51
|
Sossin WS. Memory Synapses Are Defined by Distinct Molecular Complexes: A Proposal. Front Synaptic Neurosci 2018; 10:5. [PMID: 29695960 PMCID: PMC5904272 DOI: 10.3389/fnsyn.2018.00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Synapses are diverse in form and function. While there are strong evidential and theoretical reasons for believing that memories are stored at synapses, the concept of a specialized “memory synapse” is rarely discussed. Here, we review the evidence that memories are stored at the synapse and consider the opposing possibilities. We argue that if memories are stored in an active fashion at synapses, then these memory synapses must have distinct molecular complexes that distinguish them from other synapses. In particular, examples from Aplysia sensory-motor neuron synapses and synapses on defined engram neurons in rodent models are discussed. Specific hypotheses for molecular complexes that define memory synapses are presented, including persistently active kinases, transmitter receptor complexes and trans-synaptic adhesion proteins.
Collapse
Affiliation(s)
- Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
52
|
Sharma M, Razali NB, Sajikumar S. Inhibition of G9a/GLP Complex Promotes Long-Term Potentiation and Synaptic Tagging/Capture in Hippocampal CA1 Pyramidal Neurons. Cereb Cortex 2018; 27:3161-3171. [PMID: 27252354 DOI: 10.1093/cercor/bhw170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetic regulations play an important role in regulating the learning and memory processes. G9a/G9a-like protein (GLP) lysine dimethyltransferase complex controls a prominent histone H3 lysine9 dimethylation (H3K9me2) that results in transcriptional silencing of the chromatin. Here, we report that the inhibition of G9a/GLP complex by either of the substrate competitive inhibitors UNC 0638 or BIX 01294 reinforces protein synthesis-independent long-term potentiation (early-LTP) to protein synthesis-dependent long-term potentiation (late-LTP). The reinforcement effect was observed if the inhibitors were present during the induction of early-LTP and in addition when G9a/GLP complex inhibition was carried out by priming of synapses within an interval of 30 min before or after the induction of early-LTP. Surprisingly, the reinforced LTP by G9a/GLP complex inhibition was able to associate with a weak plasticity event from nearby independent synaptic populations, resulting in synaptic tagging/capture (STC). We have identified brain-derived neurotrophic factor (BDNF) as a critical plasticity protein that maintains G9a/GLP complex inhibition-mediated LTP facilitation and its STC. Our study reveals an epigenetic mechanism for promoting plasticity and associativity by G9a/GLP complex inhibition, and it may engender a promising epigenetic target for enhancing memory in neural networks.
Collapse
Affiliation(s)
- Mahima Sharma
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Singapore.,Neurobiology/Aging Program, #04-44, 28 Medical Drive, Life Sciences Institute (LSI), National University of Singapore, Singapore 117 456, Singapore
| | - Nuralyah Bte Razali
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Singapore.,Neurobiology/Aging Program, #04-44, 28 Medical Drive, Life Sciences Institute (LSI), National University of Singapore, Singapore 117 456, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Singapore.,Neurobiology/Aging Program, #04-44, 28 Medical Drive, Life Sciences Institute (LSI), National University of Singapore, Singapore 117 456, Singapore
| |
Collapse
|
53
|
Vecsey CG, Huang T, Abel T. Sleep deprivation impairs synaptic tagging in mouse hippocampal slices. Neurobiol Learn Mem 2018; 154:136-140. [PMID: 29551603 DOI: 10.1016/j.nlm.2018.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 11/17/2022]
Abstract
Metaplasticity refers to the ability of experience to alter synaptic plasticity, or modulate the strength of neuronal connections. Sleep deprivation has been shown to have a negative impact on synaptic plasticity, but it is unknown whether sleep deprivation also influences processes of metaplasticity. Therefore, we tested whether 5 h of total sleep deprivation (SD) in mice would impair hippocampal synaptic tagging and capture (STC), a form of heterosynaptic metaplasticity in which combining strong stimulation in one synaptic input with weak stimulation at another input allows the weak input to induce long-lasting synaptic strengthening. STC in stratum radiatum of area CA1 occurred normally in control mice, but was impaired following SD. After SD, potentiation at the weakly stimulated synapses decayed back to baseline within 2 h. Thus, sleep deprivation disrupts a prominent form of metaplasticity in which two independent inputs interact to generate long-lasting LTP.
Collapse
Affiliation(s)
- Christopher G Vecsey
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Ted Huang
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
54
|
Edelmann E, Lessmann V. Dopaminergic innervation and modulation of hippocampal networks. Cell Tissue Res 2018; 373:711-727. [PMID: 29470647 DOI: 10.1007/s00441-018-2800-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
The catecholamine dopamine plays an important role in hippocampus-dependent plasticity and related learning and memory processes. Dopamine secretion in the hippocampus is activated by, e.g., salient or novel stimuli, thereby helping to establish and to stabilize hippocampus-dependent memories. Disturbed dopaminergic function in the hippocampus leads to severe pathophysiological conditions. While the role and importance of dopaminergic modulation of hippocampal networks have been unequivocally proven, there is still a lack of detailed molecular and cellular mechanistic understanding of how dopamine orchestrates these hippocampal processes. In this chapter of the special issue "Hippocampal structure and function," we will discuss the current understanding of dopaminergic modulation of basal synaptic transmission and long-lasting, activity-dependent potentiation or depression.
Collapse
Affiliation(s)
- Elke Edelmann
- Institut für Physiologie, Otto-von-Guericke-Universität, Medizinische Fakultät, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, Medizinische Fakultät, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
55
|
Dasgupta A, Kim J, Manakkadan A, Arumugam TV, Sajikumar S. Intermittent fasting promotes prolonged associative interactions during synaptic tagging/capture by altering the metaplastic properties of the CA1 hippocampal neurons. Neurobiol Learn Mem 2017; 154:70-77. [PMID: 29277679 DOI: 10.1016/j.nlm.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 01/18/2023]
Abstract
Metaplasticity is the inherent property of a neuron or neuronal population to undergo activity-dependent changes in neural function that modulate subsequent synaptic plasticity. Here we studied the effect of intermittent fasting (IF) in governing the interactions of associative plasticity mechanisms in the pyramidal neurons of rat hippocampal area CA1. Late long-term potentiation and its associative mechanisms such as synaptic tagging and capture at an interval of 120 min were evaluated in four groups of animals, AL (Ad libitum), IF12 (daily IF for 12 h), IF16 (daily IF for 16 h) and EOD (every other day IF for 24 h). IF had no visible effect on the early or late plasticity but it manifested a critical role in prolonging the associative interactions between weak and strong synapses at an interval of 120 min in IF16 and EOD animals. However, both IF12 and AL did not show associativity at 120 min. Plasticity genes such as Bdnf and Prkcz, which are well known for their expressions in late plasticity and synaptic tagging and capture, were significantly upregulated in IF16 and EOD in comparison to AL. Specific inhibition of brain derived neurotropic factor (BDNF) prevented the prolonged associativity expressed in EOD. Thus, daily IF for 16 h or more can be considered to enhance the metaplastic properties of synapses by improving their associative interactions that might translate into animprovedmemoryformation.
Collapse
Affiliation(s)
- Ananya Dasgupta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, #04-44, 28 Medical Drive, Singapore 117 456, Singapore
| | - Joonki Kim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Republic of Korea
| | - Anoop Manakkadan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, #04-44, 28 Medical Drive, Singapore 117 456, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, #04-44, 28 Medical Drive, Singapore 117 456, Singapore.
| |
Collapse
|
56
|
Interplay between global and pathway-specific synaptic plasticity in CA1 pyramidal cells. Sci Rep 2017; 7:17040. [PMID: 29213058 PMCID: PMC5719010 DOI: 10.1038/s41598-017-17161-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/22/2017] [Indexed: 12/22/2022] Open
Abstract
Mechanisms underlying information storage have been depicted for global cell-wide and pathway-specific synaptic plasticity. Yet, little is known how these forms of plasticity interact to enhance synaptic competition and network stability. We examined synaptic interactions between apical and basal dendrites of CA1 pyramidal neurons in mouse hippocampal slices. Bursts (50 Hz) of three action potentials (AP-bursts) paired with preceding presynaptic stimulation in stratum radiatum specifically led to LTP of the paired pathway in adult mice (P75). At adolescence (P28), an increase in burst frequency (>50 Hz) was required to gain timing-dependent LTP. Surprisingly, paired radiatum and unpaired oriens pathway potentiated, unless the pre-post delay was shortened from 10 to 5 ms, which selectively potentiated paired radiatum pathway, since unpaired oriens pathway decreased back to baseline. Conversely, the exact same 5 ms pairing in stratum oriens potentiated both pathways, as did AP-bursts alone, which potentiated synaptic efficacy as well as current-evoked postsynaptic spiking. L-type voltage-gated Ca2+ channels were involved in mediating synaptic potentiation in oriens, whereas NMDA and adenosine receptors counteracted unpaired stratum oriens potentiation following pairing in stratum radiatum. This asymmetric plasticity uncovers important insights into alterations of synaptic efficacy and intrinsic neuronal excitability for pathways that convey hippocampal and extra-hippocampal information.
