51
|
Perez-Bonilla P, Santiago-Colon K, Leinninger GM. Lateral hypothalamic area neuropeptides modulate ventral tegmental area dopamine neurons and feeding. Physiol Behav 2020; 223:112986. [PMID: 32492498 DOI: 10.1016/j.physbeh.2020.112986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 01/26/2023]
Abstract
Understanding how the brain coordinates energy status with the motivation to eat is crucial to identify strategies to improve disordered body weight. The ventral tegmental area (VTA), known as the core of the mesolimbic system, is of particular interest in this regard because it controls the motivation to consume palatable, calorie-dense foods and to engage in volitional activity. The VTA is largely composed of dopamine (DA) neurons, but modulating these DA neurons has been alternately linked with promoting and suppressing feeding, suggesting heterogeneity in their function. Subsets of VTA DA neurons have recently been described based on their anatomical distribution, electrophysiological features, connectivity and molecular expression, but to date there are no signatures to categorize how DA neurons control feeding. Assessing the neuropeptide receptors expressed by VTA DA neurons may be useful in this regard, as many neuropeptides mediate anorexic or orexigenic responses. In particular, the lateral hypothalamic area (LHA) releases a wide variety of feeding-modulating neuropeptides to the VTA. Since VTA neurons intercept LHA neuropeptides known to either evoke or suppress feeding, expression of the cognate neuropeptide receptors within the VTA may point to VTA DA neuronal mechanisms to promote or suppress feeding, respectively. Here we review the role of the VTA in energy balance and the LHA neuropeptide signaling systems that act in the VTA, whose receptors might be used to classify how VTA DA neurons contribute to energy balance.
Collapse
Affiliation(s)
- Patricia Perez-Bonilla
- Neuroscience Graduate Program, USA; Pharmacology and Toxicology Graduate Program, USA; Michigan State University, East Lansing, MI 48114, USA
| | - Krystal Santiago-Colon
- Department of Biology, University of Puerto Rico - Cayey, USA; Bridge to the PhD in Neuroscience Program, USA
| | - Gina M Leinninger
- Department of Physiology, USA; Michigan State University, East Lansing, MI 48114, USA.
| |
Collapse
|
52
|
GAD2 Expression Defines a Class of Excitatory Lateral Habenula Neurons in Mice that Project to the Raphe and Pontine Tegmentum. eNeuro 2020; 7:ENEURO.0527-19.2020. [PMID: 32332079 PMCID: PMC7240287 DOI: 10.1523/eneuro.0527-19.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/24/2020] [Accepted: 03/16/2020] [Indexed: 11/21/2022] Open
Abstract
The lateral habenula (LHb) sends complex projections to several areas of the mesopontine tegmentum, the raphe, and the hypothalamus. However, few markers have been available to distinguish subsets of LHb neurons that may serve these pathways. In order to address this complexity, we examined the mouse and rat LHb for neurons that express the GABA biosynthesis enzymes glutamate decarboxylase 1 (GAD1) and GAD2, and the vesicular GABA transporter (VGAT). The mouse LHb contains a population of neurons that express GAD2, while the rat LHb contains discrete populations of neurons that express GAD1 and VGAT. However, we could not detect single neurons in either species that co-express a GABA synthetic enzyme and VGAT, suggesting that these LHb neurons do not use GABA for conventional synaptic transmission. Instead, all of the neuronal types expressing a GABAergic marker in both species showed co-expression of the glutamate transporter VGluT2. Anterograde tract-tracing of the projections of GAD2-expressing LHb neurons in Gad2Cre mice, combined with retrograde tracing from selected downstream nuclei, show that LHb-GAD2 neurons project selectively to the midline structures in the mesopontine tegmentum, including the median raphe (MnR) and nucleus incertus (NI), and only sparsely innervate the hypothalamus, rostromedial tegmental nucleus (RMTg), and ventral tegmental area (VTA). Postsynaptic recording of LHb-GAD2 neuronal input to tegmental neurons confirms that glutamate, not GABA, is the fast neurotransmitter in this circuit. Thus, GAD2 expression can serve as a marker for functional studies of excitatory neurons serving specific LHb output pathways in mice.
Collapse
|
53
|
Michael NJ, Caron A, Lee CE, Castorena CM, Lee S, Zigman JM, Williams KW, Elmquist JK. Melanocortin regulation of histaminergic neurons via perifornical lateral hypothalamic melanocortin 4 receptors. Mol Metab 2020; 35:100956. [PMID: 32244183 PMCID: PMC7082550 DOI: 10.1016/j.molmet.2020.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Histaminergic neurons of the tuberomammillary nucleus (TMN) are wake-promoting and contribute to the regulation of energy homeostasis. Evidence indicates that melanocortin 4 receptors (MC4R) are expressed within the TMN. However, whether the melanocortin system influences the activity and function of TMN neurons expressing histidine decarboxylase (HDC), the enzyme required for histamine synthesis, remains undefined. METHODS We utilized Hdc-Cre mice in combination with whole-cell patch-clamp electrophysiology and in vivo chemogenetic techniques to determine whether HDC neurons receive metabolically relevant information via the melanocortin system. RESULTS We found that subsets of HDC-expressing neurons were excited by melanotan II (MTII), a non-selective melanocortin receptor agonist. Use of melanocortin receptor selective agonists (THIQ, [D-Trp8]-γ-MSH) and inhibitors of synaptic transmission (TTX, CNQX, AP5) indicated that the effect was mediated specifically by MC4Rs and involved a glutamatergic dependent presynaptic mechanism. MTII enhanced evoked excitatory post-synaptic currents (EPSCs) originating from electrical stimulation of the perifornical lateral hypothalamic area (PeFLH), supportive of melanocortin effects on the glutamatergic PeFLH projection to the TMN. Finally, in vivo chemogenetic inhibition of HDC neurons strikingly enhanced the anorexigenic effects of intracerebroventricular administration of MTII, suggesting that MC4R activation of histaminergic neurons may restrain the anorexigenic effects of melanocortin system activation. CONCLUSIONS These experiments identify a functional interaction between the melanocortin and histaminergic systems and suggest that HDC neurons act naturally to restrain the anorexigenic effect of melanocortin system activation. These findings may have implications for the control of arousal and metabolic homeostasis, especially in the context of obesity, in which both processes are subjected to alterations.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Eating/drug effects
- Excitatory Postsynaptic Potentials/drug effects
- Histamine/metabolism
- Histidine Decarboxylase/genetics
- Histidine Decarboxylase/metabolism
- Hypothalamic Area, Lateral/cytology
- Hypothalamic Area, Lateral/metabolism
- Locomotion/drug effects
- Male
- Melanocortins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neurons/drug effects
- Neurons/metabolism
- Peptides, Cyclic/pharmacology
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- Natalie J Michael
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Alexandre Caron
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Charlotte E Lee
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Carlos M Castorena
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Syann Lee
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA.
