51
|
Pelletier A, Stockmann C. The Metabolic Basis of ILC Plasticity. Front Immunol 2022; 13:858051. [PMID: 35572512 PMCID: PMC9099248 DOI: 10.3389/fimmu.2022.858051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Innate Lymphoid Cells (ILCs) are the innate counterpart of adaptive lymphoid T cells. They are key players in the regulation of tissues homeostasis and early inflammatory host responses. ILCs are divided into three groups, and further subdivided into five subsets, that are characterised by distinct transcription factors, surface markers and their cytokine expression profiles. Group 1 ILCs, including natural killer (NK) cells and non-NK cell ILC1s, express T-bet and produce IFN-γ. Group 2 ILCs depend on GATA3 and produce IL-4, IL-5 and IL-13. Group 3 ILCs, composed of ILC3s and Lymphoid Tissue Inducer (LTi) cells, express RORγt and produce IL-17 and IL-22. Even though, the phenotype of each subset is well defined, environmental signals can trigger the interconversion of phenotypes and the plasticity of ILCs, in both mice and humans. Several extrinsic and intrinsic drivers of ILC plasticity have been described. However, the changes in cellular metabolism that underlie ILC plasticity remain largely unexplored. Given that metabolic changes critically affect fate and effector function of several immune cell types, we, here, review recent findings on ILC metabolism and discuss the implications for ILC plasticity.
Collapse
|
52
|
Albakova Z, Mangasarova Y, Albakov A, Nikulina E, Kravchenko S, Sapozhnikov A. Aberrant HSP90 Expression in Lymphocytes and HSP90 Response to Anti-PD-1 Therapy in Lymphoma Patients. Front Immunol 2022; 13:893137. [PMID: 35572591 PMCID: PMC9095953 DOI: 10.3389/fimmu.2022.893137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
HSP90 family of molecular chaperones has been shown to be implicated in various stages of tumor growth and development. Recent studies have highlighted the role of extracellular HSP90 in tumor immunology, however, the role that HSP90 plays in the regulation of immune responses and the impact of cancer immunotherapy, including immune checkpoint blockade, on HSP90 is still unclear. Here we assessed the surface and intracellular expression of constitutive cytosolic HSP90β isoform, mitochondrial HSP90 homolog TRAP1 and co-chaperone STIP1/HOP in T, NK, B and NKT cells derived from peripheral blood and bone marrow samples of patients with Hodgkin and B-cell Non-Hodgkin lymphomas. HSP90β and STIP1 were overexpressed in B lymphocytes, while TRAP1 expression was decreased in T, B, NK and NKT cells of lymphoma patients. HSP90 overexpression in B cells was not associated with malignant B cell clones, since no clonotypic B cells were detected by immunoglobulin heavy chain (IgH) gene rearrangements. PD-1 blockade was found to differently affect the intracellular and surface HSP90 in T, B, NK and NKT cells in patients with relapsed or refractory classical Hodgkin lymphoma. Modulating HSP90 was found to affect the NK cell degranulation response and IFNγ production in lymphoma patients. These findings provide the rationale to further explore HSP90 homologs for improving patient response to cancer immunotherapy.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Immunology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Elena Nikulina
- National Medical Research Center for Hematology, Moscow, Russia
| | | | - Alexander Sapozhnikov
- Department of Immunology, Lomonosov Moscow State University, Moscow, Russia
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| |
Collapse
|
53
|
