015; 7:2117-35. [PMID: 26139833 PMCID: PMC4558848 DOI: 10.1093/gbe/evv129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Viruses rely completely on the hosts’ machinery for translation of viral transcripts. However, for most viruses infecting humans, codon usage preferences (CUPrefs) do not match those of the host. Human papillomaviruses (HPVs) are a showcase to tackle this paradox: they present a large genotypic diversity and a broad range of phenotypic presentations, from asymptomatic infections to productive lesions and cancer. By applying phylogenetic inference and dimensionality reduction methods, we demonstrate first that genes in HPVs are poorly adapted to the average human CUPrefs, the only exception being capsid genes in viruses causing productive lesions. Phylogenetic relationships between HPVs explained only a small proportion of CUPrefs variation. Instead, the most important explanatory factor for viral CUPrefs was infection phenotype, as orthologous genes in viruses with similar clinical presentation displayed similar CUPrefs. Moreover, viral genes with similar spatiotemporal expression patterns also showed similar CUPrefs. Our results suggest that CUPrefs in HPVs reflect either variations in the mutation bias or differential selection pressures depending on the clinical presentation and expression timing. We propose that poor viral CUPrefs may be central to a trade-off between strong viral gene expression and the potential for eliciting protective immune response.
Collapse
Affiliation(s)
- Marta Félez-Sánchez
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jan-Hendrik Trösemeier
- Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe University, Frankfurt am Main, Germany Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Stéphanie Bedhomme
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain Département d'Ecologie Evolutive Centre d'Ecologie Fonctionnelle et Evolutive, CNRS - UMR 5175, Montpellier, France
| | | | - Christel Kamp
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Ignacio G Bravo
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
79
|
Willems L, Gillet NA. APOBEC3 Interference during Replication of Viral Genomes. Viruses 2015; 7:2999-3018. [PMID: 26110583 PMCID: PMC4488724 DOI: 10.3390/v7062757] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/26/2015] [Accepted: 06/04/2015] [Indexed: 01/05/2023] Open
Abstract
Co-evolution of viruses and their hosts has reached a fragile and dynamic equilibrium that allows viral persistence, replication and transmission. In response, infected hosts have developed strategies of defense that counteract the deleterious effects of viral infections. In particular, single-strand DNA editing by Apolipoprotein B Editing Catalytic subunits proteins 3 (APOBEC3s) is a well-conserved mechanism of mammalian innate immunity that mutates and inactivates viral genomes. In this review, we describe the mechanisms of APOBEC3 editing during viral replication, the viral strategies that prevent APOBEC3 activity and the consequences of APOBEC3 modulation on viral fitness and host genome integrity. Understanding the mechanisms involved reveals new prospects for therapeutic intervention.
Collapse
Affiliation(s)
- Luc Willems
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA) of University of Liège (ULg), B34, 1 avenue de L'Hôpital, Sart-Tilman Liège 4000, Belgium.
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 13 avenue Maréchal Juin, Gembloux 5030, Belgium.
| | - Nicolas Albert Gillet
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA) of University of Liège (ULg), B34, 1 avenue de L'Hôpital, Sart-Tilman Liège 4000, Belgium.
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 13 avenue Maréchal Juin, Gembloux 5030, Belgium.
| |
Collapse
|
80
|
Harris RS, Dudley JP. APOBECs and virus restriction. Virology 2015; 479-480:131-45. [PMID: 25818029 PMCID: PMC4424171 DOI: 10.1016/j.virol.2015.03.012] [Citation(s) in RCA: 422] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/10/2015] [Accepted: 03/04/2015] [Indexed: 12/22/2022]
Abstract
The APOBEC family of single-stranded DNA cytosine deaminases comprises a formidable arm of the vertebrate innate immune system. Pre-vertebrates express a single APOBEC, whereas some mammals produce as many as 11 enzymes. The APOBEC3 subfamily displays both copy number variation and polymorphisms, consistent with ongoing pathogenic pressures. These enzymes restrict the replication of many DNA-based parasites, such as exogenous viruses and endogenous transposable elements. APOBEC1 and activation-induced cytosine deaminase (AID) have specialized functions in RNA editing and antibody gene diversification, respectively, whereas APOBEC2 and APOBEC4 appear to have different functions. Nevertheless, the APOBEC family protects against both periodic viral zoonoses as well as exogenous and endogenous parasite replication. This review highlights viral pathogens that are restricted by APOBEC enzymes, but manage to escape through unique mechanisms. The sensitivity of viruses that lack counterdefense measures highlights the need to develop APOBEC-enabling small molecules as a new class of anti-viral drugs.