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75390-9077, USA.
| |
Collapse
|
54
|
Hung CJ, Ono D, Kilduff TS, Yamanaka A. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. eLife 2020; 9:54275. [PMID: 32314734 PMCID: PMC7173968 DOI: 10.7554/elife.54275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/03/2020] [Indexed: 12/25/2022] Open
Abstract
Orexin/hypocretin-producing and melanin-concentrating hormone-producing (MCH) neurons are co-extensive in the hypothalamus and project throughout the brain to regulate sleep/wakefulness. Ablation of orexin neurons decreases wakefulness and results in a narcolepsy-like phenotype, whereas ablation of MCH neurons increases wakefulness. Since it is unclear how orexin and MCH neurons interact to regulate sleep/wakefulness, we generated transgenic mice in which both orexin and MCH neurons could be ablated. Double-ablated mice exhibited increased wakefulness and decreased both rapid eye movement (REM) and non-REM (NREM) sleep. Double-ablated mice showed severe cataplexy compared with orexin neuron-ablated mice, suggesting that MCH neurons normally suppress cataplexy. Double-ablated mice also showed frequent sleep attacks with elevated spectral power in the delta and theta range, a unique state that we call 'delta-theta sleep'. Together, these results indicate a functional interaction between orexin and MCH neurons in vivo that suggests the synergistic involvement of these neuronal populations in the sleep/wakefulness cycle.
Collapse
Affiliation(s)
- Chi Jung Hung
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, United States
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| |
Collapse
|
55
|
Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020; 167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Hypocretin/orexin neurons are distributed restrictively in the hypothalamus, a brain region known to orchestrate diverse functions including sleep, reward processing, food intake, thermogenesis, and mood. Since the hypocretins/orexins were discovered more than two decades ago, extensive studies have accumulated concrete evidence showing the pivotal role of hypocretin/orexin in diverse neural modulation. New method of viral-mediated tracing system offers the possibility to map the monosynaptic inputs and detailed anatomical connectivity of Hcrt neurons. With the development of powerful research techniques including optogenetics, fiber-photometry, cell-type/pathway specific manipulation and neuronal activity monitoring, as well as single-cell RNA sequencing, the details of how hypocretinergic system execute functional modulation of various behaviors are coming to light. In this review, we focus on the function of neural pathways from hypocretin neurons to target brain regions. Anatomical and functional inputs to hypocretin neurons are also discussed. We further briefly summarize the development of pharmaceutical compounds targeting hypocretin signaling. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
56
|
Teixeira PDS, Wasinski F, Lima LB, Frazão R, Bittencourt JC, Donato J. Regulation and neurochemical identity of melanin-concentrating hormone neurones in the preoptic area of lactating mice. J Neuroendocrinol 2020; 32:e12818. [PMID: 31782183 DOI: 10.1111/jne.12818] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Neurones expressing the melanin-concentrating hormone (MCH) can be found in the medial preoptic area (mPOA) and ventral aspects of the periventricular preoptic nucleus of rats by mid-to-late lactation and this expression disappears after weaning. The transitory expression of MCH in the preoptic area suggests a role for these neurones in the control of the end of lactation. However, the neurochemical identity of mPOA MCH neurones and the regulatory factors that control the transient MCH expression remain largely unknown, especially in the mouse. In the present study, we showed that mice also present the transitory expression of MCH in the mPOA at late lactation. mPOA MCH cells did not colocalise significantly with markers of GABAergic (VGAT), glutamatergic (VGLUT2 and VGLUT3) or dopaminergic (tyrosine hydroxylase) neurones. mPOA MCH cells also did not express Kiss1 or oxytocin. By contrast, approximately 70% and 90% of mPOA MCH neurones colocalised with oestrogen receptor α and prolactin-induced phosphorylated signal transducer and activator of transcription 5 (STAT5), respectively. Finally, we demonstrated that the number of MCH neurones in the mPOA is significantly higher in females during the first lactation, compared to mice on the second lactation or pregnant mice during the first lactation or brain-specific STAT5 knockout mice during the first lactation. In summary, our findings indicate that MCH neurones in the mPOA of lactating mice are sensitive to oestrogens and prolactin. Thus, mPOA MCH expression is possibly influenced by hormonal variations. Furthermore, the STAT5 signalling pathway is likely involved in the regulation of MCH expression in the mPOA of lactating mice.
Collapse
Affiliation(s)
- Pryscila D S Teixeira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Frederick Wasinski
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Leandro B Lima
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Renata Frazão
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jackson C Bittencourt
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jose Donato
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
57
|
Negishi K, Payant MA, Schumacker KS, Wittmann G, Butler RM, Lechan RM, Steinbusch HWM, Khan AM, Chee MJ. Distributions of hypothalamic neuron populations coexpressing tyrosine hydroxylase and the vesicular GABA transporter in the mouse. J Comp Neurol 2020; 528:1833-1855. [PMID: 31950494 DOI: 10.1002/cne.24857] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022]
Abstract
The hypothalamus contains catecholaminergic neurons marked by the expression of tyrosine hydroxylase (TH). As multiple chemical messengers coexist in each neuron, we determined if hypothalamic TH-immunoreactive (ir) neurons express vesicular glutamate or GABA transporters. We used Cre/loxP recombination to express enhanced GFP (EGFP) in neurons expressing the vesicular glutamate (vGLUT2) or GABA transporter (vGAT), then determined whether TH-ir neurons colocalized with native EGFPVglut2 - or EGFPVgat -fluorescence, respectively. EGFPVglut2 neurons were not TH-ir. However, discrete TH-ir signals colocalized with EGFPVgat neurons, which we validated by in situ hybridization for Vgat mRNA. To contextualize the observed pattern of colocalization between TH-ir and EGFPVgat , we first performed Nissl-based parcellation and plane-of-section analysis, and then mapped the distribution of TH-ir EGFPVgat neurons onto atlas templates from the Allen Reference Atlas (ARA) for the mouse brain. TH-ir EGFPVgat neurons were distributed throughout the rostrocaudal extent of the hypothalamus. Within the ARA ontology of gray matter regions, TH-ir neurons localized primarily to the periventricular hypothalamic zone, periventricular hypothalamic region, and lateral hypothalamic zone. There was a strong presence of EGFPVgat fluorescence in TH-ir neurons across all brain regions, but the most striking colocalization was found in a circumscribed portion of the zona incerta (ZI)-a region assigned to the hypothalamus in the ARA-where every TH-ir neuron expressed EGFPVgat . Neurochemical characterization of these ZI neurons revealed that they display immunoreactivity for dopamine but not dopamine β-hydroxylase. Collectively, these findings indicate the existence of a novel mouse hypothalamic population that may signal through the release of GABA and/or dopamine.