Recombinant Fasciola hepatica Fatty Acid Binding Protein as a Novel Anti-Inflammatory Biotherapeutic Drug in an Acute Gram-Negative Nonhuman Primate Sepsis Model. Microbiol Spectr 2021; 9:e0191021. [PMID: 34937173 PMCID: PMC8694124 DOI: 10.1128/spectrum.01910-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Due to their phylogenetic proximity to humans, nonhuman primates (NHPs) are considered an adequate choice for a basic and preclinical model of sepsis. Gram-negative bacteria are the primary causative of sepsis. During infection, bacteria continuously release the potent toxin lipopolysaccharide (LPS) into the bloodstream, which triggers an uncontrolled systemic inflammatory response leading to death. Our previous research has demonstrated in vitro and in vivo using a mouse model of septic shock that Fh15, a recombinant variant of the Fasciola hepatica fatty acid binding protein, acts as an antagonist of Toll-like receptor 4 (TLR4) suppressing the LPS-induced proinflammatory cytokine storm. The present communication is a proof-of concept study aimed to demonstrate that a low-dose of Fh15 suppresses the cytokine storm and other inflammatory markers during the early phase of sepsis induced in rhesus macaques by intravenous (i.v.) infusion with lethal doses of live Escherichia coli. Fh15 was administered as an isotonic infusion 30 min prior to the bacterial infusion. Among the novel findings reported in this communication, Fh15 (i) significantly prevented bacteremia, suppressed LPS levels in plasma, and the production of C-reactive protein and procalcitonin, which are key signatures of inflammation and bacterial infection, respectively; (ii) reduced the production of proinflammatory cytokines; and (iii) increased innate immune cell populations in blood, which suggests a role in promoting a prolonged steady state in rhesus macaques even in the presence of inflammatory stimuli. This report is the first to demonstrate that a F. hepatica-derived molecule possesses potential as an anti-inflammatory drug against sepsis in an NHP model. IMPORTANCE Sepsis caused by Gram-negative bacteria affects 1.7 million adults annually in the United States and is one of the most important causes of death at intensive care units. Although the effective use of antibiotics has resulted in improved prognosis of sepsis, the pathological and deathly effects have been attributed to the persistent inflammatory cascade. There is a present need to develop anti-inflammatory agents that can suppress or neutralize the inflammatory responses and prevent the lethal consequences of sepsis. We demonstrated here that a small molecule of 14.5 kDa can suppress the bacteremia, endotoxemia, and many other inflammatory markers in an acute Gram-negative sepsis rhesus macaque model. These results reinforce the notion that Fh15 constitutes an excellent candidate for drug development against sepsis.
Collapse
|
54
|
NK Cell Regulation in Cervical Cancer and Strategies for Immunotherapy. Cells 2021; 10:cells10113104. [PMID: 34831327 PMCID: PMC8619016 DOI: 10.3390/cells10113104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer is one of the most prevalent gynaecological malignancies worldwide and is related to human papillomavirus (HPV) infection, viral persistence, progression, and invasion. Therefore, the immune response is linked to HPV status. Natural killer (NK) cells play a central role against virus-infected cells and tumours through a delicate balance between activating and inhibitory receptors and secretion of cytokines and chemokines. These cells also play a crucial role in tumour immunosurveillance. For these reasons, there is growing interest in harnessing NK cells as an immunotherapy for cervical cancer. These studies are diverse and include many strategies such as transferring activated autologous or allogeneic NK cells, improving the activation and cytolytic activity of NK cells using cytokines or analogues and modifying chimeric antigen receptors to increase specificity and targeting NK cells. However, research regarding the application of NK cells in immunotherapy is limited. This article focuses on recent discoveries about using NK cells to prevent and treat cervical cancer and the possibility of cellular immunotherapy becoming one of the best strategies to exploit the immune system to fight tumours.
