51
|
Frew JW. Hidradenitis suppurativa is an autoinflammatory keratinization disease: A review of the clinical, histologic, and molecular evidence. JAAD Int 2020; 1:62-72. [PMID: 34409324 PMCID: PMC8361883 DOI: 10.1016/j.jdin.2020.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
The pathogenic model of hidradenitis suppurativa is in the midst of a paradigm shift away from a disorder of primary follicular occlusion to an autoinflammatory keratinization disease. Observational, experimental, and therapeutic evidence supports the concept of hidradenitis suppurativa as a primarily inflammatory disorder, a disorder of autoimmunity, or both, in contrast to the current prevailing paradigm of primary follicular occlusion. The lack of reliable and high-fidelity disease models has limited the available experimental and mechanistic evidence to support or refute one pathogenic model over another. This scholarly review synthesizes the existing clinical, histologic, and molecular data to evaluate the extant evidence supporting the autoinflammatory paradigm and further informing the molecular mechanisms of hidradenitis suppurativa pathogenesis. Follicular hyperkeratosis/occlusion and perifollicular inflammation coexist in histologic specimens, with interleukin 1α demonstrated to stimulate comedogenesis in the infundibulum. pH elevation in occluded body sites alters the microbiome and amplifies existing T-helper cell type 17 immunoresponses. Known metabolic comorbidities and smoking are known to upregulate interleukin 1α in follicular keratinocytes. Identified genetic variants may alter epidermal growth factor receptor signaling, leading to upregulated keratinocyte inflammatory responses. The process of follicular rupture and dermal tunnel formation can be explained as secondary responses to inflammatory activation of fibroblasts and epithelial-mesenchymal transition, with antibody production associated with inflammatory amplification in advanced disease. This review aims to reevaluate and integrate the current clinical, histologic, and molecular data into a pathogenic model of hidradenitis suppurativa. This is essential to advance our understanding of the disease and identify novel therapeutic targets and approaches.
Collapse
Affiliation(s)
- John W Frew
- Laboratory of Investigative Dermatology, Rockefeller University, New York, New York
| |
Collapse
|
52
|
Aggor FEY, Break TJ, Trevejo-Nuñez G, Whibley N, Coleman BM, Bailey RD, Kaplan DH, Naglik JR, Shan W, Shetty AC, McCracken C, Durum SK, Biswas PS, Bruno VM, Kolls JK, Lionakis MS, Gaffen SL. Oral epithelial IL-22/STAT3 signaling licenses IL-17-mediated immunity to oral mucosal candidiasis. Sci Immunol 2020; 5:eaba0570. [PMID: 32503875 PMCID: PMC7340112 DOI: 10.1126/sciimmunol.aba0570] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/07/2020] [Indexed: 12/29/2022]
Abstract
Oropharyngeal candidiasis (OPC; thrush) is an opportunistic infection caused by the commensal fungus Candida albicans Interleukin-17 (IL-17) and IL-22 are cytokines produced by type 17 lymphocytes. Both cytokines mediate antifungal immunity yet activate quite distinct downstream signaling pathways. While much is now understood about how IL-17 promotes immunity in OPC, the activities of IL-22 are far less well delineated. We show that, despite having similar requirements for induction from type 17 cells, IL-22 and IL-17 function nonredundantly during OPC. We find that the IL-22 and IL-17 receptors are required in anatomically distinct locations within the oral mucosa; loss of IL-22RA1 or signal transducer and activator of transcription 3 (STAT3) in the oral basal epithelial layer (BEL) causes susceptibility to OPC, whereas IL-17RA is needed in the suprabasal epithelial layer (SEL). Transcriptional profiling of the tongue linked IL-22/STAT3 not only to oral epithelial cell proliferation and survival but also, unexpectedly, to driving an IL-17-specific gene signature. We show that IL-22 mediates regenerative signals on the BEL that replenish the IL-17RA-expressing SEL, thereby restoring the ability of the oral epithelium to respond to IL-17 and thus to mediate antifungal events. Consequently, IL-22 signaling in BEL "licenses" IL-17 signaling in the oral mucosa, revealing spatially distinct yet cooperative activities of IL-22 and IL-17 in oral candidiasis.
Collapse
Affiliation(s)
- Felix E Y Aggor
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy J Break
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | | | - Natasha Whibley
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bianca M Coleman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel D Bailey
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Wei Shan
- Cytokines and Immunity Section, Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Scott K Durum
- Cytokines and Immunity Section, Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane University, New Orleans, LA, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
53
|
Pellon A, Sadeghi Nasab SD, Moyes DL. New Insights in Candida albicans Innate Immunity at the Mucosa: Toxins, Epithelium, Metabolism, and Beyond. Front Cell Infect Microbiol 2020; 10:81. [PMID: 32195196 PMCID: PMC7062647 DOI: 10.3389/fcimb.2020.00081] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
The mucosal surfaces of the human body are challenged by millions of microbes on a daily basis. Co-evolution with these microbes has led to the development of plastic mechanisms in both host and microorganisms that regulate the balance between preserving beneficial microbes and clearing pathogens. Candida albicans is a fungal pathobiont present in most healthy individuals that, under certain circumstances, can become pathogenic and cause everything from mild mucosal infections to life-threatening systemic diseases. As an essential part of the innate immunity in mucosae, epithelial cells elaborate complex immune responses that discriminate between commensal and pathogenic microbes, including C. albicans. Recently, several significant advances have been made identifying new pieces in the puzzle of host-microbe interactions. This review will summarize these advances in the context of our current knowledge of anti-Candida mucosal immunity, and their impact on epithelial immune responses to this fungal pathogen.
Collapse
Affiliation(s)
- Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Shervin Dokht Sadeghi Nasab
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
54
|
Borriello F, Zanoni I, Granucci F. Cellular and molecular mechanisms of antifungal innate immunity at epithelial barriers: The role of C-type lectin receptors. Eur J Immunol 2020; 50:317-325. [PMID: 31986556 PMCID: PMC10668919 DOI: 10.1002/eji.201848054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/29/2019] [Accepted: 01/24/2020] [Indexed: 12/26/2022]
Abstract
Humans are constantly exposed to fungi, either in the form of commensals at epithelial barriers or as inhaled spores. Innate immune cells play a pivotal role in maintaining commensal relationships and preventing skin, mucosal, or systemic fungal infections due to the expression of pattern recognition receptors that recognize fungal cell wall components and modulate both their activation status and the ensuing adaptive immune response. Commensal fungi also play a critical role in the modulation of homeostasis and disease susceptibility at epithelial barriers. This review will outline cellular and molecular mechanisms of anti-fungal innate immunity focusing on C-type lectin receptors and their relevance in the context of host-fungi interactions at skin and mucosal surfaces in murine experimental models as well as patients susceptible to fungal infections.
Collapse
Affiliation(s)
- Francesco Borriello
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Ivan Zanoni
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi,", Milan, Italy
| |
Collapse
|
55
|
Nija RJ, Sanju S, Sidharthan N, Mony U. Extracellular Trap by Blood Cells: Clinical Implications. Tissue Eng Regen Med 2020; 17:141-153. [PMID: 32114678 DOI: 10.1007/s13770-020-00241-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Extracellular trap formation (ETosis) by various blood cells has been reported. This trap contains DNA, histones and granular proteins which can elicit an innate immune response by entrapping microorganisms. The trap thus formed has been reported to have an involvement in various pathogenic conditions as well. This review focusses on the trap formation by different blood cells, the immune response associated with trap formation and also its role in various clinical conditions. METHOD An extensive literature survey on ETosis by blood cells from 2003 to 2019 has been done. After going through the literature throughly, in this review we focuses on the trap formation by different blood cell types such as neutrophils, macrophages, eosinophils, basophils, mast cells, plasmacytoid dentritic cells, and monocytes. The mechanism with which it releases trap, the immune response it elicits and ultimately its involvement in various pathogenic conditions are described here. This article extensively covered all the above aspects and finally comprehends in nutshell the various stimuli that are currently known in trigerring the ETosis, its effect and ultimately its role in disease process. RESULTS A clarity about the extracellular trap formation by various blood cells, mechanism of ETosis, role of Etosis in microbial invasion and in various pathogenic situations by various blood cells have been described here. CONCLUSION The current understanding about the process of ETosis and its effects has been extensively described here. Along with lot of favourable outcomes, the process of ETosis will lead to lot of pathogenic situations including thrombosis, tumour metastasis and sepsis. Current understanding about ETosis is limited. Indepth understanding of ETosis may have great therapeutic potential in the diagnosis, guiding of therapy and prognostication in various pathogenic situations including infectious conditions, autoimmune disorders and tumors.