Collapse
Affiliation(s)
- Kenichiro Negishi
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas
| | - Mikayla A Payant
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Kayla S Schumacker
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Gabor Wittmann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts
| | - Rebecca M Butler
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Ronald M Lechan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts
| | - Harry W M Steinbusch
- Department of Psychiatry and Neuropsychology, Section Cellular Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Arshad M Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
58
|
Collier AD, Min SS, Campbell SD, Roberts MY, Camidge K, Leibowitz SF. Maternal ethanol consumption before paternal fertilization: Stimulation of hypocretin neurogenesis and ethanol intake in zebrafish offspring. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109728. [PMID: 31394141 PMCID: PMC6815720 DOI: 10.1016/j.pnpbp.2019.109728] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 12/27/2022]
Abstract
There are numerous clinical and pre-clinical studies showing that exposure of the embryo to ethanol markedly affects neuronal development and stimulates alcohol drinking and related behaviors. In rodents and zebrafish, our studies show that embryonic exposure to low-dose ethanol, in addition to increasing voluntary ethanol intake during adolescence, increases the density of hypothalamic hypocretin (hcrt) neurons, a neuropeptide known to regulate reward-related behaviors. The question addressed here in zebrafish is whether maternal ethanol intake before conception also affects neuronal and behavioral development, phenomena suggested by clinical reports but seldom investigated. To determine if preconception maternal ethanol consumption also affects these hcrt neurons and behavior in the offspring, we first standardized a method of measuring voluntary ethanol consumption in AB strain adult and larval zebrafish given gelatin meals containing 10% or 0.1% ethanol, respectively. We found the number of bites of gelatin to be an accurate measure of intake in adults and a strong predictor of blood ethanol levels, and also to be a reliable indicator of intake in larval zebrafish. We then used this feeding paradigm and live imaging to examine the effects of preconception maternal intake of 10% ethanol-gelatin compared to plain-gelatin for 14 days on neuronal development in the offspring. Whereas ethanol consumption by adult female HuC:GFP transgenic zebrafish had no impact on the number of differentiated HuC+ neurons at 28 h post-fertilization (hpf), preconception ethanol consumption by adult female hcrt:EGFP zebrafish significantly increased the number of hcrt neurons in the offspring, an effect observed at 28 hpf and confirmed at 6 and 12 days post-fertilization (dpf). This increase in hcrt neurons was primarily present on the left side of the brain, indicating asymmetry in ethanol's actions, and it was accompanied by behavioral changes in the offspring, including a significant increase in novelty-induced locomotor activity but not thigmotaxis measured at 6 dpf and also in voluntary consumption of 0.1% ethanol-gelatin at 12 dpf. Notably, these measures of ethanol intake and locomotor activity stimulated by preconception ethanol were strongly, positively correlated with the number of hcrt neurons. These findings demonstrate that preconception maternal ethanol consumption affects the brain and behavior of the offspring, producing effects similar to those caused by embryonic ethanol exposure, and they provide further evidence that the ethanol-induced increase in hcrt neurogenesis contributes to the behavioral disturbances caused by ethanol.
Collapse
Affiliation(s)
- Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Soe S Min
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Samantha D Campbell
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Mia Y Roberts
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Kaylin Camidge
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
59
|
The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry 2019; 24:1284-1295. [PMID: 30377299 PMCID: PMC6491268 DOI: 10.1038/s41380-018-0291-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Sleep and wakefulness control in the mammalian brain requires the coordination of various discrete interconnected neurons. According to the most conventional sleep model, wake-promoting neurons (WPNs) and sleep-promoting neurons (SPNs) compete for network dominance, creating a systematic "switch" that results in either the sleep or awake state. WPNs and SPNs are ubiquitous in the brainstem and diencephalon, areas that together contain <1% of the neurons in the human brain. Interestingly, many of these WPNs and SPNs co-express and co-release various types of the neurotransmitters that often have opposing modulatory effects on the network. Co-transmission is often beneficial to structures with limited numbers of neurons because it provides increasing computational capability and flexibility. Moreover, co-transmission allows subcortical structures to bi-directionally control postsynaptic neurons, thus helping to orchestrate several complex physiological functions such as sleep. Here, we present an in-depth review of co-transmission in hypothalamic WPNs and SPNs and discuss its functional significance in the sleep-wake network.
Collapse
|
60
|
Costa HC, Da-Silva JM, Diniz GB, Motta-Teixeira LC, Da-Silva RJ, Battagello DS, Sita LV, de-Moraes Machado C, Horta-Júnior JAC, Bittencourt JC. Characterisation and origins of melanin-concentrating hormone immunoreactive fibres of the posterior lobe of the pituitary and median eminence during lactation in the Long-Evans rat. J Neuroendocrinol 2019; 31:e12723. [PMID: 31034718 DOI: 10.1111/jne.12723] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/30/2022]
Abstract
Although the melanin-concentrating hormone (MCH) and its coding mRNA are predominantly found in the tuberal hypothalamus, there is detectable synthesis of MCH in the preoptic hypothalamus exclusively in lactating dams, suggesting a participation of MCH in the alterations that take place after parturition. Also implicated in the dam physiology is oxytocin, a neurohormone released from the posterior pituitary that is necessary for milk ejection. Because the projection fields from oxytocin-immunoreactive (-IR) neurones and the mediobasal preoptic hypothalamus overlap and MCH-IR neurones are found in proximity to oxytocin neurones, we investigated the spatial relationship between MCH and oxytocin fibres. Accordingly, we employed multiple immunohistochemistry labelling for MCH and oxytocin for light and electron microscopy techniques, in addition to i.v. tracer injection combined with in situ hybridisation to identify MCH neurones that project to neurosecretory areas. As described for other strains, lactating Long-Evans dams also display immunoreactivity for MCH in the preoptic hypothalamus on days 12 and 19 of lactation. The appearance of these neurones is contemporaneous with an increase in MCH-IR fibres in both the internal layer of the median eminence and the posterior pituitary. In both regions, MCH- and oxytocin-IR fibres were found in great proximity, although there was no evidence for synaptic interaction between these two populations at the ultrastructural level. The tracer injection revealed that only mediobasal preoptic MCH neurones project to the posterior pituitary, suggesting a neuroendocrine-modulatory role for this population. When taken together, the results obtained in the present study indicate that neuroplasticity events at the mediobasal preoptic hypothalamus that occur during late lactation may be part of a neuroendocrinology control loop involving both MCH and oxytocin.
Collapse
Affiliation(s)
- Helder C Costa
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Joelcimar M Da-Silva
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Giovanne B Diniz
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Livia C Motta-Teixeira
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renata J Da-Silva
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniella S Battagello
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Center for Neuroscience and Behavior, Institute of Psychology, University of São Paulo (USP), São Paulo, Brazil
| | - Luciane V Sita
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Carla de-Moraes Machado
- Department of Anatomy, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - José A C Horta-Júnior
- Department of Anatomy, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
- Electron Microscopy Center, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Jackson C Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Center for Neuroscience and Behavior, Institute of Psychology, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
61
|
Molecular codes and in vitro generation of hypocretin and melanin concentrating hormone neurons. Proc Natl Acad Sci U S A 2019; 116:17061-17070. [PMID: 31375626 PMCID: PMC6708384 DOI: 10.1073/pnas.1902148116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hypocretin/orexin (HCRT) and melanin concentrating hormone (MCH) neuropeptides are exclusively produced by the lateral hypothalamus and play important roles in sleep, metabolism, reward, and motivation. Loss of HCRT (ligands or receptors) causes the sleep disorder narcolepsy with cataplexy in humans and in animal models. How these neuropeptides are produced and involved in diverse functions remain unknown. Here, we developed methods to sort and purify HCRT and MCH neurons from the mouse late embryonic hypothalamus. RNA sequencing revealed key factors of fate determination for HCRT (Peg3, Ahr1, Six6, Nr2f2, and Prrx1) and MCH (Lmx1, Gbx2, and Peg3) neurons. Loss of Peg3 in mice significantly reduces HCRT and MCH cell numbers, while knock-down of a Peg3 ortholog in zebrafish completely abolishes their expression, resulting in a 2-fold increase in sleep amount. We also found that loss of HCRT neurons in Hcrt-ataxin-3 mice results in a specific 50% decrease in another orexigenic neuropeptide, QRFP, that might explain the metabolic syndrome in narcolepsy. The transcriptome results were used to develop protocols for the production of HCRT and MCH neurons from induced pluripotent stem cells and ascorbic acid was found necessary for HCRT and BMP7 for MCH cell differentiation. Our results provide a platform to understand the development and expression of HCRT and MCH and their multiple functions in health and disease.
