51
|
de Vries E, Guo H, Du W, Liu M, van Kuppeveld FJM, de Haan CAM. Quantification of Receptor Association, Dissociation, and NA-Dependent Motility of Influenza A Particles by Biolayer Interferometry. Methods Mol Biol 2022; 2556:123-140. [PMID: 36175631 DOI: 10.1007/978-1-0716-2635-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We describe a method for real-time analysis and quantification of influenza A virus (IAV)-receptor interactions by biolayer interferometry (BLI). Biotinylated synthetic sialoglycans or sialoglycoproteins (biotinylated or Fc-tagged) were immobilized on the tip of biosensors (coated with streptavidin or protein A) that were subsequently dipped into IAV particle solutions in 96-well plates. Association and/or dissociation of IAV particles was recorded in consecutive steps in buffers of choice. From the association and dissociation curves, parameters can be derived that describe IAV particle-receptor interactions in absence or presence of neuraminidase activity. Overall, the method provides a quantitative description of the hemagglutinin-neuraminidase balance that determines the interaction kinetics of IAV with specific sialoglycan receptors.
Collapse
Affiliation(s)
- Erik de Vries
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Hongbo Guo
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Jiangsu, People's Republic of China
| | - Wenjuan Du
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mengying Liu
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A M de Haan
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
52
|
Abstract
The balance in the functions of hemagglutinin (HA) and neuraminidase (NA) plays an important role in influenza virus genesis. However, whether and how N2 neuraminidase-specific antibodies may affect the attributes of HA remains to be investigated. In this study, we examined the presence of amino acid mutations in the HA of mutants selected by incubation with N2-specific monoclonal antibodies (MAbs) and compared the HA properties to those of the wild-type (WT) A/Chicken/Jiangsu/XXM/1999 (XXM) H9N2 virus. The higher NA inhibition (NI) ability of N2-specific MAbs was found to result in greater proportions of mutations in the HA head. The HA mutations affected the thermal stability, switched the binding preferences from α2,6-linked sialic acid receptor to α2,3-linked sialic acid receptor, and promoted viral growth in mouse lungs. These mutations also caused significant HA antigenic drift as they decreased hemagglutination inhibition (HI) titers. The evolutionary analysis also proved that some HA mutations were highly correlated with NA antibody pressure. Our data demonstrate that HA mutations caused by NA-specific antibodies affect HA properties and may contribute to HA evolution. IMPORTANCE HA binds with the sialic acid receptor on the host cell and initiates the infection mode of influenza virus. NA cleaves the connection between receptor and HA of newborn virus at the end of viral production. The HA-NA functional balance is crucial for viral production and interspecies transmission. Here, we identified mutations in the HA head of H9N2 virus caused by NA antibody pressure. These HA mutations changed the thermal stability and switched the receptor-binding preference of the mutant virus. The HI results indicated that these mutations resulted in significant antigenic drift in mutant HA. The evolutionary analysis also shows that some mutations in HA of H9N2 virus may be caused by NA antibody pressure and may correlate with the increase in H9N2 infections in humans. Our results provide new evidence for HA-NA balance and an effect of NA antibody pressure on HA evolution.
Collapse
|
53
|
Hamming PH, Huskens J. Streptavidin Coverage on Biotinylated Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58114-58123. [PMID: 34813287 PMCID: PMC8662640 DOI: 10.1021/acsami.1c16446] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Biosensors and other biological platform technologies require the functionalization of their surface with receptors to enhance affinity and selectivity. Control over the functionalization density is required to tune the platform's properties. Streptavidin (SAv) monolayers are widely used to immobilize biotinylated proteins, receptors, and DNA. The SAv density on a surface can be varied easily, but the predictability is dependent on the method by which the SAv is immobilized. In this study we show a method to quantitatively predict the SAv coverage on biotinylated surfaces. The method is validated by measuring the SAv coverage on supported lipid bilayers with a range of biotin contents and two different main phase lipids and by using quartz crystal microbalance and localized surface plasmon resonance. We explore a predictive model of the biotin-dependent SAv coverage without any fit parameters. Model and data allow to predict the SAv coverage based on the biotin coverage, in both the low- and high-density regimes. This is of special importance in applications with multivalent binding where control over surface receptor density is required, but a direct measurement is not possible.
Collapse
|
54
|
Creytens S, Pascha MN, Ballegeer M, Saelens X, de Haan CAM. Influenza Neuraminidase Characteristics and Potential as a Vaccine Target. Front Immunol 2021; 12:786617. [PMID: 34868073 PMCID: PMC8635103 DOI: 10.3389/fimmu.2021.786617] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022] Open
Abstract
Neuraminidase of influenza A and B viruses plays a critical role in the virus life cycle and is an important target of the host immune system. Here, we highlight the current understanding of influenza neuraminidase structure, function, antigenicity, immunogenicity, and immune protective potential. Neuraminidase inhibiting antibodies have been recognized as correlates of protection against disease caused by natural or experimental influenza A virus infection in humans. In the past years, we have witnessed an increasing interest in the use of influenza neuraminidase to improve the protective potential of currently used influenza vaccines. A number of well-characterized influenza neuraminidase-specific monoclonal antibodies have been described recently, most of which can protect in experimental challenge models by inhibiting the neuraminidase activity or by Fc receptor-dependent mechanisms. The relative instability of the neuraminidase poses a challenge for protein-based antigen design. We critically review the different solutions that have been proposed to solve this problem, ranging from the inclusion of stabilizing heterologous tetramerizing zippers to the introduction of inter-protomer stabilizing mutations. Computationally engineered neuraminidase antigens have been generated that offer broad, within subtype protection in animal challenge models. We also provide an overview of modern vaccine technology platforms that are compatible with the induction of robust neuraminidase-specific immune responses. In the near future, we will likely see the implementation of influenza vaccines that confront the influenza virus with a double punch: targeting both the hemagglutinin and the neuraminidase.
Collapse
MESH Headings
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antigenic Drift and Shift
- Antigens, Viral/immunology
- Antigens, Viral/ultrastructure
- Catalytic Domain/genetics
- Catalytic Domain/immunology
- Cross Protection
- Evolution, Molecular
- Humans
- Immunogenicity, Vaccine
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Alphainfluenzavirus/enzymology
- Alphainfluenzavirus/genetics
- Alphainfluenzavirus/immunology
- Betainfluenzavirus/enzymology
- Betainfluenzavirus/genetics
- Betainfluenzavirus/immunology
- Mutation
- Nanoparticles
- Neuraminidase/administration & dosage
- Neuraminidase/genetics
- Neuraminidase/immunology
- Neuraminidase/ultrastructure
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/ultrastructure
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/ultrastructure
Collapse
Affiliation(s)
- Sarah Creytens
- Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Mirte N. Pascha
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Marlies Ballegeer
- Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Cornelis A. M. de Haan
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
55
|
Du W, de Vries E, van Kuppeveld FJM, Matrosovich M, de Haan CAM. Second sialic acid-binding site of influenza A virus neuraminidase: binding receptors for efficient release. FEBS J 2021; 288:5598-5612. [PMID: 33314755 PMCID: PMC8518505 DOI: 10.1111/febs.15668] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
Influenza A viruses (IAVs) are a major cause of human respiratory tract infections and cause significant disease and mortality. Human IAVs originate from animal viruses that breached the host species barrier. IAV particles contain sialoglycan receptor-binding hemagglutinin (HA) and receptor-destroying neuraminidase (NA) in their envelope. When IAV crosses the species barrier, the functional balance between HA and NA needs to be adjusted to the sialoglycan repertoire of the novel host species. Relatively little is known about the role of NA in host adaptation in contrast to the extensively studied HA. NA prevents virion aggregation and facilitates release of (newly assembled) virions from cell surfaces and from decoy receptors abundantly present in mucus and cell glycocalyx. In addition to a highly conserved catalytic site, NA carries a second sialic acid-binding site (2SBS). The 2SBS preferentially binds α2,3-linked sialic acids and enhances activity of the neighboring catalytic site by bringing/keeping multivalent substrates in close contact with this site. In this way, the 2SBS contributes to the HA-NA balance of virus particles and affects virus replication. The 2SBS is highly conserved in all NA subtypes of avian IAVs, with some notable exceptions associated with changes in the receptor-binding specificity of HA and host tropism. Conservation of the 2SBS is invariably lost in human (pandemic) viruses and in several other viruses adapted to mammalian host species. Preservation or loss of the 2SBS is likely to be an important factor of the viral host range.
Collapse
Affiliation(s)
- Wenjuan Du
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Erik de Vries
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Frank J. M. van Kuppeveld
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | | | - Cornelis A. M. de Haan
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| |
Collapse
|
56
|
Bally M, Block S, Höök F, Larson G, Parveen N, Rydell GE. Physicochemical tools for studying virus interactions with targeted cell membranes in a molecular and spatiotemporally resolved context. Anal Bioanal Chem 2021; 413:7157-7178. [PMID: 34490501 PMCID: PMC8421089 DOI: 10.1007/s00216-021-03510-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
The objective of this critical review is to provide an overview of how emerging bioanalytical techniques are expanding our understanding of the complex physicochemical nature of virus interactions with host cell surfaces. Herein, selected model viruses representing both non-enveloped (simian virus 40 and human norovirus) and enveloped (influenza A virus, human herpes simplex virus, and human immunodeficiency virus type 1) viruses are highlighted. The technologies covered utilize a wide range of cell membrane mimics, from supported lipid bilayers (SLBs) containing a single purified host membrane component to SLBs derived from the plasma membrane of a target cell, which can be compared with live-cell experiments to better understand the role of individual interaction pairs in virus attachment and entry. These platforms are used to quantify binding strengths, residence times, diffusion characteristics, and binding kinetics down to the single virus particle and single receptor, and even to provide assessments of multivalent interactions. The technologies covered herein are surface plasmon resonance (SPR), quartz crystal microbalance with dissipation (QCM-D), dynamic force spectroscopy (DFS), total internal reflection fluorescence (TIRF) microscopy combined with equilibrium fluctuation analysis (EFA) and single particle tracking (SPT), and finally confocal microscopy using multi-labeling techniques to visualize entry of individual virus particles in live cells. Considering the growing scientific and societal needs for untangling, and interfering with, the complex mechanisms of virus binding and entry, we hope that this review will stimulate the community to implement these emerging tools and strategies in conjunction with more traditional methods. The gained knowledge will not only contribute to a better understanding of the virus biology, but may also facilitate the design of effective inhibitors to block virus entry.
Collapse
Affiliation(s)
- Marta Bally
- Department of Clinical Microbiology & Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Stephan Block
- Department of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, 413 45, Gothenburg, Sweden.
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Gustaf E Rydell
- Department of Infectious Diseases, Sahlgrenska Academy at the University of Gothenburg, 413 46, Gothenburg, Sweden
| |
Collapse
|
57
|
Zaree P, Torano JS, de Haan CAM, Scheltma RA, Barendregt A, Thijssen V, Yu G, Flesch F, Pieters RJ. The assessment of Pseudomonas aeruginosa lectin LecA binding characteristics of divalent galactosides using multiple techniques. Glycobiology 2021; 31:1490-1499. [PMID: 34255029 PMCID: PMC8684484 DOI: 10.1093/glycob/cwab074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 11/14/2022] Open
Abstract
Pseudomonas aeruginosa is a widespread opportunistic pathogen that is capable of colonizing various human tissues and is resistant to many antibiotics. LecA is a galactose binding tetrameric lectin involved in adhesion, infection and biofilm formation. This study reports on the binding characteristics of mono- and divalent (chelating) ligands to LecA using different techniques. These techniques include Affinity Capillary Electrophoresis (ACE), Bio Layer Interferometry (BLI), Native Mass Spectrometry and a Thermal Shift Assay. Aspects of focus include: affinity, selectivity, binding kinetics and residence time. The affinity of a divalent ligand was determined to be in the low nanomolar range for all of the used techniques and with a ligand residence time of approximately 7 hours, while no strong binding was seen to related lectin tetramers. Each of the used techniques provides a unique and complementary insight into the chelation based binding mode of the divalent ligand to the LecA tetramer.