Collapse
Affiliation(s)
- R J Nija
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - S Sanju
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Neeraj Sidharthan
- Department of Clinical Hematology and Stem Cell Transplant, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Ullas Mony
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| |
Collapse
|
56
|
Willems HME, Ahmed SS, Liu J, Xu Z, Peters BM. Vulvovaginal Candidiasis: A Current Understanding and Burning Questions. J Fungi (Basel) 2020; 6:jof6010027. [PMID: 32106438 PMCID: PMC7151053 DOI: 10.3390/jof6010027] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Candida albicans, along with other closely related Candida species, are the primary causative agents of vulvovaginal candidiasis (VVC)-a multifactorial infectious disease of the lower female reproductive tract resulting in pathologic inflammation. Unlike other forms of candidiasis, VVC is a disease of immunocompetent and otherwise healthy women, most predominant during their child-bearing years. While VVC is non-lethal, its high global incidence and profound negative impact on quality-of-life necessitates further understanding of the host and fungal factors that drive disease pathogenesis. In this review, we cover the current state of our understanding of the epidemiology, host response, fungal pathogenicity mechanisms, impact of the microbiome, and novel approaches to treatment of this most prevalent human candidal infection. We also offer insight into the latest advancements in the VVC field and identify important questions that still remain.
Collapse
Affiliation(s)
- Hubertine M. E. Willems
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (H.M.E.W.); (J.L.); (Z.X.)
| | - Salman S. Ahmed
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
| | - Junyan Liu
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (H.M.E.W.); (J.L.); (Z.X.)
| | - Zhenbo Xu
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (H.M.E.W.); (J.L.); (Z.X.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
| | - Brian M. Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (H.M.E.W.); (J.L.); (Z.X.)
- Correspondence:
| |
Collapse
|
57
|
Gaffen SL, Moutsopoulos NM. Regulation of host-microbe interactions at oral mucosal barriers by type 17 immunity. Sci Immunol 2020; 5:eaau4594. [PMID: 31901072 PMCID: PMC7068849 DOI: 10.1126/sciimmunol.aau4594] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022]
Abstract
The oral mucosa is a primary barrier site and a portal for entry of microbes, food, and airborne particles into the gastrointestinal tract. Nonetheless, mucosal immunity at this barrier remains understudied compared with other anatomical barrier sites. Here, we review basic aspects of oral mucosal histology, the oral microbiome, and common and clinically significant diseases that present at oral mucosal barriers. We particularly focus on the role of interleukin-17 (IL-17)/T helper 17 (TH17) responses in protective immunity and inflammation in the oral mucosa. IL-17/TH17 responses are highly relevant to maintaining barrier integrity and preventing pathogenic infections by the oral commensal fungus Candida albicans On the other hand, aberrant IL-17/TH17 responses are implicated in driving the pathogenesis of periodontitis and consequent bone and tooth loss. We discuss distinct IL-17-secreting T cell subsets, emphasizing their regulation and function in oropharyngeal candidiasis and periodontitis.
Collapse
Affiliation(s)
- Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Niki M Moutsopoulos
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
58
|
Navarathna DH, Rachut ER, Jinadatha C, Prakash G. Disseminated Invasive Candidiasis in an Immunocompetent Host. Fed Pract 2019; 36:425-429. [PMID: 31571811 PMCID: PMC6752813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Health care providers should consider a nonbacterial source as the causative agent for invasive candidiasis infection in immunocompetent patients.
Collapse
Affiliation(s)
- Dhammika H Navarathna
- is a Clinical Microbiologist, and is a Pathologist, both in the Department of Pathology and Laboratory Medicine; is a Physician in the Infectious Diseases section, and is a Physician in the Department of Medicine, Pulmonary-Critical Care section; all at Central Texas Veterans Health Care System in Temple, Texas
| | - Eric R Rachut
- is a Clinical Microbiologist, and is a Pathologist, both in the Department of Pathology and Laboratory Medicine; is a Physician in the Infectious Diseases section, and is a Physician in the Department of Medicine, Pulmonary-Critical Care section; all at Central Texas Veterans Health Care System in Temple, Texas
| | - Chetan Jinadatha
- is a Clinical Microbiologist, and is a Pathologist, both in the Department of Pathology and Laboratory Medicine; is a Physician in the Infectious Diseases section, and is a Physician in the Department of Medicine, Pulmonary-Critical Care section; all at Central Texas Veterans Health Care System in Temple, Texas
| | - Gagan Prakash
- is a Clinical Microbiologist, and is a Pathologist, both in the Department of Pathology and Laboratory Medicine; is a Physician in the Infectious Diseases section, and is a Physician in the Department of Medicine, Pulmonary-Critical Care section; all at Central Texas Veterans Health Care System in Temple, Texas
| |
Collapse
|
59
|
Eades CP, Armstrong-James DPH. Invasive fungal infections in the immunocompromised host: Mechanistic insights in an era of changing immunotherapeutics. Med Mycol 2019; 57:S307-S317. [DOI: 10.1093/mmy/myy136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
AbstractThe use of cytotoxic chemotherapy in the treatment of malignant and inflammatory disorders is beset by considerable adverse effects related to nonspecific cytotoxicity. Accordingly, a mechanistic approach to therapeutics has evolved in recent times with small molecular inhibitors of intracellular signaling pathways involved in disease pathogenesis being developed for clinical use, some with unparalleled efficacy and tolerability. Nevertheless, there are emerging concerns regarding an association with certain small molecular inhibitors and opportunistic infections, including invasive fungal diseases. This is perhaps unsurprising, given that the molecular targets of such agents play fundamental and multifaceted roles in orchestrating innate and adaptive immune responses. Nevertheless, some small molecular inhibitors appear to possess intrinsic antifungal activity and may therefore represent novel therapeutic options in future. This is particularly important given that antifungal resistance is a significant, emerging concern. This paper is a comprehensive review of the state-of-the-art in the molecular immunology to fungal pathogens as applied to existing and emerging small molecular inhibitors.
Collapse
Affiliation(s)
- Christopher P Eades
- Department of Clinical Infection, Royal Free London NHS Foundation Trust, London, UK
| | - Darius P H Armstrong-James
- National Heart and Lung Institute, Imperial College London, UK
- Department of Respiratory Medicine, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
60
|
Naglik JR, Gaffen SL, Hube B. Candidalysin: discovery and function in Candida albicans infections. Curr Opin Microbiol 2019; 52:100-109. [PMID: 31288097 PMCID: PMC6687503 DOI: 10.1016/j.mib.2019.06.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 01/05/2023]
Abstract
Candidalysin is the first peptide toxin identified in any human fungal pathogen. Candidalysin is critical for Candida albicans mucosal and systemic infections. Candidalysin activates danger-response and damage-protection pathways in host cells. Candidalysin activates the epidermal growth factor receptor in epithelial cells and the NLRP3 inflammasome in macrophages. Candidalysin drives neutrophil recruitment and Type 17 immunity.
Candidalysin is a cytolytic peptide toxin secreted by the invasive form of the human pathogenic fungus, Candida albicans. Candidalysin is critical for mucosal and systemic infections and is a key driver of host cell activation, neutrophil recruitment and Type 17 immunity. Candidalysin is regarded as the first true classical virulence factor of C. albicans but also triggers protective immune responses. This review will discuss how candidalysin was discovered, the mechanisms by which this peptide toxin contributes to C. albicans infections, and how its discovery has advanced our understanding of fungal pathogenesis and disease.
Collapse
Affiliation(s)
- Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 1UL, United Kingdom.
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh PA 15261, USA
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, 07745, Germany; Friedrich Schiller University, Jena, 07745, Germany
| |
Collapse
|
61
|
Candida albicans Elicits Pro-Inflammatory Differential Gene Expression in Intestinal Peyer's Patches. Mycopathologia 2019; 184:461-478. [PMID: 31230200 DOI: 10.1007/s11046-019-00349-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022]
Abstract
The details of how gut-associated lymphoid tissues such as Peyer's patches (PPs) in the small intestine play a role in immune surveillance, microbial differentiation and the mucosal barrier protection in response to fungal organisms such as Candida albicans are still unclear. We particularly focus on PPs as they are the immune sensors and inductive sites of the gut that influence inflammation and tolerance. We have previously demonstrated that CD11c+ phagocytes that include dendritic cells and macrophages are located in the sub-epithelial dome within PPs sample C. albicans. To gain insight on how specific cells within PPs sense and respond to the sampling of fungi, we gavaged naïve mice with C. albicans strains ATCC 18804 and SC5314 as well as Saccharomyces cerevisiae. We measured the differential gene expression of sorted CD45+ B220+ B-cells, CD3+ T-cells and CD11c+ DCs within the first 24 h post-gavage using nanostring nCounter® technology. The results reveal that at 24 h, PP phagocytes were the cell type that displayed differential gene expression. These phagocytes were able to sample C. albicans and discriminate between strains. In particular, strain ATCC 18804 upregulated fungal-specific pro-inflammatory genes pertaining to innate and adaptive immune responses. Interestingly, PP CD11c+ phagocytes also differentially expressed genes in response to C. albicans that were important in the protection of the mucosal barrier. These results highlight that the mucosal barrier not only responds to C. albicans, but also aids in the protection of the host.
