51
|
Bennett MR, Thomsen IP. Epidemiological and Clinical Evidence for the Role of Toxins in S. aureus Human Disease. Toxins (Basel) 2020; 12:toxins12060408. [PMID: 32575633 PMCID: PMC7354447 DOI: 10.3390/toxins12060408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus asymptomatically colonizes approximately 30–50% of the population and is a leading cause of bacteremia, bone/joint infections, and skin infections in the US. S. aureus has become a major public health threat due to antibiotic resistance and an increasing number of failed vaccine attempts. To develop new anti-staphylococcal preventive therapies, it will take a more thorough understanding of the current role S. aureus virulence factors play in contributing to human disease. This review focuses on the clinical association of individual toxins with S. aureus infection as well as attempted treatment options. Further understanding of these associations will increase understanding of toxins and their importance to S. aureus pathogenesis.
Collapse
Affiliation(s)
- Monique R. Bennett
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Vanderbilt Vaccine Research Program, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Isaac P. Thomsen
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Vanderbilt Vaccine Research Program, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
52
|
Chow SH, Deo P, Yeung ATY, Kostoulias XP, Jeon Y, Gao ML, Seidi A, Olivier FAB, Sridhar S, Nethercott C, Cameron D, Robertson AAB, Robert R, Mackay CR, Traven A, Jin ZB, Hale C, Dougan G, Peleg AY, Naderer T. Targeting NLRP3 and Staphylococcal pore-forming toxin receptors in human-induced pluripotent stem cell-derived macrophages. J Leukoc Biol 2020; 108:967-981. [PMID: 32531864 DOI: 10.1002/jlb.4ma0420-497r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus causes necrotizing pneumonia by secreting toxins such as leukocidins that target front-line immune cells. The mechanism by which leukocidins kill innate immune cells and trigger inflammation during S. aureus lung infection, however, remains unresolved. Here, we explored human-induced pluripotent stem cell-derived macrophages (hiPSC-dMs) to study the interaction of the leukocidins Panton-Valentine leukocidin (PVL) and LukAB with lung macrophages, which are the initial leukocidin targets during S. aureus lung invasion. hiPSC-dMs were susceptible to the leukocidins PVL and LukAB and both leukocidins triggered NLPR3 inflammasome activation resulting in IL-1β secretion. hiPSC-dM cell death after LukAB exposure, however, was only temporarily dependent of NLRP3, although NLRP3 triggered marked cell death after PVL treatment. CRISPR/Cas9-mediated deletion of the PVL receptor, C5aR1, protected hiPSC-dMs from PVL cytotoxicity, despite the expression of other leukocidin receptors, such as CD45. PVL-deficient S. aureus had reduced ability to induce lung IL-1β levels in human C5aR1 knock-in mice. Unexpectedly, inhibiting NLRP3 activity resulted in increased wild-type S. aureus lung burdens. Our findings suggest that NLRP3 induces macrophage death and IL-1β secretion after PVL exposure and controls S. aureus lung burdens.
Collapse
Affiliation(s)
- Seong H Chow
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Pankaj Deo
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Amy T Y Yeung
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Xenia P Kostoulias
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Yusun Jeon
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Mei-Ling Gao
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Azadeh Seidi
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Françios Alwyn Benson Olivier
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Sushmita Sridhar
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Cara Nethercott
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - David Cameron
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Remy Robert
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Charles R Mackay
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ana Traven
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Zi-Bing Jin
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Christine Hale
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Gordon Dougan
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Department of Medicine, Addenbrookes Hospital, Cambridge, UK
| | - Anton Y Peleg
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.,Department of Infectious Diseases, the Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | - Thomas Naderer
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
53
|
Shewell LK, Day CJ, Jen FEC, Haselhorst T, Atack JM, Reijneveld JF, Everest-Dass A, James DBA, Boguslawski KM, Brouwer S, Gillen CM, Luo Z, Kobe B, Nizet V, von Itzstein M, Walker MJ, Paton AW, Paton JC, Torres VJ, Jennings MP. All major cholesterol-dependent cytolysins use glycans as cellular receptors. SCIENCE ADVANCES 2020; 6:eaaz4926. [PMID: 32494740 PMCID: PMC7244308 DOI: 10.1126/sciadv.aaz4926] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/17/2020] [Indexed: 05/03/2023]
Abstract
Cholesterol-dependent cytolysins (CDCs) form pores in cholesterol-rich membranes, but cholesterol alone is insufficient to explain their cell and host tropism. Here, we show that all eight major CDCs have high-affinity lectin activity that identifies glycans as candidate cellular receptors. Streptolysin O, vaginolysin, and perfringolysin O bind multiple glycans, while pneumolysin, lectinolysin, and listeriolysin O recognize a single glycan class. Addition of exogenous carbohydrate receptors for each CDC inhibits toxin activity. We present a structure for suilysin domain 4 in complex with two distinct glycan receptors, P1 antigen and αGal/Galili. We report a wide range of binding affinities for cholesterol and for the cholesterol analog pregnenolone sulfate and show that CDCs bind glycans and cholesterol independently. Intermedilysin binds to the sialyl-TF O-glycan on its erythrocyte receptor, CD59. Removing sialyl-TF from CD59 reduces intermedilysin binding. Glycan-lectin interactions underpin the cellular tropism of CDCs and provide molecular targets to block their cytotoxic activity.
Collapse
Affiliation(s)
- Lucy K. Shewell
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Freda E.-C. Jen
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - John M. Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Arun Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - David B. A. James
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Stephan Brouwer
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhenyao Luo
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Mark J. Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| | - Victor J. Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
54
|
Pachathundikandi SK, Blaser N, Bruns H, Backert S. Helicobacter pylori Avoids the Critical Activation of NLRP3 Inflammasome-Mediated Production of Oncogenic Mature IL-1β in Human Immune Cells. Cancers (Basel) 2020; 12:E803. [PMID: 32230726 PMCID: PMC7226495 DOI: 10.3390/cancers12040803] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori persistently colonizes the human stomach, and is associated with inflammation-induced gastric cancer. Bacterial crosstalk with the host immune system produces various inflammatory mediators and subsequent reactions in the host, but not bacterial clearance. Interleukin-1β (IL-1β) is implicated in gastric cancer development and certain gene polymorphisms play a role in this scenario. Mature IL-1β production depends on inflammasome activation, and the NLRP3 inflammasome is a major driver in H. pylori-infected mice, while recent studies demonstrated the down-regulation of NLRP3 expression in human immune cells, indicating a differential NLRP3 regulation in human vs. mice. In addition to the formation of mature IL-1β or IL-18, inflammasome activation induces pyroptotic death in cells. We demonstrate that H. pylori infection indeed upregulated the expression of pro-IL-1β in human immune cells, but secreted only very low amounts of mature IL-1β. However, application of exogenous control activators such as Nigericin or ATP to infected cells readily induced NLRP3 inflammasome formation and secretion of high amounts of mature IL-1β. This suggests that chronic H. pylori infection in humans manipulates inflammasome activation and pyroptosis for bacterial persistence. This inflammasome deregulation during H. pylori infection, however, is prone to external stimulation by microbial, environmental or host molecules of inflammasome activators for the production of high amounts of mature IL-1β and signaling-mediated gastric tumorigenesis in humans.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| | - Nicole Blaser
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander University, D-91058 Erlangen, Germany;
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| |
Collapse
|
55
|
Boguslawski KM, McKeown AN, Day CJ, Lacey KA, Tam K, Vozhilla N, Kim SY, Jennings MP, Koralov SB, Elde NC, Torres VJ. Exploiting species specificity to understand the tropism of a human-specific toxin. SCIENCE ADVANCES 2020; 6:eaax7515. [PMID: 32195339 PMCID: PMC7065885 DOI: 10.1126/sciadv.aax7515] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Many pathogens produce virulence factors that are specific toward their natural host. Clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) isolates are highly adapted to humans and produce an array of human-specific virulence factors. One such factor is LukAB, a recently identified pore-forming toxin that targets human phagocytes by binding to the integrin component CD11b. LukAB exhibits strong tropism toward human, but not murine, CD11b. Here, phylogenetics and biochemical studies lead to the identification of an 11-residue domain required for the specificity of LukAB toward human CD11b, which is sufficient to render murine CD11b compatible with toxin binding. CRISPR-mediated gene editing was used to replace this domain, resulting in a "humanized" mouse. In vivo studies revealed that the humanized mice exhibit enhanced susceptibility to MRSA bloodstream infection, a phenotype mediated by LukAB. Thus, these studies establish LukAB as an important toxin for MRSA bacteremia and describe a new mouse model to study MRSA pathobiology.
Collapse
Affiliation(s)
- K. M. Boguslawski
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - A. N. McKeown
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - C. J. Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - K. A. Lacey
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - K. Tam
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - N. Vozhilla
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - S. Y. Kim
- Office of Collaborative Sciences, New York University School of Medicine, New York, NY 10016, USA
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - M. P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - S. B. Koralov
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - N. C. Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - V. J. Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
56
|
Chan R, Buckley PT, O'Malley A, Sause WE, Alonzo F, Lubkin A, Boguslawski KM, Payne A, Fernandez J, Strohl WR, Whitaker B, Lynch AS, Torres VJ. Identification of biologic agents to neutralize the bicomponent leukocidins of Staphylococcus aureus. Sci Transl Med 2020; 11:11/475/eaat0882. [PMID: 30651319 DOI: 10.1126/scitranslmed.aat0882] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 01/22/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
A key aspect underlying the severity of infections caused by Staphylococcus aureus is the abundance of virulence factors that the pathogen uses to thwart critical components of the human immune response. One such mechanism involves the destruction of host immune cells by cytolytic toxins secreted by S. aureus, including five bicomponent leukocidins: PVL, HlgAB, HlgCB, LukED, and LukAB. Purified leukocidins can lyse immune cells ex vivo, and systemic injections of purified LukED or HlgAB can acutely kill mice. Here, we describe the generation and characterization of centyrins that bind S. aureus leukocidins with high affinity and protect primary human immune cells from toxin-mediated cytolysis. Centyrins are small protein scaffolds derived from the fibronectin type III-binding domain of the human protein tenascin-C. Although centyrins are potent in tissue culture assays, their short serum half-lives limit their efficacies in vivo. By extending the serum half-lives of centyrins through their fusion to an albumin-binding consensus domain, we demonstrate the in vivo efficacy of these biologics in a murine intoxication model and in models of both prophylactic and therapeutic treatment of live S. aureus systemic infections. These biologics that target S. aureus virulence factors have potential for treating and preventing serious staphylococcal infections.