Collapse
Affiliation(s)
- Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
81
|
Liang G, Liu G, Kitamura K, Wang Z, Chowdhury S, Monjurul AM, Wakae K, Koura M, Shimadu M, Kinoshita K, Muramatsu M. TGF-β suppression of HBV RNA through AID-dependent recruitment of an RNA exosome complex. PLoS Pathog 2015; 11:e1004780. [PMID: 25836330 PMCID: PMC4383551 DOI: 10.1371/journal.ppat.1004780] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/03/2015] [Indexed: 01/15/2023] Open
Abstract
Transforming growth factor (TGF)-β inhibits hepatitis B virus (HBV) replication although the intracellular effectors involved are not determined. Here, we report that reduction of HBV transcripts by TGF-β is dependent on AID expression, which significantly decreases both HBV transcripts and viral DNA, resulting in inhibition of viral replication. Immunoprecipitation reveals that AID physically associates with viral P protein that binds to specific virus RNA sequence called epsilon. AID also binds to an RNA degradation complex (RNA exosome proteins), indicating that AID, RNA exosome, and P protein form an RNP complex. Suppression of HBV transcripts by TGF-β was abrogated by depletion of either AID or RNA exosome components, suggesting that AID and the RNA exosome involve in TGF-β mediated suppression of HBV RNA. Moreover, AID-mediated HBV reduction does not occur when P protein is disrupted or when viral transcription is inhibited. These results suggest that induced expression of AID by TGF-β causes recruitment of the RNA exosome to viral RNP complex and the RNA exosome degrades HBV RNA in a transcription-coupled manner.
Collapse
Affiliation(s)
- Guoxin Liang
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
- Department of Microbiology and Immunology, Columbia University, New York, New York, United States of America
| | - Guangyan Liu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kouichi Kitamura
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Zhe Wang
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
- Division of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Sajeda Chowdhury
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ahasan Md Monjurul
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kousho Wakae
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Miki Koura
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Miyuki Shimadu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazuo Kinoshita
- Evolutionary Medicine, Shiga Medical Center Research Institute, Moriyama, Japan
| | - Masamichi Muramatsu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
82
|
Zhu YP, Peng ZG, Wu ZY, Li JR, Huang MH, Si SY, Jiang JD. Host APOBEC3G protein inhibits HCV replication through direct binding at NS3. PLoS One 2015; 10:e0121608. [PMID: 25811715 PMCID: PMC4374698 DOI: 10.1371/journal.pone.0121608] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/02/2015] [Indexed: 02/07/2023] Open
Abstract
Human APOBEC3G (hA3G) is a cytidine deaminase that restricts replication of certain viruses. We have previously reported that hA3G was a host restriction factor against hepatitis C virus (HCV) replication, and hA3G stabilizers showed a significant inhibitory activity against HCV. However, the molecular mechanism of hA3G against HCV remains unknown. We show in this study that hA3G’s C-terminal directly binds HCV non-structural protein NS3 at its C-terminus, which is responsible for NS3’s helicase and NTPase activity. Binding of hA3G to the C-terminus of NS3 reduced helicase activity, and therefore inhibited HCV replication. The anti-HCV mechanism of hA3G appeared to be independent of its deamination activity. Although early stage HCV infection resulted in an increase in host hA3G as an intracellular response against HCV replication, hA3G was gradually diminished after a long-term incubation, suggesting an unknown mechanism(s) that protects HCV NS3 from inactivation by hA3G. The process represents, at least partially, a cellular defensive mechanism against HCV and the action is mediated through a direct interaction between host hA3G and HCV NS3. We believe that understanding of the antiviral mechanism of hA3G against HCV might open an interesting avenue to explore hA3G stabilizers as a new class of anti-HCV agents.
