51
|
Chen CH, Dash BS, Ting WC, Chen JP. Bone Tissue Engineering with Adipose-Derived Stem Cells in Polycaprolactone/Graphene Oxide/Dexamethasone 3D-Printed Scaffolds. ACS Biomater Sci Eng 2024; 10:6425-6440. [PMID: 39226111 DOI: 10.1021/acsbiomaterials.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We fabricated three-dimensional (3D)-printed polycaprolactone (PCL) and PCL/graphene oxide (GO) (PGO) scaffolds for bone tissue engineering. An anti-inflammatory and pro-osteogenesis drug dexamethasone (DEX) was adsorbed onto GO and a 3D-printed PGO/DEX (PGOD) scaffold successfully improved drug delivery with a sustained release of DEX from the scaffold up to 1 month. The physicochemical properties of the PCL, PGO, and PGOD scaffolds were characterized by various analytical techniques. The biological response of these scaffolds was studied for adherence, proliferation, and osteogenic differentiation of seeded rabbit adipose-derived stem cells (ASCs) from DNA assays, alkaline phosphatase (ALP) production, calcium quantification, osteogenic gene expression, and immunofluorescence staining of osteogenic marker proteins. The PGOD scaffold was demonstrated to be the best scaffold for maintaining cell viability, cell proliferation, and osteogenic differentiation of ASCs in vitro. In vivo biocompatibility of PGOD was confirmed from subcutaneous implantation in nude mice where ASC-seeded PGOD can form ectopic bones, demonstrated by microcomputed tomography (micro-CT) analysis and immunofluorescence staining. Furthermore, implantation of PGOD/ASCs constructs into critical-sized cranial bone defects in rabbits form tissue-engineered bones at the defect site, observed using micro-CT and histological analysis.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Kwei-San 33302, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Taoyuan, Kwei-San 33305, Taiwan
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Kwei-San 33302, Taiwan
| | - Wei-Chun Ting
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Kwei-San 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Kwei-San 33302, Taiwan
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Taoyuan, Kwei-San 33305, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Kwei-San 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
52
|
Qasim SSB, Tufail Shah A, Daood U, Matalqah M, Habib S, Saoud KM. Enhancing craniofacial bone tissue engineering strategy: integrating rapid wet chemically synthesised bioactive glass with photopolymerized resins. BMC Oral Health 2024; 24:1195. [PMID: 39379857 PMCID: PMC11462732 DOI: 10.1186/s12903-024-04978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Craniofacial bone regeneration represents a dynamic area within tissue engineering and regenerative medicine. Central to this field, is the continual exploration of new methodologies for template fabrication, leveraging established bio ceramic materials, with the objective of restoring bone integrity and facilitating successful implant placements. METHODS Photopolymerized templates were prepared using three distinct bio ceramic materials, specifically a wet chemically synthesized bioactive glass and two commercially sourced hydroxyapatite variants. These templates underwent comprehensive characterization to assess their physicochemical and mechanical attributes, employing techniques including Fourier transform infrared spectroscopy, scanning electron microscopy, and nano-computed tomography. Evaluation of their biocompatibility was conducted through interaction with primary human osteoblasts (hOB) and subsequent examination using scanning electron microscopy. RESULTS The results demonstrated that composite showed intramolecular hydrogen bonding interactions with the photopolymer, while computerized tomography unveiled the porous morphology and distribution within the templates. A relatively higher porosity percentage (31.55 ± 8.70%) and compressive strength (1.53 ± 0.11 MPa) was noted for bioactive glass templates. Human osteoblast cultured on bioactive glass showed higher viability compared to other specimens. Scanning micrographs of human osteoblast on templated showed cellular adhesion and the presence of filopodia and lamellipodia. CONCLUSION In summary these templates have the potential to be used for alveolar bone regeneration in critical size defect. Photopolymerization of bioceramics may be an interesting technique for scaffolds fabrication for bone tissue engineering application but needs more optimization to overcome existing issues like the ideal ratio of the photopolymer to bioceramics.
Collapse
Affiliation(s)
- Syed Saad Bin Qasim
- Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait.
| | - Asma Tufail Shah
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road, Off-Raiwand Road, Lahore, 54000, Pakistan
| | - Umer Daood
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur, 57000, Malaysia
- Dental Materials Science, Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, PR China
| | - Maha Matalqah
- Liberal Arts and Science Program, Virginia Commonwealth University in Qatar, Al Luqta St. Doha, P.O. Box 8095, Doha, Qatar
| | - Salma Habib
- Liberal Arts and Science Program, Virginia Commonwealth University in Qatar, Al Luqta St. Doha, P.O. Box 8095, Doha, Qatar
| | - Khaled M Saoud
- Liberal Arts and Science Program, Virginia Commonwealth University in Qatar, Al Luqta St. Doha, P.O. Box 8095, Doha, Qatar
| |
Collapse
|
53
|
Ding N, Zhou F, Li G, Shen H, Bai L, Su J. Quantum dots for bone tissue engineering. Mater Today Bio 2024; 28:101167. [PMID: 39205871 PMCID: PMC11350444 DOI: 10.1016/j.mtbio.2024.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
In confronting the global prevalence of bone-related disorders, bone tissue engineering (BTE) has developed into a critical discipline, seeking innovative materials to revolutionize treatment paradigms. Quantum dots (QDs), nanoscale semiconductor particles with tunable optical properties, are at the cutting edge of improving bone regeneration. This comprehensive review delves into the multifaceted roles that QDs play within the realm of BTE, emphasizing their potential to not only revolutionize imaging but also to osteogenesis, drug delivery, antimicrobial strategies and phototherapy. The customizable nature of QDs, attributed to their size-dependent optical and electronic properties, has been leveraged to develop precise imaging modalities, enabling the visualization of bone growth and scaffold integration at an unprecedented resolution. Their nanoscopic scale facilitates targeted drug delivery systems, ensuring the localized release of therapeutics. QDs also possess the potential to combat infections at bone defect sites, preventing and improving bacterial infections. Additionally, they can be used in phototherapy to stimulate important bone repair processes and work well with the immune system to improve the overall healing environment. In combination with current trendy artificial intelligence (AI) technology, the development of bone organoids can also be combined with QDs. While QDs demonstrate considerable promise in BTE, the transition from laboratory research to clinical application is fraught with challenges. Concerns regarding the biocompatibility, long-term stability of QDs within the biological environment, and the cost-effectiveness of their production pose significant hurdles to their clinical adoption. This review summarizes the potential of QDs in BTE and highlights the challenges that lie ahead. By overcoming these obstacles, more effective, efficient, and personalized bone regeneration strategies will emerge, offering new hope for patients suffering from debilitating bone diseases.
Collapse
Affiliation(s)
- Ning Ding
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Hao Shen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
54
|
Nasaj M, Chehelgerdi M, Asghari B, Ahmadieh-Yazdi A, Asgari M, Kabiri-Samani S, Sharifi E, Arabestani M. Factors influencing the antimicrobial mechanism of chitosan action and its derivatives: A review. Int J Biol Macromol 2024; 277:134321. [PMID: 39084423 DOI: 10.1016/j.ijbiomac.2024.134321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Chitosan, a versatile amino polysaccharide biopolymer derived from chitin, exhibits broad-spectrum antimicrobial activity against various pathogenic microorganisms, including gram-negative and gram-positive bacteria, as well as fungi. Due to its ubiquitous use in medications, food, cosmetics, chemicals, and crops, it is an effective antibacterial agent. However, the antimicrobial performance of chitosan is influenced by multiple factors, which have been extensively investigated and reported in the literature. The goal of this review paper is to present a thorough grasp of the mechanisms of action and determining variables of chitosan and its derivatives' antibacterial activity. The article begins by providing a brief background on chitosan and its antimicrobial properties, followed by the importance of understanding the mechanism of action and factors influencing its activity".
Collapse
Affiliation(s)
- Mona Nasaj
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran; Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Babak Asghari
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR, Iran
| | - Amirhossein Ahmadieh-Yazdi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoumeh Asgari
- Department of Nutritional Science, School of Medicine, Hamadan university of Medical Science, Hamadan, Iran
| | - Saber Kabiri-Samani
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mohammadreza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR, Iran; Infectious Disease Research Centre, Hamadan University of Medical Sciences, Hamadan, IR, Iran.
| |
Collapse
|
55
|
Siripru J, Puengpaiboon U, Sukjamsri C, Mahardawi B, Aimjirakul N. Impact of type and position of abutment connection on microstrain distribution: an in vitro study. J Adv Prosthodont 2024; 16:290-301. [PMID: 39512874 PMCID: PMC11538894 DOI: 10.4047/jap.2024.16.5.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 11/15/2024] Open
Abstract
PURPOSE The aim of this study was to investigate microstrains around two non-parallel implant-supported prostheses and different abutment connections and positions under vertical static load using strain gauges. MATERIALS AND METHODS 4 models simulating the mandibular unilateral free-end were fabricated. 8 implants (4.0 × 10 mm and 5.0 × 10 mm) were inserted in the second premolar, perpendicular to the occlusal plane, and the second molar, tilted at 15°. Four groups were analyzed: engaging and angled abutments (control group), both non-engaging abutments, both screw-and cement-retained prosthesis (SCRP) abutments, and engaging and non-engaging abutments. Strain gauges were placed buccally, lingually, mesially, and distally adjacent to each implant. The restoration was cement-retained in the control group and screw and cement-retained in the rest. Zirconia bridges were fixed on the abutment with NX3, and a 300 N vertical static load was applied. Microstrains were recorded and analyzed. RESULTS Both non-engaging abutments showed the highest compressive microstrains (-52.975), followed by engaging, angled abutment (-25.239). SCRP-SCRP abutments had the lowest compressive microstrains (-14.505), while the engaging, non-engaging abutments showed tensile microstrains (0.418). Microstrains in SCRP-SCRP and engaging, non-engaging groups were significantly lower than in the control group (α = .05). Premolar areas showed compressive microstrains (-47.06), while molar sites had tensile microstrains (+0.91), with microstrains in premolars being significantly higher than in molar area (α = .05). CONCLUSION The types of abutment connections and positions may have a potential effect on microstrains at the implant-bone interface. SCRP-SCRP abutments could be an alternative to use in non-parallel implant-supported prostheses when two implants make an angle of no more than 20 degrees.
Collapse
Affiliation(s)
- Jekita Siripru
- Department of Conservative Dentistry and Prosthodontics, Srinakharinwirot University, Bangkok, Thailand
| | - Usanee Puengpaiboon
- Department of General Dentistry, Srinakharinwirot University, Bangkok, Thailand
| | - Chamaiporn Sukjamsri
- Department of Biomedical Engineering, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Basel Mahardawi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Napapa Aimjirakul
- Department of Conservative Dentistry and Prosthodontics, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
56
|
Wang Z, Liang W, Wang G, Wu H, Dang W, Zhen Y, An Y. Construction Form and Application of Three-Dimensional Bioprinting Ink Containing Hydroxyapatite. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:507-521. [PMID: 38569169 DOI: 10.1089/ten.teb.2023.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
With the increasing prevalence of bone tissue diseases, three-dimensional (3D) bioprinting applied to bone tissue engineering for treatment has received a lot of interests in recent years. The research and popularization of 3D bioprinting in bone tissue engineering require bioinks with good performance, which is closely related to ideal material and appropriate construction form. Hydroxyapatite (HAp) is the inorganic component of natural bone and has been widely used in bone tissue engineering and other fields due to its good biological and physicochemical properties. Previous studies have prepared different bioinks containing HAp and evaluated their properties in various aspects. Most bioinks showed significant improvement in terms of rheology and biocompatibility; however, not all of them had sufficiently favorable mechanical properties and antimicrobial activity. The deficiencies in properties of bioink and 3D bioprinting technology limited the applications of bioinks containing HAp in clinical trials. This review article summarizes the construction forms of bioinks containing HAp and its modifications in previous studies, as well as the 3D bioprinting techniques adopted to print bioink containing HAp. In addition, this article summarizes the advantages and underlying mechanisms of bioink containing HAp, as well as its limitations, and suggests possible improvement to facilitate the development of bone tissue engineering bioinks containing HAp in the future.