Collapse
|
57
|
Navakkode S, Chew KCM, Tay SJN, Lin Q, Behnisch T, Soong TW. Bidirectional modulation of hippocampal synaptic plasticity by Dopaminergic D4-receptors in the CA1 area of hippocampus. Sci Rep 2017; 7:15571. [PMID: 29138490 PMCID: PMC5686203 DOI: 10.1038/s41598-017-15917-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/03/2017] [Indexed: 11/09/2022] Open
Abstract
Long-term potentiation (LTP) is the persistent increase in the strength of the synapses. However, the neural networks would become saturated if there is only synaptic strenghthening. Synaptic weakening could be facilitated by active processes like long-term depression (LTD). Molecular mechanisms that facilitate the weakening of synapses and thereby stabilize the synapses are also important in learning and memory. Here we show that blockade of dopaminergic D4 receptors (D4R) promoted the formation of late-LTP and transformed early-LTP into late-LTP. This effect was dependent on protein synthesis, activation of NMDA-receptors and CaMKII. We also show that GABAA-receptor mediated mechanisms are involved in the enhancement of late-LTP. We could show that short-term plasticity and baseline synaptic transmission were unaffected by D4R inhibition. On the other hand, antagonizing D4R prevented both early and late forms of LTD, showing that activation of D4Rs triggered a dual function. Synaptic tagging experiments on LTD showed that D4Rs act as plasticity related proteins rather than the setting of synaptic tags. D4R activation by PD 168077 induced a slow-onset depression that was protein synthesis, NMDAR and CaMKII dependent. The D4 receptors, thus exert a bidirectional modulation of CA1 pyramidal neurons by restricting synaptic strengthening and facilitating synaptic weakening.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Neurobiology/Aging Program, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Katherine C M Chew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Neurobiology/Aging Program, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Sabrina Jia Ning Tay
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Neurobiology/Aging Program, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Qingshu Lin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Neurobiology/Aging Program, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Thomas Behnisch
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,Neurobiology/Aging Program, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore. .,National Neuroscience Institute, Singapore, 308433, Singapore.
| |
Collapse
|
58
|
Substance P induces plasticity and synaptic tagging/capture in rat hippocampal area CA2. Proc Natl Acad Sci U S A 2017; 114:E8741-E8749. [PMID: 28973908 DOI: 10.1073/pnas.1711267114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The hippocampal area Cornu Ammonis (CA) CA2 is important for social interaction and is innervated by Substance P (SP)-expressing supramammillary (SuM) nucleus neurons. SP exerts neuromodulatory effects on pain processing and central synaptic transmission. Here we provide evidence that SP can induce a slowly developing NMDA receptor- and protein synthesis-dependent potentiation of synaptic transmission that can be induced not only at entorhinal cortical (EC)-CA2 synapses but also at long-term potentiation (LTP)-resistant Schaffer collateral (SC)-CA2 synapses. In addition, SP-induced potentiation of SC-CA2 synapses transforms a short-term potentiation of EC-CA2 synaptic transmission into LTP, consistent with the synaptic tagging and capture hypothesis. Interestingly, this SP-induced potentiation and associative interaction between the EC and SC inputs of CA2 neurons is independent of the GABAergic system. In addition, CaMKIV and PKMζ play a critical role in the SP-induced effects on SC-CA2 and EC-CA2 synapses. Thus, afferents from SuM neurons are ideally situated to prime CA2 synapses for the formation of long-lasting plasticity and associativity.
Collapse
|
59
|
Jȩdrzejewska-Szmek J, Luczak V, Abel T, Blackwell KT. β-adrenergic signaling broadly contributes to LTP induction. PLoS Comput Biol 2017; 13:e1005657. [PMID: 28742159 PMCID: PMC5546712 DOI: 10.1371/journal.pcbi.1005657] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 08/07/2017] [Accepted: 06/27/2017] [Indexed: 12/18/2022] Open
Abstract
Long-lasting forms of long-term potentiation (LTP) represent one of the major cellular mechanisms underlying learning and memory. One of the fundamental questions in the field of LTP is why different molecules are critical for long-lasting forms of LTP induced by diverse experimental protocols. Further complexity stems from spatial aspects of signaling networks, such that some molecules function in the dendrite and some are critical in the spine. We investigated whether the diverse experimental evidence can be unified by creating a spatial, mechanistic model of multiple signaling pathways in hippocampal CA1 neurons. Our results show that the combination of activity of several key kinases can predict the occurrence of long-lasting forms of LTP for multiple experimental protocols. Specifically Ca2+/calmodulin activated kinase II, protein kinase A and exchange protein activated by cAMP (Epac) together predict the occurrence of LTP in response to strong stimulation (multiple trains of 100 Hz) or weak stimulation augmented by isoproterenol. Furthermore, our analysis suggests that activation of the β-adrenergic receptor either via canonical (Gs-coupled) or non-canonical (Gi-coupled) pathways underpins most forms of long-lasting LTP. Simulations make the experimentally testable prediction that a complete antagonist of the β-adrenergic receptor will likely block long-lasting LTP in response to strong stimulation. Collectively these results suggest that converging molecular mechanisms allow CA1 neurons to flexibly utilize signaling mechanisms best tuned to temporal pattern of synaptic input to achieve long-lasting LTP and memory storage. Long-term potentiation of the strength of synaptic connections is a mechanism of learning and memory storage. One of the most confusing aspects of hippocampal synaptic potentiation is that numerous experiments have revealed the requirement for a plethora of signaling molecules. Furthermore the degree to which molecules activated by the stress response modify hippocampal synaptic potentiation and memory is still unclear. We used a computational model to demonstrate that this molecular diversity can be explained by considering a combination of several key molecules. We also show that activation of β-adrenergic receptors by the stress response appears to be involved in most forms of synaptic potentiation, though in some cases unconventional mechanisms are utilized. This suggests that novel treatments for stress-related disorders may have more success if they target unconventional mechanisms activated by β-adrenergic receptors.
Collapse
Affiliation(s)
- Joanna Jȩdrzejewska-Szmek
- The Krasnow Institute for Advanced Studies, George Mason University, Fairfax, Virginia, United States of America
| | - Vincent Luczak
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kim T Blackwell
- The Krasnow Institute for Advanced Studies, George Mason University, Fairfax, Virginia, United States of America
- * E-mail:
| |
Collapse
|
60
|
Gandolfi D, Cerri S, Mapelli J, Polimeni M, Tritto S, Fuzzati-Armentero MT, Bigiani A, Blandini F, Mapelli L, D'Angelo E. Activation of the CREB/ c-Fos Pathway during Long-Term Synaptic Plasticity in the Cerebellum Granular Layer. Front Cell Neurosci 2017; 11:184. [PMID: 28701927 PMCID: PMC5487453 DOI: 10.3389/fncel.2017.00184] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/16/2017] [Indexed: 12/22/2022] Open
Abstract
The induction of long-term potentiation and depression (LTP and LTD) is thought to trigger gene expression and protein synthesis, leading to consolidation of synaptic and neuronal changes. However, while LTP and LTD have been proposed to play important roles for sensori-motor learning in the cerebellum granular layer, their association with these mechanisms remained unclear. Here, we have investigated phosphorylation of the cAMP-responsive element binding protein (CREB) and activation of the immediate early gene c-Fos pathway following the induction of synaptic plasticity by theta-burst stimulation (TBS) in acute cerebellar slices. LTP and LTD were localized using voltage-sensitive dye imaging (VSDi). At two time points following TBS (15 min and 120 min), corresponding to the early and late phases of plasticity, slices were fixed and processed to evaluate CREB phosphorylation (P-CREB) and c-FOS protein levels, as well as Creb and c-Fos mRNA expression. High levels of P-CREB and Creb/c-Fos were detected before those of c-FOS, as expected if CREB phosphorylation triggered gene expression followed by protein synthesis. No differences between control slices and slices stimulated with TBS were observed in the presence of an N-methyl-D-aspartate receptor (NMDAR) antagonist. Interestingly, activation of the CREB/c-Fos system showed a relevant degree of colocalization with long-term synaptic plasticity. These results show that NMDAR-dependent plasticity at the cerebellum input stage bears about transcriptional and post-transcriptional processes potentially contributing to cerebellar learning and memory consolidation.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Brain Connectivity Center, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| | - Silvia Cerri
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| | - Jonathan Mapelli
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio EmiliaModena, Italy
| | - Mariarosa Polimeni
- Department of Public Health, Experimental and Forensic Medicine, Human Anatomy Unit, University of PaviaPavia Italy
| | - Simona Tritto
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy
| | - Marie-Therese Fuzzati-Armentero
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio EmiliaModena, Italy
| | - Fabio Blandini
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| | - Lisa Mapelli
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Museo Storico Della Fisica e Centro Studi e Ricerche Enrico FermiRome, Italy
| | - Egidio D'Angelo
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Brain Connectivity Center, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| |
Collapse
|
61
|
Hu J, Ferguson L, Adler K, Farah CA, Hastings MH, Sossin WS, Schacher S. Selective Erasure of Distinct Forms of Long-Term Synaptic Plasticity Underlying Different Forms of Memory in the Same Postsynaptic Neuron. Curr Biol 2017. [PMID: 28648820 DOI: 10.1016/j.cub.2017.05.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Generalization of fear responses to non-threatening stimuli is a feature of anxiety disorders. It has been challenging to target maladaptive generalized memories without affecting adaptive memories. Synapse-specific long-term plasticity underlying memory involves the targeting of plasticity-related proteins (PRPs) to activated synapses. If distinct tags and PRPs are used for different forms of plasticity, one could selectively remove distinct forms of memory. Using a stimulation paradigm in which associative long-term facilitation (LTF) occurs at one input and non-associative LTF at another input to the same postsynaptic neuron in an Aplysia sensorimotor preparation, we found that each form of LTF is reversed by inhibiting distinct isoforms of protein kinase M (PKM), putative PRPs, in the postsynaptic neuron. A dominant-negative (dn) atypical PKM selectively reversed associative LTF, while a dn classical PKM selectively reversed non-associative LTF. Although both PKMs are formed from calpain-mediated cleavage of protein kinase C (PKC) isoforms, each form of LTF is sensitive to a distinct dn calpain expressed in the postsynaptic neuron. Associative LTF is blocked by dn classical calpain, whereas non-associative LTF is blocked by dn small optic lobe (SOL) calpain. Interfering with a putative synaptic tag, the adaptor protein KIBRA, which protects the atypical PKM from degradation, selectively erases associative LTF. Thus, the activity of distinct PRPs and tags in a postsynaptic neuron contribute to the maintenance of different forms of synaptic plasticity at separate inputs, allowing for selective reversal of synaptic plasticity and providing a cellular basis for developing therapeutic strategies for selectively reversing maladaptive memories.