Collapse
Affiliation(s)
- Rita Chan
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Peter T Buckley
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Aidan O'Malley
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - William E Sause
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Francis Alonzo
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Ashira Lubkin
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Kristina M Boguslawski
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA
| | - Angela Payne
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Jeffrey Fernandez
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - William R Strohl
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Brian Whitaker
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Anthony Simon Lynch
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA.
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, 430 East 29th Street, New York, NY 10016, USA.
| |
Collapse
|
57
|
Wang X, Eagen WJ, Lee JC. Orchestration of human macrophage NLRP3 inflammasome activation by Staphylococcus aureus extracellular vesicles. Proc Natl Acad Sci U S A 2020; 117:3174-3184. [PMID: 31988111 PMCID: PMC7022218 DOI: 10.1073/pnas.1915829117] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Release of extracellular vesicles (EVs) is a common feature among eukaryotes, archaea, and bacteria. However, the biogenesis and downstream biological effects of EVs released from gram-positive bacteria remain poorly characterized. Here, we report that EVs purified from a community-associated methicillin-resistant Staphylococcus aureus strain were internalized into human macrophages in vitro and that this process was blocked by inhibition of the dynamin-dependent endocytic pathway. Human macrophages responded to S. aureus EVs by TLR2 signaling and activation of NLRP3 inflammasomes through K+ efflux, leading to the recruitment of ASC and activation of caspase-1. Cleavage of pro-interleukin (IL)-1β, pro-IL-18, and gasdermin-D by activated caspase-1 resulted in the cellular release of the mature cytokines IL-1β and IL-18 and induction of pyroptosis. Consistent with this result, a dose-dependent cytokine response was detected in the extracellular fluids of mice challenged intraperitoneally with S. aureus EVs. Pore-forming toxins associated with S. aureus EVs were critical for NLRP3-dependent caspase-1 activation of human macrophages, but not for TLR2 signaling. In contrast, EV-associated lipoproteins not only mediated TLR2 signaling to initiate the priming step of NLRP3 activation but also modulated EV biogenesis and the toxin content of EVs, resulting in alterations in IL-1β, IL-18, and caspase-1 activity. Collectively, our study describes mechanisms by which S. aureus EVs induce inflammasome activation and reveals an unexpected role of staphylococcal lipoproteins in EV biogenesis. EVs may serve as a novel secretory pathway for S. aureus to transport protected cargo in a concentrated form to host cells during infections to modulate cellular functions.
Collapse
Affiliation(s)
- Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - William J Eagen
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
58
|
Naclerio GA, Abutaleb NS, Onyedibe KI, Seleem MN, Sintim HO. Potent trifluoromethoxy, trifluoromethylsulfonyl, trifluoromethylthio and pentafluorosulfanyl containing (1,3,4-oxadiazol-2-yl)benzamides against drug-resistant Gram-positive bacteria. RSC Med Chem 2019; 11:102-110. [PMID: 33479609 DOI: 10.1039/c9md00391f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/09/2019] [Indexed: 12/30/2022] Open
Abstract
According to the Centers for Disease Control and Prevention (CDC), methicillin-resistant Staphylococcus aureus (MRSA) affects about 80 000 patients in the US annually and directly causes about 11 000 deaths. Therefore, despite the fact that there are several drugs available for the treatment of MRSA, there is a need for new chemical entities. We previously reported that 1,3,4-oxadiazolyl sulfonamide F6 was bacteriostatic and inhibited MRSA strains with a minimum inhibitory concentration (MIC) of 2 μg mL-1. Here, we report the discovery of trifluoromethoxy (OCF3), trifluoromethylsulfonyl (SO2CF3), trifluoromethylthio (SCF3) and pentafluorosulfanyl (SF5) containing (1,3,4-oxadiazol-2-yl)benzamides exhibiting potent antibacterial activities against MRSA [MIC values as low as 0.06 μg mL-1 against linezolid-resistant S. aureus (NRS 119)]. Interestingly, whereas the OCF3 and SO2CF3 containing oxadiazoles were bacteriostatic, the SCF3 and SF5 containing oxadiazoles were bactericidal. They exhibited a wide spectrum of activities against an extensive panel of Gram-positive bacterial strains, including MRSA, vancomycin-resistant Staphylococcus aureus (VRSA), vancomycin-resistant enterococcus (VRE) and methicillin-resistant or cephalosporin-resistant Streptococcus pneumoniae. Furthermore, compounds 6 and 12 outperformed vancomycin in clearing intracellular MRSA in infected macrophages. Moreover, the tested compounds behaved synergistically or additively with antibiotics used for the treatment of MRSA infections.
Collapse
Affiliation(s)
- George A Naclerio
- Department of Chemistry , Institute for Drug Discovery , Purdue University , West Lafayette , IN 47907 , USA .
| | - Nader S Abutaleb
- Department of Comparative Pathobiology , Purdue University College of Veterinary Medicine , West Lafayette , IN 47907 , USA
| | - Kenneth I Onyedibe
- Department of Chemistry , Institute for Drug Discovery , Purdue University , West Lafayette , IN 47907 , USA . .,Purdue Institute of Inflammation, Immunology, and Infectious Diseases , West Lafayette , IN 47907 , USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology , Purdue University College of Veterinary Medicine , West Lafayette , IN 47907 , USA.,Purdue Institute of Inflammation, Immunology, and Infectious Diseases , West Lafayette , IN 47907 , USA
| | - Herman O Sintim
- Department of Chemistry , Institute for Drug Discovery , Purdue University , West Lafayette , IN 47907 , USA . .,Purdue Institute of Inflammation, Immunology, and Infectious Diseases , West Lafayette , IN 47907 , USA
| |
Collapse
|
59
|
Krause K, Daily K, Estfanous S, Hamilton K, Badr A, Abu Khweek A, Hegazi R, Anne MNK, Klamer B, Zhang X, Gavrilin MA, Pancholi V, Amer AO. Caspase-11 counteracts mitochondrial ROS-mediated clearance of Staphylococcus aureus in macrophages. EMBO Rep 2019; 20:e48109. [PMID: 31637841 PMCID: PMC6893291 DOI: 10.15252/embr.201948109] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 02/05/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a growing health concern due to increasing resistance to antibiotics. As a facultative intracellular pathogen, MRSA is capable of persisting within professional phagocytes including macrophages. Here, we identify a role for CASP11 in facilitating MRSA survival within murine macrophages. We show that MRSA actively prevents the recruitment of mitochondria to the vicinity of the vacuoles they reside in to avoid intracellular demise. This process requires CASP11 since its deficiency allows increased association of MRSA-containing vacuoles with mitochondria. The induction of mitochondrial superoxide by antimycin A (Ant A) improves MRSA eradication in casp11-/- cells, where mitochondria remain in the vicinity of the bacterium. In WT macrophages, Ant A does not affect MRSA persistence. When mitochondrial dissociation is prevented by the actin depolymerizing agent cytochalasin D, Ant A effectively reduces MRSA numbers. Moreover, the absence of CASP11 leads to reduced cleavage of CASP1, IL-1β, and CASP7, as well as to reduced production of CXCL1/KC. Our study provides a new role for CASP11 in promoting the persistence of Gram-positive bacteria.
Collapse
Affiliation(s)
- Kathrin Krause
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
| | - Kylene Daily
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
| | - Shady Estfanous
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
| | - Kaitlin Hamilton
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
| | - Asmaa Badr
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
| | - Arwa Abu Khweek
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
- Department of Biology and BiochemistryBirzeit UniversityBirzeitWest BankPalestine
| | - Rana Hegazi
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
| | - Midhun NK Anne
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
| | - Brett Klamer
- Center for BiostatisticsOhio State UniversityColumbusOHUSA
| | - Xiaoli Zhang
- Center for BiostatisticsOhio State UniversityColumbusOHUSA
| | | | - Vijay Pancholi
- Department of PathologyOhio State UniversityColumbusOHUSA
| | - Amal O Amer
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
| |
Collapse
|
60
|
Rasmussen G, Idosa BA, Bäckman A, Monecke S, Strålin K, Särndahl E, Söderquist B. Caspase-1 inflammasome activity in patients with Staphylococcus aureus bacteremia. Microbiol Immunol 2019; 63:487-499. [PMID: 31403210 PMCID: PMC6916170 DOI: 10.1111/1348-0421.12738] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 01/12/2023]
Abstract
The inflammasome is a multiprotein complex that mediates caspase‐1 activation with subsequent maturation of the proinflammatory cytokines IL‐1β and IL‐18. The NLRP3 inflammasome is known to be activated by Staphylococcus aureus, one of the leading causes of bacteremia worldwide. Inflammasome activation and regulation in response to bacterial infection have been found to be of importance for a balanced host immune response. However, inflammasome signaling in vivo in humans initiated by S. aureus is currently sparsely studied. This study therefore aimed to investigate NLRP3 inflammasome activity in 20 patients with S. aureus bacteremia (SAB), by repeated measurement during the first week of bacteremia, compared with controls. Caspase‐1 activity was measured in monocytes and neutrophils by flow cytometry detecting FLICA (fluorescent‐labeled inhibitor of caspase‐1), while IL‐1β and IL‐18 was measured by Luminex and ELISA, respectively. As a measure of inflammasome priming, messenger RNA (mRNA) expression of NLRP3, CASP1 (procaspase‐1), and IL1B (pro‐IL‐1β) was analyzed by quantitative PCR. We found induced caspase‐1 activity in innate immune cells with subsequent release of IL‐18 in patients during the acute phase of bacteremia, indicating activation of the inflammasome. There was substantial interindividual variation in caspase‐1 activity between patients with SAB. We also found an altered inflammasome priming with low mRNA levels of NLRP3 accompanied by elevated mRNA levels of IL1B. This increased knowledge of the individual host immune response in SAB could provide support in the effort to optimize management and treatment of each individual patient.
Collapse
Affiliation(s)
- Gunlög Rasmussen
- Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Berhane Asfaw Idosa
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anders Bäckman
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Sweden
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), InfectoGnostics Research Campus Jena, Jena, Germany
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Bo Söderquist
- Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
61
|
Elsebaei MM, Abutaleb NS, Mahgoub AA, Li D, Hagras M, Mohammad H, Seleem MN, Mayhoub AS. Phenylthiazoles with nitrogenous side chain: An approach to overcome molecular obesity. Eur J Med Chem 2019; 182:111593. [PMID: 31446245 DOI: 10.1016/j.ejmech.2019.111593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Accepted: 08/05/2019] [Indexed: 02/01/2023]
Abstract
A novel series of phenylthiazoles bearing cyclic amines at the phenyl-4 position was prepared with the objective of decreasing lipophilicity and improving the overall physicochemical properties and pharmacokinetic profile of the compounds. Briefly, the piperidine ring (compounds 10 and 12) provided the best ring size in terms of antibacterial activity when tested against 16 multidrug-resistant clinical isolates. Both compounds were superior to vancomycin in the ability to eliminate methicillin-resistant Staphylococcus aureus (MRSA), residing within infected macrophages and to disrupt mature MRSA biofilm. Additionally, compounds 10 and 12 exhibited a fast-bactericidal mode of action in vitro. Furthermore, the new derivatives were 160-times more soluble in water than the previous lead compound 1b. Consequently, compound 10 was orally bioavailable with a highly-acceptable pharmacokinetic profile in vivo that exhibited a half-life of 4 h and achieved a maximum plasma concentration that exceeded the minimum inhibitory concentration (MIC) values against all tested bacterial isolates.