Collapse
Affiliation(s)
- Yan-Ping Zhu
- Laboratory of Antiviral Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Zong-Gen Peng
- Laboratory of Antiviral Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
- * E-mail: (ZGP); (JDJ)
| | - Zhou-Yi Wu
- Laboratory of Antiviral Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jian-Rui Li
- Laboratory of Antiviral Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Meng-Hao Huang
- Laboratory of Antiviral Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Shu-Yi Si
- Laboratory of Antiviral Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jian-Dong Jiang
- Laboratory of Antiviral Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
- * E-mail: (ZGP); (JDJ)
| |
Collapse
|
83
|
Ji X, Zhang Q, Du Y, Liu W, Li Z, Hou X, Cao G. Somatic mutations, viral integration and epigenetic modification in the evolution of hepatitis B virus-induced hepatocellular carcinoma. Curr Genomics 2015; 15:469-80. [PMID: 25646075 PMCID: PMC4311391 DOI: 10.2174/1389202915666141114213833] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 02/08/2023] Open
Abstract
Liver cancer in men is the second leading cause of cancer death and hepatocellular carcinoma (HCC) accounts for 70%-85% of the total liver cancer worldwide. Chronic infection with hepatitis B virus (HBV) is the major cause of HCC. Chronic, intermittently active inflammation provides “fertile field” for “mutation, selection, and adaptation” of HBV and the infected hepatocytes, a long-term evolutionary process during HBV-induced carcinogenesis. HBV mutations, which are positively selected by insufficient immunity, can promote and predict the occurrence of HCC. Recently, advanced sequencing technologies including whole genome sequencing, exome sequencing, and RNA sequencing provide opportunities to better under-stand the insight of how somatic mutations, structure variations, HBV integrations, and epigenetic modifications contribute to HCC development. Genomic variations of HCC caused by various etiological factors may be different, but the common driver mutations are important to elucidate the HCC evolutionary process. Genome-wide analyses of HBV integrations are helpful in clarifying the targeted genes of HBV in carcinogenesis and disease progression. RNA sequencing can identify key molecules whose expressions are epigenetically modified during HCC evolution. In this review, we summarized the current findings of next generation sequencings for HBV-HCC and proposed a theory framework of Cancer Evolution and Development based on the current knowledge of HBV-induced HCC to characterize and interpret evolutionary mechanisms of HCC and possible other cancers. Understanding the key viral and genomic variations involved in HCC evolution is essential for generating effective diagnostic, prognostic, and predictive biomarkers as well as therapeutic targets for the interventions of HBV-HCC.
Collapse
Affiliation(s)
- Xiaowei Ji
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Qi Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Yan Du
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Zixiong Li
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Xiaomei Hou
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
84
|
Akamatsu S, Hayes CN, Tsuge M, Miki D, Akiyama R, Abe H, Ochi H, Hiraga N, Imamura M, Takahashi S, Aikata H, Kawaoka T, Kawakami Y, Ohishi W, Chayama K. Differences in serum microRNA profiles in hepatitis B and C virus infection. J Infect 2014; 70:273-87. [PMID: 25452043 DOI: 10.1016/j.jinf.2014.10.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/18/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Patients infected with chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) are at greater risk of cirrhosis and hepatocellular carcinoma. The objective of this study was to identify virus-specific serum microRNA profiles associated with liver function and disease progression. Microarray analysis of serum microRNAs was performed using the Toray 3D array system in 22 healthy subjects, 42 HBV patients, and 30 HCV patients. Selected microRNAs were then validated by qRT-PCR in 186 HBV patients, 107 HCV patients, and 22 healthy subjects. RESULTS Microarray analysis showed up-regulation of a number of microRNAs in serum of both HBV and HCV patients. In qRT-PCR analysis, miR-122, miR-99a, miR-125b, miR-720, miR-22, and miR-1275 were up-regulated both in HBV patients relative to healthy subjects, and all except miR-1275 were up-regulated in HBeAg-positive patients relative to HBeAg-negative patients. Specific microRNAs were independently associated with different aspects of HBV infection. MiR-122 was independently associated with HBV DNA level, whereas miR-125b was independently associated with levels of HBV DNA, HBsAg, and HBeAg. MiR-22 and miR-1275 were independently associated with serum γ-glutamyl transpeptidase levels. CONCLUSIONS Serum microRNA levels reflect differences in the etiology and stage of viral hepatitis.
Collapse
Affiliation(s)
- Sakura Akamatsu
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Masataka Tsuge
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan; Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Daiki Miki
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Rie Akiyama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hidenori Ochi
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Nobuhiko Hiraga
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | | | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Yoshiiku Kawakami
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Waka Ohishi
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
85
|
Kostrzak A, Henry M, Demoyen PL, Wain-Hobson S, Vartanian JP. APOBEC3A catabolism of electroporated plasmid DNA in mouse muscle. Gene Ther 2014; 22:96-103. [PMID: 25298040 DOI: 10.1038/gt.2014.88] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/25/2014] [Accepted: 08/26/2014] [Indexed: 11/09/2022]
Abstract
The mouse is widely used as a model for DNA therapy and vaccination even though the efficiency of DNA delivery in higher mammals and humans is much less. The human APOBEC3 (A3) enzymes impact viral genomes by cytidine deamination, which introduces multiple uridine residues into single-stranded DNA, a process known as genetic editing. This initiates rapid DNA catabolism via a uracil DNA glycosylase dependent pathway. In tissue culture, A3A, A3C and A3B can hyperedit transfected plasmid DNA. We explored plasmid catabolism in vivo initiated by A3A, the most efficient of the human enzymes and one that is functionally conserved across most mammals. As rodents do not encode an A3A enzyme, it was possible to explore DNA degradation in the mouse model. Human A3A genetically edits co-electroporated luciferase plasmid DNA in mouse skeletal muscle that initiates DNA degradation resulting in approximately fourfold decrease in bioluminescence. Part of the degradation occurs in the nucleus as indicated by complex hyperedited DNA molecules. As human A3A is strongly upregulated by interferon α and DNA sensing pathways, it is a strong candidate enzyme for restricting plasmid DNA in higher mammals.