Collapse
Affiliation(s)
- Pouya Zaree
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Javier Sastre Torano
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A M de Haan
- Section Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Richard A Scheltma
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, The Netherlands.,Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, The Netherlands.,Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Vito Thijssen
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Guangyun Yu
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Frits Flesch
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Roland J Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
58
|
Nason R, Büll C, Konstantinidi A, Sun L, Ye Z, Halim A, Du W, Sørensen DM, Durbesson F, Furukawa S, Mandel U, Joshi HJ, Dworkin LA, Hansen L, David L, Iverson TM, Bensing BA, Sullam PM, Varki A, Vries ED, de Haan CAM, Vincentelli R, Henrissat B, Vakhrushev SY, Clausen H, Narimatsu Y. Display of the human mucinome with defined O-glycans by gene engineered cells. Nat Commun 2021; 12:4070. [PMID: 34210959 PMCID: PMC8249670 DOI: 10.1038/s41467-021-24366-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
Mucins are a large family of heavily O-glycosylated proteins that cover all mucosal surfaces and constitute the major macromolecules in most body fluids. Mucins are primarily defined by their variable tandem repeat (TR) domains that are densely decorated with different O-glycan structures in distinct patterns, and these arguably convey much of the informational content of mucins. Here, we develop a cell-based platform for the display and production of human TR O-glycodomains (~200 amino acids) with tunable structures and patterns of O-glycans using membrane-bound and secreted reporters expressed in glycoengineered HEK293 cells. Availability of defined mucin TR O-glycodomains advances experimental studies into the versatile role of mucins at the interface with pathogenic microorganisms and the microbiome, and sparks new strategies for molecular dissection of specific roles of adhesins, glycoside hydrolases, glycopeptidases, viruses and other interactions with mucin TRs as highlighted by examples.
Collapse
Affiliation(s)
- Rebecca Nason
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lingbo Sun
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wenjuan Du
- Section Virology, Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, CL, Utrecht, the Netherlands
| | - Daniel M Sørensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabien Durbesson
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Sanae Furukawa
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leo Alexander Dworkin
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leonor David
- Institute of Molecular Pathology and Immunology of the University of Porto/I3S, Porto, Portugal.,Medical Faculty of the University of Porto, Porto, Portugal
| | - Tina M Iverson
- Departments of Pharmacology and Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Barbara A Bensing
- Department of Medicine, The San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, CA, USA
| | - Paul M Sullam
- Department of Medicine, The San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, CA, USA
| | - Ajit Varki
- The Glycobiology Research and Training Center, and the Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Erik de Vries
- Section Virology, Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, CL, Utrecht, the Netherlands
| | - Cornelis A M de Haan
- Section Virology, Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, CL, Utrecht, the Netherlands
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Bernard Henrissat
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark. .,GlycoDisplay ApS, Copenhagen, Denmark.
| |
Collapse
|
59
|
Yu Y, Wu M, Cui X, Xu F, Wen F, Pan L, Li S, Sun H, Zhu X, Lin J, Feng Y, Li M, Liu Y, Yuan S, Liao M, Sun H. Pathogenicity and transmissibility of current H3N2 swine influenza virus in Southern China: A zoonotic potential. Transbound Emerg Dis 2021; 69:2052-2064. [PMID: 34132051 DOI: 10.1111/tbed.14190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 11/27/2022]
Abstract
Swine are considered as 'mixing vessels' of influenza A viruses and play an important role in the generation of novel influenza pandemics. In this study, we described that the H3N2 swine influenza (swH3N2) viruses currently circulating in pigs in Guangdong province carried six internal genes from 2009 pandemic H1N1 virus (pmd09), and their antigenicity was obviously different from that of current human H3N2 influenza viruses or recommended vaccine strains (A/Guangdong/1194/2019, A/Hong Kong/4801/2014). These swH3N2 viruses preferentially bonded to the human-like receptors, and efficiently replicated in human, canine and swine cells. In addition, the virus replicated in turbinate and trachea of guinea pigs, and efficiently transmitted among guinea pigs, and virus shedding last for 6 days post-infection (dpi). The virus replicated in the respiratory tract of pigs, effectively transmitted among pigs, and virus shedding last until 9 dpi. Taken together, these current swH3N2 viruses might have the zoonotic potential. Strengthening surveillance and monitoring the pathogenicity of such swH3N2 viruses are urgently needed.
Collapse
Affiliation(s)
- Yanan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Meihua Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Xinxin Cui
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Fengxiang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Liangqi Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Shuo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Huapeng Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Xuhui Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Jiate Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Yaling Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Mingliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Yang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Shaohua Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| |
Collapse
|
60
|
Ziebert F, Kulić IM. How Influenza's Spike Motor Works. PHYSICAL REVIEW LETTERS 2021; 126:218101. [PMID: 34114881 DOI: 10.1103/physrevlett.126.218101] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
While often believed to be a passive agent that merely exploits its host's metabolism, the influenza virus has recently been shown to actively move across glycan-coated surfaces. This form of enzymatically driven surface motility is currently not well understood and has been loosely linked to burnt-bridge Brownian ratchet mechanisms. Starting from known properties of influenza's spike proteins, we develop a physical model that quantitatively describes the observed motility. It predicts a collectively emerging dynamics of spike proteins and surface-bound ligands that combined with the virus' geometry give rise to a self-organized rolling propulsion. We show that in contrast to a Brownian ratchet, the rotary spike drive is not fluctuation driven but operates optimally as a macroscopic engine in the deterministic regime. The mechanism also applies to relatives of influenza and to man-made analogs like DNA monowheels and should give guidelines for their optimization.
Collapse
Affiliation(s)
- Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany and BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Igor M Kulić
- Institut Charles Sadron UPR22-CNRS, 67034 Strasbourg, France and Institute Theory of Polymers, Leibniz-Institute of Polymer Research, D-01069 Dresden, Germany
| |
Collapse
|
61
|
Overeem NJ, Hamming PH(E, Tieke M, van der Vries E, Huskens J. Multivalent Affinity Profiling: Direct Visualization of the Superselective Binding of Influenza Viruses. ACS NANO 2021; 15:8525-8536. [PMID: 33978406 PMCID: PMC8158855 DOI: 10.1021/acsnano.1c00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/05/2021] [Indexed: 05/23/2023]
Abstract
The influenza A virus (IAV) interacts with the glycocalyx of host cells through its surface proteins hemagglutinin (HA) and neuraminidase (NA). Quantitative biophysical measurements of these interactions may help to understand these interactions at the molecular level with the long-term aim to predict influenza infectivity and answer other biological questions. We developed a method, called multivalent affinity profiling (MAP), to measure virus binding profiles on receptor density gradients to determine the threshold receptor density, which is a quantitative measure of virus avidity toward a receptor. Here, we show that imaging of IAVs on receptor density gradients allows the direct visualization and efficient assessment of their superselective binding. We show how the multivalent binding of IAVs can be quantitatively assessed using MAP if the receptor density gradients are prepared around the threshold receptor density without crowding at the higher densities. The threshold receptor density increases strongly with increasing flow rate, showing that the superselective binding of IAV is influenced by shear force. This method of visualization and quantitative assessment of superselective binding allows not only comparative studies of IAV-receptor interactions, but also more fundamental studies of how superselectivity arises and is influenced by experimental conditions.
Collapse
Affiliation(s)
- Nico J. Overeem
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - P. H. (Erik) Hamming
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Malte Tieke
- Division
of Virology, Department of Infectious Diseases and Immunology, Faculty
of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Erhard van der Vries
- Division
of Virology, Department of Infectious Diseases and Immunology, Faculty
of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Royal
GD, Arnsbergstraat 7, 7418 EZ, Deventer, The Netherlands
- Department
of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jurriaan Huskens
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
62
|
Analysis of the Evolution of Pandemic Influenza A(H1N1) Virus Neuraminidase Reveals Entanglement of Different Phenotypic Characteristics. mBio 2021; 12:mBio.00287-21. [PMID: 33975931 PMCID: PMC8262965 DOI: 10.1128/mbio.00287-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus (IAV) neuraminidase (NA) is essential for virion release from cells and decoy receptors and an important target of antiviral drugs and antibodies. Adaptation to a new host sialome and escape from the host immune system are forces driving the selection of mutations in the NA gene. Phylogenetic analysis shows that until 2015, 16 amino acid substitutions in NA became fixed in the virus population after introduction in the human population of the pandemic IAV H1N1 (H1N1pdm09) in 2009. The accumulative effect of these substitutions, in the order in which they appeared, was analyzed using recombinant proteins and viruses in combination with different functional assays. The results indicate that NA activity did not evolve to a single optimum but rather fluctuated within a certain bandwidth. Furthermore, antigenic and enzymatic properties of NA were intertwined, with several residues affecting multiple properties. For example, the substitution K432E in the second sialic acid binding site, next to the catalytic site, was shown to affect catalytic activity, substrate specificity, and the pH optimum for maximum activity. This substitution also altered antigenicity of NA, which may explain its selection. We propose that the entanglement of NA phenotypes may be an important determining factor in the evolution of NA.IMPORTANCE Since its emergence in 2009, the pandemic H1N1 influenza A virus (IAV) has caused significant disease and mortality in humans. IAVs contain two envelope glycoproteins, the receptor-binding hemagglutinin (HA) and the receptor-destroying neuraminidase (NA). NA is essential for virion release from cells and decoy receptors, is an important target of antiviral drugs, and is increasingly being recognized as an important vaccine antigen. Not much is known, however, about the evolution of this protein upon the emergence of the novel pandemic H1N1 virus, with respect to its enzymatic activity and antigenicity. By reconstructing the evolutionary path of NA, we show that antigenic and enzymatic properties of NA are intertwined, with several residues affecting multiple properties. Understanding the entanglement of NA phenotypes will lead to better comprehension of IAV evolution and may help the development of NA-based vaccines.
Collapse
|
63
|
Wallace LE, Liu M, van Kuppeveld FJM, de Vries E, de Haan CAM. Respiratory mucus as a virus-host range determinant. Trends Microbiol 2021; 29:983-992. [PMID: 33875348 PMCID: PMC8503944 DOI: 10.1016/j.tim.2021.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Efficient penetration of the mucus layer is needed for respiratory viruses to avoid mucociliary clearance prior to infection. Many respiratory viruses bind to glycans on the heavily glycosylated mucins that give mucus its gel-like characteristics. Influenza viruses, some paramyxoviruses, and coronaviruses avoid becoming trapped in the mucus by releasing themselves by means of their envelope-embedded enzymes that destroy glycan receptors. For efficient infection, receptor binding and destruction need to be in balance with the host receptor repertoire. Establishment in a novel host species requires resetting of the balance to adapt to the different glycan repertoire encountered. Growing understanding of species-specific mucosal glycosylation patterns and the dynamic interaction with respiratory viruses identifies the mucus layer as a major host-range determinant and barrier for zoonotic transfer.