Collapse
|
62
|
Godfrey N, Borgland SL. Diversity in the lateral hypothalamic input to the ventral tegmental area. Neuropharmacology 2019; 154:4-12. [DOI: 10.1016/j.neuropharm.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/15/2019] [Accepted: 05/13/2019] [Indexed: 12/29/2022]
|
63
|
Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019; 17:e3000172. [PMID: 30893297 PMCID: PMC6426208 DOI: 10.1371/journal.pbio.3000172] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/13/2019] [Indexed: 01/19/2023] Open
Abstract
Sleep and wakefulness are greatly influenced by various physiological and psychological factors, but the neuronal elements responsible for organizing sleep-wake behavior in response to these factors are largely unknown. In this study, we report that a subset of neurons in the lateral hypothalamic area (LH) expressing the neuropeptide neurotensin (Nts) is critical for orchestrating sleep-wake responses to acute psychological and physiological challenges or stressors. We show that selective activation of NtsLH neurons with chemogenetic or optogenetic methods elicits rapid transitions from non-rapid eye movement (NREM) sleep to wakefulness and produces sustained arousal, higher locomotor activity (LMA), and hyperthermia, which are commonly observed after acute stress exposure. On the other hand, selective chemogenetic inhibition of NtsLH neurons attenuates the arousal, LMA, and body temperature (Tb) responses to a psychological stress (a novel environment) and augments the responses to a physiological stress (fasting). A neurotensin-producing subset of neurons in the lateral hypothalamus promote arousal and thermogenesis; these neurons are necessary for appropriate sleep-wake and body temperature responses to various stressors. Adjusting sleep-wake behavior in response to environmental and physiological challenges may not only be of protective value, but can also be vital for the survival of the organism. For example, while it is crucial to increase wake to explore a novel environment to search for potential threats and food sources, it is also necessary to decrease wake and reduce energy expenditure during prolonged absence of food. In this study, we report that a subset of neurons in the lateral hypothalamic area (LH) expressing the neuropeptide neurotensin (Nts) is critical for orchestrating sleep-wake responses to such challenges. We show that brief activation of NtsLH neurons in mice evokes immediate arousals from sleep, while their sustained activation increases wake, locomotor activity, and body temperature for several hours. In contrast, when NtsLH neurons are inhibited, mice are neither able to sustain wake in a novel environment nor able to reduce wake during food deprivation. These data suggest that NtsLH neurons may be necessary for generating appropriate sleep-wake responses to a wide variety of environmental and physiological challenges.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daniel Kroeger
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sathyajit S. Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Gianna Absi
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Joseph C. Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
64
|
Mickelsen LE, Bolisetty M, Chimileski BR, Fujita A, Beltrami EJ, Costanzo JT, Naparstek JR, Robson P, Jackson AC. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat Neurosci 2019; 22:642-656. [PMID: 30858605 DOI: 10.1038/s41593-019-0349-8] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 01/30/2019] [Indexed: 01/01/2023]
Abstract
The lateral hypothalamic area (LHA) coordinates an array of fundamental behaviors, including sleeping, waking, feeding, stress and motivated behavior. The wide spectrum of functions ascribed to the LHA may be explained by a heterogeneous population of neurons, the full diversity of which is poorly understood. We employed a droplet-based single-cell RNA-sequencing approach to develop a comprehensive census of molecularly distinct cell types in the mouse LHA. Neuronal populations were classified based on fast neurotransmitter phenotype and expression of neuropeptides, transcription factors and synaptic proteins, among other gene categories. We define 15 distinct populations of glutamatergic neurons and 15 of GABAergic neurons, including known and novel cell types. We further characterize a novel population of somatostatin-expressing neurons through anatomical and behavioral approaches, identifying a role for these neurons in specific forms of innate locomotor behavior. This study lays the groundwork for better understanding the circuit-level underpinnings of LHA function.
Collapse
Affiliation(s)
- Laura E Mickelsen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.,Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, USA
| | - Mohan Bolisetty
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Bristol-Myers Squibb, Pennington, NJ, USA
| | - Brock R Chimileski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Akie Fujita
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.,Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Eric J Beltrami
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - James T Costanzo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jacob R Naparstek
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. .,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA. .,Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| | - Alexander C Jackson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA. .,Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, USA. .,Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
65
|
Abstract
Narcolepsy is the most common neurological cause of chronic sleepiness. The discovery about 20 years ago that narcolepsy is caused by selective loss of the neurons producing orexins (also known as hypocretins) sparked great advances in the field. Here, we review the current understanding of how orexin neurons regulate sleep-wake behaviour and the consequences of the loss of orexin neurons. We also summarize the developing evidence that narcolepsy is an autoimmune disorder that may be caused by a T cell-mediated attack on the orexin neurons and explain how these new perspectives can inform better therapeutic approaches.