Collapse
Affiliation(s)
- A Kostrzak
- Invectys, Pasteur BioTop, Institut Pasteur, CNRS URA 3015, France
| | - M Henry
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, France
| | - P L Demoyen
- Invectys, Pasteur BioTop, Institut Pasteur, CNRS URA 3015, France
| | - S Wain-Hobson
- 1] Invectys, Pasteur BioTop, Institut Pasteur, CNRS URA 3015, France [2] Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, France
| | - J-P Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, France
| |
Collapse
|
86
|
Bertoletti A, Hong M. Age-Dependent Immune Events during HBV Infection from Birth to Adulthood: An Alternative Interpretation. Front Immunol 2014; 5:441. [PMID: 25295036 PMCID: PMC4172010 DOI: 10.3389/fimmu.2014.00441] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/31/2014] [Indexed: 12/17/2022] Open
Abstract
Immune responses change during the life of an individual. While this concept has been well accepted for adaptive immunity, only recently it is becoming clear that the innate immune responses also acquire distinct features in different phases of life. We believe that this concept can offer a different interpretation of the pathological manifestations that can be observed in HBV-infected subjects during the patient’s life. Here, we will review the age-related immunopathological features of HBV infection and discuss how the different virological and clinical manifestations might be linked to the developmental pathway of the immune system from newborns to adults. We will discuss how the age of patients can affect the degree of inflammatory responses, but not the levels of antiviral specific immunity. We then propose that the different clinical manifestations occurring during the natural history of HBV infection are related to the host ability to trigger an inflammatory immune response.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Emerging Infectious Diseases (EID) Program, Duke-NUS Graduate Medical School , Singapore ; Viral Hepatitis Laboratory, Singapore Institute for Clinical Sciences, Agency of Science Technology and Research (ASTAR) , Singapore
| | - Michelle Hong
- Emerging Infectious Diseases (EID) Program, Duke-NUS Graduate Medical School , Singapore ; Viral Hepatitis Laboratory, Singapore Institute for Clinical Sciences, Agency of Science Technology and Research (ASTAR) , Singapore
| |
Collapse
|
87
|
Pei RJ, Chen XW, Lu MJ. Control of hepatitis B virus replication by interferons and Toll-like receptor signaling pathways. World J Gastroenterol 2014; 20:11618-11629. [PMID: 25206268 PMCID: PMC4155354 DOI: 10.3748/wjg.v20.i33.11618] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/23/2013] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is one of the major causes of liver diseases, affecting more than 350 million people worldwide. The interferon (IFN)-mediated innate immune responses could restrict HBV replication at the different steps of viral life cycle. Indeed, IFN-α has been successfully used for treatment of patients with chronic hepatitis B. However, the role of the innate immune response in HBV replication and the mechanism of the anti-HBV effect of IFN-α are not completely explored. In this review, we summarized the currently available knowledge about the IFN-mediated anti-HBV effect in the HBV life cycle and the possible effectors downstream the IFN signaling pathway. The antiviral effect of Toll-like receptors (TLRs) in HBV replication is briefly discussed. The strategies exploited by HBV to evade the IFN- and TLR-mediated antiviral actions are summarized.
Collapse
|
88
|
Franchini DM, Petersen-Mahrt SK. AID and APOBEC deaminases: balancing DNA damage in epigenetics and immunity. Epigenomics 2014; 6:427-43. [DOI: 10.2217/epi.14.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA mutations and genomic recombinations are the origin of oncogenesis, yet parts of developmental programs as well as immunity are intimately linked to, or even depend on, such DNA damages. Therefore, the balance between deleterious DNA damages and organismal survival utilizing DNA editing (modification and repair) is in continuous flux. The cytosine deaminases AID/APOBEC are a DNA editing family and actively participate in various biological processes. In conjunction with altered DNA repair, the mutagenic potential of the family allows for APOBEC3 proteins to restrict viral infection and transposons propagation, while AID can induce somatic hypermutation and class switch recombination in antibody genes. On the other hand, the synergy between effective DNA repair and the nonmutagenic potential of the DNA deaminases can induce local DNA demethylation to support epigenetic cellular identity. Here, we review the current state of knowledge on the mechanisms of action of the AID/APOBEC family in immunity and epigenetics.