Collapse
Affiliation(s)
- Louisa E Wallace
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Mengying Liu
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Erik de Vries
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.
| | - Cornelis A M de Haan
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.
| |
Collapse
|
64
|
Sempere Borau M, Stertz S. Entry of influenza A virus into host cells - recent progress and remaining challenges. Curr Opin Virol 2021; 48:23-29. [PMID: 33838498 DOI: 10.1016/j.coviro.2021.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Influenza A viruses (IAV) are a major burden for human health and thus the topic of intense research efforts. The entry of IAV into host cells is of particular interest as early infection steps are the ideal target for intervention strategies. Here, we review recent key findings in the field of IAV entry. Specifically, we discuss the identification of novel entry receptors, the emerging role of the viral neuraminidase in entry, as well as recent progress from structural studies on the viral hemagglutinin during the fusion process and the viral matrix protein involved in virus uncoating. We also highlight remaining gaps in our understanding of IAV entry and point out important questions for ongoing research efforts.
Collapse
Affiliation(s)
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
65
|
Overeem NJ, van der Vries E, Huskens J. A Dynamic, Supramolecular View on the Multivalent Interaction between Influenza Virus and Host Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007214. [PMID: 33682339 DOI: 10.1002/smll.202007214] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Understanding how influenza viruses traverse the mucus and recognize host cells is critical for evaluating their zoonotic potential, and for prevention and treatment of the disease. The surface of the influenza A virus is covered with the receptor-binding protein hemagglutinin and the receptor-cleaving enzyme neuraminidase, which jointly control the interactions between the virus and the host cell. These proteins are organized in closely spaced trimers and tetramers to facilitate multivalent interactions with sialic acid-terminated glycans. This review shows that the individually weak multivalent interactions of influenza viruses allow superselective binding, virus-induced recruitment of receptors, and the formation of dynamic complexes that facilitate molecular walking. Techniques to measure the avidity and receptor specificity of influenza viruses are reviewed, and the pivotal role of multivalent interactions with their emergent properties in crossing the mucus and entering host cells is discussed. A model is proposed for the initiation of cell entry through virus-induced receptor clustering. The multivalent interactions of influenza viruses are maintained in a dynamic regime by a functional balance between binding and cleaving.
Collapse
Affiliation(s)
- Nico J Overeem
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Erhard van der Vries
- Royal GD, Arnsbergstraat 7, Deventer, 7418 EZ, The Netherlands
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Jurriaan Huskens
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
66
|
Ben Hamed S, Elargoubi A, Harrabi M, Srihi H, Souiai O, Mastouri M, Almalki MA, Gharbi J, Ben M’hadheb M. Phylogenetic analysis of the neuraminidase segment gene of Influenza A/H1N1 strains isolated from Monastir Region (Tunisia) during the 2017-2018 outbreak. Biologia (Bratisl) 2021; 76:1797-1806. [PMID: 33727729 PMCID: PMC7952816 DOI: 10.1007/s11756-021-00723-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Influenza A/H1N1 is widely considered to be a very evolutionary virus causing major public health problems. Since the pandemic of 2009, there has been a rapid rise in human Influenza virus characterization. However, little data is available in Tunisia regarding its genetic evolution. In light of this fact, our paper aim is to genetically characterize the Neuraminidase, known as the target of antiviral inhibitors, in Tunisian isolates circulating in Monastir region during 2017-2018. In total of 31 positive Influenza A/H1N1 detected by multiplex real-time PCR, RT-PCR of neuraminidase was performed. Among the 31 positive samples, 7 samples representing fatal and most severe cases were conducted for sequencing and genetic analysis. The results thus obtained showed genetic evolution of the A/H1N1 neuraminidase between 2009 and 2010 and 2018-2019 outbreaks. All Tunisian isolates were genetically related to the recommended vaccine strain with a specific evolution. Moreover, the phylogenetic analysis demonstrated that France and especially Italian strains were the major related strains. Interestingly, our results revealed a specific cluster of Tunisian isolates where two intragroup were evolved in correlation with the severity and the fatalities cases. From the outcome of our investigation, this study confirms the genetic evolution of the Influenza A virus circulating in Tunisia and gives a preliminary analysis for a better comprehension of new emerging Tunisian strain's virulence and thus, a more appropriate monitoring of Influenza virus A/H1N1 during each round of outbreaks. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11756-021-00723-y.
Collapse
Affiliation(s)
- Sabrine Ben Hamed
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
| | - Aida Elargoubi
- Laboratoire de Recherche LR99ES27 “Maladies Transmissibles & Substances Biologiquement Actives”, Faculté de Pharmacie de Monastir, Avenue Avicenne, Monastir, Tunisia
| | - Myriam Harrabi
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
- Laboratoroire de “BioInformatique, bioMathematique & bioStatistique” (BIMS), Institut Pasteur de Tunis, BP 74, 13, place Pasteur Tunis, 1002 Tunis, Tunisia
| | - Haythem Srihi
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
| | - Oussema Souiai
- Laboratoroire de “BioInformatique, bioMathematique & bioStatistique” (BIMS), Institut Pasteur de Tunis, BP 74, 13, place Pasteur Tunis, 1002 Tunis, Tunisia
| | - Maha Mastouri
- Laboratoire de Recherche LR99ES27 “Maladies Transmissibles & Substances Biologiquement Actives”, Faculté de Pharmacie de Monastir, Avenue Avicenne, Monastir, Tunisia
| | - Mohammed Awadh Almalki
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982 Kingdom of Saudi Arabia
| | - Jawhar Gharbi
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982 Kingdom of Saudi Arabia
| | - Manel Ben M’hadheb
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
| |
Collapse
|
67
|
Roosenhoff R, Schutten M, Reed V, Clinch B, van der Linden A, Fouchier RAM, Fraaij PLA. Secondary substitutions in the hemagglutinin and neuraminidase genes associated with neuraminidase inhibitor resistance are rare in the Influenza Resistance Information Study (IRIS). Antiviral Res 2021; 189:105060. [PMID: 33713731 DOI: 10.1016/j.antiviral.2021.105060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/16/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Amino acid substitutions in influenza virus neuraminidase (NA) that cause resistance to neuraminidase inhibitors (NAI) generally result in virus attenuation. However, influenza viruses may acquire secondary substitutions in the NA and hemagglutinin (HA) proteins that can restore viral fitness. To assess to which extent this happens, the emergence of NAI resistance substitutions and secondary - potentially compensatory - substitutions was quantified in influenza viruses of immunocompetent individuals included in the Influenza Resistance Information Study (IRIS; NCT00884117). Known resistance substitutions were detected by mutation specific RT-PCR in viruses of 57 of 1803 (3.2%) oseltamivir-treated individuals, including 39 individuals infected with A/H1N1pdm09 [H275Y] virus and 18 with A/H3N2 [R292K] virus. A total of fifteen and ten other amino acid substitutions were acquired in HA and NA respectively, of A/H1N1pdm09, A/H3N2 and influenza B viruses upon treatment with oseltamivir but none of these was associated with resistance to oseltamivir. All cultured viruses with the known resistance substitutions H275Y or R292K showed reduced susceptibility to oseltamivir in the NA-star assay. Upon next-generation sequencing, the vast majority of NAI resistant A/H1N1pdm09 and A/H3N2 viruses had no resistance-associated secondary substitutions at high frequency. Only in two A/H1N1pdm09 [H275Y] viruses, the potentially compensatory secondary substitutions HA-D52N and NA-R152K were detected. We conclude that the emergence of secondary substitutions that may restore viral fitness upon the emergence of known influenza virus NAI resistance substitutions was a rare event in this immunocompetent population.
Collapse
Affiliation(s)
- Rueshandra Roosenhoff
- Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GE, the Netherlands
| | - Martin Schutten
- Clinical Virology and Diagnostics, 1817HL, Alkmaar, the Netherlands
| | | | - Barry Clinch
- Roche Products Ltd, Welwyn Garden City, AL7 1TW, United Kingdom
| | - Anne van der Linden
- Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GE, the Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GE, the Netherlands
| | - Pieter L A Fraaij
- Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GE, the Netherlands; Department of Pediatrics, Subdivision Infectious Diseases and Immunology, Erasmus Medical Center - Sophia, Rotterdam, the Netherlands.
| |
Collapse
|
68
|
Trexler M, Brusatori M, Auner G. Avidin-biotin complex-based capture coating platform for universal Influenza virus immobilization and characterization. PLoS One 2021; 16:e0247429. [PMID: 33635877 PMCID: PMC7909696 DOI: 10.1371/journal.pone.0247429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/08/2021] [Indexed: 11/18/2022] Open
Abstract
Influenza virus mutates quickly and unpredictably creating emerging pathogenic strains that are difficult to detect, diagnose, and characterize. Conventional tools to study and characterize virus, such as next generation sequencing, genome amplification (RT-PCR), and serological antibody testing, are not adequately suited to rapidly mutating pathogens like Influenza virus where the success of infection heavily depends on the phenotypic expression of surface glycoproteins. Bridging the gap between genome and pathogenic expression remains a challenge. Using sialic acid as a universal Influenza virus binding receptor, a novel virus avidin-biotin complex-based capture coating was developed and characterized that may be used to create future diagnostic and interrogation platforms for viable whole Influenza virus. First, fluorescent FITC probe studies were used to optimize coating component concentrations. Then atomic force microscopy (AFM) was used to profile the surface characteristics of the novel capture coating, acquire topographical imaging of Influenza particles immobilized by the coating, and calculate the capture efficiency of the coating (over 90%) for all four representative human Influenza virus strains tested.
Collapse
Affiliation(s)
- Micaela Trexler
- Smart Sensors and Integrated Microsystems, Wayne State University, Detroit, Michigan, United States of America
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- * E-mail:
| | - Michelle Brusatori
- Smart Sensors and Integrated Microsystems, Wayne State University, Detroit, Michigan, United States of America
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- Michael and Marian Illitch Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Gregory Auner
- Smart Sensors and Integrated Microsystems, Wayne State University, Detroit, Michigan, United States of America
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- Michael and Marian Illitch Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
69
|
Yin H, Jiang N, Shi W, Chi X, Liu S, Chen JL, Wang S. Development and Effects of Influenza Antiviral Drugs. Molecules 2021; 26:molecules26040810. [PMID: 33557246 PMCID: PMC7913928 DOI: 10.3390/molecules26040810] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza virus is a highly contagious zoonotic respiratory disease that causes seasonal outbreaks each year and unpredictable pandemics occasionally with high morbidity and mortality rates, posing a great threat to public health worldwide. Besides the limited effect of vaccines, the problem is exacerbated by the lack of drugs with strong antiviral activity against all flu strains. Currently, there are two classes of antiviral drugs available that are chemosynthetic and approved against influenza A virus for prophylactic and therapeutic treatment, but the appearance of drug-resistant virus strains is a serious issue that strikes at the core of influenza control. There is therefore an urgent need to develop new antiviral drugs. Many reports have shown that the development of novel bioactive plant extracts and microbial extracts has significant advantages in influenza treatment. This paper comprehensively reviews the development and effects of chemosynthetic drugs, plant extracts, and microbial extracts with influenza antiviral activity, hoping to provide some references for novel antiviral drug design and promising alternative candidates for further anti-influenza drug development.