Collapse
Affiliation(s)
- Zimo Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Huiting Wu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wanwen Dang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
57
|
Jalandhra GK, Hung TT, Kilian KA. Laponite nanoclay loaded microgel suspensions as supportive matrices for osteogenesis. ADVANCED NANOBIOMED RESEARCH 2024; 4:2400024. [PMID: 40248650 PMCID: PMC12002546 DOI: 10.1002/anbr.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Microscale carriers have emerged as promising materials for nurturing cell growth and as delivery vehicles for regenerative therapies. Carriers based on hydrogels have proved advantageous, where "microgels" can be formulated to have a broad range of properties to guide the behavior of adherent cells. Here we demonstrate the fabrication of osteogenic microgels through incorporation of laponite nanoclays. Forming a jammed suspension provides a scaffolding where cells can adhere to the surface of the microgels, with pathways for migration and proliferation fostered by the interstitial volume. By varying the content and type of laponite-RD and XLG-the degree of osteogenesis can be tuned in embedded populations of adipose derived stem cells (ADSCs). The nano- micro-structured composite materials enhance osteogenesis at the transcript and protein level, leading to increased deposition of bone minerals and an increase in the compressive modulus of the assembled scaffold. Together, these microgel suspensions are promising materials for encouraging osteogenesis with scope for delivery via syringe injection and stabilization to bone-mimetic mechanical properties after matrix deposition.
Collapse
Affiliation(s)
- Gagan K Jalandhra
- School of Materials Science and Engineering, UNSW Sydney, Sydney NSW 2052
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney NSW 2052
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney NSW 2052
| | - Kristopher A Kilian
- School of Materials Science and Engineering, UNSW Sydney, Sydney NSW 2052
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney NSW 2052
- School of Chemistry, UNSW Sydney, Sydney NSW 2052
| |
Collapse
|
58
|
Rosado A, Borrás A, Sánchez-Soto M, Labíková M, Hettegger H, Ramírez-Jiménez RA, Rojo L, García-Fernández L, Aguilar MR, Liebner F, López-Periago AM, Ayllón JA, Domingo C. BioMOF@cellulose Glycerogel Scaffold with Multifold Bioactivity: Perspective in Bone Tissue Repair. Gels 2024; 10:631. [PMID: 39451284 PMCID: PMC11507435 DOI: 10.3390/gels10100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
The development of new biomaterials for musculoskeletal tissue repair is currently an important branch in biomedicine research. The approach presented here is centered around the development of a prototypic synthetic glycerogel scaffold for bone regeneration, which simultaneously features therapeutic activity. The main novelty of this work lies in the combination of an open meso and macroporous nanocrystalline cellulose (NCC)-based glycerogel with a fully biocompatible microporous bioMOF system (CaSyr-1) composed of calcium ions and syringic acid. The bioMOF framework is further impregnated with a third bioactive component, i.e., ibuprofen (ibu), to generate a multifold bioactive system. The integrated CaSyr-1(ibu) serves as a reservoir for bioactive compounds delivery, while the NCC scaffold is the proposed matrix for cell ingrowth, proliferation and differentiation. The measured drug delivery profiles, studied in a phosphate-buffered saline solution at 310 K, indicate that the bioactive components are released concurrently with bioMOF dissolution after ca. 30 min following a pseudo-first-order kinetic model. Furthermore, according to the semi-empirical Korsmeyer-Peppas kinetic model, this release is governed by a case-II mechanism, suggesting that the molecular transport is influenced by the relaxation of the NCC matrix. Preliminary in vitro results denote that the initial high concentration of glycerol in the NCC scaffold can be toxic in direct contact with human osteoblasts (HObs). However, when the excess of glycerol is diluted in the system (after the second day of the experiment), the direct and indirect assays confirm full biocompatibility and suitability for HOb proliferation.
Collapse
Affiliation(s)
- Albert Rosado
- Institut de Ciència de Materials de Barcelona (ICMAB), Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB s/n, 08193 Bellaterra, Spain; (A.B.); (A.M.L.-P.)
| | - Alejandro Borrás
- Institut de Ciència de Materials de Barcelona (ICMAB), Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB s/n, 08193 Bellaterra, Spain; (A.B.); (A.M.L.-P.)
| | - Miguel Sánchez-Soto
- Departament de Ciència i Enginyeria de Materials, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-Barcelona Tech (UPC), 08019 Barcelona, Spain;
| | - Magdaléna Labíková
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, A-3430 Tulln an der Donau, Austria; (M.L.); (H.H.); (F.L.)
- Department of Organic Chemistry, University of Chemistry and Technology, Prague (UCT), Technická 5, 160 00 Praha 6-Dejvice, Czech Republic
| | - Hubert Hettegger
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, A-3430 Tulln an der Donau, Austria; (M.L.); (H.H.); (F.L.)
- Christian Doppler Laboratory for Cellulose High-Tech Materials, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, A-3430 Tulln an der Donau, Austria
| | - Rosa Ana Ramírez-Jiménez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain; (R.A.R.-J.); (L.R.); (L.G.-F.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Luís Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain; (R.A.R.-J.); (L.R.); (L.G.-F.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Luís García-Fernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain; (R.A.R.-J.); (L.R.); (L.G.-F.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain; (R.A.R.-J.); (L.R.); (L.G.-F.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Falk Liebner
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, A-3430 Tulln an der Donau, Austria; (M.L.); (H.H.); (F.L.)
| | - Ana M. López-Periago
- Institut de Ciència de Materials de Barcelona (ICMAB), Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB s/n, 08193 Bellaterra, Spain; (A.B.); (A.M.L.-P.)
| | - José A. Ayllón
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Campus UAB s/n, 08193 Bellaterra, Spain;
| | - Concepción Domingo
- Institut de Ciència de Materials de Barcelona (ICMAB), Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB s/n, 08193 Bellaterra, Spain; (A.B.); (A.M.L.-P.)
| |
Collapse
|
59
|
O’Rourke SA, Shanley LC, Dunne A. The Nrf2-HO-1 system and inflammaging. Front Immunol 2024; 15:1457010. [PMID: 39380993 PMCID: PMC11458407 DOI: 10.3389/fimmu.2024.1457010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Nrf2 is a master transcriptional regulator of a number of genes involved in the adaptive response to oxidative stress. Among the genes upregulated by Nrf2, heme oxygenase-1 (HO-1) has received significant attention, given that the products of HO-1-induced heme catabolism have well established antioxidant and anti-inflammatory properties. This is evidenced in numerous models of inflammatory and autoimmune disease whereby induction of HO-1 expression or administration of tolerable amounts of HO-1 reaction products can ameliorate disease symptoms. Unsurprisingly, Nrf2 and HO-1 are now considered viable drug targets for a number of conditions. In recent years, the term 'inflammaging' has been used to describe the low-grade chronic inflammation observed in aging/aged cells. Increased oxidative stress is also a key factor associated with aging and there is convincing evidence that Nrf2, not only declines with age, but that Nrf2 and HO-1 can reduce cellular senescence and the senescence-associated secretory phenotype (SASP) which is now considered an underlying driver of age-related inflammatory disease. In this review, we describe the role of oxidative stress in 'inflammaging' and highlight the potential anti-aging properties of the Nrf2-HO-1 system. We also highlight established and newly emerging Nrf2 activators and their therapeutic application in age-related disease.
Collapse
Affiliation(s)
- Sinead A. O’Rourke
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Centre for Advanced Material and Bioengineering Research (AMBER), Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Lianne C. Shanley
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Centre for Advanced Material and Bioengineering Research (AMBER), Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Centre for Advanced Material and Bioengineering Research (AMBER), Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
60
|
G G, Fernandez FB, Varma P R H, Komath M. Migration and retention of human osteosarcoma cells in bioceramic graft with open channel architecture designed for bone tissue engineering. Biomed Mater 2024; 19:065009. [PMID: 39255821 DOI: 10.1088/1748-605x/ad792b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
The microstructure of a porous bioceramic bone graft, especially the pore architecture, plays a crucial role in the performance of the graft. Conventional bioceramic grafts typically feature a random, closed-pore structure, limiting biological activity to the periphery of the graft. This can lead to delay in full integration with the host site. Bioceramic forms with open through pores can perform better because their inner regions are accessible for natural bone remodeling. This study explores the influence of open through pores in a bioceramic graft on the migration and retention of the local cellsin vitro, which will correlate to the rate of healingin vivo.Hydroxyapatite ceramic forms with aligned channels were fabricated using slip casting technique, employing sacrificial fibers. The sorption characteristics across the graft were evaluated using human osteosarcoma cell line. Seven-day cultures showed viable cells within the channels, confirmed by live/dead assay, scanning electron microscope analysis, and cytoskeletal staining, indicating successful cell colonization. The channel architecture effectively enhances cell migration and retention throughout its entire structure, suggesting potential applications in bone tissue engineering based on the results obtained.
Collapse
Affiliation(s)
- Gayathry G
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012 Kerala, India
| | - Francis B Fernandez
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012 Kerala, India
| | - Harikrishna Varma P R
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012 Kerala, India
| | - Manoj Komath
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012 Kerala, India
| |
Collapse
|
61
|
Borciani G, Montalbano G, Perut F, Ciapetti G, Baldini N, Vitale-Brovarone C. Osteoblast and osteoclast activity on collagen-based 3D printed scaffolds enriched with strontium-doped bioactive glasses and hydroxyapatite nanorods for bone tissue engineering. Biomed Mater 2024; 19:065007. [PMID: 39173660 DOI: 10.1088/1748-605x/ad72c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Bone tissue engineering (BTE) aims to promote bone regeneration by means of the synergistic effect of biomaterials, cells, and other factors, as potential alternative to conventional treatments for bone fractures. To this aim, a composite material was developed, based on collagen type I, strontium-enriched mesoporous bioactive glasses, and hydroxyapatite nanorods as bioactive and biomimetic components. Nanostructured scaffolds were 3D printed and subsequently chemically crosslinked with genipin to improve mechanical properties and stability. The developed nanostructured system was maintained in culture until 3 weeks with a co-culture of human bone cells to provide anex vivomodel of bone microenvironment and examine the cellular crosstalk and signaling pathways through paracrine cell activities. Human osteoblasts (OBs), derived from trabecular bone, and human osteoclast precursors (OCs), isolated from buffy coat samples were involved, with OBs seeded on the scaffold and OC precursors seeded in a transwell device. When compared to the material without inorganic components, the bioactive and biomimetic scaffold positively influenced cell proliferation and cell metabolic activity, boosting alkaline phosphatase activity of OBs, and reducing OC differentiation. Thus, the bioactive and biomimetic system promoted an enhanced cellular response, highlighting its potential application in BTE.
Collapse
Affiliation(s)
- Giorgia Borciani
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Giorgia Montalbano
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Gabriela Ciapetti
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
62
|
Saur M, Kunisch E, Fiehn LA, Arango-Ospina M, Merle C, Hagmann S, Moghaddam A, Stiller A, Hupa L, Renkawitz T, Kaňková H, Galusková D, Boccaccini AR, Westhauser F. Biological effects of a zinc-substituted borosilicate bioactive glass on human bone marrow derived stromal cells in vitro and in a critical-size femoral defect model in rats in vivo. Biomater Sci 2024; 12:4770-4789. [PMID: 39136779 DOI: 10.1039/d4bm00529e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The borosilicate 0106-B1-bioactive glass (BG) composition (in wt%: 37.5 SiO2, 22.6 CaO, 5.9 Na2O, 4.0P2O5, 12.0 K2O, 5.5 MgO, 12.5 B2O3) has shown favorable processing characteristics and bone regeneration ability. This study investigated the addition of zinc (Zn) to 0106-B1-BG as an approach to improve this BG's biological properties. Different proportions of ZnO were substituted for CaO in 0106-B1-BG, resulting in three new BG-compositions: 1-Zn-BG, 2-Zn-BG, 3-Zn-BG (in wt%: 37.5 SiO2, 21.6/20.1/17.6 CaO, 4.0 P2O5, 5.9 Na2O, 12.0 K2O, 5.5 MgO, 12.5 B2O3 and 1.0/2.5/5.0 ZnO). Effects of the BG compositions on cytocompatibility, osteogenic differentiation, extracellular matrix deposition, and angiogenic response of human bone marrow-derived mesenchymal stromal cells (BMSCs) were evaluated in vitro. Angiogenic effects were assessed using a tube formation assay containing human umbilical vein endothelial cells. The in vivo osteogenic and angiogenic potentials of 3-Zn-BG were investigated in comparison to the Zn-free 0106-B1-BG in a rodent critical-size femoral defect model. The osteogenic differentiation of BMSCs improved in the presence of Zn. 3-Zn-BG showed enhanced angiogenic potential, as confirmed by the tube formation assay. While Zn-doped BGs showed clearly superior biological properties in vitro, 3-Zn-BG and 0106-B1-BG equally promoted the formation of new bone in vivo; however, 3-Zn-BG reduced osteoclastic cells and vascular structures in vivo. The acquired data suggests that the differences regarding the in vivo and in vitro results may be due to modulation of inflammatory responses by Zn, as described in the literature. The inflammatory effect should be investigated further to promote clinical applications of Zn-doped BGs.