Collapse
|
62
|
Diaz PI, Hong BY, Dupuy AK, Choquette L, Thompson A, Salner AL, Schauer PK, Hegde U, Burleson JA, Strausbaugh LD, Peterson DE, Dongari-Bagtzoglou A. Integrated Analysis of Clinical and Microbiome Risk Factors Associated with the Development of Oral Candidiasis during Cancer Chemotherapy. J Fungi (Basel) 2019; 5:jof5020049. [PMID: 31200520 PMCID: PMC6617088 DOI: 10.3390/jof5020049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022] Open
Abstract
Oral candidiasis is a common side effect of cancer chemotherapy. To better understand predisposing factors, we followed forty-five subjects who received 5-fluorouracil- or doxorubicin-based treatment, during one chemotherapy cycle. Subjects were evaluated at baseline, prior to the first infusion, and at three additional visits within a two-week window. We assessed the demographic, medical and oral health parameters, neutrophil surveillance, and characterized the salivary bacteriome and mycobiome communities through amplicon high throughput sequencing. Twenty percent of all subjects developed oral candidiasis. Using multivariate statistics, we identified smoking, amount of dental plaque, low bacteriome and mycobiome alpha-diversity, and the proportions of specific bacterial and fungal taxa as baseline predictors of oral candidiasis development during the treatment cycle. All subjects who developed oral candidiasis had baseline microbiome communities dominated by Candida and enriched in aciduric bacteria. Longitudinally, oral candidiasis was associated with a decrease in salivary flow prior to lesion development, and occurred simultaneously or before oral mucositis. Candidiasis was also longitudinally associated with a decrease in peripheral neutrophils but increased the neutrophil killing capacity of Candida albicans. Oral candidiasis was not found to be associated with mycobiome structure shifts during the cycle but was the result of an increase in Candida load, with C. albicans and Candida dubliniensis being the most abundant species comprising the salivary mycobiome of the affected subjects. In conclusion, we identified a set of clinical and microbiome baseline factors associated with susceptibility to oral candidiasis, which might be useful tools in identifying at risk individuals, prior to chemotherapy.
Collapse
Affiliation(s)
- Patricia I Diaz
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, Farmington, CT 06030, USA.
| | - Bo-Young Hong
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, Farmington, CT 06030, USA.
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| | - Amanda K Dupuy
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - Linda Choquette
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, Farmington, CT 06030, USA.
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| | - Angela Thompson
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, Farmington, CT 06030, USA.
| | - Andrew L Salner
- Department of Medical Oncology, Hartford Healthcare, Hartford, CT 06106, USA.
| | - Peter K Schauer
- Department of Medical Oncology, Hartford Healthcare, Hartford, CT 06106, USA.
| | - Upendra Hegde
- Department of Medicine, UConn Health, Farmington, CT 06030, USA.
| | - Joseph A Burleson
- Department of Community Medicine and Health Care, UConn Health, Farmington, CT 06032, USA.
| | - Linda D Strausbaugh
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - Douglas E Peterson
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, Farmington, CT 06030, USA.
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
63
|
Intravital Imaging Reveals Divergent Cytokine and Cellular Immune Responses to Candida albicans and Candida parapsilosis. mBio 2019; 10:mBio.00266-19. [PMID: 31088918 PMCID: PMC6520444 DOI: 10.1128/mbio.00266-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In modern medicine, physicians are frequently forced to balance immune suppression against immune stimulation to treat patients such as those undergoing transplants and chemotherapy. More-targeted therapies designed to preserve immunity and prevent opportunistic fungal infection in these patients could be informed by an understanding of how fungi interact with professional and nonprofessional immune cells in mucosal candidiasis. In this study, we intravitally imaged these host-pathogen dynamics during Candida infection in a transparent vertebrate model host, the zebrafish. Single-cell imaging revealed an unexpected partitioning of the inflammatory response between phagocytes and epithelial cells. Surprisingly, we found that in vivo cytokine profiles more closely match in vitro responses of epithelial cells rather than phagocytes. Furthermore, we identified a disconnect between canonical inflammatory cytokine production and phagocyte recruitment to the site of infection, implicating noncytokine chemoattractants. Our study contributes to a new appreciation for the specialization and cross talk among cell types during mucosal infection. Candida yeasts are common commensals that can cause mucosal disease and life-threatening systemic infections. While many of the components required for defense against Candida albicans infection are well established, questions remain about how various host cells at mucosal sites assess threats and coordinate defenses to prevent normally commensal organisms from becoming pathogenic. Using two Candida species, C. albicans and C. parapsilosis, which differ in their abilities to damage epithelial tissues, we used traditional methods (pathogen CFU, host survival, and host cytokine expression) combined with high-resolution intravital imaging of transparent zebrafish larvae to illuminate host-pathogen interactions at the cellular level in the complex environment of a mucosal infection. In zebrafish, C. albicans grows as both yeast and epithelium-damaging filaments, activates the NF-κB pathway, evokes proinflammatory cytokines, and causes the recruitment of phagocytic immune cells. On the other hand, C. parapsilosis remains in yeast morphology and elicits the recruitment of phagocytes without inducing inflammation. High-resolution mapping of phagocyte-Candida interactions at the infection site revealed that neutrophils and macrophages attack both Candida species, regardless of the cytokine environment. Time-lapse monitoring of single-cell gene expression in transgenic reporter zebrafish revealed a partitioning of the immune response during C. albicans infection: the transcription factor NF-κB is activated largely in cells of the swimbladder epithelium, while the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) is expressed in motile cells, mainly macrophages. Our results point to different host strategies for combatting pathogenic Candida species and separate signaling roles for host cell types.
Collapse
|
64
|
CARD9 + microglia promote antifungal immunity via IL-1β- and CXCL1-mediated neutrophil recruitment. Nat Immunol 2019; 20:559-570. [PMID: 30996332 PMCID: PMC6494474 DOI: 10.1038/s41590-019-0377-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
The C-type lectin receptor–Syk adaptor CARD9 facilitates protective antifungal immunity within the central nervous system (CNS), as human CARD9-deficiency causes fungal-specific CNS-targeted infection susceptibility. CARD9 promotes neutrophil recruitment to the fungal-infected CNS, which mediates fungal clearance. Here, we investigated host and pathogen factors that promote protective neutrophil recruitment during Candida albicans CNS invasion. IL-1β was essential for CNS antifungal immunity by driving CXCL1 production, which recruited CXCR2-expressing neutrophils. Neutrophil-recruiting IL-1β and CXCL1 production was induced in microglia by the fungal-secreted toxin Candidalysin, in a p38-cFos-dependent manner. Importantly, microglia relied on CARD9 for production of IL-1β, via both Il1b transcriptional regulation and inflammasome activation, and of CXCL1 in the fungal-infected CNS. Microglia-specific Card9 deletion impaired IL-1β and CXCL1 production and neutrophil recruitment, and increased CNS fungal proliferation. Taken together, an intricate network of host-pathogen interactions promotes CNS antifungal immunity, which is impaired in human CARD9-deficiency leading to CNS fungal disease.
Collapse
|
65
|
Bertolini M, Ranjan A, Thompson A, Diaz PI, Sobue T, Maas K, Dongari-Bagtzoglou A. Candida albicans induces mucosal bacterial dysbiosis that promotes invasive infection. PLoS Pathog 2019; 15:e1007717. [PMID: 31009520 PMCID: PMC6497318 DOI: 10.1371/journal.ppat.1007717] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/02/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Infectious complications are a common cause of morbidity and mortality in cancer patients undergoing chemotherapy due to increased risk of oral and gastrointestinal candidiasis, candidemia and septicemia. Interactions between C. albicans and endogenous mucosal bacteria are important in understanding the mechanisms of invasive infection. We published a mouse intravenous chemotherapy model that recapitulates oral and intestinal mucositis, and myelosuppression in patients receiving 5-fluorouracil. We used this model to study the influence of C. albicans on the mucosal bacterial microbiome and compared global community changes in the oral and intestinal mucosa of the same mice. We validated 16S rRNA gene sequencing data by qPCR, in situ hybridization and culture approaches. Mice receiving both 5Fu and C. albicans had an endogenous bacterial overgrowth on the oral but not the small intestinal mucosa. C. albicans infection was associated with loss of mucosal bacterial diversity in both sites with indigenous Stenotrophomonas, Alphaproteobacteria and Enterococcus species dominating the small intestinal, and Enterococcus species dominating the oral mucosa. Both immunosuppression and Candida infection contributed to changes in the oral microbiota. Enterococci isolated from mice with oropharyngeal candidiasis were implicated in degrading the epithelial junction protein E-cadherin and increasing the permeability of the oral epithelial barrier in vitro. Importantly, depletion of these organisms with antibiotics in vivo attenuated oral mucosal E-cadherin degradation and C. albicans invasion without affecting fungal burdens, indicating that bacterial community changes represent overt dysbiosis. Our studies demonstrate a complex interaction between C. albicans, the resident mucosal bacterial microbiota and the host environment in pathogenesis. We shed significant new light on the role of C. albicans in shaping resident bacterial communities and driving mucosal dysbiosis.