Collapse
|
70
|
Development and application of reverse genetic technology for the influenza virus. Virus Genes 2021; 57:151-163. [PMID: 33528730 PMCID: PMC7851324 DOI: 10.1007/s11262-020-01822-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/28/2020] [Indexed: 12/28/2022]
Abstract
Influenza virus is a common virus in people's daily lives, and it has certain infectivity in humans and animals. Influenza viruses have the characteristics of a high mutation rate and wide distribution. Reverse genetic technology is primarily used to modify viruses at the DNA level through targeted modification of the virus cDNA. Genetically modified influenza viruses have a unique advantage when researching the transmission and pathogenicity of influenza. With the continuous development of oncolytic viruses in recent years, studies have found that influenza viruses also have certain oncolytic activity. Influenza viruses can specifically recognize tumor cells; activate cytotoxic T cells, NK cells, dendritic cells, etc.; and stimulate the body to produce an immune response, thereby killing tumor cells. This article will review the development and application of influenza virus reverse genetic technology.
Collapse
|
71
|
Cortez V, Schultz-Cherry S. The role of goblet cells in viral pathogenesis. FEBS J 2021; 288:7060-7072. [PMID: 33507606 PMCID: PMC8013445 DOI: 10.1111/febs.15731] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Goblet cells are specialized epithelial cells that are essential to the formation of the mucus barriers in the airways and intestines. Armed with an arsenal of defenses, goblet cells can rapidly respond to infection but must balance this response with maintaining homeostasis. Whereas goblet cell defenses against bacterial and parasitic infections have been characterized, we are just beginning to understand their responses to viral infections. Here, we outline what is known about the enteric and respiratory viruses that target goblet cells, the direct and bystander effects caused by viral infection and how viral interactions with the mucus barrier can alter the course of infection. Together, these factors can play a significant role in driving viral pathogenesis and disease outcomes.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
72
|
Varghese PM, Murugaiah V, Beirag N, Temperton N, Khan HA, Alrokayan SH, Al-Ahdal MN, Nal B, Al-Mohanna FA, Sim RB, Kishore U. C4b Binding Protein Acts as an Innate Immune Effector Against Influenza A Virus. Front Immunol 2021; 11:585361. [PMID: 33488586 PMCID: PMC7820937 DOI: 10.3389/fimmu.2020.585361] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
C4b Binding Protein (C4BP) is a major fluid phase inhibitor of the classical and lectin pathways of the complement system. Complement inhibition is achieved by binding to and restricting the role of activated complement component C4b. C4BP functions as a co-factor for factor I in proteolytic inactivation of both soluble and cell surface-bound C4b, thus restricting the formation of the C3-convertase, C4b2a. C4BP also accelerates the natural decay/dissociation of the C3 convertase. This makes C4BP a prime target for exploitation by pathogens to escape complement attack, as seen in Streptococcus pyogenes or Flavivirus. Here, we examined whether C4BP can act on its own in a complement independent manner, against pathogens. C4BP bound H1N1 and H3N2 subtypes of Influenza A Virus (IAV) most likely via multiple sites in Complement Control Protein (CCP) 1-2, 4-5, and 7-8 domains of its α-chain. In addition, C4BP CCP1-2 bound H3N2 better than H1N1. C4BP bound three IAV envelope proteins: Haemagglutinin (~70 kDa), Neuraminidase (~55 kDa), and Matrix protein 1 (~25kDa). C4BP suppressed H1N1 subtype infection into the lung epithelial cell line, A549, while it promoted infection by H3N2 subtype. C4BP restricted viral entry for H1N1 but had the opposite effect on H3N2, as evident from experiments using pseudo-typed viral particles. C4BP downregulated mRNA levels of pro-inflammatory IFN-α, IL-12, and NFκB in the case of H1N1, while it promoted a pro-inflammatory immune response by upregulating IFN- α, TNF-α, RANTES, and IL-6 in the case of H3N2. We conclude that C4BP differentially modulates the efficacy of IAV entry, and hence, replication in a target cell in a strain-dependent manner, and acts as an entry inhibitor for H1N1. Thus, CCP containing complement proteins such as factor H and C4BP may have additional defense roles against IAV that do not rely on the regulation of complement activation.
Collapse
Affiliation(s)
- Praveen M. Varghese
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Nazar Beirag
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich, Kent, United Kingdom
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed N. Al-Ahdal
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Beatrice Nal
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Futwan A. Al-Mohanna
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Robert B. Sim
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
73
|
Gale P. Thermodynamic equilibrium dose-response models for MERS-CoV infection reveal a potential protective role of human lung mucus but not for SARS-CoV-2. MICROBIAL RISK ANALYSIS 2020; 16:100140. [PMID: 32984489 PMCID: PMC7501778 DOI: 10.1016/j.mran.2020.100140] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/09/2020] [Accepted: 09/11/2020] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) infect the human respiratory tract. A prototype thermodynamic equilibrium model is presented here for the probability of the virions getting through the mucus barrier and infecting epithelial cells based on the binding affinity (Kmucin) of the virions to mucin molecules in the mucus and parameters for binding and infection of the epithelial cell. Both MERS-CoV and SARS-CoV-2 bind strongly to their cellular receptors, DDP4 and ACE2, respectively, and infect very efficiently both bronchus and lung ex vivo cell cultures which are not protected by a mucus barrier. According to the model, mucin binding could reduce the infectivity for MERS-CoV compared to SARS-CoV-2 by at least 100-fold depending on the magnitude of Kmucin. Specifically Kmucin values up to 106 M-1 have little protective effect and thus the mucus barrier would not remove SARS-CoV-2 which does not bind to sialic acids (SA) and hence would have a very low Kmucin. Depending on the viability of individual virions, the ID50 for SARS-CoV-2 is estimated to be ~500 virions (viral RNA genomic copies) representing 1 to 2 pfu. In contrast MERS-CoV binds both SA and human mucin and a Kmucin of 5 × 109 M-1 as reported for lectins would mop up 99.83% of the virus according to the model with the ID50 for MERS-CoV estimated to be ~295,000 virions (viral RNA genomic copies) representing 819 pfu. This could in part explain why MERS-CoV is poorly transmitted from human to human compared to SARS-CoV-2. Some coronaviruses use an esterase to escape the mucin, although MERS-CoV does not. Instead, it is shown here that "clustering" of virions into single aerosol particles as recently reported for rotavirus in extracellular vesicles could provide a co-operative mechanism whereby MERS-CoV could theoretically overcome the mucin barrier locally and a small proportion of 10 μm diameter aerosol particles could contain ~70 virions based on reported maximum levels in saliva. Although recent evidence suggests SARS-CoV-2 initiates infection in the nasal epithelium, the thermodynamic equilibrium models presented here could complement published approaches for modelling the physical entry of pathogens to the lung based on the fate and transport of the pathogen particles (as for anthrax spores) to develop a dose-response model for aerosol exposure to respiratory viruses. This would enable the infectivity through aerosols to be defined based on molecular parameters as well as physical parameters. The role of the spike proteins of MERS-CoV and SARS-CoV-2 binding to SA and heparan sulphate, respectively, may be to aid non-specific attachment to the host cell. It is proposed that a high Kmucin is the cost for subsequent binding of MERS-CoV to SAs on the cell surface to partially overcome the unfavourable entropy of immobilisation as the virus adopts the correct orientation for spike protein interactions with its protein cellular receptor DPP4.
Collapse
Affiliation(s)
- Paul Gale
- Independent Scientist, 15 Weare Close, Portland, Dorset, DT5 1JP, UK
| |
Collapse
|
74
|
Wallert M, Nie C, Anilkumar P, Abbina S, Bhatia S, Ludwig K, Kizhakkedathu JN, Haag R, Block S. Mucin-Inspired, High Molecular Weight Virus Binding Inhibitors Show Biphasic Binding Behavior to Influenza A Viruses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004635. [PMID: 33135314 DOI: 10.1002/smll.202004635] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Multivalent binding inhibitors are a promising new class of antivirals that prevent virus infections by inhibiting virus binding to cell membranes. The design of these inhibitors is challenging as many properties, for example, inhibitor size and functionalization with virus attachment factors, strongly influence the inhibition efficiency. Here, virus binding inhibitors are synthesized, the size and functionalization of which are inspired by mucins, which are naturally occurring glycosylated proteins with high molecular weight (MDa range) and interact efficiently with various viruses. Hyperbranched polyglycerols (hPGs) with molecular weights ranging between 10 and 2600 kDa are synthesized, thereby hitting the size of mucins and allowing for determining the impact of inhibitor size on the inhibition efficiency. The hPGs are functionalized with sialic acids and sulfates, as suggested from the structure of mucins, and their inhibition efficiency is determined by probing the inhibition of influenza A virus (IAV) binding to membranes using various methods. The largest, mucin-sized inhibitor shows potent inhibition at pm concentrations, while the inhibition efficiency decreases with decreasing the molecular weight. Interestingly, the concentration-dependent IAV inhibition shows a biphasic behavior, which is attributed to differences in the binding affinity of the inhibitors to the two IAV envelope proteins, neuraminidase, and hemagglutinin.
Collapse
Affiliation(s)
- Matthias Wallert
- Institute of Chemistry and Biochemistry, Emmy-Noether Group "Bionanointerfaces", Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry, Macromolecular Chemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Parambath Anilkumar
- Centre for Blood Research, Life Sciences Institute, Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Srinivas Abbina
- Centre for Blood Research, Life Sciences Institute, Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Sumati Bhatia
- Institute of Chemistry and Biochemistry, Macromolecular Chemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Kai Ludwig
- Research Center for Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, Berlin, 14195, Germany
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Macromolecular Chemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Stephan Block
- Institute of Chemistry and Biochemistry, Emmy-Noether Group "Bionanointerfaces", Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| |
Collapse
|
75
|
Zhao S, Schuurman N, Tieke M, Quist B, Zwinkels S, van Kuppeveld FJM, de Haan CAM, Egberink H. Serological Screening of Influenza A Virus Antibodies in Cats and Dogs Indicates Frequent Infection with Different Subtypes. J Clin Microbiol 2020; 58:e01689-20. [PMID: 32878956 PMCID: PMC7587082 DOI: 10.1128/jcm.01689-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Influenza A viruses (IAVs) infect humans and a variety of other animal species. Infections with some subtypes of IAV were also reported in domestic cats and dogs. In addition to animal health implications, close contact between companion animals and humans also poses a potential risk of zoonotic IAV infections. In this study, serum samples from different cat and dog cohorts were analyzed for IAV antibodies against seven IAV subtypes, using three distinctive IAV-specific assays differing in IAV subtype-specific discriminatory power and sensitivity. Enzyme-linked immunosorbent assays against the complete hemagglutinin (HA) ectodomain or the HA1 domain were used, as well as a novel nanoparticle-based, virus-free hemagglutination inhibition assay. Using these three assays, we found cat and dog sera from different cohorts to be positive for antibodies against one or more IAV subtypes and/or strains. Cat and dog serum samples collected after the 2009 pandemic H1N1 outbreak exhibit much higher seropositivity against H1 compared to samples from before 2009. Cat sera, furthermore, displayed higher reactivity for avian IAVs than dog sera. Our findings show the added value of using complementary serological assays, which are based on reactivity with different numbers of HA epitopes, to study IAV antibody responses and for improved serosurveillance of IAV infections. We conclude that infection of cats and dogs with both human and avian IAVs of different subtypes is prevalent. These observations highlight the role of cats and dogs in IAV ecology and indicate the potential of these companion animals to give rise to novel (reassorted) viruses with increased zoonotic potential.