Collapse
Affiliation(s)
- Mohamed M Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Abdulrahman A Mahgoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Daoyi Li
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, 47907, USA.
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt; University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578, Egypt.
| |
Collapse
|
62
|
An Y, Wang Y, Zhan J, Tang X, Shen K, Shen F, Wang C, Luan W, Wang X, Wang X, Liu M, Zheng Q, Yu L. Fosfomycin Protects Mice From Staphylococcus aureus Pneumonia Caused by α-Hemolysin in Extracellular Vesicles by Inhibiting MAPK-Regulated NLRP3 Inflammasomes. Front Cell Infect Microbiol 2019; 9:253. [PMID: 31380296 PMCID: PMC6644418 DOI: 10.3389/fcimb.2019.00253] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/28/2019] [Indexed: 01/22/2023] Open
Abstract
α-Hemolysin (Hla) is a significant virulence factor in Staphylococcus aureus (S. aureus)-caused infectious diseases such as pneumonia. Thus, to prevent the production of Hla when treating S. aureus infection, it is necessary to choose an antibiotic with good antibacterial activity and effect. In our study, we observed that Fosfomycin (FOM) at a sub-inhibitory concentration inhibited expression of Hla. Molecular dynamics demonstrated that FOM bound to the binding sites LYS 154 and ASP 108 of Hla, potentially inhibiting Hla. Furthermore, we verified that staphylococcal membrane-derived vesicles (SMVs) contain Hla and that FOM treatment significantly reduced the production of SMVs and Hla. Based on our pharmacological inhibition analysis, ERK and p38 activated NLRP3 inflammasomes. Moreover, FOM inhibited expression of MAPKs and NLRP3 inflammasome-related proteins in S. aureus as well as SMV-infected human macrophages (MΦ) and alveolar epithelial cells. In vivo, SMVs isolated from S. aureus DU1090 (an isogenic Hla deletion mutant) or the strain itself caused weaker inflammation than that of its parent strain 8325-4. FOM also significantly reduced the phosphorylation levels of ERK and P38 and expression of NLRP3 inflammasome-related proteins. In addition, FOM decreased MPO activity, pulmonary vascular permeability and edema formation in the lungs of mice with S. aureus-caused pneumonia. Taken together, these data indicate that FOM exerts protective effects against S. aureus infection in vitro and in vivo by inhibiting Hla in SMVs and blocking ERK/P38-mediated NLRP3 inflammasome activation by Hla.
Collapse
Affiliation(s)
- Yanan An
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yang Wang
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jiuyu Zhan
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xudong Tang
- Key Lab for New Drugs Research of TCM in Shenzhen, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Keshu Shen
- Jilin Hepatobiliary Hospital, Changchun, China
| | - Fengge Shen
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chao Wang
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Wenjing Luan
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xuefei Wang
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xueyan Wang
- Key Lab for New Drugs Research of TCM in Shenzhen, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Mingyuan Liu
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qingchuan Zheng
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lu Yu
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
63
|
S. aureus Evades Macrophage Killing through NLRP3-Dependent Effects on Mitochondrial Trafficking. Cell Rep 2019; 22:2431-2441. [PMID: 29490278 PMCID: PMC7160668 DOI: 10.1016/j.celrep.2018.02.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 01/05/2018] [Accepted: 02/06/2018] [Indexed: 12/28/2022] Open
Abstract
Clinical severity of Staphylococcus aureus respiratory infection correlates with alpha toxin (AT) expression. AT activates the NLRP3 inflammasome; deletion of Nlrp3, or AT neutralization, protects mice from lethal S. aureus pneumonia. We tested the hypothesis that this protection is not due to a reduction in inflammasome-dependent cytokines (IL-1β/IL-18) but increased bactericidal function of macrophages. In vivo, neutralization of AT or NLRP3 improved bacterial clearance and survival, while blocking IL-1β/IL-18 did not. Primary human monocytes were used in vitro to determine the mechanism through which NLRP3 alters bacterial killing. In cells treated with small interfering RNA (siRNA) targeting NLRP3 or infected with AT-null S. aureus, mitochondria co-localize with bacterial-containing phagosomes. Mitochondrial engagement activates caspase-1, a process dependent on complex II of the electron transport chain, near the phagosome, promoting its acidification. These data demonstrate a mechanism utilized by S. aureus to sequester itself from antimicrobial processes within the cell.
Collapse
|
64
|
Rational Design of Toxoid Vaccine Candidates for Staphylococcus aureus Leukocidin AB (LukAB). Toxins (Basel) 2019; 11:toxins11060339. [PMID: 31207937 PMCID: PMC6628420 DOI: 10.3390/toxins11060339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus (SA) infections cause high mortality and morbidity in humans. Being central to its pathogenesis, S. aureus thwarts the host defense by secreting a myriad of virulence factors, including bicomponent, pore-forming leukotoxins. While all vaccine development efforts that aimed at achieving opsonophagocytic killing have failed, targeting virulence by toxoid vaccines represents a novel approach to preventing mortality and morbidity that are caused by SA. The recently discovered leukotoxin LukAB kills human phagocytes and monocytes and it is present in all known S. aureus clinical isolates. While using a structure-guided approach, we generated a library of mutations that targeted functional domains within the LukAB heterodimer to identify attenuated toxoids as potential vaccine candidates. The mutants were evaluated based on expression, solubility, yield, biophysical properties, cytotoxicity, and immunogenicity, and several fully attenuated LukAB toxoids that were capable of eliciting high neutralizing antibody titers were identified. Rabbit polyclonal antibodies against the lead toxoid candidate provided potent neutralization of LukAB. While the neutralization of LukAB alone was not sufficient to fully suppress leukotoxicity in supernatants of S. aureus USA300 isolates, a combination of antibodies against LukAB, α-toxin, and Panton-Valentine leukocidin completely neutralized the cytotoxicity of these strains. These data strongly support the inclusion of LukAB toxoids in a multivalent toxoid vaccine for the prevention of S. aureus disease.
Collapse
|
65
|
The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections. Toxins (Basel) 2019; 11:toxins11060332. [PMID: 31212697 PMCID: PMC6628391 DOI: 10.3390/toxins11060332] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Necrotizing soft tissue infections (NSTIs) are critical clinical conditions characterized by extensive necrosis of any layer of the soft tissue and systemic toxicity. Group A streptococci (GAS) and Staphylococcus aureus are two major pathogens associated with monomicrobial NSTIs. In the tissue environment, both Gram-positive bacteria secrete a variety of molecules, including pore-forming exotoxins, superantigens, and proteases with cytolytic and immunomodulatory functions. The present review summarizes the current knowledge about streptococcal and staphylococcal toxins in NSTIs with a special focus on their contribution to disease progression, tissue pathology, and immune evasion strategies.
Collapse
|
66
|
Abstract
Community-acquired pneumonia (CAP) is a leading cause of morbidity and mortality worldwide. Despite broad literature including basic and translational scientific studies, many gaps in our understanding of host-pathogen interactions remain. In this review, pathogen virulence factors that drive lung infection and injury are discussed in relation to their associated host immune pathways. CAP epidemiology is considered, with a focus on Staphylococcus aureus and Streptococcus pneumoniae as primary pathogens. Bacterial factors involved in nasal colonization and subsequent virulence are illuminated. A particular emphasis is placed on bacterial pore-forming toxins, host cell death, and inflammasome activation. Identified host-pathogen interactions are then examined by linking pathogen factors to aberrant host response pathways in the context of acute lung injury in both primary and secondary infection. While much is known regarding bacterial virulence and host immune responses, CAP management is still limited to mostly supportive care. It is likely that improvements in therapy will be derived from combinatorial targeting of both pathogen virulence factors and host immunomodulation.
Collapse
|
67
|
Tam K, Torres VJ. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0039-2018. [PMID: 30873936 PMCID: PMC6422052 DOI: 10.1128/microbiolspec.gpp3-0039-2018] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is a formidable pathogen capable of causing infections in different sites of the body in a variety of vertebrate animals, including humans and livestock. A major contribution to the success of S. aureus as a pathogen is the plethora of virulence factors that manipulate the host's innate and adaptive immune responses. Many of these immune modulating virulence factors are secreted toxins, cofactors for activating host zymogens, and exoenzymes. Secreted toxins such as pore-forming toxins and superantigens are highly inflammatory and can cause leukocyte cell death by cytolysis and clonal deletion, respectively. Coagulases and staphylokinases are cofactors that hijack the host's coagulation system. Exoenzymes, including nucleases and proteases, cleave and inactivate various immune defense and surveillance molecules, such as complement factors, antimicrobial peptides, and surface receptors that are important for leukocyte chemotaxis. Additionally, some of these secreted toxins and exoenzymes can cause disruption of endothelial and epithelial barriers through cell lysis and cleavage of junction proteins. A unique feature when examining the repertoire of S. aureus secreted virulence factors is the apparent functional redundancy exhibited by the majority of the toxins and exoenzymes. However, closer examination of each virulence factor revealed that each has unique properties that have important functional consequences. This chapter provides a brief overview of our current understanding of the major secreted virulence factors critical for S. aureus pathogenesis.
Collapse
Affiliation(s)
- Kayan Tam
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY 10016
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY 10016
| |
Collapse
|
68
|
Lubkin A, Lee WL, Alonzo F, Wang C, Aligo J, Keller M, Girgis NM, Reyes-Robles T, Chan R, O'Malley A, Buckley P, Vozhilla N, Vasquez MT, Su J, Sugiyama M, Yeung ST, Coffre M, Bajwa S, Chen E, Martin P, Kim SY, Loomis C, Worthen GS, Shopsin B, Khanna KM, Weinstock D, Lynch AS, Koralov SB, Loke P, Cadwell K, Torres VJ. Staphylococcus aureus Leukocidins Target Endothelial DARC to Cause Lethality in Mice. Cell Host Microbe 2019; 25:463-470.e9. [PMID: 30799265 DOI: 10.1016/j.chom.2019.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/24/2018] [Accepted: 01/23/2019] [Indexed: 01/16/2023]
Abstract
The pathogenesis of Staphylococcus aureus is thought to depend on the production of pore-forming leukocidins that kill leukocytes and lyse erythrocytes. Two leukocidins, Leukocidin ED (LukED) and γ-Hemolysin AB (HlgAB), are necessary and sufficient to kill mice upon infection and toxin challenge. We demonstrate that LukED and HlgAB cause vascular congestion and derangements in vascular fluid distribution that rapidly cause death in mice. The Duffy antigen receptor for chemokines (DARC) on endothelial cells, rather than leukocytes or erythrocytes, is the critical target for lethality. Consistent with this, LukED and HlgAB injure primary human endothelial cells in a DARC-dependent manner, and mice with DARC-deficient endothelial cells are resistant to toxin-mediated lethality. During bloodstream infection in mice, DARC targeting by S. aureus causes increased tissue damage, organ dysfunction, and host death. The potential for S. aureus leukocidins to manipulate vascular integrity highlights the importance of these virulence factors.