Collapse
Affiliation(s)
- Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Andrew Cogswell
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Igor J Koralnik
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
66
|
Briggs C, Bowes SC, Semba K, Hirasawa M. Sleep deprivation-induced pre- and postsynaptic modulation of orexin neurons. Neuropharmacology 2018; 154:50-60. [PMID: 30586566 DOI: 10.1016/j.neuropharm.2018.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Sleep/wake states are controlled by sleep- and wake-promoting systems, and transitions between states are thought to be regulated by their reciprocal inhibition and homeostatic sleep need. Orexin neurons are known to promote wake maintenance and stabilize the sleep/wake switch. Thus, we asked whether orexin neurons are modulated by homeostatic sleep need. Rats were sleep deprived or left undisturbed to rest for 6 h, then acute brain slices were generated for patch clamp recordings. We found that sleep deprivation increased firing and reduced spike frequency adaptation in response to excitatory drive in orexin neurons. These changes were specific to D-type orexin neurons which, unlike H-type orexin neurons, lack A-type current. In D-type orexin neurons, sleep deprivation decreased afterhyperpolarizing potential, which was associated with increased gain, measured as the slope of the input-output relationship. These effects were mimicked by inhibition of SK channels. Furthermore, sleep deprivation resulted in presynaptic inhibition of excitatory inputs to both D-type and H-type orexin neurons, which preferentially affected sparse synaptic inputs while sparing high frequency synaptic activities. Taken together, our results indicate that sleep deprivation modulates the gain control and synaptic gating in orexin neurons. These pre-and postsynaptic changes would tune orexin neurons to strong wake-promoting excitatory signals, while dampening weak synaptic inputs to allow transition to sleep in the absence of such strong signals. These mechanisms are consistent with a role of orexin neurons not only as a key state stabilizer, but also as a homeostatic wake integrator in the sleep/wake switch. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Chantalle Briggs
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada; Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada
| | - Sherri C Bowes
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Kazue Semba
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada; Department of Psychiatry, Faculty of Medicine, Dalhousie University, 5909 Veterans' Memorial Lane, Halifax, NS, B3H 2E2, Canada; Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
67
|
Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2018; 154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
The lateral hypothalamus (LH) is a functionally and anatomically complex brain region that is involved in the regulation of many behavioral and physiological processes including feeding, arousal, energy balance, stress, reward and motivated behaviors, pain perception, body temperature regulation, digestive functions and blood pressure. Despite noteworthy experimental efforts over the past decades, the circuit, cellular and synaptic bases by which these different processes are regulated by the LH remains incompletely understood. This knowledge gap links in large part to the high cellular heterogeneity of the LH. Fortunately, the rapid evolution of newer genetic and electrophysiological tools is now permitting the selective manipulation, typically genetically-driven, of discrete LH cell populations. This, in turn, permits not only assignment of function to discrete cell groups, but also reveals that considerable synergistic and antagonistic interactions exist between key LH cell populations that regulate feeding and arousal. For example, we now know that while LH melanin-concentrating hormone (MCH) and orexin/hypocretin neurons both function as sensors of the internal metabolic environment, their roles regulating sleep and arousal are actually opposing. Additional studies have uncovered similarly important roles for subpopulations of LH GABAergic cells in the regulation of both feeding and arousal. Herein we review the role of LH MCH, orexin/hypocretin and GABAergic cell populations in the regulation of energy homeostasis (including feeding) and sleep-wake and discuss how these three cell populations, and their subpopulations, may interact to optimize and coordinate metabolism, sleep and arousal. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Melissa J S Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
68
|
Qualls-Creekmore E, Münzberg H. Modulation of Feeding and Associated Behaviors by Lateral Hypothalamic Circuits. Endocrinology 2018; 159:3631-3642. [PMID: 30215694 PMCID: PMC6195675 DOI: 10.1210/en.2018-00449] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
Abstract
Our ability to modulate and observe neuronal activity in defined neurons in freely moving animals has revolutionized neuroscience research in recent years. Findings in the lateral hypothalamus (LHA) highlighted the existence of many neuronal circuits that regulate distinct phenotypes of feeding behavior, emotional valence, and locomotor activity. Several of these neuronal circuits do not fit into a common model of neuronal integration and highlight the need to improve working models for complex behaviors. This review will specifically focus on recent literature that distinguishes LHA circuits based on their molecular and anatomical characteristics and studies their role in feeding, associated behaviors (e.g., arousal and locomotion), and emotional states (e.g., emotional valences).
Collapse
Affiliation(s)
- Emily Qualls-Creekmore
- Neurobiology of Nutrition and Metabolism, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| |
Collapse
|
69
|
Liu JJ, Mirabella VR, Pang ZP. Cell type- and pathway-specific synaptic regulation of orexin neurocircuitry. Brain Res 2018; 1731:145974. [PMID: 30296428 DOI: 10.1016/j.brainres.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
Abstract
Orexin-expressing neurons are located exclusively in the lateral hypothalamic and perifornical areas and exhibit complex connectivity. The intricate wiring pattern is evident from a diverse function for orexin neurons in regulating many physiological processes and behaviors including sleep, metabolism, circadian cycles, anxiety, and reward. Nevertheless, the precise synaptic and circuitry-level mechanisms mediating these processes remain enigmatic, partially due to the wide spread connectivity of the orexin system, complex neurochemistry of orexin neurons, and previous lack of suitable tools to address its complexity. Here we summarize recent advances, focusing on synaptic regulatory mechanisms in the orexin neurocircuitry, including both the synaptic inputs to orexin neurons as well as their downstream targets in the brain. A clear and detailed elucidation of these mechanisms will likely provide novel insight into how dysfunction in orexin-mediated signaling leads to human disease and may ultimately be treated with more precise strategies.
Collapse
Affiliation(s)
- Jing-Jing Liu
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | - Vincent R Mirabella
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
70
|
Naganuma F, Bandaru SS, Absi G, Chee MJ, Vetrivelan R. Melanin-concentrating hormone neurons promote rapid eye movement sleep independent of glutamate release. Brain Struct Funct 2018; 224:99-110. [PMID: 30284033 DOI: 10.1007/s00429-018-1766-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Abstract
Neurons containing melanin-concentrating hormone (MCH) in the posterior lateral hypothalamus play an integral role in rapid eye movement sleep (REMs) regulation. As MCH neurons also contain a variety of other neuropeptides [e.g., cocaine- and amphetamine-regulated transcript (CART) and nesfatin-1] and neurotransmitters (e.g., glutamate), the specific neurotransmitter responsible for REMs regulation is not known. We hypothesized that glutamate, the primary fast-acting neurotransmitter in MCH neurons, is necessary for REMs regulation. To test this hypothesis, we deleted vesicular glutamate transporter (Vglut2; necessary for synaptic release of glutamate) specifically from MCH neurons by crossing MCH-Cre mice (expressing Cre recombinase in MCH neurons) with Vglut2flox/flox mice (expressing LoxP-modified alleles of Vglut2), and studied the amounts, architecture and diurnal variation of sleep-wake states during baseline conditions. We then activated the MCH neurons lacking glutamate neurotransmission using chemogenetic methods and tested whether these MCH neurons still promoted REMs. Our results indicate that glutamate in MCH neurons contributes to normal diurnal variability of REMs by regulating the levels of REMs during the dark period, but MCH neurons can promote REMs even in the absence of glutamate.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, 3 Blackfan Circle, Center for Life Science # 717, Boston, MA, 02215, USA
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Sathyajit S Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, 3 Blackfan Circle, Center for Life Science # 717, Boston, MA, 02215, USA
| | - Gianna Absi
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, 3 Blackfan Circle, Center for Life Science # 717, Boston, MA, 02215, USA
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, 3 Blackfan Circle, Center for Life Science # 717, Boston, MA, 02215, USA.