Collapse
Affiliation(s)
- Martinna Bertolini
- Department of Oral Health Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Amit Ranjan
- Department of Oral Health Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Angela Thompson
- Department of Oral Health Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Patricia I. Diaz
- Department of Oral Health Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Takanori Sobue
- Department of Oral Health Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Kendra Maas
- Microbial Analysis, Resources, and Services Core, University of Connecticut, Storrs, Connecticut, United States of America
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|
66
|
Swidergall M. Candida albicans at Host Barrier Sites: Pattern Recognition Receptors and Beyond. Pathogens 2019; 8:E40. [PMID: 30934602 PMCID: PMC6471378 DOI: 10.3390/pathogens8010040] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/29/2022] Open
Abstract
Over the last decades, fungal infections have emerged as a growing threat to human health. Although the human body is at potential risk, various body sites host several commensal fungal species, including Candida albicans. In healthy individuals, C. albicans colonizes different mucosal surfaces without causing harm, while under diverse circumstances the fungus can proliferate and cause disease. In this context, the understanding of host⁻C. albicans interactions in health and during infection may lead to novel therapeutic approaches. Importantly, host cells express pattern recognition receptors (PRRs), which sense conserved fungal structures and orchestrate innate immune responses. Herein, important findings on the topic of the recognition of C. albicans at host barrier sites are discussed. This review briefly summarizes the importance and functions of myeloid PRRs, reviews the fungal recognition and biology of stromal cells, and highlights important C. albicans virulence attributes during site-specific proliferation and invasion.
Collapse
Affiliation(s)
- Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
- Institute for Infection and Immunity, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
| |
Collapse
|
67
|
Kirchner FR, Littringer K, Altmeier S, Tran VDT, Schönherr F, Lemberg C, Pagni M, Sanglard D, Joller N, LeibundGut-Landmann S. Persistence of Candida albicans in the Oral Mucosa Induces a Curbed Inflammatory Host Response That Is Independent of Immunosuppression. Front Immunol 2019; 10:330. [PMID: 30873177 PMCID: PMC6400982 DOI: 10.3389/fimmu.2019.00330] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
Controlled immune activation in response to commensal microbes is critical for the maintenance of stable colonization and prevention of microbial overgrowth on epithelial surfaces. Our understanding of the host mechanisms that regulate bacterial commensalism has increased substantially, however, much less data exist regarding host responses to members of the fungal microbiota on colonized surfaces. Using a murine model of oropharyngeal candidiasis, we have recently shown that differences in immune activation in response to diverse natural isolates of Candida albicans are associated with different outcomes of the host-fungal interaction. Here we applied a genome-wide transcriptomic approach to show that rapid induction of a strong inflammatory response characterized by neutrophil-associated genes upon C. albicans colonization inversely correlated with the ability of the fungus to persist in the oral mucosa. Surprisingly, persistent fungal isolates showed no signs of a compensatory regulatory immune response. By combining RNA-seq data, genetic mouse models, and co-infection experiments, we show that attenuation of the inflammatory response at the onset of infection with a persistent isolate is not a consequence of enhanced immunosuppression. Importantly, depletion of regulatory T cells or deletion of the immunoregulatory cytokine IL-10 did not alter host-protective type 17 immunity nor did it impair fungal survival in the oral mucosa, indicating that persistence of C. albicans in the oral mucosa is not a consequence of suppressed antifungal immunity.
Collapse
Affiliation(s)
- Florian R Kirchner
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Simon Altmeier
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Van Du T Tran
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Franziska Schönherr
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christina Lemberg
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marco Pagni
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Nicole Joller
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
68
|
Marischen L, Englert A, Schmitt AL, Einsele H, Loeffler J. Human NK cells adapt their immune response towards increasing multiplicities of infection of Aspergillus fumigatus. BMC Immunol 2018; 19:39. [PMID: 30563459 PMCID: PMC6299526 DOI: 10.1186/s12865-018-0276-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The saprophytic fungus Aspergillus fumigatus reproduces by generation of conidia, which are spread by airflow throughout nature. Since humans are inhaling certain amounts of spores every day, the (innate) immune system is constantly challenged. Even though macrophages and neutrophils carry the main burden, also NK cells are regarded to contribute to the antifungal immune response. While NK cells reveal a low frequency, expression and release of immunomodulatory molecules seem to be a natural way of their involvement. RESULTS In this study we show, that NK cells secrete chemokines such as CCL3/MIP-1α, CCL4/MIP-1β and CCL5/RANTES early on after stimulation with Aspergillus fumigatus and, in addition, adjust the concentration of chemokines released to the multiplicity of infection of Aspergillus fumigatus. CONCLUSIONS These results further corroborate the relevance of NK cells within the antifungal immune response, which is regarded to be more and more important in the development and outcome of invasive aspergillosis in immunocompromised patients after hematopoietic stem cell transplantation. Additionally, the correlation between the multiplicity of infection and the expression and release of chemokines shown here may be useful in further studies for the quantification and/or surveillance of the NK cell involvement in antifungal immune responses.
Collapse
Affiliation(s)
- Lothar Marischen
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Anne Englert
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Anna-Lena Schmitt
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Juergen Loeffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
69
|
Cellular metabolism constrains innate immune responses in early human ontogeny. Nat Commun 2018; 9:4822. [PMID: 30446641 PMCID: PMC6240060 DOI: 10.1038/s41467-018-07215-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Pathogen immune responses are profoundly attenuated in fetuses and premature infants, yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic, metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation display perturbations in PPAR-γ-regulated metabolic pathways, limited glycolytic capacity and reduced ribosomal activity. These metabolic changes are linked to a lack of translation of most cytokines and of MALT1 signalosome genes essential to respond to the neonatal pathogen Candida. In contrast, they have little impact on house-keeping phagocytosis functions. Transcriptome analyses further indicate a role for mTOR and its putative negative regulator DNA Damage Inducible Transcript 4-Like in regulating these metabolic constraints. Our results provide a molecular basis for the broad susceptibility to multiple pathogens in these infants, and suggest that the fetal immune system is metabolically programmed to avoid energetically costly, dispensable and potentially harmful immune responses during ontogeny. Little is known about developmental set points of immune responses, especially in humans. Here the authors show that the metabolic state of monocytes isolated from prematurely born infants underlies attenuated responsiveness to fungal infection via selective control of protein translation.
Collapse
|
70
|
A novel murine model for contact lens wear reveals clandestine IL-1R dependent corneal parainflammation and susceptibility to microbial keratitis upon inoculation with Pseudomonas aeruginosa. Ocul Surf 2018; 17:119-133. [PMID: 30439473 DOI: 10.1016/j.jtos.2018.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Contact lens wear carries a risk of complications, including corneal infection. Solving these complications has been hindered by limitations of existing animal models. Here, we report development of a new murine model of contact lens wear. METHODS C57BL/6 mice were fitted with custom-made silicone-hydrogel contact lenses with or without prior inoculation with Pseudomonas aeruginosa (PAO1-GFP). Contralateral eyes served as controls. Corneas were monitored for pathology, and examined ex vivo using high-magnification, time-lapse imaging. Fluorescent reporter mice allowed visualization of host cell membranes and immune cells. Lens-colonizing bacteria were detected by viable counts and FISH. Direct-colony PCR was used for bacterial identification. RESULTS Without deliberate inoculation, lens-wearing corneas remained free of visible pathology, and retained a clarity similar to non-lens wearing controls. CD11c-YFP reporter mice revealed altered numbers, and distribution, of CD11c-positive cells in lens-wearing corneas after 24 h. Worn lenses showed bacterial colonization, primarily by known conjunctival or skin commensals. Corneal epithelial cells showed vacuolization during lens wear, and after 5 days, cells with phagocyte morphology appeared in the stroma that actively migrated over resident keratocytes that showed altered morphology. Immunofluorescence confirmed stromal Ly6G-positive cells after 5 days of lens wear, but not in MyD88 or IL-1R gene-knockout mice. P. aeruginosa-contaminated lenses caused infectious pathology in most mice from 1 to 13 days. CONCLUSIONS This murine model of contact lens wear appears to faithfully mimic events occurring during human lens wear, and could be valuable for experiments, not possible in humans, that help solve the pathogenesis of lens-related complications.