Collapse
Affiliation(s)
- Shan Zhao
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nancy Schuurman
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Malte Tieke
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Berit Quist
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Steven Zwinkels
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A M de Haan
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Herman Egberink
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
76
|
Coronavirus hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion avidity. Proc Natl Acad Sci U S A 2020; 117:25759-25770. [PMID: 32994342 DOI: 10.1073/pnas.2006299117] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human coronaviruses OC43 and HKU1 are respiratory pathogens of zoonotic origin that have gained worldwide distribution. OC43 apparently emerged from a bovine coronavirus (BCoV) spillover. All three viruses attach to 9-O-acetylated sialoglycans via spike protein S with hemagglutinin-esterase (HE) acting as a receptor-destroying enzyme. In BCoV, an HE lectin domain promotes esterase activity toward clustered substrates. OC43 and HKU1, however, lost HE lectin function as an adaptation to humans. Replaying OC43 evolution, we knocked out BCoV HE lectin function and performed forced evolution-population dynamics analysis. Loss of HE receptor binding selected for second-site mutations in S, decreasing S binding affinity by orders of magnitude. Irreversible HE mutations led to cooperativity in virus swarms with low-affinity S minority variants sustaining propagation of high-affinity majority phenotypes. Salvageable HE mutations induced successive second-site substitutions in both S and HE. Apparently, S and HE are functionally interdependent and coevolve to optimize the balance between attachment and release. This mechanism of glycan-based receptor usage, entailing a concerted, fine-tuned activity of two envelope protein species, is unique among CoVs, but reminiscent of that of influenza A viruses. Apparently, general principles fundamental to virion-sialoglycan interactions prompted convergent evolution of two important groups of human and animal pathogens.
Collapse
|
77
|
Plant EP, Manukyan H, Laassri M, Ye Z. Insights from the comparison of genomic variants from two influenza B viruses grown in the presence of human antibodies in cell culture. PLoS One 2020; 15:e0239015. [PMID: 32925936 PMCID: PMC7489522 DOI: 10.1371/journal.pone.0239015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
Understanding the extent and limitation of viral genome evolution can provide insight about potential drug and vaccine targets. Influenza B Viruses (IBVs) infect humans in a seasonal manner and causes significant morbidity and mortality. IBVs are negative-sense single-stranded RNA viruses with a segmented genome and can be divided into two antigenically distinct lineages. The two lineages have been circulating and further evolving for almost four decades. The immune response to IBV infection can lead to antibodies that target the strain causing the infection. Some antibodies are cross-reactive and are able to bind strains from both lineages but, because of antigenic drift and immunodominance, both lineages continue to evolve and challenge human health. Here we investigate changes in the genomes of an IBVs from each lineage after passage in tissue culture in the presence of human sera containing polyclonal antibodies directed toward antigenically and temporally distinct viruses. Our previous analysis of the fourth segment, which encodes the major surface protein HA, revealed a pattern of change in which signature sequences from one lineage mutated to the signature sequences of the other lineage. Here we analyze genes from the other genomic segments and observe that most of the quasispecies’ heterogeneity occurs at the same loci in each lineage. The nature of the variants at these loci are investigated and possible reasons for this pattern are discussed. This work expands our understanding of the extent and limitations of genomic change in IBV.
Collapse
Affiliation(s)
- Ewan P. Plant
- Office of Vaccine Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Hasmik Manukyan
- Office of Vaccine Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Majid Laassri
- Office of Vaccine Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Zhiping Ye
- Office of Vaccine Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
78
|
H9N2 Influenza Virus Infections in Human Cells Require a Balance between Neuraminidase Sialidase Activity and Hemagglutinin Receptor Affinity. J Virol 2020; 94:JVI.01210-20. [PMID: 32641475 PMCID: PMC7459563 DOI: 10.1128/jvi.01210-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
H9N2 avian influenza (AI) virus, one of the most prevalent AI viruses, has caused repeated poultry and human infections, posing a huge public health risk. The H9N2 virus has diversified into multiple lineages, with the G1 lineage being the most prevalent worldwide. In this study, we isolated G1 variants carrying an 8-amino-acid deletion in their NA stalk, which is, to our knowledge, the longest deletion found in H9N2 viruses in the field. The NA stalk length was found to modulate G1 virus entry into host cells, with the effects being species specific and dependent on the corresponding HA binding affinity. Our results suggest that, in nature, H9N2 G1 viruses balance their HA and NA functions by the NA stalk length, leading to the possible association of host range and virulence in poultry and mammals during the evolution of G1 lineage viruses. Some avian influenza (AI) viruses have a deletion of up to 20 to 30 amino acids in their neuraminidase (NA) stalk. This has been associated with changes in virus replication and host range. Currently prevalent H9N2 AI viruses have only a 2- or 3-amino-acid deletion, and such deletions were detected in G1 and Y280 lineage viruses, respectively. The effect of an NA deletion on the H9N2 phenotype has not been fully elucidated. In this study, we isolated G1 mutants that carried an 8-amino-acid deletion in their NA stalk. To systematically analyze the effect of NA stalk length and concomitant (de)glycosylation on G1 replication and host range, we generated G1 viruses that had various NA stalk lengths and that were either glycosylated or not glycosylated. The stalk length was correlated with NA sialidase activity, using low-molecular-weight substrates, and with virus elution efficacy from erythrocytes. G1 virus replication in avian cells and eggs was positively correlated with the NA stalk length but was negatively correlated in human cells and mice. NA stalk length modulated G1 virus entry into host cells, with shorter stalks enabling more efficient G1 entry into human cells. However, with a hemagglutinin (HA) with a higher α2,6-linked sialylglycan affinity, the effect of NA stalk length on G1 virus infection was reversed, with shorter NA stalks reducing virus entry into human cells. These results indicate that a balance between HA binding affinity and NA sialidase activity, modulated by NA stalk length, is required for optimal G1 virus entry into human airway cells. IMPORTANCE H9N2 avian influenza (AI) virus, one of the most prevalent AI viruses, has caused repeated poultry and human infections, posing a huge public health risk. The H9N2 virus has diversified into multiple lineages, with the G1 lineage being the most prevalent worldwide. In this study, we isolated G1 variants carrying an 8-amino-acid deletion in their NA stalk, which is, to our knowledge, the longest deletion found in H9N2 viruses in the field. The NA stalk length was found to modulate G1 virus entry into host cells, with the effects being species specific and dependent on the corresponding HA binding affinity. Our results suggest that, in nature, H9N2 G1 viruses balance their HA and NA functions by the NA stalk length, leading to the possible association of host range and virulence in poultry and mammals during the evolution of G1 lineage viruses.
Collapse
|
79
|
Du W, Wolfert MA, Peeters B, van Kuppeveld FJM, Boons GJ, de Vries E, de Haan CAM. Mutation of the second sialic acid-binding site of influenza A virus neuraminidase drives compensatory mutations in hemagglutinin. PLoS Pathog 2020; 16:e1008816. [PMID: 32853241 PMCID: PMC7480853 DOI: 10.1371/journal.ppat.1008816] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/09/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
Influenza A viruses (IAVs) cause seasonal epidemics and occasional pandemics. Most pandemics occurred upon adaptation of avian IAVs to humans. This adaptation includes a hallmark receptor-binding specificity switch of hemagglutinin (HA) from avian-type α2,3- to human-type α2,6-linked sialic acids. Complementary changes of the receptor-destroying neuraminidase (NA) are considered to restore the precarious, but poorly described, HA-NA-receptor balance required for virus fitness. In comparison to the detailed functional description of adaptive mutations in HA, little is known about the functional consequences of mutations in NA in relation to their effect on the HA-NA balance and host tropism. An understudied feature of NA is the presence of a second sialic acid-binding site (2SBS) in avian IAVs and absence of a 2SBS in human IAVs, which affects NA catalytic activity. Here we demonstrate that mutation of the 2SBS of avian IAV H5N1 disturbs the HA-NA balance. Passaging of a 2SBS-negative H5N1 virus on MDCK cells selected for progeny with a restored HA-NA balance. These viruses obtained mutations in NA that restored a functional 2SBS and/or in HA that reduced binding of avian-type receptors. Importantly, a particular HA mutation also resulted in increased binding of human-type receptors. Phylogenetic analyses of avian IAVs show that also in the field, mutations in the 2SBS precede mutations in HA that reduce binding of avian-type receptors and increase binding of human-type receptors. Thus, 2SBS mutations in NA can drive acquisition of mutations in HA that not only restore the HA-NA balance, but may also confer increased zoonotic potential.
Collapse
Affiliation(s)
- Wenjuan Du
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Margreet A. Wolfert
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States of America
| | - Ben Peeters
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, the Netherlands
| | - Frank J. M. van Kuppeveld
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States of America
| | - Erik de Vries
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A. M. de Haan
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
80
|
Aerosol Transmission from Infected Swine to Ferrets of an H3N2 Virus Collected from an Agricultural Fair and Associated with Human Variant Infections. J Virol 2020; 94:JVI.01009-20. [PMID: 32522849 DOI: 10.1128/jvi.01009-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Influenza A viruses (IAV) sporadically transmit from swine to humans, typically associated with agricultural fairs in the United States. A human seasonal H3 virus from the 2010-2011 IAV season was introduced into the U.S. swine population and termed H3.2010.1 to differentiate it from the previous swine H3 virus. This H3N2 lineage became widespread in the U.S. commercial swine population, subsequently spilling over into exhibition swine, and caused a majority of H3N2 variant (H3N2v) cases in humans in 2016 and 2017. A cluster of human H3N2v cases were reported at an agricultural fair in 2017 in Ohio, where 2010.1 H3N2 IAV was concurrently detected in exhibition swine. Genomic analysis showed that the swine and human isolates were nearly identical. In this study, we evaluated the propensity of a 2010.1 H3N2 IAV (A/swine/Ohio/A01354299/2017 [sw/OH/2017]) isolated from a pig in the agricultural fair outbreak to replicate in ferrets and transmit from swine to ferret. sw/OH/2017 displayed robust replication in the ferret respiratory tract, causing slight fever and moderate weight loss. Further, sw/OH/2017 was capable of efficient respiratory droplet transmission from infected pigs to contact ferrets. These findings establish a model for evaluating the propensity of swine IAV to transmit from pig to ferret as a measure of risk to the human population. The identification of higher-risk swine strains can then be targeted for control measures to limit the dissemination at human-swine interfaces to reduce the risk of zoonotic infections and to inform pandemic planning.IMPORTANCE A recently emerged lineage of human-like H3N2 (H3.2010.1) influenza A virus (IAV) from swine has been frequently detected in commercial and exhibition swine in recent years and has been associated with H3N2 variant cases in humans from 2016 and 2017. To demonstrate a model for characterizing the potential for zoonotic transmission associated with swine IAV, we performed an in vivo study of transmission between pigs infected with an H3.2010.1 H3N2 IAV and aerosol contact ferrets. The efficient interspecies transmission demonstrated for the H3.2010.1 IAV in swine emphasizes the need for further characterization of viruses circulating at the swine-human interface for transmission potential prior to human spillover and the development and implementation of more robust vaccines and control strategies to mitigate human exposure to higher-risk swine strains.