Collapse
Affiliation(s)
- Ashira Lubkin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Warren L Lee
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Francis Alonzo
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Changsen Wang
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Jason Aligo
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Matthew Keller
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Natasha M Girgis
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Tamara Reyes-Robles
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Rita Chan
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Aidan O'Malley
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Peter Buckley
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Nikollaq Vozhilla
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Marilyn T Vasquez
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Johnny Su
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Michael Sugiyama
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Stephen T Yeung
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Maryaline Coffre
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Sofia Bajwa
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Eric Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Patricia Martin
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Sang Y Kim
- Department of Pathology, New York University School of Medicine, New York, NY, USA; Office of Collaborative Sciences, NYU School of Medicine, New York, NY, USA; Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Cynthia Loomis
- Department of Pathology, New York University School of Medicine, New York, NY, USA; Office of Collaborative Sciences, NYU School of Medicine, New York, NY, USA; Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - G Scott Worthen
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bo Shopsin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; Division of Infectious Diseases, Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Daniel Weinstock
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Anthony Simon Lynch
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - P'ng Loke
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Ken Cadwell
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
69
|
Buchan KD, Foster SJ, Renshaw SA. Staphylococcus aureus: setting its sights on the human innate immune system. MICROBIOLOGY-SGM 2019; 165:367-385. [PMID: 30625113 DOI: 10.1099/mic.0.000759] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Staphylococcus aureus has colonized humans for at least 10 000 years, and today inhabits roughly a third of the population. In addition, S. aureus is a major pathogen that is responsible for a significant disease burden, ranging in severity from mild skin and soft-tissue infections to life-threatening endocarditis and necrotizing pneumonia, with treatment often hampered by resistance to commonly available antibiotics. Underpinning its versatility as a pathogen is its ability to evade the innate immune system. S. aureus specifically targets innate immunity to establish and sustain infection, utilizing a large repertoire of virulence factors to do so. Using these factors, S. aureus can resist phagosomal killing, impair complement activity, disrupt cytokine signalling and target phagocytes directly using proteolytic enzymes and cytolytic toxins. Although most of these virulence factors are well characterized, their importance during infection is less clear, as many display species-specific activity against humans or against animal hosts, including cows, horses and chickens. Several staphylococcal virulence factors display species specificity for components of the human innate immune system, with as few as two amino acid changes reducing binding affinity by as much as 100-fold. This represents a major issue for studying their roles during infection, which cannot be examined without the use of humanized infection models. This review summarizes the major factors S. aureus uses to impair the innate immune system, and provides an in-depth look into the host specificity of S. aureus and how this problem is being approached.
Collapse
Affiliation(s)
- Kyle D Buchan
- 1The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Simon J Foster
- 2Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Stephen A Renshaw
- 1The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
70
|
Abstract
Antigen-presenting cells such as dendritic cells (DCs) fulfill an indispensable role in the development of adaptive immunity by producing proinflammatory cytokines and presenting microbial antigens to lymphocytes to trigger a faster, specific, and long-lasting immune response. Here, we studied the effect of Staphylococcus aureus toxins on human DCs. We discovered that the leukocidin LukAB hinders the development of adaptive immunity by targeting human DCs. The ability of S. aureus to blunt the function of DCs could help explain the high frequency of recurrent S. aureus infections. Taken together, the results from this study suggest that therapeutically targeting the S. aureus leukocidins may boost effective innate and adaptive immune responses by protecting innate leukocytes, enabling proper antigen presentation and T cell activation. Staphylococcus aureus is a human pathogen responsible for high morbidity and mortality worldwide. Recurrent infections with this bacterium are common, suggesting that S. aureus thwarts the development of sterilizing immunity. S. aureus strains that cause disease in humans produce up to five different bicomponent toxins (leukocidins) that target and lyse neutrophils, innate immune cells that represent the first line of defense against S. aureus infections. However, little is known about the role of leukocidins in blunting adaptive immunity. Here, we explored the effects of leukocidins on human dendritic cells (DCs), antigen-presenting cells required for the development of adaptive immunity. Using an ex vivo infection model of primary human monocyte-derived dendritic cells, we found that S. aureus, including strains from different clonal complexes and drug resistance profiles, effectively kills DCs despite efficient phagocytosis. Although all purified leukocidins could kill DCs, infections with live bacteria revealed that S. aureus targets and kills DCs primarily via the activity of leukocidin LukAB. Moreover, using coculture experiments performed with DCs and autologous CD4+ T lymphocytes, we found that LukAB inhibits DC-mediated activation and proliferation of primary human T cells. Taken together, the data determined in the study reveal a novel immunosuppressive strategy of S. aureus whereby the bacterium blunts the development of adaptive immunity via LukAB-mediated injury of DCs.
Collapse
|
71
|
Askarian F, Wagner T, Johannessen M, Nizet V. Staphylococcus aureus modulation of innate immune responses through Toll-like (TLR), (NOD)-like (NLR) and C-type lectin (CLR) receptors. FEMS Microbiol Rev 2018; 42:656-671. [PMID: 29893825 PMCID: PMC6098222 DOI: 10.1093/femsre/fuy025] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Early recognition of pathogens by the innate immune system is crucial for bacterial clearance. Many pattern recognition receptors (PRRs) such as Toll-like (TLRs) and (NOD)-like (NLRs) receptors have been implicated in initial sensing of bacterial components. The intracellular signaling cascades triggered by these receptors result in transcriptional upregulation of inflammatory pathways. Although this step is crucial for bacterial elimination, it is also associated with the potential for substantial immunopathology, which underscores the need for tight control of inflammatory responses. The leading human bacterial pathogen Staphylococcus aureus expresses over 100 virulence factors that exert numerous effects upon host cells. In this manner, the pathogen seeks to avoid host recognition or perturb PRR-induced innate immune responses to allow optimal survival in the host. These immune system interactions may result in enhanced bacterial proliferation but also provoke systemic cytokine responses associated with sepsis. This review summarizes recent findings on the various mechanisms applied by S. aureus to modulate or interfere with inflammatory responses through PRRs. Detailed understanding of these complex interactions can provide new insights toward future immune-stimulatory therapeutics against infection or immunomodulatory therapeutics to suppress or correct dysregulated inflammation.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Research Group of Host Microbe Interaction, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Theresa Wagner
- Research Group of Host Microbe Interaction, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group of Host Microbe Interaction, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
72
|
Pires S, Parker D. IL-1β activation in response to Staphylococcus aureus lung infection requires inflammasome-dependent and independent mechanisms. Eur J Immunol 2018; 48:1707-1716. [PMID: 30051912 DOI: 10.1002/eji.201847556] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/12/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023]
Abstract
Maintaining balanced levels of IL-1β is extremely important to avoid host tissue damage during infection. Our goal was to understand the mechanisms behind the reduced pathology and decreased bacterial burdens in Ifnlr1-/- mice during lung infection with Staphylococcus aureus. Intranasal infection of Ifnlr1-/- mice with S. aureus led to significantly improved bacterial clearance, survival and decrease of proinflammatory cytokines in the airway including IL-1β. Ifnlr1-/- mice treated with recombinant IL-1β displayed increased bacterial burdens in the airway and lung. IL-1β levels in neutrophils from Ifnlr1-/- infected mice lungs were decreased when compared to neutrophils from WT mice. Mice lacking NLRP3 and caspase-1 had reduced IL-1β levels 4 h after infection, due to reductions or absence of active caspase-1 respectively, but levels at 24 h were comparable to WT infected mice. Ifnlr1-/- infected mice had decreases in both active caspase-1 and neutrophil elastase indicating an important role for the neutrophil serine protease in IL-1β processing. By inhibiting neutrophil elastase, we were able to decrease IL-1β levels by 39% in Nlrp3-/- infected mice when compared to WT mice. These results highlight the crucial role of both proteases in IL-1β processing, via inflammasome-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Sílvia Pires
- Department of Pediatrics, Columbia University, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dane Parker
- Department of Pediatrics, Columbia University, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
73
|
He C, Xu S, Zhao H, Hu F, Xu X, Jin S, Yang H, Gong F, Liu Q. Leukotoxin and pyrogenic toxin Superantigen gene backgrounds in bloodstream and wound Staphylococcus aureus isolates from eastern region of China. BMC Infect Dis 2018; 18:395. [PMID: 30103694 PMCID: PMC6090790 DOI: 10.1186/s12879-018-3297-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/01/2018] [Indexed: 11/10/2022] Open
Abstract
Background The bicomponent leukotoxins and the pyrogenic toxin superantigens (PTSAgs) are important virulence factors of Staphylococcus aureus. It is necessary to survey the prevalence and expression of these toxin-encoding genes for understanding the possible pathogenic capacity of S. aureus to cause disease. Methods Five leukotoxin genes and thirteen PTSAg determinants were detected for 177 S. aureus isolates from blood (n = 88) and wound (n = 89) infections by Polymerase Chain Reaction (PCR). The expression of leukotoxin ED (lukED) was determined by quantitative real-time PCR (qRT-PCR). The genetic backgrounds of isolates were analyzed by Staphylococcal Cassette Chromosome mec (SCCmec) typing (for methicillin-resistant S. aureus isolates), Pulsed-Field Gel Electrophoresis (PFGE), accessory gene regulator (agr) typing and Multilocus Sequence Typing (MLST, for representative isolates based on PFGE type) methods. Results 99.4% (176/177) isolates contained at least one of leukotoxin genes. Among them, 94.9% (168/177), 81.4% (144/177) and 67.8% (120/177) isolates harbored hlgBC, lukED and lukAB, respectively. Compared to leukotoxin genes, there was a relatively lower overall prevalence of PTSAg genes [99.4% versus 72.9% (129/177), P < 0.001], and they were organized in 59 patterns, with the most common combination of the egc cluster with or without other PTSAg genes. Genetic analysis showed the distributions of certain toxin genes were associated with the genetic backgrounds of isolates. The egc cluster was a common feature of CC5 isolates, among which ST5 and ST764 isolates harbored more PTSAg genes. The lukED was not present in ST398 isolates, and its expression was quite different among isolates. No significant correlations were observed between the lukED expression levels of strains and the ST or agr types. Conclusions The present study elucidated the distribution of leukotoxin and PTSAg genes and the expression of lukED in blood and wound isolates, and analyzed the relationship between them with genetic characteristics of isolates. These data improve the current understanding of the possible pathogenicity of S. aureus. Electronic supplementary material The online version of this article (10.1186/s12879-018-3297-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunyan He
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Su Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200080, China
| | - Huanqiang Zhao
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200080, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200080, China
| | - Shu Jin
- Experimental Research Center, Shanghai People's Hospital of Putuo District, Shanghai, 200080, China
| | - Han Yang
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Fang Gong
- Department of Clinical Laboratory, the Third Hospital Affiliated to Nantong University, Wuxi, 226000, China
| | - Qingzhong Liu
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
74
|
Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. Toxins (Basel) 2018; 10:toxins10060252. [PMID: 29921792 PMCID: PMC6024779 DOI: 10.3390/toxins10060252] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus is a microorganism resident in the skin and nasal membranes with a dreadful pathogenic potential to cause a variety of community and hospital-acquired infections. The frequency of these infections is increasing and their treatment is becoming more difficult. The ability of S. aureus to form biofilms and the emergence of multidrug-resistant strains are the main reasons determining the challenge in dealing with these infections. S. aureus' infectious capacity and its success as a pathogen is related to the expression of virulence factors, among which the production of a wide variety of toxins is highlighted. For this reason, a better understanding of S. aureus toxins is needed to enable the development of new strategies to reduce their production and consequently improve therapeutic approaches. This review focuses on understanding the toxin-based pathogenesis of S. aureus and their role on infectious diseases.