Collapse
|
71
|
Privratsky JR, Zhang J, Lu X, Rudemiller N, Wei Q, Yu YR, Gunn MD, Crowley SD. Interleukin 1 receptor (IL-1R1) activation exacerbates toxin-induced acute kidney injury. Am J Physiol Renal Physiol 2018; 315:F682-F691. [PMID: 29790392 PMCID: PMC6172579 DOI: 10.1152/ajprenal.00104.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/30/2022] Open
Abstract
Acute kidney injury (AKI) is a leading cause of morbidity and mortality. Drug-induced/toxic AKI can be caused by a number of therapeutic agents. Cisplatin is an effective chemotherapeutic agent whose administration is limited by significant nephrotoxicity. Therapies to prevent cisplatin-induced AKI are lacking. Although tumor necrosis factor-α (TNF) plays a key role in the pathogenesis of cisplatin nephrotoxicity, the innate immune signaling pathways that trigger TNF generation in this context require elucidation. In this regard, sterile injury triggers the release and activation of both isoforms of interleukin(IL)-1, IL-1α and IL-1β. In turn, stimulation of the interleukin-1 receptor (IL-1R1) by these ligands engages a proinflammatory signaling cascade that induces TNF induction. We therefore hypothesized that IL-1R1 activation exacerbates cisplatin-induced AKI by inducing TNF production, thereby augmenting inflammatory signals between kidney parenchymal cells and infiltrating myeloid cells. IL-1R1+/+ (WT) and IL-1R1-/- (KO) mice were subjected to cisplatin-induced AKI. Compared with WT mice, IL-1R1 KO mice had attenuated AKI as measured by serum creatinine and BUN, renal NGAL mRNA levels, and blinded histological analysis of kidney pathology. In the cisplatin-injured kidney, IL-1R1 KO mice had diminished levels of whole kidney TNF, and fewer Ly6G-expressing neutrophils. In addition, an unbiased machine learning analysis of intrarenal immune cells revealed a diminished number of CD11bint/CD11cint myeloid cells in IL-1R1 KO injured kidneys compared with IL-1R1 WT kidneys. Following cisplatin, IL-1R1 KO kidneys, compared with WTs, had fewer TNF-producing: macrophages, CD11bint/CD11cint cells, and neutrophils, consistent with an effect of IL-1R1 to polarize intrarenal myeloid cells toward a proinflammatory phenotype. Interruption of IL-1-dependent signaling pathways warrants further evaluation to decrease nephrotoxicity during cisplatin therapy.
Collapse
Affiliation(s)
- Jamie R Privratsky
- Department of Anesthesiology, Duke University Medical Center , Durham, North Carolina
| | - Jiandong Zhang
- Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Xiaohan Lu
- Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Nathan Rudemiller
- Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Augusta University , Augusta, Georgia
| | - Yen-Rei Yu
- Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Michael D Gunn
- Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Steven D Crowley
- Department of Medicine, Duke University Medical Center , Durham, North Carolina
- Durham Veterans Affairs Medical Center , Durham, North Carolina
| |
Collapse
|
72
|
Verma AH, Zafar H, Ponde NO, Hepworth OW, Sihra D, Aggor FEY, Ainscough JS, Ho J, Richardson JP, Coleman BM, Hube B, Stacey M, McGeachy MJ, Naglik JR, Gaffen SL, Moyes DL. IL-36 and IL-1/IL-17 Drive Immunity to Oral Candidiasis via Parallel Mechanisms. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:627-634. [PMID: 29891557 PMCID: PMC6039262 DOI: 10.4049/jimmunol.1800515] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/16/2018] [Indexed: 01/17/2023]
Abstract
Protection against microbial infection by the induction of inflammation is a key function of the IL-1 superfamily, including both classical IL-1 and the new IL-36 cytokine families. Candida albicans is a frequent human fungal pathogen causing mucosal infections. Although the initiators and effectors important in protective host responses to C. albicans are well described, the key players in driving these responses remain poorly defined. Recent work has identified a central role played by IL-1 in inducing innate Type-17 immune responses to clear C. albicans infections. Despite this, lack of IL-1 signaling does not result in complete loss of immunity, indicating that there are other factors involved in mediating protection to this fungus. In this study, we identify IL-36 cytokines as a new player in these responses. We show that C. albicans infection of the oral mucosa induces the production of IL-36. As with IL-1α/β, induction of epithelial IL-36 depends on the hypha-associated peptide toxin Candidalysin. Epithelial IL-36 gene expression requires p38-MAPK/c-Fos, NF-κB, and PI3K signaling and is regulated by the MAPK phosphatase MKP1. Oral candidiasis in IL-36R-/- mice shows increased fungal burdens and reduced IL-23 gene expression, indicating a key role played by IL-36 and IL-23 in innate protective responses to this fungus. Strikingly, we observed no impact on gene expression of IL-17 or IL-17-dependent genes, indicating that this protection occurs via an alternative pathway to IL-1-driven immunity. Thus, IL-1 and IL-36 represent parallel epithelial cell-driven protective pathways in immunity to oral C. albicans infection.
Collapse
Affiliation(s)
- Akash H Verma
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Hanna Zafar
- Mucosal and Salivary Biology Division, King's College London Dental Institute, London SE1 1UL, United Kingdom
- Centre for Host-Microbiome Interactions, Mucosal and Salivary Biology Division, King's College London Dental Institute, London SE1 9RT, United Kingdom
| | - Nicole O Ponde
- Mucosal and Salivary Biology Division, King's College London Dental Institute, London SE1 1UL, United Kingdom
| | - Olivia W Hepworth
- Mucosal and Salivary Biology Division, King's College London Dental Institute, London SE1 1UL, United Kingdom
- Centre for Host-Microbiome Interactions, Mucosal and Salivary Biology Division, King's College London Dental Institute, London SE1 9RT, United Kingdom
| | - Diksha Sihra
- Mucosal and Salivary Biology Division, King's College London Dental Institute, London SE1 1UL, United Kingdom
| | - Felix E Y Aggor
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Joseph S Ainscough
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jemima Ho
- Mucosal and Salivary Biology Division, King's College London Dental Institute, London SE1 1UL, United Kingdom
| | - Jonathan P Richardson
- Mucosal and Salivary Biology Division, King's College London Dental Institute, London SE1 1UL, United Kingdom
| | - Bianca M Coleman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, D-07745 Jena, Germany
- Friedrich Schiller University, D-07737 Jena, Germany; and
- Center for Sepsis Control and Care, D-07747 Jena, Germany
| | - Martin Stacey
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mandy J McGeachy
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Julian R Naglik
- Mucosal and Salivary Biology Division, King's College London Dental Institute, London SE1 1UL, United Kingdom
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261;
| | - David L Moyes
- Mucosal and Salivary Biology Division, King's College London Dental Institute, London SE1 1UL, United Kingdom;
- Centre for Host-Microbiome Interactions, Mucosal and Salivary Biology Division, King's College London Dental Institute, London SE1 9RT, United Kingdom
| |
Collapse
|
73
|
Guiducci E, Lemberg C, Küng N, Schraner E, Theocharides APA, LeibundGut-Landmann S. Candida albicans-Induced NETosis Is Independent of Peptidylarginine Deiminase 4. Front Immunol 2018; 9:1573. [PMID: 30038623 PMCID: PMC6046457 DOI: 10.3389/fimmu.2018.01573] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are the most abundant innate immune cells and the first line of defense against many pathogenic microbes, including the human fungal pathogen Candida albicans. Among the neutrophils' arsenal of effector functions, neutrophil extracellular traps (NETs) are thought to be of particular importance for trapping and killing the large fungal filaments by means of their web-like structures that consist of chromatin fibers decorated with proteolytic enzymes and host defense proteins. Peptidylarginine deiminase 4 (PAD4)-mediated citrullination of histones in activated neutrophils correlates with chromatin decondensation and extrusion and is widely accepted to act as an integral process of NET induction (NETosis). However, the requirement of PAD4-mediated histone citrullination for NET release during C. albicans infection remains unclear. In this study, we show that although PAD4-dependent neutrophil histone citrullination is readily induced by C. albicans, PAD4 is dispensable for NETosis in response to the fungus and other common NET-inducing stimuli. Moreover, PAD4 is not required for antifungal immunity during mucosal and systemic C. albicans infection. Our results demonstrate that PAD4 is dispensable for C. albicans-induced NETosis, and they highlight the limitations of using histone citrullination as a marker for NETs and PAD4-/- mice as a model of NET-deficiency.
Collapse
Affiliation(s)
- Eva Guiducci
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christina Lemberg
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Noëmi Küng
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Elisabeth Schraner
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
74
|
Sparber F, Dolowschiak T, Mertens S, Lauener L, Clausen BE, Joller N, Stoitzner P, Tussiwand R, LeibundGut-Landmann S. Langerin+ DCs regulate innate IL-17 production in the oral mucosa during Candida albicans-mediated infection. PLoS Pathog 2018; 14:e1007069. [PMID: 29782555 PMCID: PMC5983869 DOI: 10.1371/journal.ppat.1007069] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 06/01/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
The opportunistic fungal pathogen Candida albicans frequently causes diseases such as oropharyngeal candidiasis (OPC) in immunocompromised individuals. Although it is well appreciated that the cytokine IL-17 is crucial for protective immunity against OPC, the cellular source and the regulation of this cytokine during infection are still a matter of debate. Here, we directly visualized IL-17 production in the tongue of experimentally infected mice, thereby demonstrating that this key cytokine is expressed by three complementary subsets of CD90+ leukocytes: RAG-dependent αβ and γδ T cells, as well as RAG-independent ILCs. To determine the regulation of IL-17 production at the onset of OPC, we investigated in detail the myeloid compartment of the tongue and found a heterogeneous and dynamic mononuclear phagocyte (MNP) network in the infected tongue that consists of Zbtb46-Langerin- macrophages, Zbtb46+Langerin+ dendritic cells (DCs) and Ly6C+ inflammatory monocytes. Of those, the Langerin+ DC population stands out by its unique capacity to co-produce the cytokines IL-1β, IL-6 and IL-23, all of which promote IL-17 induction in response to C. albicans in the oral mucosa. The critical role of Langerin+ DCs for the innate IL-17 response was confirmed by depletion of this cellular subset in vivo, which compromised IL-17 induction during OPC. In conclusion, our work revealed key regulatory factors and their cellular sources of innate IL-17-dependent antifungal immunity in the oral mucosa.