| |
Collapse
|
71
|
Azeez IA, Del Gallo F, Cristino L, Bentivoglio M. Daily Fluctuation of Orexin Neuron Activity and Wiring: The Challenge of "Chronoconnectivity". Front Pharmacol 2018; 9:1061. [PMID: 30319410 PMCID: PMC6167434 DOI: 10.3389/fphar.2018.01061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
In the heterogeneous hub represented by the lateral hypothalamus, neurons containing the orexin/hypocretin peptides play a key role in vigilance state transitions and wakefulness stability, energy homeostasis, and other functions relevant for motivated behaviors. Orexin neurons, which project widely to the neuraxis, are innervated by multiple extra- and intra-hypothalamic sources. A key property of the adaptive capacity of orexin neurons is represented by daily variations of activity, which is highest in the period of the animal’s activity and wakefulness. These sets of data are here reviewed. They concern the discharge profile during the sleep/wake cycle, spontaneous Fos induction, peptide synthesis and release reflected by immunostaining intensity and peptide levels in the cerebrospinal fluid as well as postsynaptic effects. At the synaptic level, adaptive capacity of orexin neurons subserved by remodeling of excitatory and inhibitory inputs has been shown in response to changes in the nutritional status and prolonged wakefulness. The present review wishes to highlight that synaptic plasticity in the wiring of orexin neurons also occurs in unperturbed conditions and could account for diurnal variations of orexin neuron activity. Data in zebrafish larvae have shown rhythmic changes in the density of inhibitory innervation of orexin dendrites in relation to vigilance states. Recent findings in mice have indicated a diurnal reorganization of the excitatory/inhibitory balance in the perisomatic innervation of orexin neurons. Taken together these sets of data point to “chronoconnectivity,” i.e., a synaptic rearrangement of inputs to orexin neurons over the course of the day in relation to sleep and wake states. This opens questions on the underlying circadian and homeostatic regulation and on the involved players at synaptic level, which could implicate dual transmitters, cytoskeletal rearrangements, hormonal regulation, as well as surrounding glial cells and extracellular matrix. Furthermore, the question arises of a “chronoconnectivity” in the wiring of other neuronal cell groups of the sleep-wake-regulatory network, many of which are characterized by variations of their firing rate during vigilance states.
Collapse
Affiliation(s)
- Idris A Azeez
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Del Gallo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience, Verona Unit, Verona, Italy
| |
Collapse
|
72
|
Kurt G, Woodworth HL, Fowler S, Bugescu R, Leinninger GM. Activation of lateral hypothalamic area neurotensin-expressing neurons promotes drinking. Neuropharmacology 2018; 154:13-21. [PMID: 30266601 DOI: 10.1016/j.neuropharm.2018.09.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
Abstract
Animals must ingest water via drinking to maintain fluid homeostasis, yet the neurons that specifically promote drinking behavior are incompletely characterized. The lateral hypothalamic area (LHA) as a whole is essential for drinking behavior but most LHA neurons indiscriminately promote drinking and feeding. By contrast, activating neurotensin (Nts)-expressing LHA neurons (termed LHA Nts neurons) causes mice to immediately drink water with a delayed suppression of feeding. We therefore hypothesized that LHA Nts neurons are sufficient to induce drinking behavior and that these neurons specifically bias for fluid intake over food intake. To test this hypothesis we used designer receptors exclusively activated by designer drugs (DREADDs) to selectively activate LHA Nts neurons and studied the impact on fluid intake, fluid preference and feeding. Activation of LHA Nts neurons stimulated drinking in water-replete and dehydrated mice, indicating that these neurons are sufficient to promote water intake regardless of homeostatic need. Interestingly, mice with activated LHA Nts neurons drank any fluid that was provided regardless of its palatability, but if given a choice they preferred water or palatable solutions over unpalatable (quinine) or dehydrating (hypertonic saline) solutions. Notably, acute activation of LHA Nts neurons robustly promoted fluid but not food intake. Overall, our study confirms that activation of LHA Nts neurons is sufficient to induce drinking behavior and biases for fluid intake. Hence, LHA Nts neurons may be important targets for orchestrating the appropriate ingestive behavior necessary to maintain fluid homeostasis. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Hillary L Woodworth
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Sabrina Fowler
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA.
| |
Collapse
|
73
|
Sabetghadam A, Grabowiecka-Nowak A, Kania A, Gugula A, Blasiak E, Blasiak T, Ma S, Gundlach AL, Blasiak A. Melanin-concentrating hormone and orexin systems in rat nucleus incertus: Dual innervation, bidirectional effects on neuron activity, and differential influences on arousal and feeding. Neuropharmacology 2018; 139:238-256. [DOI: 10.1016/j.neuropharm.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/20/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
|
74
|
Farzi A, Lau J, Ip CK, Qi Y, Shi YC, Zhang L, Tasan R, Sperk G, Herzog H. Arcuate nucleus and lateral hypothalamic CART neurons in the mouse brain exert opposing effects on energy expenditure. eLife 2018; 7:36494. [PMID: 30129922 PMCID: PMC6103747 DOI: 10.7554/elife.36494] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/08/2018] [Indexed: 01/15/2023] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is widely expressed in the hypothalamus and an important regulator of energy homeostasis; however, the specific contributions of different CART neuronal populations to this process are not known. Here, we show that depolarization of mouse arcuate nucleus (Arc) CART neurons via DREADD technology decreases energy expenditure and physical activity, while it exerts the opposite effects in CART neurons in the lateral hypothalamus (LHA). Importantly, when stimulating these neuronal populations in the absence of CART, the effects were attenuated. In contrast, while activation of CART neurons in the LHA stimulated feeding in the presence of CART, endogenous CART inhibited food intake in response to Arc CART neuron activation. Taken together, these results demonstrate anorexigenic but anabolic effects of CART upon Arc neuron activation, and orexigenic but catabolic effects upon LHA-neuron activation, highlighting the complex and nuclei-specific functions of CART in controlling feeding and energy homeostasis.
Collapse
Affiliation(s)
- Aitak Farzi
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia.,Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, Graz, Austria
| | - Jackie Lau
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Yue Qi
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Ramon Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Günther Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
75
|
Abstract
In contrast to synaptic transmission, the mechanism of volume transmission-in which neurotransmitters or neuropeptides diffuse to many effector cells-is not extensively investigated, although it represents an important mode of neuronal communication. In this issue of Cell Metabolism, Noble et al. (2018) demonstrate how the orexigenic melanin-concentrating hormone (MCH) controls feeding behavior through cerebrospinal fluid (CSF) volume transmission.
Collapse
Affiliation(s)
- Hong Jiang
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.
| |
Collapse
|
76
|
Schneeberger M, Tan K, Nectow AR, Parolari L, Caglar C, Azevedo E, Li Z, Domingos A, Friedman JM. Functional analysis reveals differential effects of glutamate and MCH neuropeptide in MCH neurons. Mol Metab 2018; 13:83-89. [PMID: 29843980 PMCID: PMC6026325 DOI: 10.1016/j.molmet.2018.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) regulate food intake and body weight, glucose metabolism and convey the reward value of sucrose. In this report, we set out to establish the respective roles of MCH and conventional neurotransmitters in these neurons. METHODS MCH neurons were profiled using Cre-dependent molecular profiling technologies (vTRAP). MCHCre mice crossed to Vglut2fl/flmice or to DTRfl/flwere used to identify the role of glutamate in MCH neurons. We assessed metabolic parameters such as body composition, glucose tolerance, or sucrose preference. RESULTS We found that nearly all MCH neurons in the LH are glutamatergic and that a loss of glutamatergic signaling from MCH neurons from a glutamate transporter (VGlut2) knockout leads to a reduced weight, hypophagia and hyperkinetic behavior with improved glucose tolerance and a loss of sucrose preference. These effects are indistinguishable from those seen after ablation of MCH neurons. These findings are in contrast to those seen in mice with a knockout of the MCH neuropeptide, which show normal glucose preference and do not have improved glucose tolerance. CONCLUSIONS Overall, these data show that the vast majority of MCH neurons are glutamatergic, and that glutamate and MCH signaling mediate partially overlapping functions by these neurons, presumably by activating partially overlapping postsynaptic populations. The diverse functional effects of MCH neurons are thus mediated by a composite of glutamate and MCH signaling.