Collapse
|
81
|
Bisset AT, Hoyne GF. Evolution and Adaptation of the Avian H7N9 Virus into the Human Host. Microorganisms 2020; 8:E778. [PMID: 32455845 PMCID: PMC7285376 DOI: 10.3390/microorganisms8050778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Influenza viruses arise from animal reservoirs, and have the potential to cause pandemics. In 2013, low pathogenic novel avian influenza A(H7N9) viruses emerged in China, resulting from the reassortment of avian-origin viruses. Following evolutionary changes, highly pathogenic strains of avian influenza A(H7N9) viruses emerged in late 2016. Changes in pathogenicity and virulence of H7N9 viruses have been linked to potential mutations in the viral glycoproteins hemagglutinin (HA) and neuraminidase (NA), as well as the viral polymerase basic protein 2 (PB2). Recognizing that effective viral transmission of the influenza A virus (IAV) between humans requires efficient attachment to the upper respiratory tract and replication through the viral polymerase complex, experimental evidence demonstrates the potential H7N9 has for increased binding affinity and replication, following specific amino acid substitutions in HA and PB2. Additionally, the deletion of extended amino acid sequences in the NA stalk length was shown to produce a significant increase in pathogenicity in mice. Research shows that significant changes in transmissibility, pathogenicity and virulence are possible after one or a few amino acid substitutions. This review aims to summarise key findings from that research. To date, all strains of H7N9 viruses remain restricted to avian reservoirs, with no evidence of sustained human-to-human transmission, although mutations in specific viral proteins reveal the efficacy with which these viruses could evolve into a highly virulent and infectious, human-to-human transmitted virus.
Collapse
Affiliation(s)
- Andrew T. Bisset
- School of Health Sciences, University of Notre Dame Australia, Fremantle WA 6160, Australia;
| | - Gerard F. Hoyne
- School of Health Sciences, University of Notre Dame Australia, Fremantle WA 6160, Australia;
- Institute for Health Research, University of Notre Dame Australia, Fremantle WA 6160, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup WA 6027, Australia
| |
Collapse
|
82
|
Koehler M, Delguste M, Sieben C, Gillet L, Alsteens D. Initial Step of Virus Entry: Virion Binding to Cell-Surface Glycans. Annu Rev Virol 2020; 7:143-165. [PMID: 32396772 DOI: 10.1146/annurev-virology-122019-070025] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virus infection is an intricate process that requires the concerted action of both viral and host cell components. Entry of viruses into cells is initiated by interactions between viral proteins and cell-surface receptors. Various cell-surface glycans function as initial, usually low-affinity attachment factors, providing a first anchor of the virus to the cell surface, and further facilitate high-affinity binding to virus-specific cell-surface receptors, while other glycans function as specific entry receptors themselves. It is now possible to rapidly identify specific glycan receptors using different techniques, define atomic-level structures of virus-glycan complexes, and study these interactions at the single-virion level. This review provides a detailed overview of the role of glycans in viral infection and highlights experimental approaches to study virus-glycan binding along with specific examples. In particular, we highlight the development of the atomic force microscope to investigate interactions with glycans at the single-virion level directly on living mammalian cells, which offers new perspectives to better understand virus-glycan interactions in physiologically relevant conditions.
Collapse
Affiliation(s)
- Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Christian Sieben
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laurent Gillet
- Immunology-Vaccinology Laboratory, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health center (FARAH), University of Liège, 4000 Liège, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; .,Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| |
Collapse
|
83
|
Barnard KN, Alford-Lawrence BK, Buchholz DW, Wasik BR, LaClair JR, Yu H, Honce R, Ruhl S, Pajic P, Daugherity EK, Chen X, Schultz-Cherry SL, Aguilar HC, Varki A, Parrish CR. Modified Sialic Acids on Mucus and Erythrocytes Inhibit Influenza A Virus Hemagglutinin and Neuraminidase Functions. J Virol 2020; 94:e01567-19. [PMID: 32051275 PMCID: PMC7163148 DOI: 10.1128/jvi.01567-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Sialic acids (Sia) are the primary receptors for influenza viruses and are widely displayed on cell surfaces and in secreted mucus. Sia may be present in variant forms that include O-acetyl modifications at C-4, C-7, C-8, and C-9 positions and N-acetyl or N-glycolyl at C-5. They can also vary in their linkages, including α2-3 or α2-6 linkages. Here, we analyze the distribution of modified Sia in cells and tissues of wild-type mice or in mice lacking CMP-N-acetylneuraminic acid hydroxylase (CMAH) enzyme, which synthesizes N-glycolyl (Neu5Gc) modifications. We also examined the variation of Sia forms on erythrocytes and in saliva from different animals. To determine the effect of Sia modifications on influenza A virus (IAV) infection, we tested for effects on hemagglutinin (HA) binding and neuraminidase (NA) cleavage. We confirmed that 9-O-acetyl, 7,9-O-acetyl, 4-O-acetyl, and Neu5Gc modifications are widely but variably expressed in mouse tissues, with the highest levels detected in the respiratory and gastrointestinal (GI) tracts. Secreted mucins in saliva and surface proteins of erythrocytes showed a high degree of variability in display of modified Sia between different species. IAV HAs from different virus strains showed consistently reduced binding to both Neu5Gc- and O-acetyl-modified Sia; however, while IAV NAs were inhibited by Neu5Gc and O-acetyl modifications, there was significant variability between NA types. The modifications of Sia in mucus may therefore have potent effects on the functions of IAV and may affect both pathogens and the normal flora of different mucosal sites.IMPORTANCE Sialic acids (Sia) are involved in numerous different cellular functions and are receptors for many pathogens. Sia come in chemically modified forms, but we lack a clear understanding of how they alter interactions with microbes. Here, we examine the expression of modified Sia in mouse tissues, on secreted mucus in saliva, and on erythrocytes, including those from IAV host species and animals used in IAV research. These Sia forms varied considerably among different animals, and their inhibitory effects on IAV NA and HA activities and on bacterial sialidases (neuraminidases) suggest a host-variable protective role in secreted mucus.
Collapse
Affiliation(s)
- Karen N Barnard
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brynn K Alford-Lawrence
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - David W Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Justin R LaClair
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hai Yu
- Department of Chemistry, University of California-Davis, Davis, California, USA
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - Petar Pajic
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - Erin K Daugherity
- Center for Animal Resources and Education, Cornell University, Ithaca, New York, USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, Davis, California, USA
| | - Stacey L Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, California, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
84
|
Lee H, Jang Y, Kim NH, Kim L, Kim M, Suh YD. Discrimination between target and non-target interactions on the viral surface by merging fluorescence emission into Rayleigh scattering. NANOSCALE 2020; 12:7563-7571. [PMID: 32166304 DOI: 10.1039/c9nr07415e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Direct and quantitative determination of antibodies or cellular receptors dynamically binding to the surface of viral particles is the key issue for predicting the efficacy of therapeutic materials or host susceptibility to a new emerging pathogen. However, targeted visualization of infectious viruses is still highly challenging owing to their nanoscopic sizes and uncontrollable nonspecific interactions with loading molecules responsible for false signals. Here we present a multimodal single-molecule and single-particle (SMSP) visualization capable of simultaneously yet independently tracking Rayleigh scattering and fluorescence that, respectively, are generated from viruses (approximately 100 nm) and labeled interacting molecules. By analyzing real-time trajectories of fluorescent antibodies against a virus surface protein with reference to single virus-derived Rayleigh scattering, we determined heterogeneous binding stoichiometry of virus-antibody couplings irrespective of the nonspecific binder population. Therefore, our multimodal (or multi-level) SMSP assay visually identifies and selectively quantifies specific interactions between them with single binding event accuracy. As a 'specific-binding quantifier' to assess variable host susceptibility to a virus, it was further applied for distinguishing ratiometric bindings and spontaneous dissociation kinetics of synthesized isomeric receptors to influenza virus. The present framework could offer a solid analytical foundation for the development of a direct-acting antiviral agent inhibiting an integral viral enveloped protein and for nanobiological investigation for dissecting spatiotemporal nanoparticle-molecule interactions, which have been scarcely explored compared to those among plasmonic nanoparticles or among molecules only.
Collapse
Affiliation(s)
- Haemi Lee
- Laboratory for Advanced Molecular Probing (LAMP), Bio Platform Technology Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea.
| | | | | | | | | | | |
Collapse
|
85
|
Beerens N, Heutink R, Harders F, Bossers A, Koch G, Peeters B. Emergence and Selection of a Highly Pathogenic Avian Influenza H7N3 Virus. J Virol 2020; 94:e01818-19. [PMID: 31969434 PMCID: PMC7108855 DOI: 10.1128/jvi.01818-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/09/2020] [Indexed: 01/21/2023] Open
Abstract
Low-pathogenicity avian influenza (LPAI) viruses of subtypes H5 and H7 have the ability to spontaneously mutate to highly pathogenic (HPAI) virus variants, causing high mortality in poultry. The highly pathogenic phenotype is caused by mutation of the hemagglutinin (HA) cleavage site, but additional mutations may play a role. Evidence from the field for the switch to high pathogenicity remains scarce. This study provides direct evidence for LPAI-to-HPAI virus mutation during H7N3 infection of a turkey farm in the Netherlands. No severe clinical symptoms were reported at the farm, but deep sequencing of isolates from the infected turkeys revealed a minority of HPAI virus sequences (0.06%) in the virus population. The HPAI virus contained a 12-nucleotide insertion in the HA cleavage site that was likely introduced by a single event as no intermediates with shorter inserts were identified. This suggests nonhomologous recombination as the mechanism of insertion. Analysis of different organs of the infected turkeys showed the largest amount of HPAI virus in the lung (4.4%). The HPAI virus was rapidly selected in experimentally infected chickens after both intravenous and intranasal/intratracheal inoculation with a mixed virus preparation. Full-genome sequencing revealed that both pathotypes contained a deletion in the stalk region of the neuraminidase protein. We identified additional mutations in HA and polymerase basic protein 1 (PB1) in the HPAI virus, which were already present as minority variants in the LPAI virus population. Our findings provide more insight into the molecular changes and mechanisms involved in the emergence and selection of HPAI viruses.IMPORTANCE Low-pathogenicity avian influenza (LPAI) viruses circulate in wild birds and can be transmitted to poultry. LPAI viruses can mutate to become highly pathogenic avian influenza (HPAI) viruses causing severe disease and death in poultry. Little is known about this switch to high pathogenicity. We isolated an LPAI H7N3 virus from an infected turkey farm and showed that this contains small amounts of HPAI virus. The HPAI virus rapidly outcompeted the LPAI virus in chickens that were experimentally infected with this mixture of viruses. We analyzed the genome sequences of the LPAI and HPAI viruses and identified several changes that may be important for a virus to become highly pathogenic. This knowledge may be used for timely identification of LPAI viruses that pose a risk of becoming highly pathogenic in the field.