Collapse
|
75
|
Tuffs SW, Haeryfar SMM, McCormick JK. Manipulation of Innate and Adaptive Immunity by Staphylococcal Superantigens. Pathogens 2018; 7:pathogens7020053. [PMID: 29843476 PMCID: PMC6027230 DOI: 10.3390/pathogens7020053] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022] Open
Abstract
Staphylococcal superantigens (SAgs) constitute a family of potent exotoxins secreted by Staphylococcus aureus and other select staphylococcal species. SAgs function to cross-link major histocompatibility complex (MHC) class II molecules with T cell receptors (TCRs) to stimulate the uncontrolled activation of T lymphocytes, potentially leading to severe human illnesses such as toxic shock syndrome. The ubiquity of SAgs in clinical S. aureus isolates suggests that they likely make an important contribution to the evolutionary fitness of S. aureus. Although the apparent redundancy of SAgs in S. aureus has not been explained, the high level of sequence diversity within this toxin family may allow for SAgs to recognize an assorted range of TCR and MHC class II molecules, as well as aid in the avoidance of humoral immunity. Herein, we outline the major diseases associated with the staphylococcal SAgs and how a dysregulated immune system may contribute to pathology. We then highlight recent research that considers the importance of SAgs in the pathogenesis of S. aureus infections, demonstrating that SAgs are more than simply an immunological diversion. We suggest that SAgs can act as targeted modulators that drive the immune response away from an effective response, and thus aid in S. aureus persistence.
Collapse
Affiliation(s)
- Stephen W Tuffs
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, ON N6A 3K7, Canada.
- Centre for Human Immunology, Western University, London, ON N6A 3K7, Canada.
- Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| | - John K McCormick
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, Western University, London, ON N6A 3K7, Canada.
- Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| |
Collapse
|
76
|
Thomsen IP, Liu GY. Targeting fundamental pathways to disrupt Staphylococcus aureus survival: clinical implications of recent discoveries. JCI Insight 2018. [PMID: 29515041 DOI: 10.1172/jci.insight.98216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The emergence of community-associated methicillin-resistant Staphylococcus aureus during the past decade along with an impending shortage of effective antistaphylococcal antibiotics have fueled impressive advances in our understanding of how S. aureus overcomes the host environment to establish infection. Backed by recent technologic advances, studies have uncovered elaborate metabolic, nutritional, and virulence strategies deployed by S. aureus to survive the restrictive and hostile environment imposed by the host, leading to a plethora of promising antimicrobial approaches that have potential to remedy the antibiotic resistance crisis. In this Review, we highlight some of the critical and recently elucidated bacterial strategies that are potentially amenable to intervention, discuss their relevance to human diseases, and address the translational challenges posed by current animal models.
Collapse
Affiliation(s)
- Isaac P Thomsen
- Department of Pediatrics, Division of Pediatric Infectious Diseases, and Vanderbilt Vaccine Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George Y Liu
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
77
|
Horn J, Stelzner K, Rudel T, Fraunholz M. Inside job: Staphylococcus aureus host-pathogen interactions. Int J Med Microbiol 2017; 308:607-624. [PMID: 29217333 DOI: 10.1016/j.ijmm.2017.11.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a notorious opportunistic pathogen causing a plethora of diseases. Recent research established that once phagocytosed by neutrophils and macrophages, a certain percentage of S. aureus is able to survive within these phagocytes which thereby even may contribute to dissemination of the pathogen. S. aureus further induces its uptake by otherwise non-phagocytic cells and the ensuing intracellular cytotoxicity is suggested to lead to tissue destruction, whereas bacterial persistence within cells is thought to lead to immune evasion and chronicity of infections. We here review recent work on the S. aureus host pathogen interactions with a focus on the intracellular survival of the pathogen.
Collapse
Affiliation(s)
- Jessica Horn
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kathrin Stelzner
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Fraunholz
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
78
|
Wickersham M, Wachtel S, Wong Fok Lung T, Soong G, Jacquet R, Richardson A, Parker D, Prince A. Metabolic Stress Drives Keratinocyte Defenses against Staphylococcus aureus Infection. Cell Rep 2017; 18:2742-2751. [PMID: 28297676 DOI: 10.1016/j.celrep.2017.02.055] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/25/2017] [Accepted: 02/16/2017] [Indexed: 12/25/2022] Open
Abstract
Human skin is commonly colonized and infected by Staphylococcus aureus. Exactly how these organisms are sensed by keratinocytes has not been clearly delineated. Using a combination of metabolic and transcriptomic methodologies, we found that S. aureus infection is sensed as a metabolic stress by the hypoxic keratinocytes. This induces HIF1α signaling, which promotes IL-1β production and stimulates aerobic glycolysis to meet the metabolic requirements of infection. We demonstrate that staphylococci capable of glycolysis, including WT and agr mutants, readily induce HIF1α responses. In contrast, Δpyk glycolytic mutants fail to compete with keratinocytes for their metabolic needs. Suppression of glycolysis using 2-DG blocked keratinocyte production of IL-1β in vitro and significantly exacerbated the S. aureus cutaneous infection in a murine model. Our data suggest that S. aureus impose a metabolic stress on keratinocytes that initiates signaling necessary to promote both glycolysis and the proinflammatory response to infection.
Collapse
Affiliation(s)
- Matthew Wickersham
- Deparment of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Sarah Wachtel
- Deparment of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Tania Wong Fok Lung
- Deparment of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Grace Soong
- Deparment of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Rudy Jacquet
- Deparment of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Anthony Richardson
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Dane Parker
- Deparment of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Alice Prince
- Deparment of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
79
|
Commercial Intravenous Immunoglobulin Preparations Contain Functional Neutralizing Antibodies against the Staphylococcus aureus Leukocidin LukAB (LukGH). Antimicrob Agents Chemother 2017; 61:AAC.00968-17. [PMID: 28874371 DOI: 10.1128/aac.00968-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/26/2017] [Indexed: 11/20/2022] Open
Abstract
The pathogenesis of Staphylococcus aureus is mediated by an array of important virulence factors, including the two-component leukocidin family of toxins. LukAB (also known as LukGH), the most recently discovered leukocidin, is potently lethal to phagocytes, produced during invasive human disease, and present in all known clinical isolates of S. aureus Intravenous immunoglobulin (IVIg) is often used clinically in severe S. aureus infections. The primary aim of this study was to assess the binding and neutralization potential of IVIg against LukAB. A secondary aim was to examine the lot-to-lot variability of IVIg in the binding and neutralization of LukAB. We studied 24 distinct lots of IVIg and compared them to serum from children with invasive S. aureus infection (in the acute and convalescent phases) and from healthy, uninfected controls. We found that all lots of IVIg contained functional antibodies targeting LukAB. After adjusting for total antibody content per sample, we found that the amount of anti-LukAB antibody in IVIg was similar to that seen with healthy controls and less than that seen with patients with invasive S. aureus infection. IVIg samples had lower neutralization capacity than samples from healthy controls and children with invasive infection. IVIg had remarkably little lot-to-lot variation in LukAB binding but had significantly more variation in toxin neutralization. These results represent the first report of functional antibodies against the important S. aureus leukocidin LukAB in IVIg. Given the frequent clinical use of IVIg for severe S. aureus infections, improving our understanding of functional antibody properties exhibited by this therapeutic is essential.
Collapse
|
80
|
Liu X, Pichulik T, Wolz OO, Dang TM, Stutz A, Dillen C, Delmiro Garcia M, Kraus H, Dickhöfer S, Daiber E, Münzenmayer L, Wahl S, Rieber N, Kümmerle-Deschner J, Yazdi A, Franz-Wachtel M, Macek B, Radsak M, Vogel S, Schulte B, Walz JS, Hartl D, Latz E, Stilgenbauer S, Grimbacher B, Miller L, Brunner C, Wolz C, Weber ANR. Human NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome activity is regulated by and potentially targetable through Bruton tyrosine kinase. J Allergy Clin Immunol 2017; 140:1054-1067.e10. [PMID: 28216434 DOI: 10.1016/j.jaci.2017.01.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 12/23/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The Nod-like receptor NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) and Bruton tyrosine kinase (BTK) are protagonists in innate and adaptive immunity, respectively. NLRP3 senses exogenous and endogenous insults, leading to inflammasome activation, which occurs spontaneously in patients with Muckle-Wells syndrome; BTK mutations cause the genetic immunodeficiency X-linked agammaglobulinemia (XLA). However, to date, few proteins that regulate NLRP3 inflammasome activity in human primary immune cells have been identified, and clinically promising pharmacologic targeting strategies remain elusive. OBJECTIVE We sought to identify novel regulators of the NLRP3 inflammasome in human cells with a view to exploring interference with inflammasome activity at the level of such regulators. METHODS After proteome-wide phosphoproteomics, the identified novel regulator BTK was studied in human and murine cells by using pharmacologic and genetic BTK ablation. RESULTS Here we show that BTK is a critical regulator of NLRP3 inflammasome activation: pharmacologic (using the US Food and Drug Administration-approved inhibitor ibrutinib) and genetic (in patients with XLA and Btk knockout mice) BTK ablation in primary immune cells led to reduced IL-1β processing and secretion in response to nigericin and the Staphylococcus aureus toxin leukocidin AB (LukAB). BTK affected apoptosis-associated speck-like protein containing a CARD (ASC) speck formation and caspase-1 cleavage and interacted with NLRP3 and ASC. S aureus infection control in vivo and IL-1β release from cells of patients with Muckle-Wells syndrome were impaired by ibrutinib. Notably, IL-1β processing and release from immune cells isolated from patients with cancer receiving ibrutinib therapy were reduced. CONCLUSION Our data suggest that XLA might result in part from genetic inflammasome deficiency and that NLRP3 inflammasome-linked inflammation could potentially be targeted pharmacologically through BTK.