Collapse
Affiliation(s)
- Florian Sparber
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Tamas Dolowschiak
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sarah Mertens
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Laura Lauener
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Björn E. Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nicole Joller
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University Innsbruck, Innsbruck, Austria
| | - Roxane Tussiwand
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
75
|
Meir J, Hartmann E, Eckstein MT, Guiducci E, Kirchner F, Rosenwald A, LeibundGut-Landmann S, Pérez JC. Identification of Candida albicans regulatory genes governing mucosal infection. Cell Microbiol 2018; 20:e12841. [PMID: 29575428 DOI: 10.1111/cmi.12841] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Abstract
The fungus Candida albicans thrives on a variety of human mucosae, yet the fungal determinants that contribute to fitness on these surfaces remain underexplored. Here, by screening a collection of C. albicans deletion strains in a mouse model of oral infection (oropharyngeal candidiasis), we identify several novel regulatory genes that modulate the fitness of the fungus in this locale. We investigate in detail the interplay between the host mucosa and one of the identified mutants and establish that the C. albicans transcription regulator CUP9 is a key determinant of mucosal colonisation. Deletion of cup9 resulted in the formation of more foci of colonisation and heightened persistence in infected tongues. Furthermore, the cup9 mutant produced longer and denser filaments in the oral mucosa without eliciting an enhanced local immune response. Consistent with its role in oral colonisation, we show that CUP9's top target of regulation is a major effector of Candida's adherence to buccal cells. Finally, we establish that CUP9 also governs the interplay of the fungus with vaginal epithelial cells and has a role in vaginal infections, another common mucosal disease associated with Candida. Thus, our findings reveal a mechanism whereby C. albicans can regulate proliferation on mucosal surfaces.
Collapse
Affiliation(s)
- Juliane Meir
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany.,Institute for Molecular Infection Biology, University Würzburg, Würzburg, Germany
| | - Elena Hartmann
- Institute for Pathology, University Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Marie-Therese Eckstein
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany.,Institute for Molecular Infection Biology, University Würzburg, Würzburg, Germany
| | - Eva Guiducci
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Florian Kirchner
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Andreas Rosenwald
- Institute for Pathology, University Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | | | - J Christian Pérez
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany.,Institute for Molecular Infection Biology, University Würzburg, Würzburg, Germany
| |
Collapse
|
76
|
Candida albicans - Biology, molecular characterization, pathogenicity, and advances in diagnosis and control – An update. Microb Pathog 2018; 117:128-138. [DOI: 10.1016/j.micpath.2018.02.028] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/04/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
|
77
|
Liu YH, Chang YC, Chen LK, Su PA, Ko WC, Tsai YS, Chen YH, Lai HC, Wu CY, Hung YP, Tsai PJ. The ATP-P2X 7 Signaling Axis Is an Essential Sentinel for Intracellular Clostridium difficile Pathogen-Induced Inflammasome Activation. Front Cell Infect Microbiol 2018; 8:84. [PMID: 29616195 PMCID: PMC5864904 DOI: 10.3389/fcimb.2018.00084] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
Clostridium difficile infection (CDI) is the leading cause of nosocomial infection in hospitalized patients receiving long-term antibiotic treatment. An excessive host inflammatory response is believed to be the major mechanism underlying the pathogenesis of C. difficile infection, and various proinflammatory cytokines such as IL-1β are detected in patients with C. difficile infection. IL-1β is known to be processed by caspase-1, a cysteine protease that is regulated by a protein complex called the inflammasome, which leads to a specialized form of cell death called pyroptosis. The function of inflammasome activation-induced pyroptosis is to clear or limit the spread of invading pathogens via infiltrated neutrophils. Here, we focused on inflammasome activation induced by intact C. difficile to re-evaluate the nature of inflammasome activation in CDI pathogenesis, which could provide information that leads to an alternative therapeutic strategy for the treatment of this condition in humans. First, we found that caspase-1-dependent IL-1β production was induced by C. difficile pathogens in macrophages and increased in a time-dependent manner. Moreover, intracellular toxigenic C. difficile was essential for ATP-P2X7 pathway of inflammasome activation and subsequent caspase-1-dependent pyroptotic cell death, leading to the loss of membrane integrity and release of intracellular contents such as LDH. Notably, we also observed that bacterial components such as surface layer proteins (SLPs) were released from pyroptotic cells. In addition, pro-IL-1β production was completely MyD88 and partially TLR2 dependent. Finally, to investigate the role of the caspase-1-dependent inflammasome in host defense, we found that colonic inflammasome activation was also induced by CDI and that caspase-1 inhibition by Ac-YVAD-CMK led to increased disease progression and C. difficile load. Taken together, the present results suggest that MyD88 and TLR2 are critical component in pro-IL-1β production and intracellular C. difficile following the ATP-P2X7 pathway of inflammasome activation and pyroptosis, which play important roles in host defense through the utilization of inflammation-mediated bacterial clearance mechanisms during C. difficile infection.
Collapse
Affiliation(s)
- Ya-Hui Liu
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yung-Chi Chang
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Kuei Chen
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Po-An Su
- Division of Infectious Diseases, Chi Mei Medical Center, Tainan, Taiwan.,Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Center for Infection Control, National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan.,Cardiovascular Research Center, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsuan Chen
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Chih Lai
- Department of Medical Laboratory Science and Biotechnology, Chang Gung University, Taoyaun, Taiwan.,Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyaun, Taiwan.,Graduate Institute of Health Industry and Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyaun, Taiwan
| | - Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyaun, Taiwan.,Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyaun, Taiwan
| | - Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
78
|
Richardson JP, Moyes DL, Ho J, Naglik JR. Candida innate immunity at the mucosa. Semin Cell Dev Biol 2018; 89:58-70. [PMID: 29501618 DOI: 10.1016/j.semcdb.2018.02.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/27/2018] [Indexed: 12/17/2022]
Abstract
The tremendous diversity in microbial species that colonise the mucosal surfaces of the human body is only now beginning to be fully appreciated. Distinguishing between the behaviour of commensal microbes and harmful pathogens that reside at mucosal sites in the body is a complex, and exquisitely fine-tuned process central to mucosal health. The fungal pathobiont Candida albicans is frequently isolated from mucosal surfaces with an asymptomatic carriage rate of approximately 60% in the human population. While normally a benign member of the microbiota, overgrowth of C. albicans often results in localised mucosal infection causing morbidity in otherwise healthy individuals, and invasive infection that often causes death in the absence of effective immune defence. C. albicans triggers numerous innate immune responses at mucosal surfaces, and detection of C. albicans hyphae in particular, stimulates the production of antimicrobial peptides, danger-associated molecular patterns and cytokines that function to reduce fungal burdens during infection. This review will summarise our current understanding of innate immune responses to C. albicans at mucosal surfaces.
Collapse
Affiliation(s)
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Mucosal & Salivary Biology Division, Dental Institute, King's College London, UK.
| | - Jemima Ho
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, UK.
| | - Julian R Naglik
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, UK.
| |
Collapse
|
79
|
Organ-specific mechanisms linking innate and adaptive antifungal immunity. Semin Cell Dev Biol 2018; 89:78-90. [PMID: 29366628 DOI: 10.1016/j.semcdb.2018.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 12/24/2022]
Abstract
Fungal infections remain a significant global health problem in humans. Fungi infect millions of people worldwide and cause from acute superficial infections to life-threatening systemic disease to chronic illnesses. Trying to decipher the complex innate and adaptive immune mechanisms that protect humans from pathogenic fungi is therefore a key research goal that may lead to immune-based therapeutic strategies and improved patient outcomes. In this review, we summarize how the cells and molecules of the innate immune system activate the adaptive immune system to elicit long-term immunity to fungi. We present current knowledge and exciting new advances in the context of organ-specific immunity, outlining the tissue-specific tropisms for the major pathogenic fungi of humans, the antifungal functions of tissue-resident myeloid cells, and the adaptive immune responses required to protect specific organs from fungal challenge.