Collapse
Affiliation(s)
- M Saur
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - E Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - L A Fiehn
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - M Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| | - C Merle
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
- Joint Replacement Centre, Orthopaedic Surgery Paulinenhilfe, Diakonie-Klinikum Stuttgart, Rosenbergstraße 38, 70176 Stuttgart, Germany
| | - S Hagmann
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - A Moghaddam
- Privatärztliches Zentrum Aschaffenburg, Frohsinnstraße 12, 63739 Aschaffenburg, Germany
| | - A Stiller
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - L Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - T Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - H Kaňková
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - D Galusková
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - A R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| | - F Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
63
|
Chang L, Luo Y, Li W, Liu F, Guo J, Dai B, Tong W, Qin L, Wang J, Xu J. A comparative study on the effects of biodegradable high-purity magnesium screw and polymer screw for fixation in epiphyseal trabecular bone. Regen Biomater 2024; 11:rbae095. [PMID: 39346687 PMCID: PMC11427752 DOI: 10.1093/rb/rbae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 10/01/2024] Open
Abstract
With mechanical strength close to cortical bone, biodegradable and osteopromotive properties, magnesium (Mg)-based implants are promising biomaterials for orthopedic applications. However, during the degradation of such implants, there are still concerns on the potential adverse effects such as formation of cavities, osteolytic phenomena and chronic inflammation. Therefore, to transform Mg-based implants into clinical practice, the present study evaluated the local effects of high-purity Mg screws (HP-Mg, 99.99 wt%) by comparing with clinically approved polylactic acid (PLA) screws in epiphyseal trabecular bone of rabbits. After implantation of screws at the rabbit distal femur, bone microstructural, histomorphometric and biomechanical properties were measured at various time points (weeks 4, 8 and 16) using micro-CT, histology and histomorphometry, micro-indentation and scanning electron microscope. HP-Mg screws promoted peri-implant bone ingrowth with higher bone mass (BV/TV at week 4: 0.189 ± 0.022 in PLA group versus 0.313 ± 0.053 in Mg group), higher biomechanical properties (hardness at week 4: 35.045 ± 1.000 HV in PLA group versus 51.975 ± 2.565 HV in Mg group), more mature osteocyte LCN architecture, accelerated bone remodeling process and alleviated immunoreactive score (IRS of Ram11 at week 4: 5.8 ± 0.712 in PLA group versus 3.75 ± 0.866 in Mg group) as compared to PLA screws. Furthermore, we conducted finite element analysis to validate the superiority of HP-Mg screws as orthopedic implants by demonstrating reduced stress concentration and uniform stress distribution around the bone tunnel, which led to lower risks of trabecular microfractures. In conclusion, HP-Mg screws demonstrated greater osteogenic bioactivity and limited inflammatory response compared to PLA screws in the epiphyseal trabecular bone of rabbits. Our findings have paved a promising way for the clinical application of Mg-based implants.
Collapse
Affiliation(s)
- Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Ying Luo
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510000, China
| | - Weirong Li
- Dongguan Eontec Co., Ltd, Dongguan, Guangdong, 510730, China
| | - Fangfei Liu
- Dongguan Eontec Co., Ltd, Dongguan, Guangdong, 510730, China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510000, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
64
|
Chuang EY, Lin YC, Huang YM, Chen CH, Yeh YY, Rethi L, Chou YJ, Jheng PR, Lai JM, Chiang CJ, Wong CC. Biofunctionalized hydrogel composed of genipin-crosslinked gelatin/hyaluronic acid incorporated with lyophilized platelet-rich fibrin for segmental bone defect repair. Carbohydr Polym 2024; 339:122174. [PMID: 38823938 DOI: 10.1016/j.carbpol.2024.122174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 06/03/2024]
Abstract
Segmental bone defects can arise from trauma, infection, metabolic bone disorders, or tumor removal. Hydrogels have gained attention in the field of bone regeneration due to their unique hydrophilic properties and the ability to customize their physical and chemical characteristics to serve as scaffolds and carriers for growth factors. However, the limited mechanical strength of hydrogels and the rapid release of active substances have hindered their clinical utility and therapeutic effectiveness. With ongoing advancements in material science, the development of injectable and biofunctionalized hydrogels holds great promise for addressing the challenges associated with segmental bone defects. In this study, we incorporated lyophilized platelet-rich fibrin (LPRF), which contains a multitude of growth factors, into a genipin-crosslinked gelatin/hyaluronic acid (GLT/HA-0.5 % GP) hydrogel to create an injectable and biofunctionalized composite material. Our findings demonstrate that this biofunctionalized hydrogel possesses optimal attributes for bone tissue engineering. Furthermore, results obtained from rabbit model with segmental tibial bone defects, indicate that the treatment with this biofunctionalized hydrogel resulted in increased new bone formation, as confirmed by imaging and histological analysis. From a translational perspective, this biofunctionalized hydrogel provides innovative and bioinspired capabilities that have the potential to enhance bone repair and regeneration in future clinical applications.
Collapse
Affiliation(s)
- Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan; Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Yi-Cheng Lin
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Min Huang
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan; Taipei Medical University Research Center of Biomedical Devices Prototyping Production, Taipei 11031, Taiwan; School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Yen Yeh
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Lekha Rethi
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Yu-Jen Chou
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Jen-Ming Lai
- Department of Orthopedic Surgery, Woodlands Health, 768024, Singapore
| | - Chang-Jung Chiang
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Taipei Medical University Research Center of Biomedical Devices Prototyping Production, Taipei 11031, Taiwan
| | - Chin-Chean Wong
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Taipei Medical University Research Center of Biomedical Devices Prototyping Production, Taipei 11031, Taiwan; International PhD Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
65
|
Dousti M, Parsa S, Sani F, Bagherzadeh E, Zamanzadeh Z, Dara M, Sani M, Azarpira N. Enhancing bone regeneration: Unleashing the potential of magnetic nanoparticles in a microtissue model. J Cell Mol Med 2024; 28:e70040. [PMID: 39219020 PMCID: PMC11366680 DOI: 10.1111/jcmm.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Bone tissue engineering addresses the limitations of autologous resources and the risk of allograft disease transmission in bone diseases. In this regard, engineered three-dimensional (3D) models emerge as biomimetic alternatives to natural tissues, replicating intracellular communication. Moreover, the unique properties of super-paramagnetic iron oxide nanoparticles (SPIONs) were shown to promote bone regeneration via enhanced osteogenesis and angiogenesis in bone models. This study aimed to investigate the effects of SPION on both osteogenesis and angiogenesis and characterized a co-culture of Human umbilical vein endothelial cells (HUVEC) and MG-63 cells as a model of bone microtissue. HUVECs: MG-63s with a ratio of 4:1 demonstrated the best results among other cell ratios, and 50 μg/mL of SPION was the optimum concentration for maximum survival, cell migration and mineralization. In addition, the data from gene expression illustrated that the expression of osteogenesis-related genes, including osteopontin, osteocalcin, alkaline phosphatase, and collagen-I, as well as the expression of the angiogenesis-related marker, CD-31, and the tube formation, is significantly elevated when the 50 μg/mL concentration of SPION is applied to the microtissue samples. SPION application in a designed 3D bone microtissue model involving a co-culture of osteoblast and endothelial cells resulted in increased expression of specific markers related to angiogenesis and osteogenesis. This includes the design of a novel biomimetic model to boost blood compatibility and biocompatibility of primary materials while promoting osteogenic activity in microtissue bone models. Moreover, this can improve interaction with surrounding tissues and broaden the knowledge to promote superior-performance implants, preventing device failure.
Collapse
Affiliation(s)
- Maryam Dousti
- Shiraz Institute for Stem Cell and Regenerative MedicineShiraz University of Medical ScienceShirazIran
- Department of Genetics, Faculty of Biological Sciences and TechnologyShahid Ashrafi Esfahani UniversityIsfahanIran
| | - Shima Parsa
- Shiraz Institute for Stem Cell and Regenerative MedicineShiraz University of Medical ScienceShirazIran
| | - Farnaz Sani
- Shiraz Institute for Stem Cell and Regenerative MedicineShiraz University of Medical ScienceShirazIran
| | | | - Zahra Zamanzadeh
- Department of Genetics, Faculty of Biological Sciences and TechnologyShahid Ashrafi Esfahani UniversityIsfahanIran
| | - Mahintaj Dara
- Stem Cells Technology Research CenterShiraz University of Medical SciencesShirazIran
| | - Mahsa Sani
- Shiraz Institute for Stem Cell and Regenerative MedicineShiraz University of Medical ScienceShirazIran
- Tissue Engineering Department, School of Advanced Medical Science and TechnologyShiraz University of Medical ScienceShirazIran
| | - Negar Azarpira
- Shiraz Institute for Stem Cell and Regenerative MedicineShiraz University of Medical ScienceShirazIran
- Transplant Research CenterShiraz University of Medical ScienceShirazIran
| |
Collapse
|
66
|
Gharibshahian M, Torkashvand M, Bavisi M, Aldaghi N, Alizadeh A. Recent advances in artificial intelligent strategies for tissue engineering and regenerative medicine. Skin Res Technol 2024; 30:e70016. [PMID: 39189880 PMCID: PMC11348508 DOI: 10.1111/srt.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by applying different sciences. For this purpose, an essential part of TERM is the designing, manufacturing, and evaluating of scaffolds, cells, tissues, and organs. Artificial intelligence (AI) or the intelligence of machines or software can be effective in all areas where computers play a role. METHODS The "artificial intelligence," "machine learning," "tissue engineering," "clinical evaluation," and "scaffold" keywords used for searching in various databases and articles published from 2000 to 2024 were evaluated. RESULTS The combination of tissue engineering and AI has created a new generation of technological advancement in the biomedical industry. Experience in TERM has been refined using advanced design and manufacturing techniques. Advances in AI, particularly deep learning, offer an opportunity to improve scientific understanding and clinical outcomes in TERM. CONCLUSION The findings of this research show the high potential of AI, machine learning, and robots in the selection, design, and fabrication of scaffolds, cells, tissues, or organs, and their analysis, characterization, and evaluation after their implantation. AI can be a tool to accelerate the introduction of tissue engineering products to the bedside. HIGHLIGHTS The capabilities of artificial intelligence (AI) can be used in different ways in all the different stages of TERM and not only solve the existing limitations, but also accelerate the processes, increase efficiency and precision, reduce costs, and complications after transplantation. ML predicts which technologies have the most efficient and easiest path to enter the market and clinic. The use of AI along with these imaging techniques can lead to the improvement of diagnostic information, the reduction of operator errors when reading images, and the improvement of image analysis (such as classification, localization, regression, and segmentation).