Collapse
Affiliation(s)
- Jiangyuan Hu
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Larissa Ferguson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Kerry Adler
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | - Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Margaret H Hastings
- Department of Psychology, McGill University, Montreal Neurological Institute, Montreal, QC H3A 1B1, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Department of Psychology, McGill University, Montreal Neurological Institute, Montreal, QC H3A 1B1, Canada
| | - Samuel Schacher
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
62
|
Endocannabinoid signaling and memory dynamics: A synaptic perspective. Neurobiol Learn Mem 2017; 138:62-77. [DOI: 10.1016/j.nlm.2016.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 01/26/2023]
|
63
|
Krishna K, Behnisch T, Sajikumar S. Inhibition of Histone Deacetylase 3 Restores Amyloid-β Oligomer-Induced Plasticity Deficit in Hippocampal CA1 Pyramidal Neurons. J Alzheimers Dis 2016; 51:783-91. [PMID: 26890755 DOI: 10.3233/jad-150838] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) are associated with alterations in epigenetic factors leading to cognitive decline. Histone deacetylase 3 (HDAC3) is a known critical epigenetic negative regulator of learning and memory. In this study, attenuation of long-term potentiation by amyloid-β oligomer, and its reversal by specific HDAC3 inhibitor RGFP966, was performed in rat CA1 pyramidal neurons using whole cell voltage-clamp and field recording techniques. Our findings provide the first evidence that amyloid-β oligomer-induced synaptic plasticity impairment can be prevented by inhibition of HDAC3 enzyme both at the single neuron as well as in a population of neurons, thus identifying HDAC3 as a potential target for ameliorating AD related plasticity impairments.
Collapse
Affiliation(s)
- Kumar Krishna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thomas Behnisch
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, Singapore
| |
Collapse
|
64
|
Szabó EC, Manguinhas R, Fonseca R. The interplay between neuronal activity and actin dynamics mimic the setting of an LTD synaptic tag. Sci Rep 2016; 6:33685. [PMID: 27650071 PMCID: PMC5030642 DOI: 10.1038/srep33685] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023] Open
Abstract
Persistent forms of plasticity, such as long-term depression (LTD), are dependent on the interplay between activity-dependent synaptic tags and the capture of plasticity-related proteins. We propose that the synaptic tag represents a structural alteration that turns synapses permissive to change. We found that modulation of actin dynamics has different roles in the induction and maintenance of LTD. Inhibition of either actin depolymerisation or polymerization blocks LTD induction whereas only the inhibition of actin depolymerisation blocks LTD maintenance. Interestingly, we found that actin depolymerisation and CaMKII activation are involved in LTD synaptic-tagging and capture. Moreover, inhibition of actin polymerisation mimics the setting of a synaptic tag, in an activity-dependent manner, allowing the expression of LTD in non-stimulated synapses. Suspending synaptic activation also restricts the time window of synaptic capture, which can be restored by inhibiting actin polymerization. Our results support our hypothesis that modulation of the actin cytoskeleton provides an input-specific signal for synaptic protein capture.
Collapse
Affiliation(s)
- Eszter C Szabó
- Cellular and Systems Neurobiology, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras Portugal
| | - Rita Manguinhas
- Cellular and Systems Neurobiology, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras Portugal
| | - Rosalina Fonseca
- Cellular and Systems Neurobiology, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras Portugal
| |
Collapse
|
65
|
Li Y, Kulvicius T, Tetzlaff C. Induction and Consolidation of Calcium-Based Homo- and Heterosynaptic Potentiation and Depression. PLoS One 2016; 11:e0161679. [PMID: 27560350 PMCID: PMC4999190 DOI: 10.1371/journal.pone.0161679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 08/10/2016] [Indexed: 11/19/2022] Open
Abstract
The adaptive mechanisms of homo- and heterosynaptic plasticity play an important role in learning and memory. In order to maintain plasticity-induced changes for longer time scales (up to several days), they have to be consolidated by transferring them from a short-lasting early-phase to a long-lasting late-phase state. The underlying processes of this synaptic consolidation are already well-known for homosynaptic plasticity, however, it is not clear whether the same processes also enable the induction and consolidation of heterosynaptic plasticity. In this study, by extending a generic calcium-based plasticity model with the processes of synaptic consolidation, we show in simulations that indeed heterosynaptic plasticity can be induced and, furthermore, consolidated by the same underlying processes as for homosynaptic plasticity. Furthermore, we show that by local diffusion processes the heterosynaptic effect can be restricted to a few synapses neighboring the homosynaptically changed ones. Taken together, this generic model reproduces many experimental results of synaptic tagging and consolidation, provides several predictions for heterosynaptic induction and consolidation, and yields insights into the complex interactions between homo- and heterosynaptic plasticity over a broad variety of time (minutes to days) and spatial scales (several micrometers).
Collapse
Affiliation(s)
- Yinyun Li
- III. Institute of Physics – Biophysics, Georg-August-University, 37077 Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Georg-August-University, 37077 Göttingen, Germany
- School of System Science, Beijing Normal University, 100875 Beijing, China
- * E-mail:
| | - Tomas Kulvicius
- III. Institute of Physics – Biophysics, Georg-August-University, 37077 Göttingen, Germany
- Maersk Mc-Kinney Moller Institute, University of Southern Denmark, 5230 Odense, Denmark
| | - Christian Tetzlaff
- Bernstein Center for Computational Neuroscience, Georg-August-University, 37077 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
66
|
Yap KAF, Shetty MS, Garcia-Alvarez G, Lu B, Alagappan D, Oh-Hora M, Sajikumar S, Fivaz M. STIM2 regulates AMPA receptor trafficking and plasticity at hippocampal synapses. Neurobiol Learn Mem 2016; 138:54-61. [PMID: 27544849 DOI: 10.1016/j.nlm.2016.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/14/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
Abstract
STIM2 is an integral membrane protein of the endoplasmic reticulum (ER) that regulates the activity of plasma membrane (PM) channels at ER-PM contact sites. Recent studies show that STIM2 promotes spine maturation and surface expression of the AMPA receptor (AMPAR) subunit GluA1, hinting at a probable role in synaptic plasticity. Here, we used a Stim2 cKO mouse to explore the function of STIM2 in Long-Term Potentiation (LTP) and Depression (LTD), two widely-studied models of synaptic plasticity implicated in information storage. We found that STIM2 is required for the stable expression of both LTP and LTD at CA3-CA1 hippocampal synapses. Altered plasticity in Stim2 cKO mice is associated with subtle alterations in the shape and density of dendritic spines in CA1 neurons. Further, surface delivery of GluA1 in response to LTP-inducing chemical manipulations was markedly reduced in excitatory neurons derived from Stim2 cKO mice. GluA1 endocytosis following chemically-induced LTD was also impaired in Stim2 cKO neurons. We conclude that STIM2 facilitates synaptic delivery and removal of AMPARs and regulates activity-dependent changes in synaptic strength through a unique mode of communication between the ER and the synapse.
Collapse
Affiliation(s)
- Kenrick An Fu Yap
- Duke-NUS Medical School, programme in Neuroscience and Behavioral Disorders, Singapore 169857, Singapore
| | - Mahesh Shivarama Shetty
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gisela Garcia-Alvarez
- Duke-NUS Medical School, programme in Neuroscience and Behavioral Disorders, Singapore 169857, Singapore
| | - Bo Lu
- Duke-NUS Medical School, programme in Neuroscience and Behavioral Disorders, Singapore 169857, Singapore
| | - Durgadevi Alagappan
- Duke-NUS Medical School, programme in Neuroscience and Behavioral Disorders, Singapore 169857, Singapore
| | - Masatsugu Oh-Hora
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Japan
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Marc Fivaz
- Duke-NUS Medical School, programme in Neuroscience and Behavioral Disorders, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
67
|
Legéndy CR. Synaptic and extrasynaptic traces of long-term memory: the ID molecule theory. Rev Neurosci 2016; 27:575-98. [PMID: 27206318 DOI: 10.1515/revneuro-2016-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 12/19/2022]
Abstract
It is generally assumed at the time of this writing that memories are stored in the form of synaptic weights. However, it is now also clear that the synapses are not permanent; in fact, synaptic patterns undergo significant change in a matter of hours. This means that to implement the long survival of distant memories (for several decades in humans), the brain must possess a molecular backup mechanism in some form, complete with provisions for the storage and retrieval of information. It is found below that the memory-supporting molecules need not contain a detailed description of mental entities, as had been envisioned in the 'memory molecule papers' from 50 years ago, they only need to contain unique identifiers of various entities, and that this can be achieved using relatively small molecules, using a random code ('ID molecules'). In this paper, the logistics of information flow are followed through the steps of storage and retrieval, and the conclusion reached is that the ID molecules, by carrying a sufficient amount of information (entropy), can effectively control the recreation of complex multineuronal patterns. In illustrations, it is described how ID molecules can be made to revive a selected cell assembly by waking up its synapses and how they cause a selected cell assembly to ignite by sending slow inward currents into its cells. The arrangement involves producing multiple copies of the ID molecules and distributing them at strategic locations at selected sets of synapses, then reaching them through small noncoding RNA molecules. This requires the quick creation of entropy-rich messengers and matching receptors, and it suggests that these are created from each other by small-scale transcription and reverse transcription.