Collapse
|
80
|
Shourian M, Ralph B, Angers I, Sheppard DC, Qureshi ST. Contribution of IL-1RI Signaling to Protection against Cryptococcus neoformans 52D in a Mouse Model of Infection. Front Immunol 2018; 8:1987. [PMID: 29403476 PMCID: PMC5780350 DOI: 10.3389/fimmu.2017.01987] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 alpha (IL-1α) and interleukin-1 beta (IL-1β) are pro-inflammatory cytokines that are induced after Cryptococcus neoformans infection and activate the interleukin-1 receptor type I (IL-1RI). To establish the role of IL-1RI signaling in protection against cryptococcal infection, we analyzed wild-type (WT) and IL-1RI-deficient (IL-1RI−/−) mice on the BALB/c background. IL-1RI−/− mice had significantly reduced survival compared to WT mice after intratracheal challenge with C. neoformans 52D. Microbiological analysis showed a significant increase in the lung and brain fungal burden of IL-1RI−/− compared to WT mice beginning at weeks 1 and 4 postinfection, respectively. Histopathology showed that IL-1RI−/− mice exhibit greater airway epithelial mucus secretion and prominent eosinophilic crystals that were absent in WT mice. Susceptibility of IL-1RI−/− mice was associated with significant induction of a Th2-biased immune response characterized by pulmonary eosinophilia, M2 macrophage polarization, and recruitment of CD4+ IL-13+ T cells. Expression of pro-inflammatory [IL-1α, IL-1β, TNFα, and monocyte chemoattractant protein 1 (MCP-1)], Th1-associated (IFNγ), and Th17-associated (IL-17A) cytokines was significantly reduced in IL-1RI−/− lungs compared to WT. WT mice also had higher expression of KC/CXCL1 and sustained neutrophil recruitment to the lung; however, antibody-mediated depletion of these cells showed that they were dispensable for lung fungal clearance. In conclusion, our data indicate that IL-1RI signaling is required to activate a complex series of innate and adaptive immune responses that collectively enhance host defense and survival after C. neoformans 52D infection in BALB/c mice.
Collapse
Affiliation(s)
- Mitra Shourian
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Ben Ralph
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Isabelle Angers
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada.,Program in Translational Research in Respiratory Diseases, Department of Critical Care, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada
| | - Donald C Sheppard
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Salman T Qureshi
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada.,Program in Translational Research in Respiratory Diseases, Department of Critical Care, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
81
|
Modulation of the Fungal-Host Interaction by the Intra-Species Diversity of C. albicans. Pathogens 2018; 7:pathogens7010011. [PMID: 29342100 PMCID: PMC5874737 DOI: 10.3390/pathogens7010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023] Open
Abstract
The incidence of human infections caused by the opportunistic fungal pathogen Candida albicans is on the rise due to increasing numbers of immunosuppressed patients. The importance of the immune system in preventing overgrowth of the colonizing fungus and thereby limiting infection is well recognized and host protective mechanisms widely investigated. Only recently, it was recognized that the natural diversity in the fungal species could also influence the outcome of the interaction between the fungus and the host. C. albicans strain-specific differences are complex and their regulation at the genomic, genetic, and epigenetic level and by environmental factors is only partially understood. In this review, we provide an overview of the natural diversity of C. albicans and discuss how it impacts host-fungal interactions and thereby affects the balance between commensalism versus disease.
Collapse
|
82
|
Abstract
The interleukin (IL)-1 family of cytokines is currently comprised of 11 members that have pleiotropic functions in inflammation and cancer. IL-1α and IL-1β were the first members of the IL-1 family to be described, and both signal via the same receptor, IL-1R. Over the last decade, much progress has been made in our understanding of biogenesis of IL-1β and its functions in human diseases. Studies from our laboratory and others have highlighted the critical role of nod-like receptors (NLRs) and multi-protein complexes known as inflammasomes in the regulation of IL-1β maturation. Recent studies have increased our appreciation of the role played by IL-1α in inflammatory diseases and cancer. However, the mechanisms that regulate the production of IL-1α and its bioavailability are relatively understudied. In this review, we summarize the distinctive roles played by IL-1α in inflammatory diseases and cancer. We also discuss our current knowledge about the mechanisms that control IL-1α biogenesis and activity, and the major unanswered questions in its biology.
Collapse
Affiliation(s)
- Ankit Malik
- Department of Immunology St. Jude Children’s Research Hospital, Memphis, TN 38105
| | | |
Collapse
|
83
|
Lionakis MS, Levitz SM. Host Control of Fungal Infections: Lessons from Basic Studies and Human Cohorts. Annu Rev Immunol 2017; 36:157-191. [PMID: 29237128 DOI: 10.1146/annurev-immunol-042617-053318] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the last few decades, the AIDS pandemic and the significant advances in the medical management of individuals with neoplastic and inflammatory conditions have resulted in a dramatic increase in the population of immunosuppressed patients with opportunistic, life-threatening fungal infections. The parallel development of clinically relevant mouse models of fungal disease and the discovery and characterization of several inborn errors of immune-related genes that underlie inherited human susceptibility to opportunistic mycoses have significantly expanded our understanding of the innate and adaptive immune mechanisms that protect against ubiquitous fungal exposures. This review synthesizes immunological knowledge derived from basic mouse studies and from human cohorts and provides an overview of mammalian antifungal host defenses that show promise for informing therapeutic and vaccination strategies for vulnerable patients.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655;
| |
Collapse
|
84
|
Naglik JR, König A, Hube B, Gaffen SL. Candida albicans-epithelial interactions and induction of mucosal innate immunity. Curr Opin Microbiol 2017; 40:104-112. [PMID: 29156234 PMCID: PMC5733685 DOI: 10.1016/j.mib.2017.10.030] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/24/2022]
Abstract
Candida albicans is a human fungal pathogen that causes millions of mucosal and life-threatening infections annually. C. albicans initially interacts with epithelial cells, resulting in fungal recognition and the formation of hyphae. Hypha formation is critical for host cell damage and immune activation, which are both driven by the secretion of Candidalysin, a recently discovered peptide toxin. Epithelial activation leads to the production of inflammatory mediators that recruit innate immune cells including neutrophils, macrophages and innate Type 17 cells, which together work with epithelial cells to clear the fungal infection. This review will focus on the recent discoveries that have advanced our understanding of C. albicans-epithelial interactions and the induction of mucosal innate immunity.
Collapse
Affiliation(s)
- Julian R Naglik
- Mucosal and Salivary Biology Division, King's College London Dental Institute, London SE1 1UL, United Kingdom.
| | - Annika König
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany; Friedrich Schiller University, Jena, Germany; Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
85
|
Caffrey-Carr AK, Kowalski CH, Beattie SR, Blaseg NA, Upshaw CR, Thammahong A, Lust HE, Tang YW, Hohl TM, Cramer RA, Obar JJ. Interleukin 1α Is Critical for Resistance against Highly Virulent Aspergillus fumigatus Isolates. Infect Immun 2017; 85:e00661-17. [PMID: 28947643 PMCID: PMC5695118 DOI: 10.1128/iai.00661-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 02/08/2023] Open
Abstract
Heterogeneity among Aspergillus fumigatus isolates results in unique virulence potential and inflammatory responses. How these isolates drive specific immune responses and how this affects fungally induced lung damage and disease outcome are unresolved. We demonstrate that the highly virulent CEA10 strain is able to rapidly germinate within the immunocompetent lung environment, inducing greater lung damage, vascular leakage, and interleukin 1α (IL-1α) release than the low-virulence Af293 strain, which germinates with a lower frequency in this environment. Importantly, the clearance of CEA10 was consequently dependent on IL-1α, in contrast to Af293. The release of IL-1α occurred by a caspase 1/11- and P2XR7-independent mechanism but was dependent on calpain activity. Our finding that early fungal conidium germination drives greater lung damage and IL-1α-dependent inflammation is supported by three independent experimental lines. First, pregermination of Af293 prior to in vivo challenge drives greater lung damage and an IL-1α-dependent neutrophil response. Second, the more virulent EVOL20 strain, derived from Af293, is able to germinate in the airways, leading to enhanced lung damage and IL-1α-dependent inflammation and fungal clearance. Third, primary environmental A. fumigatus isolates that rapidly germinate under airway conditions follow the same trend toward IL-1α dependency. Our data support the hypothesis that A. fumigatus phenotypic variation significantly contributes to disease outcomes.
Collapse
Affiliation(s)
- Alayna K Caffrey-Carr
- Montana State University, Department of Microbiology and Immunology, Bozeman, Montana, USA
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Caitlin H Kowalski
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Sarah R Beattie
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Nathan A Blaseg
- Montana State University, Department of Microbiology and Immunology, Bozeman, Montana, USA
| | | | - Arsa Thammahong
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Hannah E Lust
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Yi-Wei Tang
- Department of Laboratory Medicine, Clinical Microbiology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tobias M Hohl
- Department of Medicine, Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert A Cramer
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| | - Joshua J Obar
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, New Hampshire, USA
| |
Collapse
|
86
|
Innate Immunity to Mucosal Candida Infections. J Fungi (Basel) 2017; 3:jof3040060. [PMID: 29371576 PMCID: PMC5753162 DOI: 10.3390/jof3040060] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 02/05/2023] Open
Abstract
Mucosal epithelial tissues are exposed to high numbers of microbes, including commensal fungi, and are able to distinguish between those that are avirulent and those that cause disease. Epithelial cells have evolved multiple mechanisms to defend against colonization and invasion by Candida species. The interplay between mucosal epithelial tissues and immune cells is key for control and clearance of fungal infections. Our understanding of the mucosal innate host defense system has expanded recently with new studies bringing to light the importance of epithelial cell responses, innate T cells, neutrophils, and other phagocytes during Candida infections. Epithelial tissues release cytokines, host defense peptides, and alarmins during Candida invasion that act in concert to limit fungal proliferation and recruit immune effector cells. The innate T cell/IL-17 axis and recruitment of neutrophils are of central importance in controlling mucosal fungal infections. Here, we review current knowledge of the innate immunity at sites of mucosal Candida infection, with a focus on infections caused by C. albicans.