Collapse
Affiliation(s)
- Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Keith Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA; A*Star Institute of Medical Biology, 1 Fusionopolis Way, #20-10 Connexis North Tower, Singapore, 138632, Singapore
| | - Alexander R Nectow
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA; Princeton Neuroscience institute, Princeton University, Princeton, NJ, 08544-2098, USA
| | - Luca Parolari
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Caner Caglar
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Estefania Azevedo
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Zhiying Li
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Ana Domingos
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
77
|
Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018; 9:413. [PMID: 29928253 PMCID: PMC5997825 DOI: 10.3389/fneur.2018.00413] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/18/2018] [Indexed: 01/01/2023] Open
Abstract
The lateral hypothalamus is comprised of a heterogeneous mix of neurons that serve to integrate and regulate sleep, feeding, stress, energy balance, reward, and motivated behavior. Within these populations, the hypocretin/orexin neurons are among the most well studied. Here, we provide an overview on how these neurons act as a central hub integrating sensory and physiological information to tune arousal and motivated behavior accordingly. We give special attention to their role in sleep-wake states and conditions of hyper-arousal, as is the case with stress-induced anxiety. We further discuss their roles in feeding, drug-seeking, and sexual behavior, which are all dependent on the motivational state of the animal. We further emphasize the application of powerful techniques, such as optogenetics, chemogenetics, and fiber photometry, to delineate the role these neurons play in lateral hypothalamic functions.
Collapse
Affiliation(s)
- Susan M Tyree
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Jeremy C Borniger
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
78
|
Blanco-Centurion C, Bendell E, Zou B, Sun Y, Shiromani PJ, Liu M. VGAT and VGLUT2 expression in MCH and orexin neurons in double transgenic reporter mice. IBRO Rep 2018; 4:44-49. [PMID: 30155524 PMCID: PMC6111069 DOI: 10.1016/j.ibror.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/23/2018] [Accepted: 05/09/2018] [Indexed: 11/11/2022] Open
Abstract
MCH neurons contain neither VGAT nor VGLUT2. Majority of orexin neurons contain VGLUT2. MCH neurons do not contain orexin.
The neuropeptides orexin and melanin-concentrating hormone (MCH), as well as the neurotransmitters GABA (γ-Aminobutyric acid) and glutamate are chief modulators of the sleep-wake states in the posterior hypothalamus. To investigate co-expression of vesicular GABA transporter (VGAT, a marker of GABA neurons) and the vesicular glutamate transporter-2 (VGLUT2, a marker of glutamate neurons) in orexin and MCH neurons, we generated two transgenic mouse lines. One line selectively expressed the reporter gene EYFP in VGAT+ neurons, whereas the other line expressed reporter gene tdTomato in VGLUT2+ neurons. Co-localization between these genetic reporters and orexin or MCH immunofluorescent tags was determined using 3D computer reconstructions of Z stacks that were acquired using a multiphoton laser confocal microscope. Our results demonstrated that MCH neurons expressed neither VGAT nor VGLUT2, suggesting MCH neurons are a separate cluster of cells from VGAT+ GABAergic neurons and VGLUT2+ glutamatergic neurons. Moreover, most orexin neurons expressed VGLUT2, indicating these neurons are glutamatergic. Our data suggested that in the posterior hypothalamus there are four major distinct groups of neurons: VGAT+, orexin+/VGLUT2+, orexin-/VGLUT2+, and MCH neurons. This study facilitated our understanding of the role of these neurotransmitters and neuropeptides in relation to sleep/wake regulation.
Collapse
Key Words
- Arousal
- CeA, central nucleus of amygdala
- GABA
- GABA-γ, Aminobutyric acid
- GAD65, glutamic acid decarboxylase-65
- GAD67, glutamic acid decarboxylase-67
- Gad1, Glutamate decarboxylase 1
- Glutamate
- MCH, melanin concentrating hormone
- NREM, non-rapid eye movement
- REM, rapid eye movement
- RTN, reticular thalamic nucleus
- SSC, somatosensory cortex
- Sleep
- VGAT, vesicular GABA transporter
- VGLUT2, vesicular glutamate transporter-2
Collapse
Affiliation(s)
- Carlos Blanco-Centurion
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Emmaline Bendell
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Bingyu Zou
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ying Sun
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Priyattam J Shiromani
- Ralph H. Johnson VA Medical Center, Charleston, SC, 29425, USA.,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Meng Liu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
79
|
Petrovich GD. Lateral Hypothalamus as a Motivation-Cognition Interface in the Control of Feeding Behavior. Front Syst Neurosci 2018; 12:14. [PMID: 29713268 PMCID: PMC5911470 DOI: 10.3389/fnsys.2018.00014] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/28/2018] [Indexed: 01/02/2023] Open
Abstract
Converging evidence for an essential function of the lateral hypothalamus (LHA) in the control of feeding behavior has been accumulating since the classic work conducted almost 80 years ago. The LHA is also important in reward and reinforcement processes and behavioral state control. A unifying function for the LHA across these processes has not been fully established. Nonetheless, it is considered to integrate motivation with behavior. More recent work has demonstrated that the LHA is also required when cognitive processes, such as associative learning and memory control feeding behavior, suggesting it may serve as a motivation-cognition interface. Structurally, the LHA is well positioned within the cerebral hemisphere, with its extensive connectional network across the forebrain-brainstem axis, to link motivational and behavioral systems with cognitive processes. Studies that examined how learned cues control food seeking and consumption have implicated the LHA, but due to methodological limitations could not determine whether it underlies motivation, learning, or the integration of these processes. Furthermore, the identification of specific substrates has been limited by the LHA's extraordinary complexity and heterogeneity. Recent methodological advancements with chemo-and opto-genetic approaches have enabled unprecedented specificity in interrogations of distinct neurons and their pathways in behaving animals, including manipulations during temporally distinct events. These approaches have revealed novel insights about the LHA structure and function. Recent findings that the GABA LHA neurons control feeding and food-reward learning and memory will be reviewed together with past work within the context of the LHA function as an interface between cognition and motivation.