Collapse
Affiliation(s)
- Don-Marc Franchini
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Svend K Petersen-Mahrt
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| |
Collapse
|
89
|
Abstract
Viruses must interact with their hosts in order to replicate; these interactions often provoke the evolutionarily conserved response to DNA damage, known as the DNA damage response (DDR). The DDR can be activated by incoming viral DNA, during the integration of retroviruses, or in response to the aberrant DNA structures generated upon replication of DNA viruses. Furthermore, DNA and RNA viral proteins can induce the DDR by promoting inappropriate S phase entry, by modifying cellular DDR factors directly, or by unintentionally targeting host DNA. The DDR may be antiviral, although viruses often require proximal DDR activation of repair and recombination factors to facilitate replication as well as downstream DDR signaling suppression to ensure cell survival. An unintended consequence of DDR attenuation during infection is the long-term survival and proliferation of precancerous cells. Therefore, the molecular basis for DDR activation and attenuation by viruses remains an important area of study that will likely provide key insights into how viruses have evolved with their hosts.
Collapse
Affiliation(s)
- Micah A Luftig
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710;
| |
Collapse
|
90
|
Gehring A, Bertoletti A, Tavis JE. Host factor-targeted hepatitis B virus therapies. Intervirology 2014; 57:158-62. [PMID: 25034483 DOI: 10.1159/000360938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this review we will focus on host factors known to impact hepatitis B virus (HBV) replication as current or potential targets for therapeutic intervention. Some immunotherapeutic strategies will be discussed because they have the potential to activate interferon-mediated clearance of HBV, but attention will also be paid to host machinery and proteins that silence covalently closed circular DNA, destabilize viral RNA, or disrupt entry and trafficking of HBV virions. Many of these are in the early stages of development, but may represent novel avenues to reduce HBV burden when combined with nucleos(t)ide analogues.
Collapse
Affiliation(s)
- Adam Gehring
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Mo., USA
| | | | | |
Collapse
|
91
|
Kim EY, Lorenzo-Redondo R, Little SJ, Chung YS, Phalora PK, Maljkovic Berry I, Archer J, Penugonda S, Fischer W, Richman DD, Bhattacharya T, Malim MH, Wolinsky SM. Human APOBEC3 induced mutation of human immunodeficiency virus type-1 contributes to adaptation and evolution in natural infection. PLoS Pathog 2014; 10:e1004281. [PMID: 25080100 PMCID: PMC4117599 DOI: 10.1371/journal.ppat.1004281] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/13/2014] [Indexed: 11/18/2022] Open
Abstract
Human APOBEC3 proteins are cytidine deaminases that contribute broadly to innate immunity through the control of exogenous retrovirus replication and endogenous retroelement retrotransposition. As an intrinsic antiretroviral defense mechanism, APOBEC3 proteins induce extensive guanosine-to-adenosine (G-to-A) mutagenesis and inhibit synthesis of nascent human immunodeficiency virus-type 1 (HIV-1) cDNA. Human APOBEC3 proteins have additionally been proposed to induce infrequent, potentially non-lethal G-to-A mutations that make subtle contributions to sequence diversification of the viral genome and adaptation though acquisition of beneficial mutations. Using single-cycle HIV-1 infections in culture and highly parallel DNA sequencing, we defined trinucleotide contexts of the edited sites for APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H. We then compared these APOBEC3 editing contexts with the patterns of G-to-A mutations in HIV-1 DNA in cells obtained sequentially from ten patients with primary HIV-1 infection. Viral substitutions were highest in the preferred trinucleotide contexts of the edited sites for the APOBEC3 deaminases. Consistent with the effects of immune selection, amino acid changes accumulated at the APOBEC3 editing contexts located within human leukocyte antigen (HLA)-appropriate epitopes that are known or predicted to enable peptide binding. Thus, APOBEC3 activity may induce mutations that influence the genetic diversity and adaptation of the HIV-1 population in natural infection.