Collapse
Affiliation(s)
- Maliheh Gharibshahian
- Nervous System Stem Cells Research CenterSemnan University of Medical SciencesSemnanIran
- Department of Tissue Engineering and Applied Cell SciencesSchool of MedicineSemnan University of Medical SciencesSemnanIran
| | | | - Mahya Bavisi
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
| | - Niloofar Aldaghi
- Student Research CommitteeSchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Akram Alizadeh
- Nervous System Stem Cells Research CenterSemnan University of Medical SciencesSemnanIran
- Department of Tissue Engineering and Applied Cell SciencesSchool of MedicineSemnan University of Medical SciencesSemnanIran
| |
Collapse
|
67
|
Natsir Kalla DS, Alkaabi SA, Hendra FN, Nasrun NE, Ruslin M, Forouzanfar T, Helder MN. Stem Cell-Based Tissue Engineering for Cleft Defects: Systematic Review and Meta-Analysis. Cleft Palate Craniofac J 2024; 61:1439-1460. [PMID: 37203174 PMCID: PMC11323438 DOI: 10.1177/10556656231175278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
This study aimed to analyze the efficacy of stem cell-based tissue engineering for the treatment of alveolar cleft (AC) and cleft palate (CP) defects in animal models. Systematic review and meta-analysis. Preclinical studies on alveolar cleft repair in maxillofacial practice. Electronic search was performed using PubMed, Embase, and Cochrane databases. Pre-clinical studies, where stem cell-based tissue engineering was used in the reconstruction of AC and CP in animal models were included. Quality of the selected articles was evaluated using SYRCLE (SYstematic Review Centre for Laboratory animal Experimentation). Review of alveolar cleft bone augmentation interventions in preclinical models. Outcome parameters registered were new bone formation (NBF) and/or bone mineral density (BMD). Thirteen large and twelve small animal studies on AC (21) and CP (4) reconstructions were included. Studies had an unclear-to-high risk of bias. Bone marrow mesenchymal stem cells were the most widely used cell source. Meta-analyses for AC indicated non-significant benefits in favor of: (1) scaffold + cells over scaffold-only (NBF P = .13); and (2) scaffold + cells over empty control (NBF P = .66; BMD P = .31). Interestingly, dog studies using regenerative grafts showed similar to superior bone formation compared to autografts. Meta analysis for the CP group was not possible. AC and CP reconstructions are enhanced by addition of osteogenic cells to biomaterials. Directions and estimates of treatment effect are useful to predict therapeutic efficacy and guide future clinical trials of bone tissue engineering.
Collapse
Affiliation(s)
- Diandra S. Natsir Kalla
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Salem A. Alkaabi
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Fujairah Hospital, Ministry of Health, Fujairah, UAE
| | - Faqi N. Hendra
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nisrina E. Nasrun
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Muhammad Ruslin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Marco N. Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
68
|
Devoy EJ, Jabari E, Kotsanos G, Choe RH, Fisher JP. An Exploration of the Role of Osteoclast Lineage Cells in Bone Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39041616 DOI: 10.1089/ten.teb.2024.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Bone defects because of age, trauma, and surgery, which are exacerbated by medication side effects and common diseases such as osteoporosis, diabetes, and rheumatoid arthritis, are a problem of epidemic scale. The present clinical standard for treating these defects includes autografts and allografts. Although both treatments can promote robust regenerative outcomes, they fail to strike a desirable balance of availability, side effect profile, consistent regenerative efficacy, and affordability. This difficulty has contributed to the rise of bone tissue engineering (BTE) as a potential avenue through which enhanced bone regeneration could be delivered. BTE is founded upon a paradigm of using biomaterials, bioactive factors, osteoblast lineage cells (ObLCs), and vascularization to cue deficient bone tissue into a state of regeneration. Despite promising preclinical results, BTE has had modest success in being translated into the clinical setting. One barrier has been the simplicity of its paradigm relative to the complexity of biological bone. Therefore, this paradigm must be critically examined and expanded to better account for this complexity. One potential avenue for this is a more detailed consideration of osteoclast lineage cells (OcLCs). Although these cells ostensibly oppose ObLCs and bone regeneration through their resorptive functions, a myriad of investigations have shed light on their potential to influence bone equilibrium in more complex ways through their interactions with both ObLCs and bone matrix. Most BTE research has not systematically evaluated their influence. Yet contrary to expectations associated with the paradigm, a selection of BTE investigations has demonstrated that this influence can enhance bone regeneration in certain contexts. In addition, much work has elucidated the role of many controllable scaffold parameters in both inhibiting and stimulating the activity of OcLCs in parallel to bone regeneration. Therefore, this review aims to detail and explore the implications of OcLCs in BTE and how they can be leveraged to improve upon the existing BTE paradigm.
Collapse
Affiliation(s)
- Eoin J Devoy
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Erfan Jabari
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - George Kotsanos
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Robert H Choe
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
69
|
van der Heide D, Hatt LP, Wirth S, Pirera ME, Armiento AR, Stoddart MJ. In vitroosteogenesis of hMSCs on collagen membranes embedded within LEGO ®-inspired 3D printed PCL constructs for mandibular bone repair. Biofabrication 2024; 16:045020. [PMID: 39079546 DOI: 10.1088/1758-5090/ad6931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
The field of bone tissue engineering aims to develop an effective and aesthetical bone graft substitute capable of repairing large mandibular defects. However, graft failure resulting from necrosis and insufficient integration with native tissue due to lack of oxygen and nutrient transportation remains a concern. To overcome these drawbacks, this study aims to develop a 3D printed polycaprolactone layered construct with a LEGO®-inspired interlocking mechanism enabling spatial distribution of biological components. To highlight itsin vitroosteogenic potential, human mesenchymal stromal cells are cultured onto Bio-Gide®Compressed collagen (Col) membranes, which are embedded within the layered construct for 28 d. The osteogenic response is assessed through the measurement of proliferation, relevant markers for osteogenesis including alkaline phosphatase (ALP) activity, expression of transcriptional genes (SP7, RUNX2/SOX9) as well matrix-related genes (COL1A1, ALPL IBSP, SPP1), osteoprotegerin secretion.In vitroosteogenic differentiation results showed increased levels of these osteogenic markers, indicating the layered construct's potential to support osteogenesis. In this study, a novel workflow of 3D printing a patient-specific LEGO®-inspired layered construct that can spatially deliver biological elements was successfully demonstrated. These layered constructs have the potential to be employed as a bone tissue engineering strategy, with particular focus on the repair of large mandibular defects.
Collapse
Affiliation(s)
- Daphne van der Heide
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Luan Phelipe Hatt
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Sylvie Wirth
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
| | - Maria E Pirera
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
| | | | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
| |
Collapse
|
70
|
Dantas LR, Ortis GB, Suss PH, Tuon FF. Advances in Regenerative and Reconstructive Medicine in the Prevention and Treatment of Bone Infections. BIOLOGY 2024; 13:605. [PMID: 39194543 DOI: 10.3390/biology13080605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Reconstructive and regenerative medicine are critical disciplines dedicated to restoring tissues and organs affected by injury, disease, or congenital anomalies. These fields rely on biomaterials like synthetic polymers, metals, ceramics, and biological tissues to create substitutes that integrate seamlessly with the body. Personalized implants and prosthetics, designed using advanced imaging and computer-assisted techniques, ensure optimal functionality and fit. Regenerative medicine focuses on stimulating natural healing mechanisms through cellular therapies and biomaterial scaffolds, enhancing tissue regeneration. In bone repair, addressing defects requires advanced solutions such as bone grafts, essential in medical and dental practices worldwide. Bovine bone scaffolds offer advantages over autogenous grafts, reducing surgical risks and costs. Incorporating antimicrobial properties into bone substitutes, particularly with metals like zinc, copper, and silver, shows promise in preventing infections associated with graft procedures. Silver nanoparticles exhibit robust antimicrobial efficacy, while zinc nanoparticles aid in infection prevention and support bone healing; 3D printing technology facilitates the production of customized implants and scaffolds, revolutionizing treatment approaches across medical disciplines. In this review, we discuss the primary biomaterials and their association with antimicrobial agents.
Collapse
Affiliation(s)
- Leticia Ramos Dantas
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Gabriel Burato Ortis
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| |
Collapse
|
71
|
Mishra A, Kumar R, Harilal S, Nigam M, Datta D, Singh S. Emerging Landscape of In Vitro Models for Assessing Rheumatoid Arthritis Management. ACS Pharmacol Transl Sci 2024; 7:2280-2305. [PMID: 39144547 PMCID: PMC11320735 DOI: 10.1021/acsptsci.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 08/16/2024]
Abstract
Rheumatoid arthritis (RA) is a complex condition that is influenced by various causes, including immunological, genetic, and environmental factors. Several studies using animal models have documented immune system dysfunction and described the clinical characteristics of the disease. These studies have provided valuable insights into the pathogenesis of inflammatory arthritis and the identification of new targets for treatment. Nevertheless, none of these animal models successfully replicated all the characteristics of RA. Additionally, numerous experimental medications, which were developed based on our enhanced comprehension of the immune system's function in RA, have shown potential in animal research but ultimately proved ineffective during different stages of clinical trials. There have been several novel therapy alternatives, which do not achieve a consistently outstanding therapeutic outcome in all patients. This underscores the importance of employing the progress in in vitro models, particularly 3D models like tissue explants, and diverse multicomponent approaches such as coculture strategies, synovial membrane, articular cartilage, and subchondral bone models that accurately replicate the structural characteristics of RA pathophysiology. These methods are crucial for the advancement of potential therapeutic strategies. This review discusses the latest advancements in in vitro models and their potential to greatly impact research on managing RA.
Collapse
Affiliation(s)
- Abhay
Prakash Mishra
- Department
of Pharmacology, University of Free State, Bloemfontein 9301, South Africa
- Department
of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Rajesh Kumar
- Faculty
of Pharmaceutical Sciences, Kerala University
of Health Sciences, Kerala 680596, India
| | - Seetha Harilal
- Faculty
of Pharmaceutical Sciences, Kerala University
of Health Sciences, Kerala 680596, India
| | - Manisha Nigam
- Department
of Biochemistry, Hemvati Nandan Bahuguna
Garhwal University, Srinagar
Garhwal, Uttarakhand 246174, India
| | - Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sudarshan Singh
- Office of
Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Faculty of
Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
72
|
Edo GI, Yousif E, Al-Mashhadani MH. Modified chitosan: Insight on biomedical and industrial applications. Int J Biol Macromol 2024; 275:133526. [PMID: 38960250 DOI: 10.1016/j.ijbiomac.2024.133526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Chitosan (CS), a by -product of chitin deacetylation can be useful in a broad range of purposes, to mention agriculture, pharmaceuticals, material science, food and nutrition, biotechnology and of recent, in gene therapy. Chitosan is a highly desired biomolecule due to the existence of many sensitive functional groups inside the molecule and also because of its net cationicity. The latter provides flexibility for creating a wide range of derivatives for particular end users across various industries. This overview aims to compile some of the most recent research on the bio-related applications that chitosan and its derivatives can be used for. However, chitosan's reactive functional groups are amendable to chemical reaction. Modifying the material to show enhanced solubility, a greater range of application options and pH-sensitive targeting and others have been a major focus of chitosan research. This review describes the modifications of chitosan that have been made to improve its water solubility, pH sensitivity, and capacity to target chitosan derivatives. Applying the by-products of chitosan as antibacterial, in targeting, extended release and as delivery systems is also covered. The by-products of chitosan will be important and potentially useful in developing new biomedical drugs in time to come.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq.
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
73
|
Kudiyarasu S, Karuppan Perumal MK, Rajan Renuka R, Manickam Natrajan P. Chitosan composite with mesenchymal stem cells: Properties, mechanism, and its application in bone regeneration. Int J Biol Macromol 2024; 275:133502. [PMID: 38960259 DOI: 10.1016/j.ijbiomac.2024.133502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Bone defects resulting from trauma, illness or congenital abnormalities represent a significant challenge to global health. Conventional treatments such as autographs and allografts have limitations, leading to the exploration of bone tissue engineering (BTE) as an alternative approach. This review aims to provide a comprehensive analysis of bone regeneration mechanisms with a focus on the role of chitosan-based biomaterials and mesenchymal stem cells (MSCs) in BTE. In addition, the physiochemical and biological properties of chitosan, its potential for bone regeneration when combined with other materials and the mechanisms through which MSCs facilitate bone regeneration were investigated. In addition, different methods of scaffold development and the incorporation of MSCs into chitosan-based scaffolds were examined. Chitosan has remarkable biocompatibility, biodegradability and osteoconductivity, making it an attractive choice for BTE. Interactions between transcription factors such as Runx2 and Osterix and signaling pathways such as the BMP and Wnt pathways regulate the differentiation of MSCs and bone regeneration. Various forms of scaffolding, including porous and fibrous injections, have shown promise in BTE. The synergistic combination of chitosan and MSCs in BTE has significant potential for addressing bone defects and promoting bone regeneration, highlighting the promising future of clinical challenges posed by bone defects.