Collapse
Affiliation(s)
- Gorica D Petrovich
- Department of Psychology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
80
|
Bolton JL, Ruiz CM, Rismanchi N, Sanchez GA, Castillo E, Huang J, Cross C, Baram TZ, Mahler SV. Early-life adversity facilitates acquisition of cocaine self-administration and induces persistent anhedonia. Neurobiol Stress 2018; 8:57-67. [PMID: 29888304 PMCID: PMC5991313 DOI: 10.1016/j.ynstr.2018.01.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/03/2023] Open
Abstract
Early-life adversity increases the risk for emotional disorders such as depression and schizophrenia. Anhedonia, thought to be a core feature of these disorders, is provoked by our naturalistic rodent model of childhood adversity (i.e., rearing pups for one week in cages with limited bedding and nesting, LBN). Drug use and addiction are highly comorbid with psychiatric disorders featuring anhedonia, yet effects of LBN on drug-seeking behavior and the reward and stress-related circuits that underlie it remain unknown. Here we examined the effects of LBN on cocaine intake and seeking, using a battery of behavioral tests measuring distinct aspects of cocaine reward, and for comparison, chocolate intake. We also examined activation of neurons within the pleasure/reward and stress circuits following cocaine in LBN and control rats. Early-life adversity reduced spontaneous intake of palatable chocolate, extending prior reports of sucrose and social-play anhedonia. In a within-session cocaine behavioral economic test, LBN rats self-administered lower dosages of cocaine under low-effort conditions, consistent with a reduced hedonic set-point for cocaine, and potentially anhedonia. In contrast, cocaine demand elasticity was not consistently affected, indicating no major changes in motivation to maintain preferred cocaine blood levels. These changes were selective, as LBN did not cause an overt anxiety-like phenotype, nor did it affect sensitivity to self-administered cocaine dose, responding for cocaine under extinction conditions, cocaine- or cue-induced reinstatement of cocaine seeking, or locomotor response to acute cocaine. However, high Fos expression was seen after cocaine in both reward- and stress-related brain regions of LBN rats, including nucleus accumbens core, central amygdala, and lateral habenula. In contrast, hypothalamic orexin neuron activation after cocaine was significantly attenuated in LBN rats. Together, these findings demonstrate enduring effects of early-life adversity on both reward- and fear/anxiety-related neural circuits, as well as anhedonia-like reductions in consumption of natural and drug rewards. Adversity during a sensitive developmental period provokes persistent anhedonia. This adversity reduces cocaine hedonic set point, but not motivation. Cocaine-associated Fos is altered in reward- and anxiety/fear circuits. Cocaine-dose sensitivity, reinstatement, and locomotion are unchanged. Effects are selective, as anxiety-related behaviors were unaltered.
Collapse
Affiliation(s)
- Jessica L Bolton
- Department of Anatomy & Neurobiology, University of California, Irvine, USA
| | - Christina M Ruiz
- Department of Neurobiology & Behavior, University of California, Irvine, USA
| | - Neggy Rismanchi
- Department of Anatomy & Neurobiology, University of California, Irvine, USA
| | - Gissell A Sanchez
- Department of Anatomy & Neurobiology, University of California, Irvine, USA
| | - Erik Castillo
- Department of Neurobiology & Behavior, University of California, Irvine, USA
| | - Jeff Huang
- Department of Neurobiology & Behavior, University of California, Irvine, USA
| | - Christopher Cross
- Department of Neurobiology & Behavior, University of California, Irvine, USA
| | - Tallie Z Baram
- Department of Anatomy & Neurobiology, University of California, Irvine, USA
| | - Stephen V Mahler
- Department of Neurobiology & Behavior, University of California, Irvine, USA
| |
Collapse
|
81
|
Khan AM, Grant AH, Martinez A, Burns GAPC, Thatcher BS, Anekonda VT, Thompson BW, Roberts ZS, Moralejo DH, Blevins JE. Mapping Molecular Datasets Back to the Brain Regions They are Extracted from: Remembering the Native Countries of Hypothalamic Expatriates and Refugees. ADVANCES IN NEUROBIOLOGY 2018; 21:101-193. [PMID: 30334222 PMCID: PMC6310046 DOI: 10.1007/978-3-319-94593-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article focuses on approaches to link transcriptomic, proteomic, and peptidomic datasets mined from brain tissue to the original locations within the brain that they are derived from using digital atlas mapping techniques. We use, as an example, the transcriptomic, proteomic and peptidomic analyses conducted in the mammalian hypothalamus. Following a brief historical overview, we highlight studies that have mined biochemical and molecular information from the hypothalamus and then lay out a strategy for how these data can be linked spatially to the mapped locations in a canonical brain atlas where the data come from, thereby allowing researchers to integrate these data with other datasets across multiple scales. A key methodology that enables atlas-based mapping of extracted datasets-laser-capture microdissection-is discussed in detail, with a view of how this technology is a bridge between systems biology and systems neuroscience.
Collapse
Affiliation(s)
- Arshad M Khan
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA.
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA.
| | - Alice H Grant
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Anais Martinez
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Gully A P C Burns
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA, USA
| | - Brendan S Thatcher
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Vishwanath T Anekonda
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Benjamin W Thompson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Zachary S Roberts
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Daniel H Moralejo
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
82
|
Presynaptic Regulation of Leptin in a Defined Lateral Hypothalamus-Ventral Tegmental Area Neurocircuitry Depends on Energy State. J Neurosci 2017; 37:11854-11866. [PMID: 29089444 DOI: 10.1523/jneurosci.1942-17.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/30/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022] Open
Abstract
Synaptic transmission controls brain activity and behaviors, including food intake. Leptin, an adipocyte-derived hormone, acts on neurons located in the lateral hypothalamic area (LHA) to maintain energy homeostasis and regulate food intake behavior. The specific synaptic mechanisms, cell types, and neural projections mediating this effect remain unclear. In male mice, using pathway-specific retrograde tracing, whole-cell patch-clamp recordings and post hoc cell type identification, we found that leptin reduces excitatory synaptic strength onto both melanin-concentrating hormone- and orexin-expressing neurons projecting from the LHA to the ventral tegmental area (VTA), which may affect dopamine signaling and motivation for feeding. A presynaptic mechanism mediated by distinct intracellular signaling mechanisms may account for this regulation by leptin. The regulatory effects of leptin depend on intact leptin receptor signaling. Interestingly, the synaptic regulatory function of leptin in the LHA-to-VTA neuronal pathway is highly sensitive to energy states: both energy deficiency (acute fasting) and excessive energy storage (high-fat diet-induced obesity) blunt the effect of leptin. These data revealed that leptin may regulate synaptic transmission in the LHA-to-VTA neurocircuitry in an inverted "U-shape" fashion dependent on plasma glucose levels and related to metabolic states.SIGNIFICANCE STATEMENT The lateral hypothalamic area (LHA) to ventral tegmental area (VTA) projection is an important neural pathway involved in balancing whole-body energy states and reward. We found that the excitatory synaptic inputs to both orexin- and melanin-concentrating hormone expressing LHA neurons projecting to the VTA were suppressed by leptin, a peptide hormone derived from adipocytes that signals peripheral energy status to the brain. Interestingly, energy states seem to affect how leptin regulates synaptic transmission since both the depletion of energy induced by acute food deprivation and excessive storage of energy by high-fat diet feeding dampen the suppressive effect of leptin on synaptic transmission. Together, these data show that leptin regulates synaptic transmission and might be important for maintaining energy homeostasis.
Collapse
|