Collapse
Affiliation(s)
- Xiao Liu
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Tica Pichulik
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Olaf-Oliver Wolz
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Truong-Minh Dang
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Andrea Stutz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Carly Dillen
- Department of Dermatology, Johns Hopkins University, Baltimore, Md
| | - Magno Delmiro Garcia
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Helene Kraus
- Centre of Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany
| | - Sabine Dickhöfer
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Ellen Daiber
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Lisa Münzenmayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Silke Wahl
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Nikolaus Rieber
- Department of Pediatrics I, University Hospital Tübingen, Tübingen, Germany
| | | | - Amir Yazdi
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | | | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Markus Radsak
- Medical Hospital III, University Hospital Mainz, Mainz, Germany
| | - Sebastian Vogel
- Department of Cardiology and Cardiovascular Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Berit Schulte
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Juliane Sarah Walz
- Medical Hospital II (Department of Hematology and Oncology), University Hospital Tübingen, Tübingen, Germany
| | - Dominik Hartl
- Department of Pediatrics I, University Hospital Tübingen, Tübingen, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany; Division of Infectious Diseases & Immunology, University of Massachusetts, Worcester, Mass
| | | | - Bodo Grimbacher
- Centre of Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany
| | - Lloyd Miller
- Department of Dermatology, Johns Hopkins University, Baltimore, Md
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Ulm University Medical Center, Ulm, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Alexander N R Weber
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
81
|
Tuffs SW, James DBA, Bestebroer J, Richards AC, Goncheva MI, O’Shea M, Wee BA, Seo KS, Schlievert PM, Lengeling A, van Strijp JA, Torres VJ, Fitzgerald JR. The Staphylococcus aureus superantigen SElX is a bifunctional toxin that inhibits neutrophil function. PLoS Pathog 2017; 13:e1006461. [PMID: 28880920 PMCID: PMC5589267 DOI: 10.1371/journal.ppat.1006461] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/09/2017] [Indexed: 12/29/2022] Open
Abstract
Bacterial superantigens (SAgs) cause Vβ-dependent T-cell proliferation leading to immune dysregulation associated with the pathogenesis of life-threatening infections such as toxic shock syndrome, and necrotizing pneumonia. Previously, we demonstrated that staphylococcal enterotoxin-like toxin X (SElX) from Staphylococcus aureus is a classical superantigen that exhibits T-cell activation in a Vβ-specific manner, and contributes to the pathogenesis of necrotizing pneumonia. Here, we discovered that SElX can also bind to neutrophils from human and other mammalian species and disrupt IgG-mediated phagocytosis. Site-directed mutagenesis of the conserved sialic acid-binding motif of SElX abolished neutrophil binding and phagocytic killing, and revealed multiple glycosylated neutrophil receptors for SElX binding. Furthermore, the neutrophil binding-deficient mutant of SElX retained its capacity for T-cell activation demonstrating that SElX exhibits mechanistically independent activities on distinct cell populations associated with acquired and innate immunity, respectively. Finally, we demonstrated that the neutrophil-binding activity rather than superantigenicity is responsible for the SElX-dependent virulence observed in a necrotizing pneumonia rabbit model of infection. Taken together, we report the first example of a SAg, that can manipulate both the innate and adaptive arms of the human immune system during S. aureus pathogenesis. Staphylococcus aureus is a bacterial pathogen responsible for an array of disease types in healthcare and community settings. One of the keys to the success of this pathogen is its ability to subvert the immune system of the host. Here we demonstrate that the superantigen (SAg) staphylococcal enterotoxin-like toxin X (SElX) contributes to immune evasion by inducing unregulated T-cell proliferation, and by inhibition of phagocytosis by neutrophils. We observed that the capacity to bind neutrophils appears to be central to the SElX-dependent toxicity observed in a necrotising pneumonia infection model in rabbits. We report the first example of a staphylococcal SAg with two independent immunomodulatory functions acting on distinct immune cell types.
Collapse
Affiliation(s)
- Stephen W. Tuffs
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - David B. A. James
- Department of Microbiology, New York University School of Medicine, New York, NY, United Kingdom
| | - Jovanka Bestebroer
- Department Medical Microbiology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Amy C. Richards
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Mariya I. Goncheva
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Marie O’Shea
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Bryan A. Wee
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Keun Seok Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Patrick M. Schlievert
- Department of Microbiology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Andreas Lengeling
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Jos A. van Strijp
- Department Medical Microbiology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Victor J. Torres
- Department of Microbiology, New York University School of Medicine, New York, NY, United Kingdom
| | - J. Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
- * E-mail:
| |
Collapse
|
82
|
Prince A, Wang H, Kitur K, Parker D. Humanized Mice Exhibit Increased Susceptibility to Staphylococcus aureus Pneumonia. J Infect Dis 2017; 215:1386-1395. [PMID: 27638942 DOI: 10.1093/infdis/jiw425] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a highly successful human pathogen that has evolved in response to human immune pressure. The common USA300 methicillin-resistant S. aureus (MRSA) strains express a number of toxins, such as Panton-Valentine leukocidin and LukAB, that have specificity for human receptors. Using nonobese diabetic (NOD)-scid IL2Rγnull (NSG) mice reconstituted with a human hematopoietic system, we were able to discriminate the roles of these toxins in the pathogenesis of pneumonia. We demonstrate that expression of human immune cells confers increased severity of USA300 infection. The expression of PVL but not LukAB resulted in more-severe pulmonary infection by the wild-type strain (with a 30-fold increase in the number of colony-forming units/mL; P < .01) as compared to infection with the lukS/F-PV (Δpvl) mutant. Treatment of mice with anti-PVL antibody also enhanced bacterial clearance. We found significantly greater numbers (by 95%; P < .05) of macrophages in the airways of mice infected with the Δpvl mutant compared with those infected with the wild-type strain, as well as significantly greater expression of human tumor necrosis factor and interleukin 6 (84% and 51% respectively; P < .01). These results suggest that the development of humanized mice may provide a framework to assess the contribution of human-specific toxins and better explore the roles of specific components of the human immune system in protection from S. aureus infection.
Collapse
Affiliation(s)
- Alice Prince
- Department Pediatrics
- Department of Pharmacology, and
| | - Hui Wang
- Humanized Mouse Core Facility, Columbia Center for Translational Immunology, Columbia University, New York
| | | | | |
Collapse
|
83
|
Thymus vulgaris L. and thymol assist murine macrophages (RAW 264.7) in the control of in vitro infections by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Immunol Res 2017; 65:932-943. [DOI: 10.1007/s12026-017-8933-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
84
|
Seilie ES, Bubeck Wardenburg J. Staphylococcus aureus pore-forming toxins: The interface of pathogen and host complexity. Semin Cell Dev Biol 2017; 72:101-116. [PMID: 28445785 DOI: 10.1016/j.semcdb.2017.04.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/22/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus is a prominent human pathogen capable of infecting a variety of host species and tissue sites. This versatility stems from the pathogen's ability to secrete diverse host-damaging virulence factors. Among these factors, the S. aureus pore-forming toxins (PFTs) α-toxin and the bicomponent leukocidins, have garnered much attention for their ability to lyse cells at low concentrations and modulate disease severity. Although many of these toxins were discovered nearly a century ago, their host cell specificities have only been elucidated over the past five to six years, starting with the discovery of the eukaryotic receptor for α-toxin and rapidly followed by identification of the leukocidin receptors. The identification of these receptors has revealed the species- and cell type-specificity of toxin binding, and provided insight into non-lytic effects of PFT intoxication that contribute to disease pathogenesis.
Collapse
Affiliation(s)
- E Sachiko Seilie
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, United States; Department of Microbiology, The University of Chicago, Chicago, IL 60637, United States
| | | |
Collapse
|
85
|
Spaan AN, van Strijp JAG, Torres VJ. Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nat Rev Microbiol 2017; 15:435-447. [PMID: 28420883 DOI: 10.1038/nrmicro.2017.27] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus is a major bacterial pathogen that causes disease worldwide. The emergence of strains that are resistant to commonly used antibiotics and the failure of vaccine development have resulted in a renewed interest in the pathophysiology of this bacterium. Staphylococcal leukocidins are a family of bi-component pore-forming toxins that are important virulence factors. During the past five years, cellular receptors have been identified for all of the bi-component leukocidins. The identification of the leukocidin receptors explains the cellular tropism and species specificity that is exhibited by these toxins, which has important biological consequences. In this Review, we summarize the recent discoveries that have reignited interest in these toxins and provide an outlook for future research.
Collapse
Affiliation(s)
- András N Spaan
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, 430 East 29th Street, 10016 New York, USA
| |
Collapse
|
86
|
Thomsen IP, Sapparapu G, James DBA, Cassat JE, Nagarsheth M, Kose N, Putnam N, Boguslawski KM, Jones LS, Wood JB, Creech CB, Torres VJ, Crowe JE. Monoclonal Antibodies Against the Staphylococcus aureus Bicomponent Leukotoxin AB Isolated Following Invasive Human Infection Reveal Diverse Binding and Modes of Action. J Infect Dis 2017; 215:1124-1131. [PMID: 28186295 PMCID: PMC5426380 DOI: 10.1093/infdis/jix071] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/30/2017] [Indexed: 12/15/2022] Open
Abstract
The 2-component leukotoxin LukAB is critical for Staphylococcus aureus targeting and killing of human neutrophils ex vivo and is produced in the setting of human infection. We report 3 LukAB-specific human monoclonal antibodies (mAbs) with distinct mechanisms of toxin neutralization and in vivo efficacy. Three hybridomas secreting mAbs with anti-LukAB activity (designated SA-13, -15, and -17) were generated from B cells obtained from a 12-year-old boy with S. aureus osteomyelitis. Each of the 3 mAbs neutralized LukAB-mediated neutrophil toxicity, exhibited differing levels of potency, recognized different antigenic sites on the toxin, and displayed at least 2 distinct mechanisms for cytotoxic inhibition. SA-15 bound exclusively to the dimeric form of the toxin, suggesting that human B cells recognize epitopes on the dimerized form of LukAB during natural infection. Both SA-13 and SA-17 bound the LukA monomer and the LukAB dimer. Although all 3 mAbs potently neutralized cytotoxicity, only SA-15 and SA-17 significantly inhibited toxin association with the cell surface. Treatment with a 1:1 mixture of mAbs SA-15 and SA-17 resulted in significantly lower bacterial colony counts in heart, liver, and kidneys in a murine model of S. aureus sepsis. These data describe the isolation of diverse and efficacious antitoxin mAbs.