Collapse
|
68
|
Moncada D. Evidence of VTA and LC control of protein synthesis required for the behavioral tagging process. Neurobiol Learn Mem 2016; 138:226-237. [PMID: 27291857 DOI: 10.1016/j.nlm.2016.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 01/18/2023]
Abstract
Several works have shown that the formation of different long-term memories relies on a behavioral tagging process. In other words, to establish a lasting memory, at least two parallel processes must occur: the setting of a learning tag (triggered during learning) that defines where a memory could be stored, and the synthesis of proteins, that once captured at tagged sites will effectively allow the consolidation process to occur. This work focused in studying which brain structures are responsible of controlling the synthesis of those proteins at the brain areas where memory is being stored. It combines electrical activation of the ventral tegmental area (VTA) and/or the locus coeruleus (LC), with local pharmacological interventions and weak and strong behavioral trainings in the inhibitory avoidance and spatial object recognition tasks in rats. The results presented here strongly support the idea that the VTA is a brain structure responsible for regulating the consolidation of memories acting through the D1/D5 dopaminergic receptors of the hippocampus to control the synthesis of new proteins required for this process. Moreover, they provide evidence that the LC may be a second structure with a similar role, acting independently and complementary to the VTA, through the β-adrenergic receptors of the hippocampus.
Collapse
Affiliation(s)
- Diego Moncada
- Neurophysiology of Learning and Memory Research Group, Leibniz-Institute for Neurobiology, Brenneckstr. 6, 39118 Magdeburg, Germany; Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155, 3° Piso, CP 1121 Buenos Aires, Argentina.
| |
Collapse
|
69
|
Vishnoi S, Raisuddin S, Parvez S. Behavioral tagging: A novel model for studying long-term memory. Neurosci Biobehav Rev 2016; 68:361-369. [PMID: 27216211 DOI: 10.1016/j.neubiorev.2016.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/10/2016] [Accepted: 05/19/2016] [Indexed: 12/21/2022]
Abstract
New information acquired by our brain is stored in the form of two types of memories: short term memory (STM) and long term memory (LTM). Initially, Synaptic and Capture hypothesis has been proposed to describe the synaptic changes that occur during memory formation. However, recently Behavioral Tagging hypothesis was proposed that relies on the setting of a learning tag and the synthesis of plasticity related proteins (PRPs). Behavioral Tagging has its roots in Synaptic and Capture hypothesis. It seeks to explain that how a learning tag produced as a result of weak training can be paired up with PRPs (formed as a result of novelty) and can lead to long lasting memories. We have focused on describing behavioral paradigms that have been used for establishing the model of "Behavioral Tagging" and the molecules which qualify for potential PRP candidature.
Collapse
Affiliation(s)
- Shruti Vishnoi
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
70
|
Chan ES, Shetty MS, Sajikumar S, Chen C, Soong TW, Wong BS. ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer's disease mouse model. Sci Rep 2016; 6:26119. [PMID: 27189808 PMCID: PMC4870502 DOI: 10.1038/srep26119] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/27/2016] [Indexed: 02/01/2023] Open
Abstract
The apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for Alzheimer's disease (AD). The AD brain was shown to be insulin resistant at end stage, but the interplay between insulin signaling, ApoE4 and Aβ across time, and their involvement in memory decline is unclear. To investigate insulin response in the ageing mouse hippocampus, we crossed the human ApoE-targeted replacement mice with the mutant human amyloid precursor protein (APP) mice (ApoExAPP). While hippocampal Aβ levels were comparable between ApoE3xAPP and ApoE4xAPP mice at 26 weeks, insulin response was impaired in the ApoE4xAPP hippocampus. Insulin treatment was only able to stimulate insulin signaling and increased AMPA-GluR1 phosphorylation in forskolin pre-treated hippocampal slices from ApoE3xAPP mice. In ApoE4xAPP mice, insulin dysfunction was also associated with poorer spatial memory performance. Using dissociated hippocampal neuron in vitro, we showed that insulin response in ApoE3 and ApoE4 neurons increased AMPA receptor-mediated miniature excitatory postsynaptic current (mEPSC) amplitudes and GluR1-subunit insertion. Pre-treatment of ApoE3 neurons with Aβ42 did not affect insulin-mediated GluR1 subunit insertion. However, impaired insulin sensitivity observed only in the presence of ApoE4 and Aβ42, attenuated GluR1-subunit insertion. Taken together, our results suggest that ApoE4 enhances Aβ inhibition of insulin-stimulated AMPA receptor function, which accelerates memory impairment in ApoE4xAPP mice.
Collapse
Affiliation(s)
- Elizabeth S Chan
- Departments of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Mahesh Shivarama Shetty
- Departments of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore.,Memory Networks Program, Neurobiology and Ageing Program, Life Sciences Institute, National University of Singapore 117456, Singapore
| | - Sreedharan Sajikumar
- Departments of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore.,Memory Networks Program, Neurobiology and Ageing Program, Life Sciences Institute, National University of Singapore 117456, Singapore
| | - Christopher Chen
- Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore.,Memory Ageing and Cognition Centre (MACC), National University Health System (NUHS) 117599, Singapore
| | - Tuck Wah Soong
- Departments of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore.,Memory Networks Program, Neurobiology and Ageing Program, Life Sciences Institute, National University of Singapore 117456, Singapore
| | - Boon-Seng Wong
- Departments of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| |
Collapse
|
71
|
Mellström B, Kastanauskaite A, Knafo S, Gonzalez P, Dopazo XM, Ruiz-Nuño A, Jefferys JGR, Zhuo M, Bliss TVP, Naranjo JR, DeFelipe J. Specific cytoarchitectureal changes in hippocampal subareas in daDREAM mice. Mol Brain 2016; 9:22. [PMID: 26928278 PMCID: PMC4772309 DOI: 10.1186/s13041-016-0204-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/22/2016] [Indexed: 11/20/2022] Open
Abstract
Background Transcriptional repressor DREAM (downstream regulatory element antagonist modulator) is a Ca2+-binding protein that regulates Ca2+ homeostasis through gene regulation and protein-protein interactions. It has been shown that a dominant active form (daDREAM) is implicated in learning-related synaptic plasticity such as LTP and LTD in the hippocampus. Neuronal spines are reported to play important roles in plasticity and memory. However, the possible role of DREAM in spine plasticity has not been reported. Results Here we show that potentiating DREAM activity, by overexpressing daDREAM, reduced dendritic basal arborization and spine density in CA1 pyramidal neurons and increased spine density in dendrites in dentate gyrus granule cells. These microanatomical changes are accompanied by significant modifications in the expression of specific genes encoding the cytoskeletal proteins Arc, Formin 1 and Gelsolin in daDREAM hippocampus. Conclusions Our results strongly suggest that DREAM plays an important role in structural plasticity in the hippocampus. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0204-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Britt Mellström
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,National Biotechnology Center. CSIC, Darwin, 3. E-28049, Madrid, Spain.
| | - Asta Kastanauskaite
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,Cajal Institute, CSIC Madrid, Av Dr. Arce,37 E-28006, Madrid, Spain. .,Biomedical Technology Center, Politecnica University Madrid, Madrid, Spain.
| | - Shira Knafo
- Cajal Institute, CSIC Madrid, Av Dr. Arce,37 E-28006, Madrid, Spain. .,Present address: IkerBasque Basque Foundation for Science and BioCruces, Health Research Institute, Bizkaia, Spain.
| | - Paz Gonzalez
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,National Biotechnology Center. CSIC, Darwin, 3. E-28049, Madrid, Spain.
| | - Xose M Dopazo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,National Biotechnology Center. CSIC, Darwin, 3. E-28049, Madrid, Spain.
| | - Ana Ruiz-Nuño
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK.
| | - John G R Jefferys
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK.
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada. .,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Tim V P Bliss
- MRC National Institutes for Medical Research, Mill Hill, London, UK.
| | - Jose R Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,National Biotechnology Center. CSIC, Darwin, 3. E-28049, Madrid, Spain.
| | - Javier DeFelipe
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,Cajal Institute, CSIC Madrid, Av Dr. Arce,37 E-28006, Madrid, Spain. .,Biomedical Technology Center, Politecnica University Madrid, Madrid, Spain.
| |
Collapse
|
72
|
Kaczmarczyk L, Labrie-Dion É, Sehgal K, Sylvester M, Skubal M, Josten M, Steinhäuser C, De Koninck P, Theis M. New Phosphospecific Antibody Reveals Isoform-Specific Phosphorylation of CPEB3 Protein. PLoS One 2016; 11:e0150000. [PMID: 26915047 PMCID: PMC4767366 DOI: 10.1371/journal.pone.0150000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/08/2016] [Indexed: 11/23/2022] Open
Abstract
Cytoplasmic Polyadenylation Element Binding proteins (CPEBs) are a family of polyadenylation factors interacting with 3’UTRs of mRNA and thereby regulating gene expression. Various functions of CPEBs in development, synaptic plasticity, and cellular senescence have been reported. Four CPEB family members of partially overlapping functions have been described to date, each containing a distinct alternatively spliced region. This region is highly conserved between CPEBs-2-4 and contains a putative phosphorylation consensus, overlapping with the exon seven of CPEB3. We previously found CPEBs-2-4 splice isoforms containing exon seven to be predominantly present in neurons, and the isoform expression pattern to be cell type-specific. Here, focusing on the alternatively spliced region of CPEB3, we determined that putative neuronal isoforms of CPEB3 are phosphorylated. Using a new phosphospecific antibody directed to the phosphorylation consensus we found Protein Kinase A and Calcium/Calmodulin-dependent Protein Kinase II to robustly phosphorylate CPEB3 in vitro and in primary hippocampal neurons. Interestingly, status epilepticus induced by systemic kainate injection in mice led to specific upregulation of the CPEB3 isoforms containing exon seven. Extensive analysis of CPEB3 phosphorylation in vitro revealed two other phosphorylation sites. In addition, we found plethora of potential kinases that might be targeting the alternatively spliced kinase consensus site of CPEB3. As this site is highly conserved between the CPEB family members, we suggest the existence of a splicing-based regulatory mechanism of CPEB function, and describe a robust phosphospecific antibody to study it in future.