Collapse
Affiliation(s)
- Eun-Young Kim
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Susan J. Little
- Division of Infectious Diseases, University of California San Diego, San Diego, California, United States of America
| | - Yoon-Seok Chung
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Prabhjeet K. Phalora
- Department of Infectious Diseases, King's College London, Guy's Hospital, London, United Kingdom
| | - Irina Maljkovic Berry
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - John Archer
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sudhir Penugonda
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Will Fischer
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Douglas D. Richman
- Division of Infectious Diseases, University of California San Diego, San Diego, California, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| | - Tanmoy Bhattacharya
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Michael H. Malim
- Department of Infectious Diseases, King's College London, Guy's Hospital, London, United Kingdom
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
92
|
Henderson S, Chakravarthy A, Su X, Boshoff C, Fenton TR. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. Cell Rep 2014; 7:1833-41. [PMID: 24910434 DOI: 10.1016/j.celrep.2014.05.012] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 04/12/2014] [Accepted: 05/05/2014] [Indexed: 02/03/2023] Open
Abstract
APOBEC3B cytosine deaminase activity has recently emerged as a significant mutagenic factor in human cancer. APOBEC activity is induced in virally infected cells, and APOBEC signature mutations occur at high frequency in cervical cancers (CESC), over 99% of which are caused by human papillomavirus (HPV). We tested whether APOBEC-mediated mutagenesis is particularly important in HPV-associated tumors by comparing the exomes of HPV+ and HPV- head and neck squamous cell carcinomas (HNSCCs) sequenced by The Cancer Genome Atlas project. As expected, HPV- HNSCC displays a smoking-associated mutational signature, whereas our data suggest that reduced exposure to exogenous carcinogens in HPV+ HNSCC creates a selective pressure that favors emergence of tumors with APOBEC-mediated driver mutations. Finally, we provide evidence that APOBEC activity is responsible for the generation of helical domain hot spot mutations in the PIK3CA gene across multiple cancers. Our findings implicate APOBEC activity as a key driver of PIK3CA mutagenesis and HPV-induced transformation.
Collapse
Affiliation(s)
- Stephen Henderson
- Department of Oncology, UCL Cancer Institute, University College London, London WC1E 6BT, UK; Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Ankur Chakravarthy
- Department of Oncology, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chris Boshoff
- Department of Oncology, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Tim Robert Fenton
- Department of Oncology, UCL Cancer Institute, University College London, London WC1E 6BT, UK.
| |
Collapse
|
93
|
Lin J, Wu JF, Zhang Q, Zhang HW, Cao GW. Virus-related liver cirrhosis: molecular basis and therapeutic options. World J Gastroenterol 2014; 20:6457-69. [PMID: 24914367 PMCID: PMC4047331 DOI: 10.3748/wjg.v20.i21.6457] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/10/2014] [Accepted: 03/08/2014] [Indexed: 02/07/2023] Open
Abstract
Chronic infections with hepatitis B virus (HBV) and/or hepatitis C virus (HCV) are the major causes of cirrhosis globally. It takes 10-20 years to progress from viral hepatitis to cirrhosis. Intermediately active hepatic inflammation caused by the infections contributes to the inflammation-necrosis-regeneration process, ultimately cirrhosis. CD8(+) T cells and NK cells cause liver damage via targeting the infected hepatocytes directly and releasing pro-inflammatory cytokine/chemokines. Hepatic stellate cells play an active role in fibrogenesis via secreting fibrosis-related factors. Under the inflammatory microenvironment, the viruses experience mutation-selection-adaptation to evade immune clearance. However, immune selection of some HBV mutations in the evolution towards cirrhosis seems different from that towards hepatocellular carcinoma. As viral replication is an important driving force of cirrhosis pathogenesis, antiviral treatment with nucleos(t)ide analogs is generally effective in halting the progression of cirrhosis, improving liver function and reducing the morbidity of decompensated cirrhosis caused by chronic HBV infection. Interferon-α plus ribavirin and/or the direct acting antivirals such as Vaniprevir are effective for compensated cirrhosis caused by chronic HCV infection. The standard of care for the treatment of HCV-related cirrhosis with interferon-α plus ribavirin should consider the genotypes of IL-28B. Understanding the mechanism of fibrogenesis and hepatocyte regeneration will facilitate the development of novel therapies for decompensated cirrhosis.