Collapse
Affiliation(s)
| | | | - David B A James
- Department of Microbiology, New York University School of Medicine, New York, New York
| | - James E Cassat
- Department of Pediatrics
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee ; and
| | | | | | - Nicole Putnam
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | | | | | | | | | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, New York
| | - James E Crowe
- Department of Pediatrics
- Vanderbilt Vaccine Center, and
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee ; and
| |
Collapse
|
87
|
Smalley C, Bechelli J, Rockx-Brouwer D, Saito T, Azar SR, Ismail N, Walker DH, Fang R. Rickettsia australis Activates Inflammasome in Human and Murine Macrophages. PLoS One 2016; 11:e0157231. [PMID: 27362650 PMCID: PMC4928923 DOI: 10.1371/journal.pone.0157231] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
Rickettsiae actively escape from vacuoles and replicate free in the cytoplasm of host cells, where inflammasomes survey the invading pathogens. In the present study, we investigated the interactions of Rickettsia australis with the inflammasome in both mouse and human macrophages. R. australis induced a significant level of IL-1β secretion by human macrophages, which was significantly reduced upon treatment with an inhibitor of caspase-1 compared to untreated controls, suggesting caspase-1-dependent inflammasome activation. Rickettsia induced significant secretion of IL-1β and IL-18 in vitro by infected mouse bone marrow-derived macrophages (BMMs) as early as 8-12 h post infection (p.i.) in a dose-dependent manner. Secretion of these cytokines was accompanied by cleavage of caspase-1 and was completely abrogated in BMMs deficient in caspase-1/caspase-11 or apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), suggesting that R. australis activate the ASC-dependent inflammasome. Interestingly, in response to the same quantity of rickettsiae, NLRP3-/- BMMs significantly reduced the secretion level of IL-1β compared to wild type (WT) controls, suggesting that NLRP3 inflammasome contributes to cytosolic recognition of R. australis in vitro. Rickettsial load in spleen, but not liver and lung, of R. australis-infected NLRP3-/- mice was significantly greater compared to WT mice. These data suggest that NLRP3 inflammasome plays a role in host control of bacteria in vivo in a tissue-specific manner. Taken together, our data, for the first time, illustrate the activation of ASC-dependent inflammasome by R. australis in macrophages in which NLRP3 is involved.
Collapse
Affiliation(s)
- Claire Smalley
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Jeremy Bechelli
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Dedeke Rockx-Brouwer
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Tais Saito
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Nahed Ismail
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Rong Fang
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
88
|
Bonar E, Wojcik I, Jankowska U, Kedracka-Krok S, Bukowski M, Polakowska K, Lis MW, Kosecka-Strojek M, Sabat AJ, Dubin G, Friedrich AW, Miedzobrodzki J, Dubin A, Wladyka B. Identification of Secreted Exoproteome Fingerprints of Highly-Virulent and Non-Virulent Staphylococcus aureus Strains. Front Cell Infect Microbiol 2016; 6:51. [PMID: 27242969 PMCID: PMC4874363 DOI: 10.3389/fcimb.2016.00051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus is a commensal inhabitant of skin and mucous membranes in nose vestibule but also an important opportunistic pathogen of humans and livestock. The extracellular proteome as a whole constitutes its major virulence determinant; however, the involvement of particular proteins is still relatively poorly understood. In this study, we compared the extracellular proteomes of poultry-derived S. aureus strains exhibiting a virulent (VIR) and non-virulent (NVIR) phenotype in a chicken embryo experimental infection model with the aim to identify proteomic signatures associated with the particular phenotypes. Despite significant heterogeneity within the analyzed proteomes, we identified alpha-haemolysin and bifunctional autolysin as indicators of virulence, whereas glutamylendopeptidase production was characteristic for non-virulent strains. Staphopain C (StpC) was identified in both the VIR and NVIR proteomes and the latter fact contradicted previous findings suggesting its involvement in virulence. By supplementing NVIR, StpC-negative strains with StpC, and comparing the virulence of parental and supplemented strains, we demonstrated that staphopain C alone does not affect staphylococcal virulence in a chicken embryo model.
Collapse
Affiliation(s)
- Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| | - Iwona Wojcik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| | - Urszula Jankowska
- Malopolska Centre of Biotechnology, Jagiellonian University Krakow, Poland
| | - Sylwia Kedracka-Krok
- Malopolska Centre of Biotechnology, Jagiellonian UniversityKrakow, Poland; Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| | - Klaudia Polakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| | - Marcin W Lis
- Department of Veterinary and Animal Reproduction and Welfare, Faculty of Animal Welfare, University of Agriculture in Krakow Krakow, Poland
| | - Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| | - Artur J Sabat
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian UniversityKrakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Alexander W Friedrich
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Jacek Miedzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| | - Adam Dubin
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Poland
| |
Collapse
|
89
|
Ezekwe EAD, Weng C, Duncan JA. ADAM10 Cell Surface Expression but Not Activity Is Critical for Staphylococcus aureus α-Hemolysin-Mediated Activation of the NLRP3 Inflammasome in Human Monocytes. Toxins (Basel) 2016; 8:95. [PMID: 27043625 PMCID: PMC4848622 DOI: 10.3390/toxins8040095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/24/2022] Open
Abstract
The Staphylococcus aureus toxin, α-hemolysin, is an important and well-studied virulence factor in staphylococcal infection. It is a soluble monomeric protein that, once secreted by the bacterium, forms a heptameric pore in the membrane of a broad range of host cell types. Hemolysin was recently discovered to bind and activate a disintegrin and metalloprotease 10 (ADAM10). In epithelial and endothelial cells, ADAM10 activation is required for the toxin’s activity against these cells. In host monocytic cells, α-hemolysin activates the nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 (NLRP3) inflammasome leading to production of pro-inflammatory cytokines and cell death. We now show that ADAM10 is critical for α-hemolysin-mediated activation of the NLRP3 inflammasome in human monocytes as siRNA knockdown or chemical blockade of ADAM10-α-hemolysin interaction leads to diminished inflammasome activation and cell death by reducing the available ADAM10 on the cell surface. Unlike epithelial cell and endothelial cell damage, which requires α-hemolysin induced ADAM10 activation, ADAM10 protease activity was not required for NLRP3 inflammasome activation. This work confirms the importance of ADAM10 in immune activation by α-hemolysin, but indicates that host cell signal induction by the toxin is different between host cell types.
Collapse
Affiliation(s)
- Ejiofor A D Ezekwe
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Chengyu Weng
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Joseph A Duncan
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Medicine/Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
90
|
Münzenmayer L, Geiger T, Daiber E, Schulte B, Autenrieth SE, Fraunholz M, Wolz C. Influence of Sae-regulated and Agr-regulated factors on the escape of Staphylococcus aureus from human macrophages. Cell Microbiol 2016; 18:1172-83. [PMID: 26895738 DOI: 10.1111/cmi.12577] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 01/12/2016] [Accepted: 01/26/2016] [Indexed: 02/03/2023]
Abstract
Although Staphylococcus aureus is not a classical intracellular pathogen, it can survive within phagocytes and many other cell types. However, the pathogen is also able to escape from cells by mechanisms that are only partially understood. We analysed a series of isogenic S. aureus mutants of the USA300 derivative JE2 for their capacity to destroy human macrophages from within. Intracellular S. aureus JE2 caused severe cell damage in human macrophages and could efficiently escape from within the cells. To obtain this full escape phenotype including an intermittent residency in the cytoplasm, the combined action of the regulatory systems Sae and Agr is required. Mutants in Sae or mutants deficient in the Sae target genes lukAB and pvl remained in high numbers within the macrophages causing reduced cell damage. Mutants in the regulatory system Agr or in the Agr target gene psmα were largely similar to wild-type bacteria concerning cell damage and escape efficiency. However, these strains were rarely detectable in the cytoplasm, emphasizing the role of phenol-soluble modulins (PSMs) for phagosomal escape. Thus, Sae-regulated toxins largely determine damage and escape from within macrophages, whereas PSMs are mainly responsible for the escape from the phagosome into the cytoplasm. Damage of macrophages induced by intracellular bacteria was linked neither to activation of apoptosis-related caspase 3, 7 or 8 nor to NLRP3-dependent inflammasome activation.
Collapse
Affiliation(s)
- Lisa Münzenmayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Tobias Geiger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,School of Medicine, Section of Microbial Pathogenesis Boyer Center for Molecular Medicine Yale University, New Haven, CT, 06536, USA
| | - Ellen Daiber
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Berit Schulte
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Stella E Autenrieth
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Martin Fraunholz
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
91
|
Kaufmann SH, Dorhoi A. Molecular Determinants in Phagocyte-Bacteria Interactions. Immunity 2016; 44:476-491. [DOI: 10.1016/j.immuni.2016.02.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/28/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
|
92
|
Chow SH, Deo P, Naderer T. Macrophage cell death in microbial infections. Cell Microbiol 2016; 18:466-74. [PMID: 26833712 DOI: 10.1111/cmi.12573] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022]
Abstract
Macrophages can respond to microbial infections with programmed cell death. The major cell death pathways of apoptosis, pyroptosis and necroptosis are tightly regulated to ensure adequate immune reactions to virulent and persistent invaders. Macrophage death eliminates the replicative niche of intracellular pathogens and induces immune attack. Not surprisingly, successful pathogens have evolved strategies to modulate macrophage cell death pathways to enable microbial survival and replication. Uncontrolled macrophage death can also lead to tissue damage, which may augment bacterial dissemination and pathology. In this review, we highlight how pathogens hijack macrophage cell death signals to promote microbial survival and immune evasion.