Collapse
Affiliation(s)
- Nancy Beerens
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Rene Heutink
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Frank Harders
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Alex Bossers
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Guus Koch
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Ben Peeters
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| |
Collapse
|
86
|
Peng L, Du W, Balhuizen MD, Haagsman HP, de Haan CAM, Veldhuizen EJA. Antiviral Activity of Chicken Cathelicidin B1 Against Influenza A Virus. Front Microbiol 2020; 11:426. [PMID: 32265870 PMCID: PMC7096384 DOI: 10.3389/fmicb.2020.00426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/27/2020] [Indexed: 01/05/2023] Open
Abstract
Cathelicidins (CATHs) are host defense peptides (HDPs) that play an important role in the innate immune response against infections. Although multiple functions of cathelicidins have been described, including direct antimicrobial activity and several immunomodulatory effects on the host, relatively little is known about their antiviral activity. Therefore, in vitro antiviral activity of chicken cathelicidins and the underlying mechanism was investigated in this study against different influenza A virus (IAV) strains. Our results show that chicken CATH-B1 has broad anti-IAV activity compared to other cathelicidins (CATH-1, -2, -3, LL-37, PMAP-23, and K9CATH) with an inhibition of viral infection up to 80% against three tested IAV strains (H1N1, H3N1, and H5N1). In agreement herewith, CATH-B1 affected virus-induced inflammatory cytokines expression (IFN-β, IL-1β, IL-6, and IL-8). Incubation of cells with CATH-B1 prior to or after their inoculation with virus did not reduce viral infection indicating that direct interaction of virus with the peptide was required for CATH-B1’s antiviral activity. Experiments using combined size exclusion and affinity-based separation of virus and peptide also indicated that CATH-B1 bound to viral particles. In addition, using electron microscopy, no morphological change of the virus itself was seen upon incubation with CATH-B1 but large aggregates of CATH-B1 and viral particles were observed, indicating that aggregation might be the mechanism of action reducing IAV infectivity. Neuraminidase (NA) activity assays using monovalent or multivalent substrates, indicated that CATH-B1 did not affect NA activity per se, but negatively affected the ability of virus particles to interact with multivalent receptors, presumably by interfering with hemagglutinin activity. In conclusion, our results show CATH-B1 has good antiviral activity against IAV by binding to the viral particle and thereby blocking viral entry.
Collapse
Affiliation(s)
- Lianci Peng
- Department of Infectious Diseases & Immunology, Division of Molecular Host Defense, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Wenjuan Du
- Department of Infectious Diseases & Immunology, Division Virology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Melanie D Balhuizen
- Department of Infectious Diseases & Immunology, Division of Molecular Host Defense, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Henk P Haagsman
- Department of Infectious Diseases & Immunology, Division of Molecular Host Defense, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Cornelis A M de Haan
- Department of Infectious Diseases & Immunology, Division Virology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Edwin J A Veldhuizen
- Department of Infectious Diseases & Immunology, Division of Molecular Host Defense, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
87
|
Wong HH, Fung K, Nicholls JM. MDCK-B4GalNT2 cells disclose a α2,3-sialic acid requirement for the 2009 pandemic H1N1 A/California/04/2009 and NA aid entry of A/WSN/33. Emerg Microbes Infect 2020; 8:1428-1437. [PMID: 31560252 PMCID: PMC6781475 DOI: 10.1080/22221751.2019.1665971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Switching of receptor binding preference has been widely considered as one of the necessary mutations for avian influenza viruses, enabling efficient transmissions between human hosts. By stably overexpressing B4GalNT2 gene in MDCK cells, surface α2,3-siallylactose receptors were modified without affecting α2,6-receptor expression. The cell line MDCK-B4GalNT2 was used as a tool to screen for α2,3-receptor requirements in a panel of influenza viruses with previously characterized glycan array data. Infection of viruses with α2,3-receptor binding capability was inhibited in MDCK-B4GalNT2 cells, with the exception of A/WSN/33 (WSN). Infection with the 2009 pandemic H1N1 strains, A/California/04/2009 (Cal04) and A/Hong Kong/415742/2009 (HK09), despite showing α2,6-receptor binding, was also found to be inhibited. Further investigation showed that viral inhibition was due to a reduction in viral entry rate and viral attachment. Recombinant WSN virus with the neuraminidase (NA) gene swapped to A/Puerto Rico/8/1934 (PR8) and Cal04 resulted in a significant viral inhibition in MDCK-B4GalNT2 cells. With oseltamivir, the NA active site was found to be important for the replication results of WSN, but not Cal04.
Collapse
Affiliation(s)
- Ho Him Wong
- Department of Pathology, University of Hong Kong , Hong Kong.,HKU-Pasteur Research Pole, University of Hong Kong , Hong Kong
| | - Kevin Fung
- Department of Pathology, University of Hong Kong , Hong Kong
| | - John M Nicholls
- Department of Pathology, University of Hong Kong , Hong Kong
| |
Collapse
|
88
|
Breaking the Convention: Sialoglycan Variants, Coreceptors, and Alternative Receptors for Influenza A Virus Entry. J Virol 2020; 94:JVI.01357-19. [PMID: 31776280 DOI: 10.1128/jvi.01357-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
The influenza A virus (IAV) envelope protein hemagglutinin binds α2,6- or α2,3-linked sialic acid as a host cell receptor. Bat IAV subtypes H17N10 and H18N11 form an exception to this rule and do not bind sialic acid but enter cells via major histocompatibility complex (MHC) class II. Here, we review current knowledge on IAV receptors with a focus on sialoglycan variants, protein coreceptors, and alternative receptors that impact IAV attachment and internalization beyond the well-described sialic acid binding.
Collapse
|
89
|
Hamming PHE, Overeem NJ, Huskens J. Influenza as a molecular walker. Chem Sci 2020; 11:27-36. [PMID: 32153750 PMCID: PMC7021193 DOI: 10.1039/c9sc05149j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
The surface of the influenza virus is decorated with the receptor-binding protein hemagglutinin (HA) and the receptor-cleaving enzyme neuraminidase (NA). HA is responsible for host cell recognition, while NA prevents aggregation and entrapment, but the intricate mechanism of how the functions of these glycoproteins cooperate and how they are regulated by mutational responses to environmental pressures remains unclear. Recently, several groups have described the motion of influenza over surfaces and reported that this motion is inhibited by NA inhibitors. We argue that the motion of influenza resembles the motility of artificial receptor-cleaving particles called "molecular spiders". The cleaving of receptors by this type of molecular walkers leads to self-avoiding motion across a surface. When the binding and cleaving rates of molecular spiders are balanced, they move both rapidly and efficiently. The studies of molecular spiders offer new insights into the functional balance of HA and NA, but they do not address the asymmetric distribution of HA and NA on the surface of influenza. We propose that receptor-cleaving molecular walkers could play an important role in the further investigation of the motility of influenza viruses.
Collapse
Affiliation(s)
- P H Erik Hamming
- Molecular Nanofabrication Group , MESA + Institute for Nanotechnology , Faculty of Science and Technology , University of Twente , P.O. Box 217 , 7500 AE Enschede , The Netherlands .
| | - Nico J Overeem
- Molecular Nanofabrication Group , MESA + Institute for Nanotechnology , Faculty of Science and Technology , University of Twente , P.O. Box 217 , 7500 AE Enschede , The Netherlands .
| | - Jurriaan Huskens
- Molecular Nanofabrication Group , MESA + Institute for Nanotechnology , Faculty of Science and Technology , University of Twente , P.O. Box 217 , 7500 AE Enschede , The Netherlands .
| |
Collapse
|
90
|
Abstract
We describe a method to detect influenza virus using an evanescent-field-activated fluorescence scanner type glycan array and ELISA system. Neoglycoprotein was prepared by combination of organic chemistry and biomaterial preparation. These ligands were spotted on a glass plate or plastic well to make a glycan array and ELISA plate. We detected cultured influenza virus using glycan array and ELISA. Then, we showed that the neoglycoprotein binds to Cy3-labeled hemagglutinins (H1 and H5), a NeuAcα2,6LacNAc or NeuAcα2,3LacNAc recognized protein, as detected.
Collapse
|
91
|
de Vries E, Du W, Guo H, de Haan CA. Influenza A Virus Hemagglutinin-Neuraminidase-Receptor Balance: Preserving Virus Motility. Trends Microbiol 2020; 28:57-67. [PMID: 31629602 PMCID: PMC7172302 DOI: 10.1016/j.tim.2019.08.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
Influenza A viruses (IAVs) occasionally cross the species barrier and adapt to novel host species. This requires readjustment of the functional balance of the sialic acid receptor-binding hemagglutinin (HA) and the receptor-destroying neuraminidase (NA) to the sialoglycan-receptor repertoire of the new host. Novel techniques have revealed mechanistic details of this HA-NA-receptor balance, emphasizing a previously underappreciated crucial role for NA in driving the motility of receptor-associated IAV particles. Motility enables virion penetration of the sialylated mucus layer as well as attachment to, and uptake into, underlying epithelial cells. As IAVs are essentially irreversibly bound in the absence of NA activity, the fine-tuning of the HA-NA-receptor balance rather than the binding avidity of IAV particles per se is an important factor in determining host species tropism.
Collapse
Affiliation(s)
- Erik de Vries
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands.
| | - Wenjuan Du
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Hongbo Guo
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Cornelis A.M. de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands,Correspondence:
| |
Collapse
|
92
|
Biswas A, Chakrabarti AK, Dutta S. Current challenges: from the path of “original antigenic sin” towards the development of universal flu vaccines. Int Rev Immunol 2019; 39:21-36. [DOI: 10.1080/08830185.2019.1685990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Asim Biswas
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok K. Chakrabarti
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
93
|
Lai JCC, Karunarathna HMTK, Wong HH, Peiris JSM, Nicholls JM. Neuraminidase activity and specificity of influenza A virus are influenced by haemagglutinin-receptor binding. Emerg Microbes Infect 2019; 8:327-338. [PMID: 30866786 PMCID: PMC6455212 DOI: 10.1080/22221751.2019.1581034] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Influenza virus haemagglutinin (HA) and neuraminidase (NA) are involved in the recognition and modulation of sialic acids on the cell surface as the virus receptor. Although the balance between two proteins functions has been found to be crucial for viral fitness, the interplay between the proteins has not been well established. Herein we present evidence for interplay between influenza HA and NA, which may affect the balance between two glycoprotein functions. NA enzymatic activities against sialoglycans were promoted by the presence of HA, which is in accordance with the level of co-existing HA. Such activity enhancement was lost when the HA-receptor binding properties were abolished by low-pH treatment or by mutations at the HA receptor binding domain. Sialidase activities of NA-containing virus-like particles and native influenza viruses were detected using different NA-assays and sialic acid substrates. Most pronounced HA-mediated NA enhancement was found when intact virions were confronted with multivalent surface-anchored substrates, which mimics the physiological conditions on cell membranes. Using recombinant viruses with altered HA bindings preference between α2,3- and α2,6-linked sialic acids, we also found that NA function against different substrates is correlated with the HA-receptor specificity. The effect of HA-receptor specificities on NA functions, together with the HA-mediated NA enhancement, may play a role in virus evasion of the mucus barrier, as well as in cross-species adaptation. Our data also indicate the importance of using multivalent substrates in future studies of NA functions.