Collapse
|
94
|
Song ZW, Ma YX, Fu BQ, Teng X, Chen SJ, Xu WZ, Gu HX. Altered mRNA levels of MOV10, A3G, and IFN-α in patients with chronic hepatitis B. J Microbiol 2014; 52:510-4. [PMID: 24871977 DOI: 10.1007/s12275-014-3467-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/26/2013] [Accepted: 12/27/2013] [Indexed: 01/12/2023]
Abstract
To explore the relationship of the MOV10, A3G, and IFN-α mRNA levels with chronic hepatitis B virus (HBV) infection, Blood samples from 96 patients with chronic hepatitis B (CHB) and 21 healthy individuals as control were collected. HBV DNA load and aminotransferase in the serum were tested using real time PCR and velocity methods, respectively. The MOV10, A3G, and IFN-α mRNA levels in the peripheral blood mononuclear cells (PBMC) were examined through qRT-PCR. The MOV10, A3G, and IFN-α mRNA levels in CHB group was significantly lower than those in the control group (P<0.01, P<0.05, P<0.01, respectively). The A3G mRNA level in the high-HBV DNA load group was lower than that in the low-HBV DNA load group (P<0.05). However, no statistical difference was found in the MOV10 and IFN-α mRNA levels between the two HBV DNA load groups. Furthermore, the MOV10 mRNA level showed positive correlation with IFN-α in the control group. These results indicated that the expression of the innate immune factors MOV10, A3G, and IFN-α is affected by chronic HBV infection.
Collapse
Affiliation(s)
- Zhi-Wei Song
- The Heilongjiang Key Laboratory of Immunity and Infection, Pathogenic Biology, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang Province, 150081, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Suspène R, Caval V, Henry M, Bouzidi MS, Wain-Hobson S, Vartanian JP. Erroneous identification of APOBEC3-edited chromosomal DNA in cancer genomics. Br J Cancer 2014; 110:2615-22. [PMID: 24691422 PMCID: PMC4021520 DOI: 10.1038/bjc.2014.176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The revolution in cancer genomics shows that the dominant mutations are CG->TA transitions. The sources of these mutations are probably two host cell cytidine deaminases APOBEC3A and APOBEC3B. The former in particular can access nuclear DNA and monotonously introduce phenomenal numbers of C->T mutations in the signature 5'TpC context. These can be copied as G->A transitions in the 5'GpA context. METHODS DNA hypermutated by an APOBEC3 enzyme can be recovered by a technique called 3DPCR, which stands for differential DNA denaturation PCR. This method exploits the fact that APOBEC3-edited DNA is richer in A+T compared with the reference. We explore explicitly 3DPCR error using cloned DNA. RESULTS Here we show that the technique has a higher error rate compared with standard PCR and can generate DNA strands containing both C->T and G->A mutations in a 5'GpCpR context. Sequences with similar traits have been recovered from human tumour DNA using 3DPCR. CONCLUSIONS Differential DNA denaturation PCR cannot be used to identify fixed C->T transitions in cancer genomes. Presently, the overall mutation frequency is ∼10(4)-10(5) base substitutions per cancer genome, or 0.003-0.03 kb(-1). By contrast, the 3DPCR error rate is of the order of 4-20 kb(-1) owing to constant selection for AT DNA and PCR-mediated recombination. Accordingly, sequences recovered by 3DPCR harbouring mixed C->T and G->A mutations associated with the 5'GpC represent artefacts.
Collapse
Affiliation(s)
- R Suspène
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| | - V Caval
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| | - M Henry
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| | - M S Bouzidi
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| | - S Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| | - J-P Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| |
Collapse
|
96
|
Immunoglobulin somatic hypermutation by APOBEC3/Rfv3 during retroviral infection. Proc Natl Acad Sci U S A 2014; 111:7759-64. [PMID: 24821801 DOI: 10.1073/pnas.1403361111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Somatic hypermutation (SHM) is an integral process in the development of high-affinity antibodies that are important for recovery from viral infections and vaccine-induced protection. Ig SHM occurs predominantly in germinal centers (GC) via the enzymatic activity of activation-induced deaminase (AID). In contrast, the evolutionarily related apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 3 (APOBEC3) proteins are known to restrict retroviruses, including HIV-1. We previously reported that mouse APOBEC3 encodes Recovery from Friend virus 3 (Rfv3), a classical resistance gene in mice that promotes the neutralizing antibody response against retrovirus infection. We now show that APOBEC3/Rfv3 complements AID in driving Ig SHM during retrovirus infection. Analysis of antibody sequences from retrovirus-specific hybridomas and GC B cells from infected mice revealed Ig heavy-chain V genes with significantly increased C-to-T and G-to-A transitions in wild-type as compared with APOBEC3-defective mice. The context of the mutations was consistent with APOBEC3 but not AID mutational activity. These findings help explain the role of APOBEC3/Rfv3 in promoting the neutralizing antibody responses essential for recovery from retroviral infection and highlight APOBEC3-mediated deamination as a previously unidentified mechanism for antibody diversification in vivo.