Collapse
Affiliation(s)
- Seong H Chow
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Pankaj Deo
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| |
Collapse
|
93
|
Kheddo P, Golovanov AP, Mellody KT, Uddin S, van der Walle CF, Dearman RJ. The effects of arginine glutamate, a promising excipient for protein formulation, on cell viability: Comparisons with NaCl. Toxicol In Vitro 2016; 33:88-98. [PMID: 26873863 PMCID: PMC4837223 DOI: 10.1016/j.tiv.2016.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/28/2016] [Accepted: 02/06/2016] [Indexed: 12/31/2022]
Abstract
The effects of an equimolar mixture of l-arginine and l-glutamate (Arg·Glu) on cell viability and cellular stress using in vitro cell culture systems are examined with reference to NaCl, in the context of monoclonal antibody formulation. Cells relevant to subcutaneous administration were selected: the human monocyte cell line THP-1, grown as a single cell suspension, and adherent human primary fibroblasts. For THP-1 cells, the mechanism of cell death caused by relatively high salt concentrations was investigated and effects on cell activation/stress assessed as a function of changes in membrane marker and cytokine (interleukin-8) expression. These studies demonstrated that Arg·Glu does not have any further detrimental effects on THP-1 viability in comparison to NaCl at equivalent osmolalities, and that both salts at higher concentrations cause cell death by apoptosis; there was no significant effect on measures of THP-1 cellular stress/activation. For adherent fibroblasts, both salts caused significant toxicity at ~400 mOsm/kg, although Arg·Glu caused a more precipitous subsequent decline in viability than did NaCl. These data indicate that Arg·Glu is of equivalent toxicity to NaCl and that the mechanism of toxicity is such that cell death is unlikely to trigger inflammation upon subcutaneous injection in vivo.
Collapse
Affiliation(s)
- Priscilla Kheddo
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK; Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Alexander P Golovanov
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK; Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Kieran T Mellody
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Shahid Uddin
- MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | | | - Rebecca J Dearman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
94
|
Reyes-Robles T, Lubkin A, Alonzo F, Lacy DB, Torres VJ. Exploiting dominant-negative toxins to combat Staphylococcus aureus pathogenesis. EMBO Rep 2016; 17:428-40. [PMID: 26882549 DOI: 10.15252/embr.201540994] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a human pathogen that relies on the subversion of host phagocytes to support its pathogenic lifestyle. S. aureus strains can produce up to five beta-barrel, bi-component, pore-forming leukocidins that target and kill host phagocytes. Thus, preventing immune cell killing by these toxins is likely to boost host immunity. Here, we describe the identification of glycine-rich motifs within the membrane-penetrating stem domains of the leukocidin subunits that are critical for killing primary human neutrophils. Remarkably, leukocidins lacking these glycine-rich motifs exhibit dominant-negative inhibitory effects toward their wild-type toxin counterparts as well as other leukocidins. Biochemical and cellular assays revealed that these dominant-negative toxins work by forming mixed complexes that are impaired in pore formation. The dominant-negative leukocidins inhibited S. aureus cytotoxicity toward primary human neutrophils, protected mice from lethal challenge by wild-type leukocidin, and reduced bacterial burden in a murine model of bloodstream infection. Thus, we describe the first example of staphylococcal bi-component dominant-negative toxins and their potential as novel therapeutics to combat S. aureus infection.
Collapse
Affiliation(s)
- Tamara Reyes-Robles
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Ashira Lubkin
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Francis Alonzo
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - D Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
95
|
Reyes-Robles T, Torres VJ. Staphylococcus aureus Pore-Forming Toxins. Curr Top Microbiol Immunol 2016; 409:121-144. [PMID: 27406190 DOI: 10.1007/82_2016_16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Staphylococcus aureus (S. aureus) is a formidable foe equipped with an armamentarium of virulence factors to thwart host defenses and establish a successful infection. Among these virulence factors, S. aureus produces several potent secreted proteins that act as cytotoxins, predominant among them the beta-barrel pore-forming toxins. These toxins play several roles in pathogenesis, including disruption of cellular adherens junctions at epithelial barriers, alteration of intracellular signaling events, modulation of host immune responses, and killing of eukaryotic immune and non-immune cells. This chapter provides an updated overview on the S. aureus beta-barrel pore-forming cytotoxins, the identification of toxin receptors on host cells, and their roles in pathogenesis.
Collapse
Affiliation(s)
- Tamara Reyes-Robles
- Department of Microbiology, Microbial Pathogenesis Program, New York University School of Medicine, 522 First Avenue, Smilow Research Building, Room 1010, New York, NY, 10016, USA
| | - Victor J Torres
- Department of Microbiology, Microbial Pathogenesis Program, New York University School of Medicine, 522 First Avenue, Smilow Research Building, Room 1010, New York, NY, 10016, USA.
| |
Collapse
|
96
|
Melehani JH, Duncan JA. Inflammasome Activation Can Mediate Tissue-Specific Pathogenesis or Protection in Staphylococcus aureus Infection. Curr Top Microbiol Immunol 2016; 397:257-82. [PMID: 27460814 DOI: 10.1007/978-3-319-41171-2_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Staphylococcus aureus is a Gram-positive coccus that interacts with human hosts on a spectrum from quiet commensal to deadly pathogen. S. aureus is capable of infecting nearly every tissue in the body resulting in cellulitis, pneumonia, osteomyelitis, endocarditis, brain abscesses, bacteremia, and more. S. aureus has a wide range of factors that promote infection, and each site of infection triggers a different response in the human host. In particular, the different patterns of inflammasome activation mediate tissue-specific pathogenesis or protection in S. aureus infection. Although still a nascent field, understanding the unique host-pathogen interactions in each infection and the role of inflammasomes in mediating pathogenesis may lead to novel strategies for treating S. aureus infections. Reviews addressing S. aureus virulence and pathogenesis (Thammavongsa et al. 2015), as well as epidemiology and pathophysiology (Tong et al. 2015), have recently been published. This review will focus on S. aureus factors that activate inflammasomes and their impact on innate immune signaling and bacterial survival.
Collapse
Affiliation(s)
- Jason H Melehani
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph A Duncan
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Medicine, Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
97
|
Eugenio M, Müller N, Frasés S, Almeida-Paes R, Lima LMTR, Lemgruber L, Farina M, de Souza W, Sant'Anna C. Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria. RSC Adv 2016. [DOI: 10.1039/c5ra22727e] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Here, we provided the first evidence of Ag/AgCl-nanoparticles production in yeast strains fromin vitrocultures.
Collapse
Affiliation(s)
- Mateus Eugenio
- Laboratory of Biotechnology
- Directory of Metrology Applied to Life Science
- National Institute of Metrology, Quality and Technology
- Duque de Caxias
- Brazil
| | - Nathalia Müller
- Laboratory of Biotechnology
- Directory of Metrology Applied to Life Science
- National Institute of Metrology, Quality and Technology
- Duque de Caxias
- Brazil
| | - Susana Frasés
- Laboratory of Biotechnology
- Directory of Metrology Applied to Life Science
- National Institute of Metrology, Quality and Technology
- Duque de Caxias
- Brazil
| | | | - Luís Maurício T. R. Lima
- Laboratory of Pharmaceutical Biotechnology
- Federal University of Rio de Janeiro
- Rio de Janeiro
- Brazil
| | - Leandro Lemgruber
- Laboratory of Biotechnology
- Directory of Metrology Applied to Life Science
- National Institute of Metrology, Quality and Technology
- Duque de Caxias
- Brazil
| | - Marcos Farina
- Laboratory of Biomineralization
- Federal University of Rio de Janeiro
- Rio de Janeiro
- Brazil
| | - Wanderley de Souza
- Laboratory of Biotechnology
- Directory of Metrology Applied to Life Science
- National Institute of Metrology, Quality and Technology
- Duque de Caxias
- Brazil
| | - Celso Sant'Anna
- Laboratory of Biotechnology
- Directory of Metrology Applied to Life Science
- National Institute of Metrology, Quality and Technology
- Duque de Caxias
- Brazil
| |
Collapse
|
98
|
Sause WE, Buckley PT, Strohl WR, Lynch AS, Torres VJ. Antibody-Based Biologics and Their Promise to Combat Staphylococcus aureus Infections. Trends Pharmacol Sci 2015; 37:231-241. [PMID: 26719219 DOI: 10.1016/j.tips.2015.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022]
Abstract
The growing incidence of serious infections mediated by methicillin-resistant Staphylococcus aureus (MRSA) strains poses a significant risk to public health. This risk is exacerbated by a prolonged void in the discovery and development of truly novel antibiotics and the absence of a vaccine. These gaps have created renewed interest in the use of biologics in the prevention and treatment of serious staphylococcal infections. In this review, we focus on efforts towards the discovery and development of antibody-based biologic agents and their potential as clinical agents in the management of serious S. aureus infections. Recent promising data for monoclonal antibodies (mAbs) targeting anthrax and Ebola highlight the potential of antibody-based biologics as therapeutic agents for serious infections.
Collapse
Affiliation(s)
- William E Sause
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Peter T Buckley
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - William R Strohl
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - A Simon Lynch
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
99
|
Flannagan RS, Heit B, Heinrichs DE. Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus. Pathogens 2015; 4:826-68. [PMID: 26633519 PMCID: PMC4693167 DOI: 10.3390/pathogens4040826] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
Habitually professional phagocytes, including macrophages, eradicate microbial invaders from the human body without overt signs of infection. Despite this, there exist select bacteria that are professional pathogens, causing significant morbidity and mortality across the globe and Staphylococcus aureus is no exception. S. aureus is a highly successful pathogen that can infect virtually every tissue that comprises the human body causing a broad spectrum of diseases. The profound pathogenic capacity of S. aureus can be attributed, in part, to its ability to elaborate a profusion of bacterial effectors that circumvent host immunity. Macrophages are important professional phagocytes that contribute to both the innate and adaptive immune response, however from in vitro and in vivo studies, it is evident that they fail to eradicate S. aureus. This review provides an overview of the antimicrobial mechanisms employed by macrophages to combat bacteria and describes the immune evasion strategies and some representative effectors that enable S. aureus to evade macrophage-mediated killing.
Collapse
Affiliation(s)
- Ronald S Flannagan
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Bryan Heit
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David E Heinrichs
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
100
|
Greaney AJ, Leppla SH, Moayeri M. Bacterial Exotoxins and the Inflammasome. Front Immunol 2015; 6:570. [PMID: 26617605 PMCID: PMC4639612 DOI: 10.3389/fimmu.2015.00570] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/26/2015] [Indexed: 11/24/2022] Open
Abstract
The inflammasomes are intracellular protein complexes that play an important role in innate immune sensing. Activation of inflammasomes leads to activation of caspase-1 and maturation and secretion of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18. In certain myeloid cells, this activation can also lead to an inflammatory cell death (pyroptosis). Inflammasome sensor proteins have evolved to detect a range of microbial ligands and bacterial exotoxins either through direct interaction or by detection of host cell changes elicited by these effectors. Bacterial exotoxins activate the inflammasomes through diverse processes, including direct sensor cleavage, modulation of ion fluxes through plasma membrane pore formation, and perturbation of various host cell functions. In this review, we summarize the findings on some of the bacterial exotoxins that activate the inflammasomes.
Collapse
Affiliation(s)
- Allison J Greaney
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|