Collapse
Affiliation(s)
- Lech Kaczmarczyk
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
- * E-mail:
| | | | - Kapil Sehgal
- Institut universitaire en santé mentale de Québec, Québec, QC, Canada
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Magdalena Skubal
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michele Josten
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Paul De Koninck
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC, Canada
- Institut universitaire en santé mentale de Québec, Québec, QC, Canada
| | - Martin Theis
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
73
|
Chen F, du Jardin KG, Waller JA, Sanchez C, Nyengaard JR, Wegener G. Vortioxetine promotes early changes in dendritic morphology compared to fluoxetine in rat hippocampus. Eur Neuropsychopharmacol 2016; 26:234-245. [PMID: 26711685 DOI: 10.1016/j.euroneuro.2015.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/20/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022]
Abstract
Preclinical studies reveal that the multimodal antidepressant vortioxetine enhances long-term potentiation and dendritic branching compared to a selective serotonin reuptake inhibitor (SSRI). In the present study, we investigated vortioxetine׳s effects on spines and dendritic morphology in rat hippocampus at two time points compared to the SSRI, fluoxetine. Rats were dosed for 1 and 4 weeks with vortioxetine and fluoxetine at doses relevant for antidepressant activity. Dendritic morphology of pyramidal neurons (i.e., dendritic length, dendritic branch, spine number and density, and Sholl analysis) was examined in Golgi-stained sections from hippocampal CA1. After 1 week of treatment, vortioxetine significantly increased spine number (apical and basal dendrites), spine density (only basal), dendritic length (only apical), and dendritic branch number (apical and basal), whereas fluoxetine had no effect. After 4 weeks of treatment, vortioxetine significantly increased all measures of dendritic spine morphology as did fluoxetine except for spine density of basal dendrites. The number of intersections in the apical and basal dendrites was also significantly increased for both treatments after 4 weeks compared to control. In addition, 4 weeks of vortioxetine treatment, but not fluoxetine, promoted a decrease in spine neck length. In conclusion, 1-week vortioxetine treatment induced changes in spine number and density and dendritic morphology, whereas an equivalent dose of fluoxetine had no effects. Decreased spine neck length following 4-week vortioxetine treatment suggests a transition to mature spine morphology. This implies that vortioxetine׳s effects on spine and dendritic morphology are mediated by mechanisms that go beyond serotonin reuptake inhibition.
Collapse
Affiliation(s)
- Fenghua Chen
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, DK-8000 Aarhus C, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark.
| | - Kristian Gaarn du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark
| | - Jessica A Waller
- Sourcing and Scientific Excellence at Lundbeck Research USA, Inc., Paramus, NJ 07652-1431, USA
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark; Sourcing and Scientific Excellence at Lundbeck Research USA, Inc., Paramus, NJ 07652-1431, USA
| | - Jens R Nyengaard
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark; Centre for Pharmaceutical Excellence, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
74
|
Li SB, Du D, Hasan MT, Köhr G. D4 Receptor Activation Differentially Modulates Hippocampal Basal and Apical Dendritic Synapses in Freely Moving Mice. Cereb Cortex 2016; 26:647-55. [PMID: 25270308 DOI: 10.1093/cercor/bhu229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Activation of D4 receptors (D4Rs) has been shown to improve cognitive performance, potentially affecting synaptic strength. We investigated the D4R agonist PD 168077 (PD) in hippocampal CA1 of freely moving mice. We electrically stimulated in stratum oriens (OR) or radiatum (RAD) and evoked local field potentials (LFPs). Intraperitoneally injected PD dose-dependently and reversibly attenuated LFPs for longer time in basal (OR) than apical (RAD) dendrites. High-frequency stimulation induced LTP that was stronger and more stable in OR than RAD. LTP lasted at least 4 h during which the paired-pulse ratio remained reduced. A PD concentration not affecting synaptic transmission was sufficient to reduce LTP in OR but not in RAD. A PD concentration reducing synaptic transmission reduced the early phase LTP in OR additionally and the late phase LTP in RAD exclusively. Furthermore, cell type-specific expression of mCherry in DATCre mice generated fluorescence in dorsal CA1 that was highest in lacunosum moleculare and similar in OR/RAD, indicating that midbrain dopaminergic fibers distribute evenly in OR/RAD. Together, the D4R-mediated modulation of hippocampal synaptic transmission and plasticity is stronger in OR than RAD. This could affect information processing in CA1 neurons, since signals arriving via basal and apical afferents are distinct.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim 68159, Germany
| | - Dan Du
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim 68159, Germany
| | - Mazahir T Hasan
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin 12101, Germany
| | - Georg Köhr
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim 68159, Germany
| |
Collapse
|
75
|
Li Y, Kulvicius T, Tetzlaff C. Induction and consolidation of calcium-based homo- and heterosynaptic potentiation and depression. BMC Neurosci 2015. [PMCID: PMC4699113 DOI: 10.1186/1471-2202-16-s1-p252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
76
|
Borovok N, Nesher E, Levin Y, Reichenstein M, Pinhasov A, Michaelevski I. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation. Mol Cell Proteomics 2015; 15:523-41. [PMID: 26598641 DOI: 10.1074/mcp.m115.051318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 01/08/2023] Open
Abstract
Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein trafficking, enhancement of metabolic activity, and Wnt signaling pathway during the steep phase of memory formation; and (3) cytoskeleton organization proteins. Taken together, this study clearly demonstrates dynamic assembly and disassembly of protein-protein interaction networks depending on the stage of memory formation engrams.
Collapse
Affiliation(s)
- Natalia Borovok
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Elimelech Nesher
- §Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Yishai Levin
- ¶de Botton Institute for Protein Profiling, The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Reichenstein
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Albert Pinhasov
- §Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Izhak Michaelevski
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel; ‖Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
77
|
Histone deacetylase 3 inhibition re-establishes synaptic tagging and capture in aging through the activation of nuclear factor kappa B. Sci Rep 2015; 5:16616. [PMID: 26577291 PMCID: PMC4649608 DOI: 10.1038/srep16616] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/16/2015] [Indexed: 01/08/2023] Open
Abstract
Aging is associated with impaired plasticity and memory. Altered epigenetic mechanisms are implicated in the impairment of memory with advanced aging. Histone deacetylase 3 (HDAC3) is an important negative regulator of memory. However, the role of HDAC3 in aged neural networks is not well established. Late long-term potentiation (late-LTP), a cellular correlate of memory and its associative mechanisms such as synaptic tagging and capture (STC) were studied in the CA1 area of hippocampal slices from 82–84 week old rats. Our findings demonstrate that aging is associated with deficits in the magnitude of LTP and impaired STC. Inhibition of HDAC3 augments the late-LTP and re-establishes STC. The augmentation of late-LTP and restoration of STC is mediated by the activation of nuclear factor kappa B (NFκB) pathway. We provide evidence for the promotion of associative plasticity in aged neural networks by HDAC3 inhibition and hence propose HDAC3 and NFκB as the possible therapeutic targets for treating age -related cognitive decline.
Collapse
|
78
|
Shetty MS, Sharma M, Hui NS, Dasgupta A, Gopinadhan S, Sajikumar S. Investigation of Synaptic Tagging/Capture and Cross-capture using Acute Hippocampal Slices from Rodents. J Vis Exp 2015. [PMID: 26381286 PMCID: PMC4692586 DOI: 10.3791/53008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptic tagging and capture (STC) and cross-tagging are two important mechanisms at cellular level that explain how synapse-specificity and associativity is achieved in neurons within a specific time frame. These long-term plasticity-related processes are the leading candidate models to study the basis of memory formation and persistence at the cellular level. Both STC and cross-tagging involve two serial processes: (1) setting of the synaptic tag as triggered by a specific pattern of stimulation, and (2) synaptic capture, whereby the synaptic tag interacts with newly synthesized plasticity-related proteins (PRPs). Much of the understanding about the concepts of STC and cross-tagging arises from the studies done in CA1 region of the hippocampus and because of the technical complexity many of the laboratories are still unable to study these processes. Experimental conditions for the preparation of hippocampal slices and the recording of stable late-LTP/LTD are extremely important to study synaptic tagging/cross-tagging. This video article describes the experimental procedures to study long-term plasticity processes such as STC and cross-tagging in the CA1 pyramidal neurons using stable, long-term field-potential recordings from acute hippocampal slices of rats.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Neurobiology/Aging Programme, Life Sciences Institute, National University of Singapore
| | - Mahima Sharma
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Neurobiology/Aging Programme, Life Sciences Institute, National University of Singapore
| | - Neo Sin Hui
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Neurobiology/Aging Programme, Life Sciences Institute, National University of Singapore
| | - Ananya Dasgupta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Neurobiology/Aging Programme, Life Sciences Institute, National University of Singapore
| | - Suma Gopinadhan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Neurobiology/Aging Programme, Life Sciences Institute, National University of Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Neurobiology/Aging Programme, Life Sciences Institute, National University of Singapore;
| |
Collapse
|
79
|
Behavioral Tagging: A Translation of the Synaptic Tagging and Capture Hypothesis. Neural Plast 2015; 2015:650780. [PMID: 26380117 PMCID: PMC4562088 DOI: 10.1155/2015/650780] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/12/2015] [Indexed: 11/18/2022] Open
Abstract
Similar molecular machinery is activated in neurons following an electrical stimulus that induces synaptic changes and after learning sessions that trigger memory formation. Then, to achieve perdurability of these processes protein synthesis is required for the reinforcement of the changes induced in the network. The synaptic tagging and capture theory provided a strong framework to explain synaptic specificity and persistence of electrophysiological induced plastic changes. Ten years later, the behavioral tagging hypothesis (BT) made use of the same argument, applying it to learning and memory models. The hypothesis postulates that the formation of lasting memories relies on at least two processes: the setting of a learning tag and the synthesis of plasticity related proteins, which once captured at tagged sites allow memory consolidation. BT explains how weak events, only capable of inducing transient forms of memories, can result in lasting memories when occurring close in time with other behaviorally relevant experiences that provide proteins. In this review, we detail the findings supporting the existence of BT process in rodents, leading to the consolidation, persistence, and interference of a memory. We focus on the molecular machinery taking place in these processes and describe the experimental data supporting the BT in humans.