Collapse
|
55
|
Al-Rashidi HE, Refaat S, Ahmed E, Hussein DT, Eltantawy FM, Hamed S. Involvement of INF-γ functional single nucleotide polymorphism +874 T/A (rs2430561) in breast cancer risk. Saudi J Biol Sci 2021; 28:6289-6296. [PMID: 34759748 PMCID: PMC8568710 DOI: 10.1016/j.sjbs.2021.06.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/27/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
According Global Cancer Statistics 2020 GLOBOCAN estimates female breast cancer was found as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), and the fourth leading cause (6.9%) of cancer death among women worldwide. Identification of new diagnostic marker sharply characterize the tumor feature is intensive need. The present work was performed to investigate the involvement of the INF-γ + 874 T/A gene polymorphism in different breast cancer prognostic factors. Polymorphism detection analysis was performed on 163 subjects from breast cancer patients, 79 with inflamed cells of breast patients and 144 controls. The gene polymorphism was detected using the amplification refractory mutation system- polymerase chain reaction method (ARMS-PCR). The distribution of INF-γ T + 874A gene polymorphism shows strong significant association between INF-γ + 874 T/A genotypes TT in BC patients (ORTT: 6.41 [95% CI = 2.72-15.1] P < 0.0001) as well as strong significant association regarding T allele (ORT: 1.99 [95% CI = 1.43-2.76] P < 0.0001) when compared to the healthy control. In ICB group the strong association was noted with INF-γ + 874 T/A genotypes AT genotype (ORAT: 2.28 [95% CI = 1.22-4.29] P = 0.007). From the different histological BC hormonal markers the human epidermal growth factor receptor 2 (HER2) was showing significant association in INF-γ + 874 T/A genotypes TT (P = 0.03) and recessive model (TT versus AA + AT P = 0.03). Concerning different BC prognostic models, the poor prognostic one of luminal B, (ER+ve PR+ve Her2+ve) show significant association in the host INF-γ + 874 T/A genotype (TT, P = 0.03) and recessive model (TT versus AA + AT P = 0.02) when compared to the good prognostic hormonal status luminal A model, (ER+ve PR+ve Her2-ve). It seems that this is the first study that interested in correlate the INF-γ + 874 T/A gene polymorphisms in Egyptian BC patients. T allele, TT genotype and recessive model of the INF-γ + 874 T/A gene variants were documented as risk factors for BC pathogenesis. It may be used as practical biomarker to guide the BC carcinogenesis and risk process.
Collapse
Key Words
- ARMS-PCR, amplification refractory mutation system, polymerase chain reaction method
- BC, Breast cancer
- Breast cancer
- C, controls
- CD, cluster of differentiation
- CI, 95% confidence intervals
- ER, estrogen receptor
- GPI, good prognostic index
- Genotypes
- HER2, human epidermal growth factor receptor 2
- ICB, inflamed cells of breast
- IL, interleukin
- INF-γ
- INF-γ, Interferon-γ
- IRB, Institutional Review Board
- ISGs, INF-stimulated genes
- MPI, moderate prognostic index
- NK, natural killer cells
- NPI, the mandatory prognostic index
- OR, odds ratio
- PAM50, Prediction Analysis of Microarray 50
- PPI, poor prognostic index
- PR, progesterone receptor
- Polymorphism
- Risk factor
- SNPs, single nucleotide polymorphism
- TGF-β, transforming growth factor-β
- TNBC, Triple Negative BC
- TNF-α, tumor necrosis factor-α
- Th1, T helper1
Collapse
Affiliation(s)
- Hanan E Al-Rashidi
- Medical Laboratory Technology Department, College of Applied Medical Science, Taibah University, Madinah, Saudi Arabia
| | | | - Enas Ahmed
- Emergency Hospital, Mansoura University, Egypt
| | | | | | - Sahar Hamed
- Urology and Nephrology Center, Mansoura University, Egypt
| |
Collapse
|
56
|