Collapse
Affiliation(s)
- Sushmitha Kudiyarasu
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, 173, Agaram Road, Selaiyur, Chennai 600073, Tamil Nadu, India
| | - Manoj Kumar Karuppan Perumal
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Remya Rajan Renuka
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India.
| | - Prabhu Manickam Natrajan
- Department of Clinical Sciences, College of Dentistry, Centre of Medical and Bio-allied Health Sciences and Research, Ajman University, Ajman, United Arab Emirates..
| |
Collapse
|
74
|
Grottkau BE, Hui Z, Ran C, Pang Y. Fabricating vascularized, anatomically accurate bone grafts using 3D bioprinted sectional bone modules, in-situ angiogenesis, BMP-2 controlled release, and bioassembly. Biofabrication 2024; 16:045008. [PMID: 39012007 DOI: 10.1088/1758-5090/ad5f56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Bone grafting is the most common treatment for repairing bone defects. However, current bone grafting methods have several drawbacks. Bone tissue engineering emerges as a promising solution to these problems. An ideal engineered bone graft should exhibit high mechanical strength, osteogenic properties, and pre-vascularization. Both top-down (using bulk scaffold) and bottom-up (using granular modules) approaches face challenges in fulfilling these requirements. In this paper, we propose a novel sectional modular bone approach to construct osteogenic, pre-vascularized bone grafts in anatomical shapes. We 3D-printed a series of rigid, thin, sectional, porous scaffolds from a biodegradable polymer, tailored to the dimensions of a femur bone shaft. These thin sectional modules promote efficient nutrition and waste removal due to a shorter diffusion distance. The modules were pre-vascularized viain-situangiogenesis, achieved through endothelial cell sprouting from the scaffold struts. Angiogenesis was further enhanced through co-culture with bioprinted fibroblast microtissues, which secreted pre-angiogenic growth factors. Sectional modules were assembled around a porous rod incorporated with Bone Morphogenetic Protein-2 (BMP-2), which released over 3 weeks, demonstrating sustained osteogenic activity. The assembled scaffold, in the anatomical shape of a human femur shaft, was pre-vascularized, osteogenic, and possessed high mechanical strength, supporting 12 times the average body weight. The feasibility of implanting the assembled bone graft was demonstrated using a 3D-printed femur bone defect model. Our method provides a novel modular engineering approach for regenerating tissues that require high mechanical strength and vascularization.
Collapse
Affiliation(s)
- Brian E Grottkau
- The Laboratory for Therapeutic 3D Bioprinting, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Zhixin Hui
- The Laboratory for Therapeutic 3D Bioprinting, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, United States of America
| | - Yonggang Pang
- The Laboratory for Therapeutic 3D Bioprinting, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| |
Collapse
|
75
|
Dixon D, Landree EN, Gomillion CT. 3D-Printed Demineralized Bone Matrix-Based Conductive Scaffolds Combined with Electrical Stimulation for Bone Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2024; 7:4366-4378. [PMID: 38905196 PMCID: PMC11253088 DOI: 10.1021/acsabm.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Bone is remodeled through a dynamic process facilitated by biophysical cues that support cellular signaling. In healthy bone, signaling pathways are regulated by cells and the extracellular matrix and transmitted via electrical synapses. To this end, combining electrical stimulation (ES) with conductive scaffolding is a promising approach for repairing damaged bone tissue. Therefore, "smart" biomaterials that can provide multifunctionality and facilitate the transfer of electrical cues directly to cells have become increasingly more studied in bone tissue engineering. Herein, 3D-printed electrically conductive composite scaffolds consisting of demineralized bone matrix (DBM) and polycaprolactone (PCL), in combination with ES, for bone regeneration were evaluated for the first time. The conductive composite scaffolds were fabricated and characterized by evaluating mechanical, surface, and electrical properties. The DBM/PCL composites exhibited a higher compressive modulus (107.2 MPa) than that of pristine PCL (62.02 MPa), as well as improved surface properties (i.e., roughness). Scaffold electrical properties were also tuned, with sheet resistance values as low as 4.77 × 105 Ω/sq for our experimental coating of the highest dilution (i.e., 20%). Furthermore, the biocompatibility and osteogenic potential of the conductive composite scaffolds were tested using human mesenchymal stromal cells (hMSCs) both with and without exogenous ES (100 mV/mm for 5 min/day four times/week). In conjunction with ES, the osteogenic differentiation of hMSCs grown on conductive DBM/PCL composite scaffolds was significantly enhanced when compared to those cultured on PCL-only and nonconductive DBM/PCL control scaffolds, as determined through xylenol orange mineral staining and osteogenic protein analysis. Overall, these promising results suggest the potential of this approach for the development of biomimetic hybrid scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Damion
T. Dixon
- School
of Environmental, Civil, Agricultural and Mechanical Engineering,
College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Erika N. Landree
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Cheryl T. Gomillion
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
76
|
Nilawar S, Yadav P, Jain N, Saini DK, Chatterjee K. Protective Role of Nanoceria-Infused Nanofibrous Scaffold toward Bone Tissue Regeneration with Senescent Cells. Biomacromolecules 2024; 25:4074-4086. [PMID: 38838242 DOI: 10.1021/acs.biomac.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The presence of oxidative stress in bone defects leads to delayed regeneration, especially in the aged population and patients receiving cancer treatment. This delay is attributed to the increased levels of reactive oxygen species (ROS) in these populations due to the accumulation of senescent cells. Tissue-engineered scaffolds are emerging as an alternative method to treat bone defects. In this study, we engineered tissue scaffolds tailored to modulate the adverse effects of oxidative stress and promote bone regeneration. We used polycaprolactone to fabricate nanofibrous mats by using electrospinning. We exploited the ROS-scavenging properties of cerium oxide nanoparticles to alleviate the high oxidative stress microenvironment caused by the presence of senescent cells. We characterized the nanofibers for their physical and mechanical properties and utilized an ionization-radiation-based model to induce senescence in bone cells. We demonstrate that the presence of ceria can modulate ROS levels, thereby reducing the level of senescence and promoting osteogenesis. Overall, this study demonstrates that ceria-infused nanofibrous scaffolds can be used for augmenting the osteogenic activity of senescent progenitor cells, which has important implications for engineering bone tissue scaffolds for patients with low regeneration capabilities.
Collapse
Affiliation(s)
- Sagar Nilawar
- Department of Materials Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Parul Yadav
- Department of Bioengineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Deepak Kumar Saini
- Department of Bioengineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
- Department of Developmental Biology and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
- Department of Bioengineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
| |
Collapse
|
77
|
Witkowska J, Borowski T, Kulikowski K, Wunsch K, Morgiel J, Sobiecki J, Wierzchoń T. Structure and Properties of Bioactive Titanium Dioxide Surface Layers Produced on NiTi Shape Memory Alloy in Low-Temperature Plasma. MICROMACHINES 2024; 15:886. [PMID: 39064397 PMCID: PMC11279210 DOI: 10.3390/mi15070886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The NiTi alloy, known for its shape memory and superelasticity, is increasingly used in medicine. However, its high nickel content requires enhanced biocompatibility for long-term implants. Low-temperature plasma treatments under glow-discharge conditions can improve surface properties without compromising mechanical integrity. METHODS This study explores the surface modification of a NiTi alloy by oxidizing it in low-temperature plasma. We examine the impact of process temperatures and sample preparation (mechanical grinding and polishing) on the structure of the produced titanium oxide layers. Surface properties, including topography, morphology, chemical composition, and bioactivity, were analyzed using TEM, SEM, EDS, and an optical profilometer. Bioactivity was assessed through the deposition of calcium phosphate in simulated body fluid (SBF). RESULTS The low-temperature plasma oxidization produced titanium dioxide layers (29-55 nm thick) with a predominantly nanocrystalline rutile structure. Layer thickness increased with extended processing time and higher temperatures (up to 390 °C), though the relationship was not linear. Higher temperatures led to thicker layers with more precipitates and inhomogeneities. The oxidized layers showed increased bioactivity after 14 and 30 days in SBF. CONCLUSIONS Low-temperature plasma oxidation produces bioactive titanium oxide layers on NiTi alloys, with a structure and properties that can be tuned through process parameters. This method could enhance the biocompatibility of NiTi alloys for medical implants.
Collapse
Affiliation(s)
- Justyna Witkowska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (T.B.); (K.K.); (K.W.); (J.S.); (T.W.)
| | - Tomasz Borowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (T.B.); (K.K.); (K.W.); (J.S.); (T.W.)
| | - Krzysztof Kulikowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (T.B.); (K.K.); (K.W.); (J.S.); (T.W.)
| | - Karol Wunsch
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (T.B.); (K.K.); (K.W.); (J.S.); (T.W.)
| | - Jerzy Morgiel
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Krakow, Poland;
| | - Jerzy Sobiecki
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (T.B.); (K.K.); (K.W.); (J.S.); (T.W.)
| | - Tadeusz Wierzchoń
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (T.B.); (K.K.); (K.W.); (J.S.); (T.W.)
| |
Collapse
|
78
|
Bianconi S, Leppik L, Oppermann E, Marzi I, Henrich D. Direct Current Electrical Stimulation Shifts THP-1-Derived Macrophage Polarization towards Pro-Regenerative M2 Phenotype. Int J Mol Sci 2024; 25:7272. [PMID: 39000377 PMCID: PMC11242703 DOI: 10.3390/ijms25137272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
A macrophage shift from the M1 to the M2 phenotype is relevant for promoting tissue repair and regeneration. In a previous in vivo study, we found that direct current (DC) electrical stimulation (EStim) increased the proportion of M2 macrophages in healing tissues and directed the balance of the injury response away from healing/scarring towards regeneration. These observations led us to hypothesize that DC EStim regulates macrophage polarization towards an M2 phenotype. THP-1-derived M0, M1 (IFN-γ and LPS), and M2 (IL-4 and IL-13) macrophages were exposed (or not: control group) to 100 mV/mm of DC EStim, 1 h/day for three days. Macrophage polarization was assessed through gene and surface marker expressions and cytokine secretion profiles. Following DC EStim treatment, M0 cells exhibited an upregulation of M2 marker genes IL10, CD163, and PPARG. In M1 cells, DC EStim upregulated the gene expressions of M2 markers IL10, TGM2, and CD206 and downregulated M1 marker gene CD86. EStim treatment also reduced the surface expression of CD86 and secretion of pro-inflammatory cytokines IL-1β and IL-6. Our results suggest that DC EStim differentially exerts pro-M2 effects depending on the macrophage phenotype: it upregulates typical M2 genes in M0 and M1 cells while inhibiting M1 marker CD86 at the nuclear and protein levels and the secretion of pro-inflammatory interleukins in M1 cells. Conversely, M2 cells appear to be less responsive to the EStim treatment employed in this study.
Collapse
Affiliation(s)
- Santiago Bianconi
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Liudmila Leppik
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Elsie Oppermann
- Department of General, Visceral, Transplant and Thoracic Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
79
|
Babaei M, Ebrahim-Najafabadi N, Mirzadeh M, Abdali H, Farnaghi M, Gharavi MK, Kheradmandfard M, Kharazi AZ, Poursamar SA. A comprehensive bench-to-bed look into the application of gamma-sterilized 3D-printed polycaprolactone/hydroxyapatite implants for craniomaxillofacial defects, an in vitro, in vivo, and clinical study. BIOMATERIALS ADVANCES 2024; 161:213900. [PMID: 38772132 DOI: 10.1016/j.bioadv.2024.213900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
This study investigates the safety and efficacy of 3D-printed polycaprolactone/hydroxyapatite (PCL/HA) scaffolds for patient-specific cranioplasty surgeries, employing liquid deposition modeling (LDM) technology. This research is pioneering as it explores the impact of gamma radiation on PCL/HA scaffolds and utilizes printing ink with the highest content of HA known in the composite. The mechanical, morphological, and macromolecular stability of the gamma-sterilized scaffolds were verified before implantation. Subsequent research involving animal subjects was conducted to explore the effects of sterilized implants. Eventually, three clinical cases were selected for the implantation studies as part of a phase 1 non-randomized open-label clinical trial. It was shown that a 25 kGy gamma-ray dose for sterilizing the printed implants did not alter the required geometrical precision of the printed implants. The implants exhibited well-distributed HA and strength comparable to cancellous bone. Gamma radiation reduced hydrophobicity and water uptake capacity without inducing pyrogenic or inflammatory responses. Personalized PCL/HA substitutes successfully treated various craniomaxillofacial defects, including trauma-induced facial asymmetry and congenital deformities. HA nanoparticles in the ink stimulated significant osteoconductive responses within three months of implantation. Moreover, the results revealed that while larger implants may exhibit a slower bone formation response in comparison to smaller implants, they generally had an acceptable rate and volume of bone formation. This clinical trial suggests the application of a sterilized PCL/HA composite for craniomaxillofacial surgery is safe and could be considered as a substitute for autologous bone.