Collapse
|
87
|
Kochi Y, Matsumoto Y, Sekimizu K, Kaito C. Two-spotted cricket as an animal infection model of human pathogenic fungi. Drug Discov Ther 2017; 11:259-266. [PMID: 29081438 DOI: 10.5582/ddt.2017.01052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Invertebrate infection models that can be evaluated at human body temperature are limited. In this study, we utilized the two-spotted cricket, a heat-tolerant insect, as an animal infection model of human pathogenic fungi. Injection of human pathogenic fungi, including Candida albicans, Candida glabrata, and Cryptococcus neoformans killed crickets within 48 h at both 27˚C and 37˚C. The median lethal dose values (LD50 values) of C. albicans and C. glabrata against crickets were decreased at 37˚C compared to that at 27˚C, whereas the LD50 value of C. neoformans was not different between 27˚C and 37˚C. Heat-killed cells of the three different fungi also killed crickets, but the LD50 value of the heat-killed cells was higher than 5-fold that of live fungal cells in the respective species. C. neoformans gene-knockout strains of cna1, gpa1, and pka1, which are required for virulence in mammals, had greater LD50 values than the parent strain in crickets. These findings suggest that the two-spotted cricket is a valuable infection model of human pathogenic fungi that can be used to evaluate fungal virulence at variable temperatures, including 37˚C, and that the killing abilities of C. albicans and C. glabrata against animals are increased at 37˚C.
Collapse
Affiliation(s)
- Yuto Kochi
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | | | | | - Chikara Kaito
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
88
|
The Role of IL-17 in Protection against Mucosal Candida Infections. J Fungi (Basel) 2017; 3:jof3040052. [PMID: 29371568 PMCID: PMC5753154 DOI: 10.3390/jof3040052] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022] Open
Abstract
Interleukin-17 (IL-17) is a proinflammatory cytokine produced by adaptive CD4+ T helper cells and innate lymphocytes, such as γδ-T cells and TCRβ+ "natural" Th17 cells. IL-17 activates signaling through the IL-17 receptor, which induces other proinflammatory cytokines, antimicrobial peptides and neutrophil chemokines that are important for antifungal activity. The importance of IL-17 in protective antifungal immunity is evident in mice and humans, where various genetic defects related to the IL-17-signaling pathway render them highly susceptible to forms of candidiasis such oropharyngeal candidiasis (OPC) or more broadly chronic mucocutaneous candidiasis (CMC), both caused mainly by the opportunistic fungal pathogen Candida albicans. OPC is common in infants and the elderly, HIV/AIDS and patients receiving chemotherapy and/or radiotherapy for head and neck cancers. This review focuses on the role of IL-17 in protection against candidiasis, and includes a brief discussion of non-Candida albicans fungal infections, as well as how therapeutic interventions blocking IL-17-related components can affect antifungal immunity.
Collapse
|
89
|
Domínguez-Andrés J, Arts RJW, ter Horst R, Gresnigt MS, Smeekens SP, Ratter JM, Lachmandas E, Boutens L, van de Veerdonk FL, Joosten LAB, Notebaart RA, Ardavín C, Netea MG. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis. PLoS Pathog 2017; 13:e1006632. [PMID: 28922415 PMCID: PMC5619837 DOI: 10.1371/journal.ppat.1006632] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/28/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases. Fungal infections are a major health concern for immunocompromised individuals due to the lack of success of the currently available antifungal therapies. Unveiling the metabolic processes involved in the immune function offers a promising opportunity for the development of new therapeutic approaches against these infections. In this report, we describe how changes in monocyte glucose metabolism are crucial for host defense against infections caused by the opportunistic pathogenic yeast Candida albicans. We report how the participation of various metabolic routes, such as glycolysis, oxidative phosphorylation and the pentose phosphate pathway, were differentially required after yeast or hyphal exposure, depending on the cellular energy requirements for each response. The proper control of metabolic reprogramming of immune cells was crucial to afford protection against fungal infections in vivo.
Collapse
Affiliation(s)
- Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/CSIC, Darwin 3, Madrid, Spain
- * E-mail:
| | - Rob J. W. Arts
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Rob ter Horst
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Mark S. Gresnigt
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Sanne P. Smeekens
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Jacqueline M. Ratter
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Ekta Lachmandas
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Lily Boutens
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
| | - Richard A. Notebaart
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Carlos Ardavín
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/CSIC, Darwin 3, Madrid, Spain
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen, the Netherlands
- Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| |
Collapse
|
90
|
The intraspecies diversity of C. albicans triggers qualitatively and temporally distinct host responses that determine the balance between commensalism and pathogenicity. Mucosal Immunol 2017; 10:1335-1350. [PMID: 28176789 DOI: 10.1038/mi.2017.2] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/01/2017] [Indexed: 02/04/2023]
Abstract
The host immune status is critical for preventing opportunistic infections with Candida albicans. Whether the natural fungal diversity that exists between C. albicans isolates also influences disease development remains unclear. Here, we used an experimental model of oral infection to probe the host response to diverse C. albicans isolates in vivo and found dramatic differences in their ability to persist in the oral mucosa, which inversely correlated with the degree and kinetics of immune activation in the host. Strikingly, the requirement of interleukin (IL)-17 signaling for fungal control was conserved between isolates, including isolates with delayed induction of IL-17. This underscores the relevance of IL-17 immunity in mucosal defense against C. albicans. In contrast, the accumulation of neutrophils and induction of inflammation in the infected tissue was strictly strain dependent. The dichotomy of the inflammatory neutrophil response was linked to the capacity of fungal strains to cause cellular damage and release of alarmins from the epithelium. The epithelium thus translates differences in the fungus into qualitatively distinct host responses. Altogether, this study provides a comprehensive understanding of the antifungal response in the oral mucosa and demonstrates the relevance of evaluating intraspecies differences for the outcome of fungal-host interactions in vivo.
Collapse
|
91
|
Control of Mucosal Candidiasis in the Zebrafish Swim Bladder Depends on Neutrophils That Block Filament Invasion and Drive Extracellular-Trap Production. Infect Immun 2017; 85:IAI.00276-17. [PMID: 28607100 DOI: 10.1128/iai.00276-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is a ubiquitous mucosal commensal that is normally prevented from causing acute or chronic invasive disease. Neutrophils contribute to protection in oral infection but exacerbate vulvovaginal candidiasis. To dissect the role of neutrophils during mucosal candidiasis, we took advantage of a new, transparent zebrafish swim bladder infection model. Intravital microscopic tracking of individual animals revealed that the blocking of neutrophil recruitment leads to rapid mortality in this model through faster disease progression. Conversely, artificial recruitment of neutrophils during early infection reduces disease pressure. Noninvasive longitudinal tracking showed that mortality is a consequence of C. albicans breaching the epithelial barrier and invading surrounding tissues. Accordingly, we found that a hyperfilamentous C. albicans strain breaches the epithelial barrier more frequently and causes mortality in immunocompetent zebrafish. A lack of neutrophils at the infection site is associated with less fungus-associated extracellular DNA and less damage to fungal filaments, suggesting that neutrophil extracellular traps help to protect the epithelial barrier from C. albicans breach. We propose a homeostatic model where C. albicans disease pressure is balanced by neutrophil-mediated damage of fungi, maintaining this organism as a commensal while minimizing the risk of damage to host tissue. The unequaled ability to dissect infection dynamics at a high spatiotemporal resolution makes this zebrafish model a unique tool for understanding mucosal host-pathogen interactions.
Collapse
|
92
|
Abstract
Pathogenic fungi cause a wide range of syndromes in immune-competent and immune-compromised individuals, with life-threatening disease primarily seen in humans with HIV/AIDS and in patients receiving immunosuppressive therapies for cancer, autoimmunity, and end-organ failure. The discovery that specific primary immune deficiencies manifest with fungal infections and the development of animal models of mucosal and invasive mycoses have facilitated insight into fungus-specific recognition, signaling, effector pathways, and adaptive immune responses. Progress in deciphering the molecular and cellular basis of immunity against fungi is guiding preclinical studies into vaccine and immune reconstitution strategies for vulnerable patient groups. Furthermore, recent work has begun to address the role of endogenous fungal communities in human health and disease. In this review, we summarize a contemporary understanding of protective immunity against fungi.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Iliyan D Iliev
- Jill Roberts Institute for Research in IBD, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|