Collapse
Affiliation(s)
- Jimmy Chun Cheong Lai
- a Department of Pathology , The University of Hong Kong , Hong Kong , Hong Kong SAR.,b HKU-Pasteur Research Pole , The University of Hong Kong , Hong Kong , Hong Kong SAR
| | - Herath M T K Karunarathna
- c School of Public Health , The University of Hong Kong , Hong Kong , Hong Kong SAR.,d Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science , The University of Peradeniya , Peradeniya , Sri Lanka
| | - Ho Him Wong
- a Department of Pathology , The University of Hong Kong , Hong Kong , Hong Kong SAR.,b HKU-Pasteur Research Pole , The University of Hong Kong , Hong Kong , Hong Kong SAR
| | - Joseph S M Peiris
- b HKU-Pasteur Research Pole , The University of Hong Kong , Hong Kong , Hong Kong SAR.,c School of Public Health , The University of Hong Kong , Hong Kong , Hong Kong SAR
| | - John M Nicholls
- a Department of Pathology , The University of Hong Kong , Hong Kong , Hong Kong SAR
| |
Collapse
|
94
|
Lu W, Du W, Somovilla VJ, Yu G, Haksar D, de Vries E, Boons GJ, de Vries RP, de Haan CAM, Pieters RJ. Enhanced Inhibition of Influenza A Virus Adhesion by Di- and Trivalent Hemagglutinin Inhibitors. J Med Chem 2019; 62:6398-6404. [PMID: 31251606 PMCID: PMC6627469 DOI: 10.1021/acs.jmedchem.9b00303] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
Multivalent carbohydrate-based ligands
were synthesized and evaluated
as inhibitors of the adhesion protein HA of the influenza A virus
(IAV). HA relies on multivalency for strong viral adhesion. While
viral adhesion inhibition by large polymeric molecules has proven
viable, limited success was reached for smaller multivalent compounds.
By linking of sialylated LAcNAc units to di- and trivalent scaffolds,
inhibitors were obtained with an up to 428-fold enhanced inhibition
in various assays.
Collapse
Affiliation(s)
- Wenjing Lu
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , P.O. Box 80082, NL-3508 TB Utrecht , The Netherlands
| | - Wenjuan Du
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine , Utrecht University , NL-3584 CL Utrecht , The Netherlands
| | - Victor J Somovilla
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , P.O. Box 80082, NL-3508 TB Utrecht , The Netherlands
| | - Guangyun Yu
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , P.O. Box 80082, NL-3508 TB Utrecht , The Netherlands
| | - Diksha Haksar
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , P.O. Box 80082, NL-3508 TB Utrecht , The Netherlands
| | - Erik de Vries
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine , Utrecht University , NL-3584 CL Utrecht , The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , P.O. Box 80082, NL-3508 TB Utrecht , The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , P.O. Box 80082, NL-3508 TB Utrecht , The Netherlands
| | - Cornelis A M de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine , Utrecht University , NL-3584 CL Utrecht , The Netherlands
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , P.O. Box 80082, NL-3508 TB Utrecht , The Netherlands
| |
Collapse
|
95
|
Du W, Guo H, Nijman VS, Doedt J, van der Vries E, van der Lee J, Li Z, Boons GJ, van Kuppeveld FJM, de Vries E, Matrosovich M, de Haan CAM. The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance. PLoS Pathog 2019; 15:e1007860. [PMID: 31181126 PMCID: PMC6586374 DOI: 10.1371/journal.ppat.1007860] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/20/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022] Open
Abstract
Influenza A virus (IAV) neuraminidase (NA) receptor-destroying activity and hemagglutinin (HA) receptor-binding affinity need to be balanced with the host receptor repertoire for optimal viral fitness. NAs of avian, but not human viruses, contain a functional 2nd sialic acid (SIA)-binding site (2SBS) adjacent to the catalytic site, which contributes to sialidase activity against multivalent substrates. The receptor-binding specificity and potentially crucial contribution of the 2SBS to the HA-NA balance of virus particles is, however, poorly characterized. Here, we elucidated the receptor-binding specificity of the 2SBS of N2 NA and established an important role for this site in the virion HA-NA-receptor balance. NAs of H2N2/1957 pandemic virus with or without a functional 2SBS and viruses containing this NA were analysed. Avian-like N2, with a restored 2SBS due to an amino acid substitution at position 367, was more active than human N2 on multivalent substrates containing α2,3-linked SIAs, corresponding with the pronounced binding-specificity of avian-like N2 for these receptors. When introduced into human viruses, avian-like N2 gave rise to altered plaque morphology and decreased replication compared to human N2. An opposite replication phenotype was observed when N2 was combined with avian-like HA. Specific bio-layer interferometry assays revealed a clear effect of the 2SBS on the dynamic interaction of virus particles with receptors. The absence or presence of a functional 2SBS affected virion-receptor binding and receptor cleavage required for particle movement on a receptor-coated surface and subsequent NA-dependent self-elution. The contribution of the 2SBS to virus-receptor interactions depended on the receptor-binding properties of HA and the identity of the receptors used. We conclude that the 2SBS is an important and underappreciated determinant of the HA-NA-receptor balance. The rapid loss of a functional 2SBS in pandemic viruses may have served to balance the novel host receptor-repertoire and altered receptor-binding properties of the corresponding HA protein.
Collapse
Affiliation(s)
- Wenjuan Du
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hongbo Guo
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vera S. Nijman
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jennifer Doedt
- Institute of Virology, Philipps University, Marburg, Germany
| | - Erhard van der Vries
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joline van der Lee
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Zeshi Li
- Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, the Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, the Netherlands
| | | | - Erik de Vries
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mikhail Matrosovich
- Institute of Virology, Philipps University, Marburg, Germany
- * E-mail: (MM); (CAMdH)
| | - Cornelis A. M. de Haan
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail: (MM); (CAMdH)
| |
Collapse
|
96
|
Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol 2019; 26:481-489. [PMID: 31160783 PMCID: PMC6554059 DOI: 10.1038/s41594-019-0233-y] [Citation(s) in RCA: 432] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/19/2019] [Indexed: 12/16/2022]
Abstract
Coronaviruses cause respiratory tract infections in humans and outbreaks of deadly pneumonia worldwide. Infections are initiated by the transmembrane spike (S) glycoprotein, which binds to host receptors and fuses the viral and cellular membranes. To understand the molecular basis of coronavirus attachment to oligosaccharide receptors, we determined cryo-EM structures of coronavirus OC43 S glycoprotein trimer in isolation and in complex with a 9-O-acetylated sialic acid. We show that the ligand binds with fast kinetics to a surface-exposed groove and that interactions at the identified site are essential for S-mediated viral entry into host cells, but free monosaccharide does not trigger fusogenic conformational changes. The receptor-interacting site is conserved in all coronavirus S glycoproteins that engage 9-O-acetyl-sialogycans, with an architecture similar to those of the ligand-binding pockets of coronavirus hemagglutinin esterases and influenza virus C/D hemagglutinin-esterase fusion glycoproteins. Our results demonstrate these viruses evolved similar strategies to engage sialoglycans at the surface of target cells. Structural and functional analyses reveal how 9-O-acetyl sialic acid is recognized by the human coronavirus OC43 S glycoprotein and how this interaction promotes viral entry.
Collapse
|
97
|
Du R, Cui Q, Rong L. Competitive Cooperation of Hemagglutinin and Neuraminidase during Influenza A Virus Entry. Viruses 2019; 11:v11050458. [PMID: 31137516 PMCID: PMC6563287 DOI: 10.3390/v11050458] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/15/2022] Open
Abstract
The hemagglutinin (HA) and neuraminidase (NA) of influenza A virus possess antagonistic activities on interaction with sialic acid (SA), which is the receptor for virus attachment. HA binds SA through its receptor-binding sites, while NA is a receptor-destroying enzyme by removing SAs. The function of HA during virus entry has been extensively investigated, however, examination of NA has long been focused to its role in the exit of progeny virus from infected cells, and the role of NA in the entry process is still under-appreciated. This review summarizes the current understanding of the roles of HA and NA in relation to each other during virus entry.
Collapse
Affiliation(s)
- Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
98
|
Vahey MD, Fletcher DA. Influenza A virus surface proteins are organized to help penetrate host mucus. eLife 2019; 8:43764. [PMID: 31084711 PMCID: PMC6516830 DOI: 10.7554/elife.43764] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) enters cells by binding to sialic acid on the cell surface. To accomplish this while avoiding immobilization by sialic acid in host mucus, viruses rely on a balance between the receptor-binding protein hemagglutinin (HA) and the receptor-cleaving protein neuraminidase (NA). Although genetic aspects of this balance are well-characterized, little is known about how the spatial organization of these proteins in the viral envelope may contribute. Using site-specific fluorescent labeling and super-resolution microscopy, we show that HA and NA are asymmetrically distributed on the surface of filamentous viruses, creating a spatial organization of binding and cleaving activities that causes viruses to step consistently away from their NA-rich pole. This Brownian ratchet-like diffusion produces persistent directional mobility that resolves the virus’s conflicting needs to both penetrate mucus and stably attach to the underlying cells, potentially contributing to the prevalence of the filamentous phenotype in clinical isolates of IAV.
Collapse
Affiliation(s)
- Michael D Vahey
- Department of Bioengineering, University of California, Berkeley, Berkeley, United States.,Biophysics Program, University of California, Berkeley, Berkeley, United States
| | - Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, United States.,Biological Systems & Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
99
|
Wen F, Wan XF. Influenza Neuraminidase: Underrated Role in Receptor Binding. Trends Microbiol 2019; 27:477-479. [PMID: 30930001 DOI: 10.1016/j.tim.2019.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 01/08/2023]
Abstract
Influenza virus neuraminidase cleaves sialic acid groups from cell glycoproteins, enabling release of the virus from host cells. Neuraminidase also contributes to virus binding to the sialic acid groups of cell glycoproteins, which could complement the receptor-binding function of hemagglutinin, enhancing enzymatic activities of neuraminidase, and facilitate virus infection.
Collapse
Affiliation(s)
- Feng Wen
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
100
|
Di Iorio D, Verheijden ML, van der Vries E, Jonkheijm P, Huskens J. Weak Multivalent Binding of Influenza Hemagglutinin Nanoparticles at a Sialoglycan-Functionalized Supported Lipid Bilayer. ACS NANO 2019; 13:3413-3423. [PMID: 30844236 PMCID: PMC6439437 DOI: 10.1021/acsnano.8b09410] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/07/2019] [Indexed: 05/28/2023]
Abstract
Quantification of the multivalent interactions of influenza viruses binding at interfaces may provide ways to tackle key biological questions regarding influenza virulence and zoonoses. Yet, the deconvolution of the contributions of molecular and interfacial parameters, such as valency, interaction area, and receptor density, to the binding of whole viruses is hindered by difficulties in the direct determination of these parameters. We report here a chemical platform technology to study the binding of multivalent recombinant hemagglutinin (rHA) nanoparticles at artificial sialoglycan cell receptor-presenting interfaces in which all these parameters can be derived, thus allowing the desired full and quantitative binding analysis. SiO2 substrates were functionalized with supported lipid bilayers containing a targeted and tunable fraction of a biotinylated lipid, followed by the adsorption of streptavidin and biotinylated polyvalent 2,3- or 2,6-sialyl lactosamine (SLN). rHA nanoparticles were used as a virus mimic to provide a good prediction of the number of interactions involved in binding. Low nanomolar affinities and selectivities for binding at the 2,6-SLN platforms were observed for rHA particles from three different virus variants. When fitting the data to a multivalency model, the nanomolar overall affinity appears to be achieved by 6-9 HA-sugar molecular interaction pairs, which individually present a rapid association/dissociation behavior. This dynamic behavior may be an essential biological attribute in the functioning of the influenza virus.
Collapse
Affiliation(s)
- Daniele Di Iorio
- Molecular
Nanofabrication Group, MESA + Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Mark L. Verheijden
- Molecular
Nanofabrication Group, MESA + Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Erhard van der Vries
- Virology
Division, Department of Infectious Diseases and Immunology, Faculty
of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Pascal Jonkheijm
- Molecular
Nanofabrication Group, MESA + Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jurriaan Huskens
- Molecular
Nanofabrication Group, MESA + Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|