Collapse
Affiliation(s)
- Melika Babaei
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Ebrahim-Najafabadi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahareh Mirzadeh
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Abdali
- Craniofacial and Cleft Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadhasan Farnaghi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Kalbasi Gharavi
- Craniofacial and Cleft Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Kheradmandfard
- Dental Materials Research Centre, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Poursamar
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Craniofacial and Cleft Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
80
|
Golebiowska AA, Jala VR, Nukavarapu SP. Decellularized Tissue-Induced Cellular Recruitment for Tissue Engineering and Regenerative Medicine. Ann Biomed Eng 2024; 52:1835-1847. [PMID: 36952144 DOI: 10.1007/s10439-023-03182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Biomaterials that recapitulate the native in vivo microenvironment are promising to facilitate tissue repair and regeneration when used in combination with relevant growth factors (GFs), chemokines, cytokines, and other small molecules and cell sources. However, limitations with the use of exogenous factors and ex vivo cell expansion has prompted cell-/GF-free tissue engineering strategies. Additionally, conventional chemotaxis assays for studying cell migration behavior provide limited information, lack long-term stability, and fail to recapitulate physiologically relevant conditions. In this study, articular cartilage tissue-based biomaterials were developed via a rapid tissue decellularization protocol. The decellularized tissue was further processed into a hydrogel through solubilization and self-assembly. Chemotactic activity of the tissue-derived gel was investigated using sophisticated cellular migration assays. These tissue-derived extracellular matrix (ECM) biomaterials retain biochemical cues of native tissue and stimulate the chemotactic migration of hBMSCs in 2D and 3D cell migration models using a real-time chemotaxis assay. This strategy, in a way, developed a new paradigm in tissue engineering where cartilage tissue repair and regeneration can be approached with decellularized cartilage tissue in the place of an engineered matrix. This strategy can be further expanded for other tissue-based ECMs to develop cell-/GF-free tissue engineering and regenerative medicine strategies for recruiting endogenous cell populations to facilitate tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Venkatakrishna R Jala
- Department of Microbiology and Immunology, James Graham Brown Cancer Centre, University of Louisville, Louisville, KY, USA
| | - Syam P Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, USA.
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
81
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
82
|
Saberian E, Jenča A, Zafari Y, Jenča A, Petrášová A, Zare-Zardini H, Jenčová J. Scaffold Application for Bone Regeneration with Stem Cells in Dentistry: Literature Review. Cells 2024; 13:1065. [PMID: 38920693 PMCID: PMC11202130 DOI: 10.3390/cells13121065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Bone tissue injuries within oral and dental contexts often present considerable challenges because traditional treatments may not be able to fully restore lost or damaged bone tissue. Novel approaches involving stem cells and targeted 3D scaffolds have been investigated in the search for workable solutions. The use of scaffolds in stem cell-assisted bone regeneration is a crucial component of tissue engineering techniques designed to overcome the drawbacks of traditional bone grafts. This study provides a detailed review of scaffold applications for bone regeneration with stem cells in dentistry. This review focuses on scaffolds and stem cells while covering a broad range of studies explaining bone regeneration in dentistry through the presentation of studies conducted in this field. The role of different stem cells in regenerative medicine is covered in great detail in the reviewed literature. These studies have addressed a wide range of subjects, including the effects of platelet concentrates during dental surgery or specific combinations, such as human dental pulp stem cells with scaffolds for animal model bone regeneration, to promote bone regeneration in animal models. Noting developments, research works consider methods to improve vascularization and explore the use of 3D-printed scaffolds, secretome applications, mesenchymal stem cells, and biomaterials for oral bone tissue regeneration. This thorough assessment outlines possible developments within these crucial regenerative dentistry cycles and provides insights and suggestions for additional study. Furthermore, alternative creative methods for regenerating bone tissue include biophysical stimuli, mechanical stimulation, magnetic field therapy, laser therapy, nutritional supplements and diet, gene therapy, and biomimetic materials. These innovative approaches offer promising avenues for future research and development in the field of bone tissue regeneration in dentistry.
Collapse
Affiliation(s)
- Elham Saberian
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia
| | - Yaser Zafari
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia
| | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia
| | - Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod 89616-99557, Iran
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia
| |
Collapse
|
83
|
Rezaee Asl RS, Rahimzadeh-Bajgiran F, Saburi E. Evaluation of osteoconductive effect of polycaprolactone (PCL) scaffold treated with fibronectin on adipose-derived mesenchymal stem cells (AD-MSCs). AMERICAN JOURNAL OF STEM CELLS 2024; 13:152-161. [PMID: 39021375 PMCID: PMC11249668 DOI: 10.62347/dmky5924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Replacing damaged organs or tissues and repairing damage by tissue engineering are attracting great interest today. A potentially effective method for bone remodeling involves combining nanofiber scaffolds with extracellular matrix (ECM), and growth factors. Today, electrospun PCL-based scaffolds are widely used for tissue engineering applications. METHODS In this study, we used an electrospun polycaprolactone (PCL) scaffold coated with fibronectin (Fn), a ubiquitous ECM glycoprotein, to investigate the induction potential of this scaffold in osteogenesis with adipose-derived mesenchymal stem cells (AD-MSCs). RESULTS Scanning electron microscopy (SEM) analysis showed that fibronectin, by binding to the membrane receptors of mesenchymal stem cells (MSCs), leads to their attachment and proliferation on the PCL scaffold and provides a suitable environment for osteogenesis. In addition, biochemical tests showed that fibronectin leads to increased calcium deposition. The results also showed that alkaline phosphatase activity was significantly higher in the PCL scaffold coated with fibronectin than in the control groups (PCL scaffold group and tissue culture polystyrene (TCPS) group) (P<0.05). Also, the analysis of quantitative reverse transcription PCR (qRT-PCR) data showed that the relative expression of bone marker genes such as osteonectin (ON), osteocalcin (OC), RUNX family transcription factor 2 (RUNX2), and collagen type I alpha 1 (COL1) was much higher in the cells seeded on the PCL/Fn scaffold than in the other groups (P<0.05). CONCLUSIONS The results show that fibronectin has an increasing effect in accelerating bone formation and promising potential for use in bone tissue engineering.
Collapse
Affiliation(s)
| | | | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical SciencesMashhad, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical SciencesMashhad, Iran
| |
Collapse
|
84
|
Mazzucchi G, Mariano A, Serafini G, Lamazza L, Scotto d’Abusco A, De Biase A, Lollobrigida M. Osteoinductive Properties of Autologous Dentin: An Ex Vivo Study on Extracted Teeth. J Funct Biomater 2024; 15:162. [PMID: 38921535 PMCID: PMC11204916 DOI: 10.3390/jfb15060162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Over the last decades, a variety of biomaterials, ranging from synthetic products to autologous and heterologous grafts, have been recommended to conserve and regenerate bone tissue after tooth extraction. We conducted a biochemical study on ground extracted teeth that aimed to evaluate the osteoinductive and osteoconductive potential of dentin by assessing the releases of bone morphogenetic protein (BMP-2), osteocalcin (OC) and osteonectin (ON) over time (24 h, 10 days and 28 days). Twenty-six patients, who required the extraction of nonrestorable teeth, were enrolled in the study according to the inclusion criteria, as follows: thirteen young patients 18 to 49 years of age (UNDER 50), and thirteen patients of 50 to 70 years (OVER 50); a total of twenty-six teeth were extracted, ground and analyzed by enzyme-linked immunosorbent assays (ELISA). All ground teeth released BMP-2, OC and ON at each time point; no differences were observed between the UNDER-50 and OVER-50 patients. The results of the study support the use of autologous dentin as osteoinductive material for bone regeneration procedures, irrespective of patients' ages.
Collapse
Affiliation(s)
- Giulia Mazzucchi
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy; (G.M.); (G.S.); (L.L.); (M.L.)
| | - Alessia Mariano
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (A.S.d.)
| | - Giorgio Serafini
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy; (G.M.); (G.S.); (L.L.); (M.L.)
| | - Luca Lamazza
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy; (G.M.); (G.S.); (L.L.); (M.L.)
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (A.S.d.)
| | - Alberto De Biase
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy; (G.M.); (G.S.); (L.L.); (M.L.)
| | - Marco Lollobrigida
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy; (G.M.); (G.S.); (L.L.); (M.L.)
| |
Collapse
|
85
|
Hassan N, Krieg T, Kopp A, Bach AD, Kröger N. Challenges and Pitfalls of Research Designs Involving Magnesium-Based Biomaterials: An Overview. Int J Mol Sci 2024; 25:6242. [PMID: 38892430 PMCID: PMC11172609 DOI: 10.3390/ijms25116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Magnesium-based biomaterials hold remarkable promise for various clinical applications, offering advantages such as reduced stress-shielding and enhanced bone strengthening and vascular remodeling compared to traditional materials. However, ensuring the quality of preclinical research is crucial for the development of these implants. To achieve implant success, an understanding of the cellular responses post-implantation, proper model selection, and good study design are crucial. There are several challenges to reaching a safe and effective translation of laboratory findings into clinical practice. The utilization of Mg-based biomedical devices eliminates the need for biomaterial removal surgery post-healing and mitigates adverse effects associated with permanent biomaterial implantation. However, the high corrosion rate of Mg-based implants poses challenges such as unexpected degradation, structural failure, hydrogen evolution, alkalization, and cytotoxicity. The biocompatibility and degradability of materials based on magnesium have been studied by many researchers in vitro; however, evaluations addressing the impact of the material in vivo still need to be improved. Several animal models, including rats, rabbits, dogs, and pigs, have been explored to assess the potential of magnesium-based materials. Moreover, strategies such as alloying and coating have been identified to enhance the degradation rate of magnesium-based materials in vivo to transform these challenges into opportunities. This review aims to explore the utilization of Mg implants across various biomedical applications within cellular (in vitro) and animal (in vivo) models.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thomas Krieg
- Translational Matrix Biology, Medical Faculty, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50937 Cologne, Germany
| | | | - Alexander D. Bach
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| | - Nadja Kröger
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| |
Collapse
|
86
|
Cárdenas-Aguazaco W, Lara-Bertrand AL, Prieto-Abello L, Barreto-López N, Camacho B, Silva-Cote I. Exploring calcium-free alternatives in endochondral bone repair tested on In vivo trials - A review. Regen Ther 2024; 26:145-160. [PMID: 38872977 PMCID: PMC11169084 DOI: 10.1016/j.reth.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
Bone repair via endochondral ossification is a complex process for the critical size reparation of bone defects. Tissue engineering strategies are being developed as alternative treatments to autografts or allografts. Most approaches to bone regeneration involve the use of calcium composites. However, exploring calcium-free alternatives in endochondral bone repair has emerged as a promising way to contribute to bone healing. By analyzing researches from the last ten years, this review identifies the potential benefits of such alternatives compared to traditional calcium-based approaches. Understanding the impact of calcium-free alternatives on endochondral bone repair can have profound implications for orthopedic and regenerative medicine. This review evaluates the efficacy of calcium-free alternatives in endochondral bone repair through in vivo trials. The findings may guide future research to develop innovative strategies to improve endochondral bone repair without relying on calcium. Exploring alternative approaches may lead to the discovery of novel therapies that improve bone healing outcomes.