Collapse
|
80
|
Li Q, Korte M, Sajikumar S. Ubiquitin-Proteasome System Inhibition Promotes Long-Term Depression and Synaptic Tagging/Capture. Cereb Cortex 2015; 26:2541-2548. [DOI: 10.1093/cercor/bhv084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
81
|
Ramachandran B, Ahmed S, Dean C. Long-term depression is differentially expressed in distinct lamina of hippocampal CA1 dendrites. Front Cell Neurosci 2015; 9:23. [PMID: 25767434 PMCID: PMC4341561 DOI: 10.3389/fncel.2015.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/13/2015] [Indexed: 11/26/2022] Open
Abstract
Information storage in CA1 hippocampal pyramidal neurons is compartmentalized in proximal vs. distal apical dendrites, cell bodies, and basal dendrites. This compartmentalization is thought to be essential for synaptic integration. Differences in the expression of long-term potentiation (LTP) in each of these compartments have been described, but less is known regarding potential differences in long-term depression (LTD). Here, to directly compare LTD expression in each compartment and to bypass possible differences in input-specificity and stimulation of presynaptic inputs, we used global application of NMDA to induce LTD. We then examined LTD expression in each dendritic sub-region—proximal and distal apical, and basal dendrites—and in cell bodies. Interestingly, we found that distal apical dendrites exhibited the greatest magnitude of LTD of all areas tested and this LTD was maintained, whereas LTD in proximal apical dendrites was not maintained. In basal dendrites, LTD was also maintained, but the magnitude of LTD was less than in distal apical dendrites. Blockade of inhibition blocked LTD maintenance in both distal apical and basal dendrites. Population spikes recorded from the cell body layer correlated with apical dendrite field EPSP (fEPSP), where LTD was maintained in distal dendrites and decayed in proximal dendrites. On the other hand, LTD of basal dendrite fEPSPs was maintained but population spike responses were not. Thus E-S coupling was distinct in basal and apical dendrites. Our data demonstrate cell autonomous differential information processing in somas and dendritic sub-regions of CA1 pyramidal neurons in the hippocampus, where LTD expression is intrinsic to distinct dendritic regions, and does not depend on the nature of stimulation and input specificity.
Collapse
Affiliation(s)
- Binu Ramachandran
- Trans-synaptic Signaling Group, European Neuroscience Institute Goettingen, Germany
| | - Saheeb Ahmed
- Trans-synaptic Signaling Group, European Neuroscience Institute Goettingen, Germany
| | - Camin Dean
- Trans-synaptic Signaling Group, European Neuroscience Institute Goettingen, Germany
| |
Collapse
|
82
|
Lynch G, Kramár EA, Gall CM. Protein synthesis and consolidation of memory-related synaptic changes. Brain Res 2014; 1621:62-72. [PMID: 25485773 DOI: 10.1016/j.brainres.2014.11.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Although sometimes disputed, it has been assumed for several decades that new proteins synthesized following a learning event are required for consolidation of subsequent memory. Published findings and new results described here challenge this idea. Protein synthesis inhibitors did not prevent Theta Bust Stimulation (TBS) from producing extremely stable long-term potentiation (LTP) in experiments using standard hippocampal slice protocols. However, the inhibitors were effective under conditions that likely depleted protein levels prior to attempts to induce the potentiation effect. Experiments showed that induction of LTP at one input, and thus a prior episode of protein synthesis, eliminated the effects of inhibitors on potentiation of a second input even in depleted slices. These observations suggest that a primary role of translation and transcription processes initiated by learning events is to prepare neurons to support future learning. Other work has provided support for an alternative theory of consolidation. Specifically, if the synaptic changes that support memory are to endure, learning events/TBS must engage a complex set of signaling processes that reorganize and re-stabilize the spine actin cytoskeleton. This is accomplished in fast (10 min) and slow (50 min) stages with the first requiring integrin activation and the second a recovery of integrin functioning. These results align with, and provide mechanisms for, the long-held view that memories are established and consolidated over a set of temporally distinct phases. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA; Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA.
| | - Enikö A Kramár
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
83
|
Diering GH, Gustina AS, Huganir RL. PKA-GluA1 coupling via AKAP5 controls AMPA receptor phosphorylation and cell-surface targeting during bidirectional homeostatic plasticity. Neuron 2014; 84:790-805. [PMID: 25451194 PMCID: PMC4254581 DOI: 10.1016/j.neuron.2014.09.024] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2014] [Indexed: 11/29/2022]
Abstract
Bidirectional synaptic plasticity occurs locally at individual synapses during long-term potentiation (LTP) or long-term depression (LTD), or globally during homeostatic scaling. LTP, LTD, and homeostatic scaling alter synaptic strength through changes in postsynaptic AMPA-type glutamate receptors (AMPARs), suggesting the existence of overlapping molecular mechanisms. Phosphorylation controls AMPAR trafficking during LTP/LTD. We addressed the role of AMPAR phosphorylation during homeostatic scaling. We observed bidirectional changes of the levels of phosphorylated GluA1 S845 during scaling, resulting from a loss of protein kinase A (PKA) from synapses during scaling down and enhanced activity of PKA in synapses during scaling up. Increased phosphorylation of S845 drove scaling up, while a knockin mutation of S845, or knockdown of the scaffold AKAP5, blocked scaling up. Finally, we show that AMPARs scale differentially based on their phosphorylation status at S845. These results show that rearrangement in PKA signaling controls AMPAR phosphorylation and surface targeting during homeostatic plasticity.
Collapse
Affiliation(s)
- Graham H Diering
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Hunterian 1001, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Ahleah S Gustina
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Hunterian 1001, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Hunterian 1001, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
84
|
Ramachandran B, Ahmed S, Zafar N, Dean C. Ethanol inhibits long-term potentiation in hippocampal CA1 neurons, irrespective of lamina and stimulus strength, through neurosteroidogenesis. Hippocampus 2014; 25:106-18. [PMID: 25155179 DOI: 10.1002/hipo.22356] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2014] [Indexed: 11/09/2022]
Abstract
Ethanol inhibits memory encoding and the induction of long-term potentiation (LTP) in CA1 neurons of the hippocampus. Hippocampal LTP at Schaffer collateral synapses onto CA1 pyramidal neurons has been widely studied as a cellular model of learning and memory, but there is striking heterogeneity in the underlying molecular mechanisms in distinct regions and in response to distinct stimuli. Basal and apical dendrites differ in terms of innervation, input specificity, and molecular mechanisms of LTP induction and maintenance, and different stimuli determine distinct molecular pathways of potentiation. However, lamina or stimulus-dependent effects of ethanol on LTP have not been investigated. Here, we tested the effect of acute application of 60 mM ethanol on LTP induction in distinct dendritic compartments (apical versus basal) of CA1 neurons, and in response to distinct stimulation paradigms (single versus repeated, spaced high frequency stimulation). We found that ethanol completely blocks LTP in apical dendrites, whereas it reduces the magnitude of LTP in basal dendrites. Acute ethanol treatment for just 15 min altered pre- and post-synaptic protein expression. Interestingly, ethanol increases the neurosteroid allopregnanolone, which causes ethanol-dependent inhibition of LTP, more prominently in apical dendrites, where ethanol has greater effects on LTP. This suggests that ethanol has general effects on fundamental properties of synaptic plasticity, but the magnitude of its effect on LTP differs depending on hippocampal sub-region and stimulus strength.
Collapse
Affiliation(s)
- Binu Ramachandran
- Trans-Synaptic Signaling Group, European Neuroscience Institute (ENI), Grisebachstrasse 5, 37077, Goettingen, Germany
| | | | | | | |
Collapse
|
85
|
Iannella N, Launey T, Abbott D, Tanaka S. A nonlinear cable framework for bidirectional synaptic plasticity. PLoS One 2014; 9:e102601. [PMID: 25148478 PMCID: PMC4141722 DOI: 10.1371/journal.pone.0102601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/20/2014] [Indexed: 11/18/2022] Open
Abstract
Finding the rules underlying how axons of cortical neurons form neural circuits and modify their corresponding synaptic strength is the still subject of intense research. Experiments have shown that internal calcium concentration, and both the precise timing and temporal order of pre and postsynaptic action potentials, are important constituents governing whether the strength of a synapse located on the dendrite is increased or decreased. In particular, previous investigations focusing on spike timing-dependent plasticity (STDP) have typically observed an asymmetric temporal window governing changes in synaptic efficacy. Such a temporal window emphasizes that if a presynaptic spike, arriving at the synaptic terminal, precedes the generation of a postsynaptic action potential, then the synapse is potentiated; however if the temporal order is reversed, then depression occurs. Furthermore, recent experimental studies have now demonstrated that the temporal window also depends on the dendritic location of the synapse. Specifically, it was shown that in distal regions of the apical dendrite, the magnitude of potentiation was smaller and the window for depression was broader, when compared to observations from the proximal region of the dendrite. To date, the underlying mechanism(s) for such a distance-dependent effect is (are) currently unknown. Here, using the ionic cable theory framework in conjunction with the standard calcium based plasticity model, we show for the first time that such distance-dependent inhomogeneities in the temporal learning window for STDP can be largely explained by both the spatial and active properties of the dendrite.