Collapse
|
97
|
Ezzikouri S, Ozawa M, Kohara M, Elmdaghri N, Benjelloun S, Tsukiyama-Kohara K. Recent insights into hepatitis B virus-host interactions. J Med Virol 2014; 86:925-32. [PMID: 24604126 DOI: 10.1002/jmv.23916] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2014] [Indexed: 12/14/2022]
Abstract
Hepatitis B virus (HBV) poses a threat to global public health mainly because of complications of HBV-related chronic liver disease. HBV exhibits a narrow host range, replicating primarily in hepatocytes by a still poorly understood mechanism. For the generation of progeny virions, HBV depends on interactions with specific host factors through its life cycle. Revealing and characterizing these interactions are keys to identifying novel antiviral targets, and to developing specific treatment strategies for HBV patients. In this review, recent insights into the HBV-host interactions, especially on virus entry, intracellular trafficking, genome transcription and replication, budding and release, and even cellular restriction factors were reviewed.
Collapse
Affiliation(s)
- Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | |
Collapse
|
98
|
Nguyen T, Xu J, Chikuma S, Hiai H, Kinoshita K, Moriya K, Koike K, Marcuzzi GP, Pfister H, Honjo T, Kobayashi M. Activation-induced cytidine deaminase is dispensable for virus-mediated liver and skin tumor development in mouse models. Int Immunol 2014; 26:397-406. [DOI: 10.1093/intimm/dxu040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
99
|
Beggel B, Münk C, Däumer M, Hauck K, Häussinger D, Lengauer T, Erhardt A. Full genome ultra-deep pyrosequencing associates G-to-A hypermutation of the hepatitis B virus genome with the natural progression of hepatitis B. J Viral Hepat 2013; 20:882-9. [PMID: 24304458 DOI: 10.1111/jvh.12110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/19/2013] [Indexed: 12/12/2022]
Abstract
Human APOBEC3 (A3) cytosine deaminases are antiviral restriction factors capable of editing the genome the hepatitis B virus (HBV). Despite the importance of the human A3 protein family for the innate immune response little is known about the clinical relevance for hepatitis B. The aim of this study was to utilize ultra-deep pyrosequencing (UDPS) data to analyse the phenomenon of G-to-A hypermutation of the complete HBV genome and to relate it to fundamental characteristics of patients with chronic hepatitis B. By analysing the viral population of 80 treatment naïve patients (47 HBeAg-positive and 33 HBeAg-negative), we identified an unequal distribution of G-to-A hypermutations across the genome. Our data indicate that G-to-A hypermutation occurs predominantly in a region between nucleotide positions 600 and 1800 a region which is usually single stranded in matured HBV particles. This implies that A3 likely edits HBV in the virion. Hypermutation rates for HBeAg-negative patients were more than 10-fold higher than those of HBeAg-positive patients. For HBeAg-negative patients higher hypermutation rates were significantly associated with the degree of fibrosis. Additionally, we found that for HBeAg-positive chronic hepatitis G-to-A hypermutation rates were significantly associated with the relative prevalence of the G1764A mutation, which is related to HBeAg seroconversion. In total, our data imply an important association of hypermutation mediated by A3 deaminases with the natural progression of chronic hepatitis B infections both in terms of HBeAg seroconversion and disease progression towards cirrhosis.
Collapse
Affiliation(s)
- B Beggel
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
100
|
Janahi EM, McGarvey MJ. The inhibition of hepatitis B virus by APOBEC cytidine deaminases. J Viral Hepat 2013; 20:821-8. [PMID: 24304451 DOI: 10.1111/jvh.12192] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 09/24/2013] [Indexed: 12/13/2022]
Abstract
APOBEC3 (A3) cytidine deaminases are a family of enzymes that have been shown to inhibit the replication of HIV-1 and other retroviruses as part of the innate immune responses to virus infection. They can also hyperedit HBV DNA and inhibit HBV replication. Although A3 proteins are present at low levels in normal liver, A3 gene expression is highly stimulated by both interferon-α and interferon-γ. A3 deaminases are incorporated into nascent HBV capsids where they cleave amino groups from cytidine bases converting them to uracil in newly synthesized DNA following reverse transcription of pregenomic RNA. This modified HBV DNA is susceptible to degradation, or alternatively, numerous G-to-A nucleotide mutations are incorporated into positive-strand viral DNA disrupting coding sequences. A3 proteins in which the cytidine deaminase activity has been lost can also inhibit HBV replication, suggesting that there may be more than one way in which inhibition can occur. There is also evidence that A3 proteins might play a role in the development of hepatocellular carcinoma during chronic HBV infection.
Collapse
Affiliation(s)
- E M Janahi
- Department of Biology, College of Science, University of Bahrain, Sakhir, Bahrain
| | | |
Collapse
|