Collapse
Affiliation(s)
- William Cárdenas-Aguazaco
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud-IDCBIS, Colombia
| | - Adriana Lorena Lara-Bertrand
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud-IDCBIS, Colombia
| | - Leonardo Prieto-Abello
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud-IDCBIS, Colombia
| | - Nicolás Barreto-López
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud-IDCBIS, Colombia
| | - Bernardo Camacho
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud-IDCBIS, Colombia
| | - Ingrid Silva-Cote
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud-IDCBIS, Colombia
| |
Collapse
|
87
|
Premnath P, Lun T, Siddiqui H, Stahl AR, Ardebili AA, Olsen A, Krawetz R. Absence of E2f1 Negates Pro-osteogenic Impacts of p21 Absence. Calcif Tissue Int 2024; 114:625-637. [PMID: 38643416 DOI: 10.1007/s00223-024-01210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/03/2024] [Indexed: 04/22/2024]
Abstract
Loss of p21 leads to increased bone formation post-injury; however, the mechanism(s) by which this occurs remains undetermined. E2f1 is downstream of p21 and as a transcription factor can act directly on gene expression; yet it is unknown if E2f1 plays a role in the osteogenic effects observed when p21 is differentially regulated. In this study we aimed to investigate the interplay between p21 and E2f1 and determine if the pro-regenerative osteogenic effects observed with the loss of p21 are E2f1 dependent. To accomplish this, we employed knockout p21 and E2f1 mice and additionally generated a p21/E2f1 double knockout. These mice underwent burr-hole injuries to their proximal tibiae and healing was assessed over 7 days via microCT imaging. We found that p21 and E2f1 play distinct roles in bone regeneration where the loss of p21 increased trabecular bone formation and loss of E2f1 increased cortical bone formation, yet loss of E2f1 led to poorer bone repair overall. Furthermore, when E2f1 was absent, either individually or simultaneously with p21, there was a dramatic decrease of the number of osteoblasts, osteoclasts, and chondrocytes at the site of injury compared to p21-/- and C57BL/6 mice. Together, these results suggest that E2f1 regulates the cell populations required for bone repair and has a distinct role in bone formation/repair compared to p21-/-E2f1-/-. These results highlight the possibility of cell cycle and/or p21/E2f1 being potential druggable targets that could be leveraged in clinical therapies to improve bone healing in pathologies such as osteoporosis.
Collapse
Affiliation(s)
- Priyatha Premnath
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Theodore Lun
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Humza Siddiqui
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Alana Ruth Stahl
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Aria Ahadzadeh Ardebili
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Alexandra Olsen
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Roman Krawetz
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
88
|
Fatima M, Almalki WH, Khan T, Sahebkar A, Kesharwani P. Harnessing the Power of Stimuli-Responsive Nanoparticles as an Effective Therapeutic Drug Delivery System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312939. [PMID: 38447161 DOI: 10.1002/adma.202312939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Indexed: 03/08/2024]
Abstract
The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic approach, serving as a model for directing drugs to specific targets or sites. These systems have been developed to specifically target and regulate the administration of therapeutic substances in a diverse array of chronic conditions, including periodontitis, diabetes, cardiac diseases, inflammatory bowel diseases, rheumatoid arthritis, and different cancers. Nevertheless, numerous comprehensive clinical trials are still required to ascertain both the immediate and enduring impacts of such nanosystems on human subjects. This review delves into the benefits of different drug delivery vehicles, aiming to enhance comprehension of their applicability in addressing present medical requirements. Additionally, it touches upon the current applications of these stimuli-reactive nanosystems in biomedicine and outlines future development prospects.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 715, Saudi Arabia
| | - Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177948954, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
89
|
Schuphan J, Stojanović N, Lin YY, Buhl EM, Aveic S, Commandeur U, Schillberg S, Fischer H. A Combination of Flexible Modified Plant Virus Nanoparticles Enables Additive Effects Resulting in Improved Osteogenesis. Adv Healthc Mater 2024; 13:e2304243. [PMID: 38417028 DOI: 10.1002/adhm.202304243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/16/2024] [Indexed: 03/01/2024]
Abstract
Plant virus nanoparticles (VNPs) genetically engineered to present osteogenic cues provide a promising method for biofunctionalizing hydrogels in bone tissue engineering. Flexible Potato virus X (PVX) nanoparticles substantially enhance the attachment and differentiation of human mesenchymal stem cells (hMSCs) by presenting the RGD motif, hydroxyapatite-binding peptide (HABP), or consecutive polyglutamates (E8) in a concentration-dependent manner. Therefore, it is hypothesized that Tobacco mosaic virus nanoparticles, which present 1.6 times more functional peptides than PVX, will meliorate such an impact. This study hypothesizes that cultivating hMSCs on a surface coated with a combination of two VNPs presenting peptides for either cell attachment or mineralization can achieve additionally enhancing effects on osteogenesis. Calcium minerals deposited by differentiating hMSCs increases two to threefold for this combination, while the Alkaline Phosphatase activity of hMSCs grown on the PVX-RGD/PVX-HABP-coated surface significantly surpasses any other VNP combination. Superior additive effects are observed for the first time by employing a combination of VNPs with varying functionalities. It is found that the flexible VNP geometry plays a more critical role than the concentration of functional peptides. In conclusion, various peptide-presenting plant VNPs exhibit an additive enhancing effect offering significant potential for effectively functionalizing cell-containing hydrogels in bone tissue engineering.
Collapse
Affiliation(s)
- Juliane Schuphan
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Natalija Stojanović
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ying-Ying Lin
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Stefan Schillberg
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
90
|
Percival KM, Paul V, Husseini GA. Recent Advancements in Bone Tissue Engineering: Integrating Smart Scaffold Technologies and Bio-Responsive Systems for Enhanced Regeneration. Int J Mol Sci 2024; 25:6012. [PMID: 38892199 PMCID: PMC11172494 DOI: 10.3390/ijms25116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
In exploring the challenges of bone repair and regeneration, this review evaluates the potential of bone tissue engineering (BTE) as a viable alternative to traditional methods, such as autografts and allografts. Key developments in biomaterials and scaffold fabrication techniques, such as additive manufacturing and cell and bioactive molecule-laden scaffolds, are discussed, along with the integration of bio-responsive scaffolds, which can respond to physical and chemical stimuli. These advancements collectively aim to mimic the natural microenvironment of bone, thereby enhancing osteogenesis and facilitating the formation of new tissue. Through a comprehensive combination of in vitro and in vivo studies, we scrutinize the biocompatibility, osteoinductivity, and osteoconductivity of these engineered scaffolds, as well as their interactions with critical cellular players in bone healing processes. Findings from scaffold fabrication techniques and bio-responsive scaffolds indicate that incorporating nanostructured materials and bioactive compounds is particularly effective in promoting the recruitment and differentiation of osteoprogenitor cells. The therapeutic potential of these advanced biomaterials in clinical settings is widely recognized and the paper advocates continued research into multi-responsive scaffold systems.
Collapse
Affiliation(s)
- Kelly M. Percival
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (K.M.P.); (V.P.)
| | - Vinod Paul
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (K.M.P.); (V.P.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (K.M.P.); (V.P.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
91
|
Mahboubian MH, Kadkhodazadeh M, Amid R, Moscowchi A. Comparative assessment of the physical structure of antler and bovine bone substitutes: An in vitro study. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2024; 16:4-8. [PMID: 39027212 PMCID: PMC11252153 DOI: 10.34172/japid.2024.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/13/2024] [Indexed: 07/20/2024]
Abstract
Background The use of bone graft materials has significantly increased. Given the inherent variations in structure and functionality between different grafting materials, this evaluated and compared the physical attributes of antler and bovine femur bone substitutes. Methods In the present in vitro investigation, the surface morphological architecture of the two bone substitutes with different origins was assessed through scanning electron microscopy. Furthermore, the Brunauer-Emmett-Teller (BET) technique was employed to measure the porosity, specific surface area (SSA), and pore morphology. Results Scanning electron microscopy observations indicated that the surface of the bovine particles appeared smoother, while the antler particles exhibited a rougher surface texture. The BET analysis revealed that both samples exhibited identical pore morphology. The SSA was 15.974 m2/g in the antler particles compared with 18.404 m2/g in the bovine sample. The total porosity volume in the antler and bovine femur bone substitutes were 0.2172 cm3/g and 0.2918 cm3/g, respectively. Additionally, the antler particles had a porosity percentage of 40%, whereas the bovine femur bone substitute showed a porosity percentage of 43.5%. Conclusion Based on the results of this study, it seems that the two samples of bone grafting materials have comparable physical structures.
Collapse
Affiliation(s)
- Mohammad Hossein Mahboubian
- Dental Research Center, Research Institute for Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Kadkhodazadeh
- Dental Research Center, Research Institute for Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Amid
- Dental Research Center, Research Institute for Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Moscowchi
- Dental Research Center, Research Institute for Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
92
|
Quek J, Vizetto-Duarte C, Teoh SH, Choo Y. Towards Stem Cell Therapy for Critical-Sized Segmental Bone Defects: Current Trends and Challenges on the Path to Clinical Translation. J Funct Biomater 2024; 15:145. [PMID: 38921519 PMCID: PMC11205181 DOI: 10.3390/jfb15060145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The management and reconstruction of critical-sized segmental bone defects remain a major clinical challenge for orthopaedic clinicians and surgeons. In particular, regenerative medicine approaches that involve incorporating stem cells within tissue engineering scaffolds have great promise for fracture management. This narrative review focuses on the primary components of bone tissue engineering-stem cells, scaffolds, the microenvironment, and vascularisation-addressing current advances and translational and regulatory challenges in the current landscape of stem cell therapy for critical-sized bone defects. To comprehensively explore this research area and offer insights for future treatment options in orthopaedic surgery, we have examined the latest developments and advancements in bone tissue engineering, focusing on those of clinical relevance in recent years. Finally, we present a forward-looking perspective on using stem cells in bone tissue engineering for critical-sized segmental bone defects.
Collapse
Affiliation(s)
- Jolene Quek
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Catarina Vizetto-Duarte
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Swee Hin Teoh
- Centre for Advanced Medical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410012, China
| | - Yen Choo
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| |
Collapse
|
93
|
Yildizbakan L, Iqbal N, Giannoudis PV, Jha A. Synthesis of Chitosan and Ferric-Ion (Fe 3+)-Doped Brushite Mineral Cancellous Bone Scaffolds. Biomimetics (Basel) 2024; 9:308. [PMID: 38921188 PMCID: PMC11202294 DOI: 10.3390/biomimetics9060308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Biodegradable scaffolds are needed to repair bone defects. To promote the resorption of scaffolds, a large surface area is required to encourage neo-osteogenesis. Herein, we describe the synthesis and freeze-drying methodologies of ferric-ion (Fe3+) doped Dicalcium Phosphate Dihydrate mineral (DCPD), also known as brushite, which has been known to favour the in situ condition for osteogenesis. In this investigation, the role of chitosan during the synthesis of DCPD was explored to enhance the antimicrobial, scaffold pore distribution, and mechanical properties post freeze-drying. During the synthesis of DCPD, the calcium nitrate solution was hydrolysed with a predetermined stoichiometric concentration of ammonium phosphate. During the hydrolysis reaction, 10 (mol)% iron (Fe3+) nitrate (Fe(NO3)3) was incorporated, and the DCPD minerals were precipitated (Fe3+-DCPD). Chitosan stir-mixed with Fe3+-DCPD minerals was freeze-dried to create scaffolds. The structural, microstructural, and mechanical properties of freeze-dried materials were characterized.
Collapse
Affiliation(s)
- Lemiha Yildizbakan
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK;
| | - Neelam Iqbal
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK;
| | - Peter V. Giannoudis
- Academic Department of Trauma and Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| | - Animesh Jha
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
94
|
Marchiori G, Bellucci D, Gambardella A, Petretta M, Berni M, Boi M, Grigolo B, Giavaresi G, Baldini N, Cannillo V, Cavallo C. A Multidisciplinary Evaluation of Three-Dimensional Polycaprolactone Bioactive Glass Scaffolds for Bone Tissue Engineering Purposes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2413. [PMID: 38793481 PMCID: PMC11122918 DOI: 10.3390/ma17102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
In the development of bone graft substitutes, a fundamental step is the use of scaffolds with adequate composition and architecture capable of providing support in regenerative processes both on the tissue scale, where adequate resistance to mechanical stress is required, as well as at the cellular level where compliant chemical-physical and mechanical properties can promote cellular activity. In this study, based on a previous optimization study of this group, the potential of a three-dimensional construct based on polycaprolactone (PCL) and a novel biocompatible Mg- and Sr-containing glass named BGMS10 was explored. Fourier-transform infrared spectroscopy and scanning electron microscopy showed the inclusion of BGMS10 in the scaffold structure. Mesenchymal stem cells cultured on both PCL and PCL-BGMS10 showed similar tendencies in terms of osteogenic differentiation; however, no significant differences were found between the two scaffold types. This circumstance can be explained via X-ray microtomography and atomic force microscopy analyses, which correlated the spatial distribution of the BGMS10 within the bulk with the elastic properties and topography at the cell scale. In conclusion, our study highlights the importance of multidisciplinary approaches to understand the relationship between design parameters, material properties, and cellular response in polymer composites, which is crucial for the development and design of scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Gregorio Marchiori
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.M.); (G.G.)
| | - Devis Bellucci
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy; (D.B.); (V.C.)
| | - Alessandro Gambardella
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.M.); (G.G.)
| | | | - Matteo Berni
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Marco Boi
- Scienze e Tecnologie Biomediche e Nanobiotecnologie, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.B.); (N.B.)