Collapse
Affiliation(s)
- Nicolangelo Iannella
- Centre for Biomedical Engineering (CBME) and the School of Electrical & Electronic Engineering, The University of Adelaide SA, Adelaide, Australia
- Computational and Theoretical Neuroscience Laboratory, Institute for Telecommunications Research, University of South Australia, Mawson Lakes, South Australia, Australia
- Launey Research Unit, RIKEN, Brain Science Institute, Saitama, Japan
- * E-mail:
| | - Thomas Launey
- Launey Research Unit, RIKEN, Brain Science Institute, Saitama, Japan
| | - Derek Abbott
- Centre for Biomedical Engineering (CBME) and the School of Electrical & Electronic Engineering, The University of Adelaide SA, Adelaide, Australia
| | - Shigeru Tanaka
- Faculty of Electro-Communications, The University of Electro-Communications, Choju-shi, Tokyo, Japan
| |
Collapse
|
86
|
O'Donnell C, Sejnowski TJ. Selective memory generalization by spatial patterning of protein synthesis. Neuron 2014; 82:398-412. [PMID: 24742462 DOI: 10.1016/j.neuron.2014.02.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 02/07/2023]
Abstract
Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo protein expression can be restricted to specific neurons within a population, and to specific dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein regulation for learning are unknown. We used computational modeling to study this problem. We found that spatially patterned protein synthesis can enable selective consolidation of some memories but forgetting of others, even for simultaneous events that are represented by the same neural population. Key factors regulating selectivity include the functional clustering of synapses on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on these findings, we proposed a two-step model for selective memory generalization during REM and slow-wave sleep. The pattern-matching framework we propose may be broadly applicable to spatial protein signaling throughout cortex and hippocampus.
Collapse
Affiliation(s)
- Cian O'Donnell
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
87
|
Gershman SJ. The penumbra of learning: a statistical theory of synaptic tagging and capture. NETWORK (BRISTOL, ENGLAND) 2014; 25:97-115. [PMID: 24679103 DOI: 10.3109/0954898x.2013.862749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Learning in humans and animals is accompanied by a penumbra: Learning one task benefits from learning an unrelated task shortly before or after. At the cellular level, the penumbra of learning appears when weak potentiation of one synapse is amplified by strong potentiation of another synapse on the same neuron during a critical time window. Weak potentiation sets a molecular tag that enables the synapse to capture plasticity-related proteins synthesized in response to strong potentiation at another synapse. This paper describes a computational model which formalizes synaptic tagging and capture in terms of statistical learning mechanisms. According to this model, synaptic strength encodes a probabilistic inference about the dynamically changing association between pre- and post-synaptic firing rates. The rate of change is itself inferred, coupling together different synapses on the same neuron. When the inputs to one synapse change rapidly, the inferred rate of change increases, amplifying learning at other synapses.
Collapse
Affiliation(s)
- Samuel J Gershman
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, MA , USA
| |
Collapse
|
88
|
Schacher S, Hu JY. The less things change, the more they are different: contributions of long-term synaptic plasticity and homeostasis to memory. Learn Mem 2014; 21:128-34. [PMID: 24532836 PMCID: PMC3929853 DOI: 10.1101/lm.027326.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An important cellular mechanism contributing to the strength and duration of memories is activity-dependent alterations in the strength of synaptic connections within the neural circuit encoding the memory. Reversal of the memory is typically correlated with a reversal of the cellular changes to levels expressed prior to the stimulation. Thus, for stimulus-induced changes in synapse strength and their reversals to be functionally relevant, cellular mechanisms must regulate and maintain synapse strength both prior to and after the stimuli inducing learning and memory. The strengths of synapses within a neural circuit at any given moment are determined by cellular and molecular processes initiated during development and those subsequently regulated by the history of direct activation of the neural circuit and system-wide stimuli such as stress or motivational state. The cumulative actions of stimuli and other factors on an already modified neural circuit are attenuated by homeostatic mechanisms that prevent changes in overall synaptic inputs and excitability above or below specific set points (synaptic scaling). The mechanisms mediating synaptic scaling prevent potential excitotoxic alterations in the circuit but also may attenuate additional cellular changes required for learning and memory, thereby apparently limiting information storage. What cellular and molecular processes control synaptic strengths before and after experience/activity and its reversals? In this review we will explore the synapse-, whole cell-, and circuit level-specific processes that contribute to an overall zero sum-like set of changes and long-term maintenance of synapse strengths as a consequence of the accommodative interactions between long-term synaptic plasticity and homeostasis.
Collapse
Affiliation(s)
- Samuel Schacher
- Department of Neuroscience, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York 10032, USA
| | | |
Collapse
|
89
|
Fan W, Fu T. Somatostatin modulates LTP in hippocampal CA1 pyramidal neurons: Differential activation conditions in apical and basal dendrites. Neurosci Lett 2014; 561:1-6. [DOI: 10.1016/j.neulet.2013.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/04/2013] [Accepted: 12/16/2013] [Indexed: 11/30/2022]
|
90
|
Navakkode S, Korte M. Pharmacological activation of CB1 receptor modulates long term potentiation by interfering with protein synthesis. Neuropharmacology 2014; 79:525-33. [PMID: 24412673 DOI: 10.1016/j.neuropharm.2013.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 11/04/2013] [Accepted: 11/21/2013] [Indexed: 12/30/2022]
Abstract
Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Zoology Institute, Division of Cellular Neurobiology, TU, Braunschweig D-38106 Germany
| | - Martin Korte
- Zoology Institute, Division of Cellular Neurobiology, TU, Braunschweig D-38106 Germany.
| |
Collapse
|
91
|
Viola H, Ballarini F, Martínez MC, Moncada D. The tagging and capture hypothesis from synapse to memory. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:391-423. [PMID: 24484708 DOI: 10.1016/b978-0-12-420170-5.00013-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synaptic tagging and capture theory (STC) was postulated by Frey and Morris in 1997 and provided a strong framework to explain how to achieve synaptic specificity and persistence of electrophysiological-induced plasticity changes. Ten years later, the same argument was applied on learning and memory models to explain the formation of long-term memories, resulting in the behavioral tagging hypothesis (BT). These hypotheses are able to explain how a weak event that induces transient changes in the brain can establish long-lasting phenomena through a tagging and capture process. In this framework, it was postulated that the weak event sets a tag that captures plasticity-related proteins/products (PRPs) synthesized by an independent strong event. The tagging and capture processes exhibit symmetry, and therefore, PRPs can be captured if they are synthesized either before or after the setting of the tag. In summary, the hypothesis provides a wide framework that gives a solid explanation of how lasting changes occur and how the interaction between different events leads to promotion, reinforcement, or impairment of such changes. In this chapter, we will summarize the postulates of STC hypothesis, the common features between synaptic plasticity and memory, as well as a detailed compilation of the findings supporting the existence of BT process. At the end, we pose some questions related to BT mechanism and LTM formation, which probably will be answered in the near future.
Collapse
Affiliation(s)
- Haydée Viola
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis", Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fabricio Ballarini
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis", Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Cecilia Martínez
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis", Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Moncada
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis", Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Neurophysiology of Learning and Memory Research Group, Leibniz-Institut für Neurobiologie, Magdeburg, Germany
| |
Collapse
|
92
|
Hulme SR, Jones OD, Raymond CR, Sah P, Abraham WC. Mechanisms of heterosynaptic metaplasticity. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130148. [PMID: 24298150 DOI: 10.1098/rstb.2013.0148] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Synaptic plasticity is fundamental to the neural processes underlying learning and memory. Interestingly, synaptic plasticity itself can be dynamically regulated by prior activity, in a process termed 'metaplasticity', which can be expressed both homosynaptically and heterosynaptically. Here, we focus on heterosynaptic metaplasticity, particularly long-range interactions between synapses spread across dendritic compartments, and review evidence for intracellular versus intercellular signalling pathways leading to this effect. Of particular interest is our previously reported finding that priming stimulation in stratum oriens of area CA1 in the hippocampal slice heterosynaptically inhibits subsequent long-term potentiation and facilitates long-term depression in stratum radiatum. As we have excluded the most likely intracellular signalling pathways that might mediate this long-range heterosynaptic effect, we consider the hypothesis that intercellular communication may be critically involved. This hypothesis is supported by the finding that extracellular ATP hydrolysis, and activation of adenosine A2 receptors are required to induce the metaplastic state. Moreover, delivery of the priming stimulation in stratum oriens elicited astrocytic calcium responses in stratum radiatum. Both the astrocytic responses and the metaplasticity were blocked by gap junction inhibitors. Taken together, these findings support a novel intercellular communication system, possibly involving astrocytes, being required for this type of heterosynaptic metaplasticity.