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (B.G.); (C.C.)
| | - Gianluca Giavaresi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.M.); (G.G.)
| | - Nicola Baldini
- Scienze e Tecnologie Biomediche e Nanobiotecnologie, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.B.); (N.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Valeria Cannillo
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy; (D.B.); (V.C.)
| | - Carola Cavallo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (B.G.); (C.C.)
| |
Collapse
|
95
|
Qin L, Yang S, Zhao C, Yang J, Li F, Xu Z, Yang Y, Zhou H, Li K, Xiong C, Huang W, Hu N, Hu X. Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. Bone Res 2024; 12:28. [PMID: 38744863 PMCID: PMC11094017 DOI: 10.1038/s41413-024-00332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
Osteomyelitis is a devastating disease caused by microbial infection in deep bone tissue. Its high recurrence rate and impaired restoration of bone deficiencies are major challenges in treatment. Microbes have evolved numerous mechanisms to effectively evade host intrinsic and adaptive immune attacks to persistently localize in the host, such as drug-resistant bacteria, biofilms, persister cells, intracellular bacteria, and small colony variants (SCVs). Moreover, microbial-mediated dysregulation of the bone immune microenvironment impedes the bone regeneration process, leading to impaired bone defect repair. Despite advances in surgical strategies and drug applications for the treatment of bone infections within the last decade, challenges remain in clinical management. The development and application of tissue engineering materials have provided new strategies for the treatment of bone infections, but a comprehensive review of their research progress is lacking. This review discusses the critical pathogenic mechanisms of microbes in the skeletal system and their immunomodulatory effects on bone regeneration, and highlights the prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. It will inform the development and translation of antimicrobial and bone repair tissue engineering materials for the management of bone infections.
Collapse
Affiliation(s)
- Leilei Qin
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Shuhao Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Chen Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Jianye Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Feilong Li
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenghao Xu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Yaji Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Haotian Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China
| | - Chengdong Xiong
- University of Chinese Academy of Sciences, Bei Jing, 101408, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China.
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China.
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
96
|
Jiang J, Röper L, Fuchs F, Hanschen M, Failer S, Alageel S, Cong X, Dornseifer U, Schilling AF, Machens HG, Moog P. Bone Regenerative Effect of Injectable Hypoxia Preconditioned Serum-Fibrin (HPS-F) in an Ex Vivo Bone Defect Model. Int J Mol Sci 2024; 25:5315. [PMID: 38791352 PMCID: PMC11121588 DOI: 10.3390/ijms25105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Biofunctionalized hydrogels are widely used in tissue engineering for bone repair. This study examines the bone regenerative effect of the blood-derived growth factor preparation of Hypoxia Preconditioned Serum (HPS) and its fibrin-hydrogel formulation (HPS-F) on drilled defects in embryonic day 19 chick femurs. Measurements of bone-related growth factors in HPS reveal significant elevations of Osteopontin, Osteoprotegerin, and soluble-RANKL compared with normal serum (NS) but no detection of BMP-2/7 or Osteocalcin. Growth factor releases from HPS-F are measurable for at least 7 days. Culturing drilled femurs organotypically on a liquid/gas interface with HPS media supplementation for 10 days demonstrates a 34.6% increase in bone volume and a 52.02% increase in bone mineral density (BMD) within the defect area, which are significantly higher than NS and a basal-media-control, as determined by microcomputed tomography. HPS-F-injected femur defects implanted on a chorioallantoic membrane (CAM) for 7 days exhibit an increase in bone mass of 123.5% and an increase in BMD of 215.2%, which are significantly higher than normal-serum-fibrin (NS-F) and no treatment. Histology reveals calcification, proteoglycan, and collagen fiber deposition in the defect area of HPS-F-treated femurs. Therefore, HPS-F may offer a promising and accessible therapeutic approach to accelerating bone regeneration by a single injection into the bone defect site.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Lynn Röper
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Finja Fuchs
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Marc Hanschen
- Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (M.H.); (S.F.)
| | - Sandra Failer
- Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (M.H.); (S.F.)
| | - Sarah Alageel
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Xiaobin Cong
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, D-80331 Munich, Germany;
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, D-37075 Göttingen, Germany;
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| |
Collapse
|
97
|
Gaihre B, Potes MDA, Liu X, Tilton M, Camilleri E, Rezaei A, Serdiuk V, Park S, Lucien F, Terzic A, Lu L. Extrusion 3D-printing and characterization of poly(caprolactone fumarate) for bone regeneration applications. J Biomed Mater Res A 2024; 112:672-684. [PMID: 37971074 PMCID: PMC10948318 DOI: 10.1002/jbm.a.37646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Polycaprolactone fumarate (PCLF) is a cross-linkable PCL derivative extensively considered for tissue engineering applications. Although injection molding has been widely used to develop PCLF scaffolds, platforms developed using such technique lack precise control on architecture, design, and porosity required to ensure adequate cellular and tissue responses. In particular, the scaffolds should provide a suitable surface for cell attachment and proliferation, and facilitate cell-cell communication and nutrient flow. 3D printing technologies have led to new architype for biomaterial development with micro-architecture mimicking native tissue. Here, we developed a method for 3D printing of PCLF structures using the extrusion printing technique. The crosslinking property of PCLF enabled the unique post-processing of 3D printed scaffolds resulting in highly porous and flexible PCLF scaffolds with compressive properties imitating natural features of cancellous bone. Generated scaffolds supported excellent attachment and proliferation of mesenchymal stem cells (MSC). The high porosity of PCLF scaffolds facilitated vascularized membrane formation demonstrable with the stringency of the ex ovo chicken chorioallantoic membrane (CAM) implantation. Furthermore, upon implantation to rat calvarium defects, PCLF scaffolds enabled an exceptional new bone formation with a bone mineral density of newly formed bone mirroring native bone tissue. These studies suggest that the 3D-printed highly porous PCLF scaffolds may serve as a suitable biomaterial platform to significantly expand the utility of the PCLF biomaterial for bone tissue engineering applications.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria D Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Emily Camilleri
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Vitalii Serdiuk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
98
|
Chrungoo S, Bharadwaj T, Verma D. Nanofibrous polyelectrolyte complex incorporated BSA-alginate composite bioink for 3D bioprinting of bone mimicking constructs. Int J Biol Macromol 2024; 266:131123. [PMID: 38537853 DOI: 10.1016/j.ijbiomac.2024.131123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Although several bioinks have been developed for 3D bioprinting applications, the lack of optimal printability, mechanical properties, and adequate cell response has limited their practical applicability. Therefore, this work reports the development of a composite bioink consisting of bovine serum albumin (BSA), alginate, and self-assembled nanofibrous polyelectrolyte complex aggregates of gelatin and chitosan (PEC-GC). The nanofibrous PEC-GC aggregates were prepared and incorporated into the bioink in varying concentrations (0 % to 3 %). The bioink samples were bioprinted and crosslinked post-printing by calcium chloride. The average nanofiber diameter of PEC-GC was 62 ± 15 nm. It was demonstrated that PEC-GC improves the printability and cellular adhesion of the developed bioink and modulates the swelling ratio, degradation rate, and mechanical properties of the fabricated scaffold. The in vitro results revealed that the bioink with 2 % PEC-GC had the best post-printing cell viability of the encapsulated MG63 osteosarcoma cells and well oragnized stress fibers, indicating enhanced cell adhesion. The cell viability was >90 %, as observed from the MTT assay. The composite bioink also showed osteogenic potential, as confirmed by the estimation of alkaline phosphatase activity and collagen synthesis assay. This study successfully fabricated a high-shape fidelity bioink with potential in bone tissue engineering.
Collapse
Affiliation(s)
- Shreya Chrungoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Tanmay Bharadwaj
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
99
|
Nie R, Zhang QY, Feng ZY, Huang K, Zou CY, Fan MH, Zhang YQ, Zhang JY, Li-Ling J, Tan B, Xie HQ. Hydrogel-based immunoregulation of macrophages for tissue repair and regeneration. Int J Biol Macromol 2024; 268:131643. [PMID: 38643918 DOI: 10.1016/j.ijbiomac.2024.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
The rational design of hydrogel materials to modulate the immune microenvironment has emerged as a pivotal approach in expediting tissue repair and regeneration. Within the immune microenvironment, an array of immune cells exists, with macrophages gaining prominence in the field of tissue repair and regeneration due to their roles in cytokine regulation to promote regeneration, maintain tissue homeostasis, and facilitate repair. Macrophages can be categorized into two types: classically activated M1 (pro-inflammatory) and alternatively activated M2 (anti-inflammatory and pro-repair). By regulating the physical and chemical properties of hydrogels, the phenotypic transformation and cell behavior of macrophages can be effectively controlled, thereby promoting tissue regeneration and repair. A full understanding of the interaction between hydrogels and macrophages can provide new ideas and methods for future tissue engineering and clinical treatment. Therefore, this paper reviews the effects of hydrogel components, hardness, pore size, and surface morphology on cell behaviors such as macrophage proliferation, migration, and phenotypic polarization, and explores the application of hydrogels based on macrophage immune regulation in skin, bone, cartilage, and nerve tissue repair. Finally, the challenges and future prospects of macrophage-based immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zi-Yuan Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Kai Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yue-Qi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bo Tan
- Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, PR China.
| |
Collapse
|
100
|
Rai V, Munazzam SW, Wazir NU, Javaid I. Revolutionizing bone tumor management: cutting-edge breakthroughs in limb-saving treatments. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2024; 34:1741-1748. [PMID: 38461457 DOI: 10.1007/s00590-024-03876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
Limb salvage surgery has revolutionized the approach to bone tumors in orthopedic oncology, steering away from historical amputations toward preserving limb function and enhancing patient quality of life. This transformative shift underscores the delicate balance between tumor eradication and optimal postoperative function. Primary and metastatic bone tumors present challenges in early detection, differentiation between benign and malignant tumors, preservation of function, and the risk of local recurrence. Conventional methods, including surgery, radiation therapy, chemotherapy, and targeted therapies, have evolved with a heightened focus on personalized medicine. A groundbreaking development in limb salvage surgery is the advent of 3D-printed patient-specific implants, which significantly enhance anatomical precision, stability, and fixation. These implants reduce soft tissue disruption and the associated risks, fostering improved osseointegration and correction of deformities for a more natural and functional postoperative outcome. Biological and molecular research has reshaped the understanding of bone tumors, guiding surgical interventions with advancements such as genomic profiling, targeted intraoperative imaging, precision targeting of molecular pathways, and immunotherapy tailored to individual tumor characteristics. In the realm of imaging technologies, MRI, CT scans, and intraoperative navigation systems have redefined preoperative planning, minimizing collateral damage and optimizing outcomes through accurate resections. Postoperative rehabilitation plays a crucial role in restoring function and improving the quality of life. Emphasizing early mobilization, effective pain management, and a multidisciplinary approach, rehabilitation addresses the physical, psychological, and social aspects of recovery. Looking ahead, future developments may encompass advanced biomaterials, smart implants, AI algorithms, robotics, and regenerative medicine. Challenges lie in standardization, cost-effectiveness, accessibility, long-term outcome assessment, mental health support, and fostering global collaboration. As research progresses, limb salvage surgery emerges not just as a preservation tool but as a transformative approach, restoring functionality, resilience, and hope in the recovery journey. This review summarizes the recent advances in limb salvage therapy for bone tumors over the past decade.
Collapse
Affiliation(s)
- Vikramaditya Rai
- Department of Orthopedics, Dr. Rajendra Prasad Government Medical College and Hospital, Himachal Pradesh, Tanda at Kangra, India.
| | | | | | - Irum Javaid
- Khyber Medical College, Hayatabad, Peshawar, Pakistan
| |
Collapse
|