Collapse
Affiliation(s)
- Sarah R Hulme
- Department of Psychology and Brain Health Research Centre, University of Otago, , PO Box 56, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
93
|
Integrity of mGluR-LTD in the associative/commissural inputs to CA3 correlates with successful aging in rats. J Neurosci 2013; 33:12670-8. [PMID: 23904603 DOI: 10.1523/jneurosci.1086-13.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The impact of aging on cognitive capabilities varies among individuals ranging from significant impairment to preservation of function on par with younger adults. Research on the neural basis for age-related memory decline has focused primarily on the CA1 region of the hippocampus. However, recent studies in elderly human and rodents indicate that individual differences in cognitive aging are more strongly tied to functional alterations in CA3 circuits. To examine synaptic plasticity in the CA3 region, we used aged rats behaviorally characterized in a hippocampal-dependent task to evaluate the status of long-term potentiation and long-term depression (LTP and LTD) in the associative/commissural pathway (A/C → CA3), which provides the majority of excitatory input to CA3 pyramidal neurons. We found that, unlike in CA1 synapses, in A/C → CA3 LTP is minimally affected by age. However, two forms of LTD, involving NMDA and metabotropic glutamate receptors (mGluR), are both greatly reduced in age-impaired rats. Age-unimpaired rats, in contrast, had intact mGluR LTD. These findings indicate that the integrity of mGluR-LTD at A/C → CA3 inputs may play a crucial role in maintaining the performance of CA3 circuitry in aging.
Collapse
|
94
|
Kudryashova IV. Analysis of conditions that are important for the beginning of consolidation in a model of long-term synaptic potentiation. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
95
|
Group I metabotropic glutamate receptors modulate late phase long-term potentiation in hippocampal CA1 pyramidal neurons: comparison of apical and basal dendrites. Neurosci Lett 2013; 553:132-7. [PMID: 23978512 DOI: 10.1016/j.neulet.2013.08.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/11/2013] [Accepted: 08/14/2013] [Indexed: 11/21/2022]
Abstract
The hippocampal long-term potentiation (LTP) at Schaffer collateral synapses onto CA1 pyramidal neurons has been widely studied as a cellular model of activity-dependent enhancement of synaptic transmission. The apical (stratum radiatum) and basal dendrites (stratum oriens) of hippocampal CA1 pyramidal neurons differ in LTP induction and maintenance. Here, the role of mGlu receptors in the induction and maintenance of late-LTP was investigated, in comparison of these two compartments. My results show that mGlu1 receptor modulates late-LTP in apical dendrites and basal dendrites, whereas mGlu5 receptor modulates late-LTP only in apical dendrites.
Collapse
|
96
|
Hulme SR, Jones OD, Abraham WC. Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci 2013; 36:353-62. [PMID: 23602195 DOI: 10.1016/j.tins.2013.03.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 12/01/2022]
Abstract
Since its initial conceptualisation, metaplasticity has come to encompass a wide variety of phenomena and mechanisms, creating the important challenge of understanding how they contribute to network function and behaviour. Here, we present a framework for considering potential roles of metaplasticity across three domains of function. First, metaplasticity appears ideally placed to prepare for subsequent learning by either enhancing learning ability generally or by preparing neuronal networks to encode specific content. Second, metaplasticity can homeostatically regulate synaptic plasticity, and this likely has important behavioural consequences by stabilising synaptic weights while ensuring the ongoing availability of synaptic plasticity. Finally, we discuss emerging evidence that metaplasticity mechanisms may play a role in disease causally and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Sarah R Hulme
- Department of Psychology and Brain Health Research Centre, Box 56, University of Otago, Dunedin, 9054, New Zealand
| | | | | |
Collapse
|
97
|
Memory reconsolidation and its maintenance depend on L-voltage-dependent calcium channels and CaMKII functions regulating protein turnover in the hippocampus. Proc Natl Acad Sci U S A 2013; 110:6566-70. [PMID: 23576750 DOI: 10.1073/pnas.1302356110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immediate postretrieval bilateral blockade of long-acting voltage-dependent calcium channels (L-VDCCs), but not of glutamatergic NMDA receptors, in the dorsal CA1 region of the hippocampus hinders retention of long-term spatial memory in the Morris water maze. Immediate postretrieval bilateral inhibition of calcium/calmodulin-dependent protein kinase (CaMK) II in dorsal CA1 does not affect retention of this task 24 h later but does hinder it 5 d later. These two distinct amnesic effects are abolished if protein degradation by proteasomes is inhibited concomitantly. These results indicate that spatial memory reconsolidation depends on the functionality of L-VDCC in dorsal CA1, that maintenance of subsequent reconsolidated memory trace depends on CaMKII, and these results also suggest that the role played by both L-VDCC and CaMKII is to promote the retrieval-dependent, synaptically localized enhancement of protein synthesis necessary to counteract a retrieval-dependent, synaptic-localized enhancement of protein degradation, which has been described as underlying the characteristic labilization of the memory trace triggered by retrieval. Thus, conceivably, L-VDCC and CaMKII would enhance activity-dependent localized protein renewal, which may account for the improvement of the long-term efficiency of the synapses responsible for the maintenance of reactivated long-term spatial memory.
Collapse
|
98
|
Hagena H, Manahan-Vaughan D. Differentiation in the protein synthesis-dependency of persistent synaptic plasticity in mossy fiber and associational/commissural CA3 synapses in vivo. Front Integr Neurosci 2013; 7:10. [PMID: 23459947 PMCID: PMC3585440 DOI: 10.3389/fnint.2013.00010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/12/2013] [Indexed: 11/19/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two mechanisms involved in the long-term storage of information in hippocampal synapses. In the hippocampal CA1 region, the late phases of LTP and LTD are protein-synthesis dependent. In the dentate gyrus, late-LTP but not LTD requires protein synthesis. The protein synthesis-dependency of persistent plasticity at CA3 synapses has not yet been characterized. Here, the roles of protein transcription and translation at mossy fiber (mf) and associational/commissural (AC)- synapses were studied in freely behaving rats. In control animals, low-frequency stimulation (LFS) evoked robust LTD (>24 h), whereas high-frequency stimulation (HFS) elicited robust LTP (>24 h) at both mf-CA3 and AC-CA3 synapses. Translation inhibitors prevented early and late phases of LTP and LTD at mf-CA3 synapses. In contrast, at AC–CA3 synapses, translation inhibitors prevented intermediate/late-LTP and late-LTD only. Transcription effects were also synapse-specific: whereas transcription inhibitors inhibited late-LTP and late-LTD (>3 h) at mf-CA3 synapses, at AC–CA3 synapses, protein transcription affected early-LTP and late-LTD. These results show that the AC-CA3 and mf-CA3 synapses display different properties in terms of their protein synthesis dependency, suggesting different roles in the processing of short- and long term synaptic plasticity.
Collapse
Affiliation(s)
- Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany ; International Graduate School for Neuroscience, Ruhr University Bochum Bochum, Germany
| | | |
Collapse
|
99
|
Cui Z, Feng R, Jacobs S, Duan Y, Wang H, Cao X, Tsien JZ. Increased NR2A:NR2B ratio compresses long-term depression range and constrains long-term memory. Sci Rep 2013; 3:1036. [PMID: 23301157 PMCID: PMC3539144 DOI: 10.1038/srep01036] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/02/2012] [Indexed: 12/28/2022] Open
Abstract
The NR2A:NR2B subunit ratio of the NMDA receptors is widely known to increase in the brain from postnatal development to sexual maturity and to aging, yet its impact on memory function remains speculative. We have generated forebrain-specific NR2A overexpression transgenic mice and show that these mice had normal basic behaviors and short-term memory, but exhibited broad long-term memory deficits as revealed by several behavioral paradigms. Surprisingly, increased NR2A expression did not affect 1-Hz-induced long-term depression (LTD) or 100 Hz-induced long-term potentiation (LTP) in the CA1 region of the hippocampus, but selectively abolished LTD responses in the 3–5 Hz frequency range. Our results demonstrate that the increased NR2A:NR2B ratio is a critical genetic factor in constraining long-term memory in the adult brain. We postulate that LTD-like process underlies post-learning information sculpting, a novel and essential consolidation step in transforming new information into long-term memory.
Collapse
Affiliation(s)
- Zhenzhong Cui
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30907, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Li Q, Rothkegel M, Xiao ZC, Abraham WC, Korte M, Sajikumar S. Making synapses strong: metaplasticity prolongs associativity of long-term memory by switching synaptic tag mechanisms. ACTA ACUST UNITED AC 2012; 24:353-63. [PMID: 23048020 DOI: 10.1093/cercor/bhs315] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One conceptual mechanism for the induction of associative long-term memory is that a synaptic tag, set by a weak event, can capture plasticity-related proteins from a nearby strong input, thus enabling associativity between the 2 (synaptic tagging and capture, STC). So far, STC has been observed for only a limited time of 60 min. Nevertheless, association of weak memory forms can occur beyond this period and its mechanism is not well understood. Here we report that metaplasticity induced by ryanodine receptor activation or synaptic activation of metabotropic glutamate receptors prolongs the durability of the synaptic tag, thus extending the time window for associative interactions mediating storage of long-term memory. We provide evidence that such metaplasticity alters the mechanisms of STC from a CaMKII-mediated (in non-primed STC) to a protein kinase Mzeta (PKMζ)-mediated process (in primed STC). Thus the association of weak synapses with strong synapses in the "late" stage of associative memory formation occurs only through metaplasticity. The results also reveal that the short-lived, CaMKII-mediated tag may contribute to a mechanism for a fragile form of memory while metaplasticity enables a PKMζ-mediated synaptic tag capable of prolonged interactions that induce a more stable form of memory that is resistant to reversal.
Collapse
Affiliation(s)
- Qin Li
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|