Canine Natural Killer Cell-Derived Exosomes Exhibit Antitumor Activity in a Mouse Model of Canine Mammary Tumor. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6690704. [PMID: 34527741 PMCID: PMC8437631 DOI: 10.1155/2021/6690704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 08/14/2021] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells are key immune cells engaged in fighting infection and malignant transformation. In this study, we found that canine NK cell-derived exosomes (NK-exosomes) separated from activated cytotoxic NK cell supernatants express specific markers including CD63, CD81, Alix, HSP70, TSG101, Perforin 1, and Granzyme B. We examined the antitumor effects of NK-exosomes in an experimental murine mammary tumor model using REM134 canine mammary carcinoma cell line. We observed changes in tumor size, tumor initiation, progression, and recurrence-related markers in the control, tumor group, and NK-exosome-treated tumor group. We found that the tumor size in the NK-exosome-treated tumor group decreased compared with that of the tumor group in the REM134-driven tumorigenic mouse model. We observed significant changes including the expression of tumorigenesis-related markers, such as B cell-specific Moloney murine leukemia virus insertion site 1 (Bmi-1), vascular endothelial growth factor (VEGF), matrix metallopeptidase-3 (MMP-3), interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), multidrug resistance protein (MDR), tumor suppressor protein p53 (p53), proliferating cell nuclear antigen (PCNA), and the apoptotic markers, B cell lymphoma-2 associated X (Bax) and B cell lymphoma-extra large (Bcl-xL) belonging to the Bcl-2 family, in the tumor group compared with those in the control group. The expression of CD133, a potent cancer stem cell marker, was significantly higher than that of the control. By contrast, the NK-exosome-treated tumor group exhibited a significant reduction in Bmi-1, MMP-3, IL-1β, IL-6, TNF-α, Bax, Bcl-xL, and PCNA expression compared with that in the tumor group. Furthermore, the expression of CD133, which mediates tumorigenesis, was significantly decreased in the NK-exosome-treated tumor group compared with that in the tumor group. These findings indicate that canine NK-exosomes represent a promising therapeutic tool against canine solid tumors, including mammary carcinoma.
Collapse
|
57
|
Becker-Hapak MK, Shrestha N, McClain E, Dee MJ, Chaturvedi P, Leclerc GM, Marsala LI, Foster M, Schappe T, Tran J, Desai S, Neal CC, Pence P, Wong P, Wagner JA, Russler-Germain DA, Zhu X, Spanoudis CM, Gallo VL, Echeverri CA, Ramirez LL, You L, Egan JO, Rhode PR, Jiao JA, Muniz GJ, Jeng EK, Prendes CA, Sullivan RP, Berrien-Elliott MM, Wong HC, Fehniger TA. A Fusion Protein Complex that Combines IL-12, IL-15, and IL-18 Signaling to Induce Memory-Like NK Cells for Cancer Immunotherapy. Cancer Immunol Res 2021; 9:1071-1087. [PMID: 34244297 PMCID: PMC8416787 DOI: 10.1158/2326-6066.cir-20-1002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/14/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells are a promising cellular therapy for cancer, with challenges in the field including persistence, functional activity, and tumor recognition. Briefly, priming blood NK cells with recombinant human (rh)IL-12, rhIL-15, and rhIL-18 (12/15/18) results in memory-like NK cell differentiation and enhanced responses against cancer. However, the lack of available, scalable Good Manufacturing Process (GMP)-grade reagents required to advance this approach beyond early-phase clinical trials is limiting. To address this challenge, we developed a novel platform centered upon an inert tissue factor scaffold for production of heteromeric fusion protein complexes (HFPC). The first use of this platform combined IL-12, IL-15, and IL-18 receptor engagement (HCW9201), and the second adds CD16 engagement (HCW9207). This unique HFPC expression platform was scalable with equivalent protein quality characteristics in small- and GMP-scale production. HCW9201 and HCW9207 stimulated activation and proliferation signals in NK cells, but HCW9207 had decreased IL-18 receptor signaling. RNA sequencing and multidimensional mass cytometry revealed parallels between HCW9201 and 12/15/18. HCW9201 stimulation improved NK cell metabolic fitness and resulted in the DNA methylation remodeling characteristic of memory-like differentiation. HCW9201 and 12/15/18 primed similar increases in short-term and memory-like NK cell cytotoxicity and IFNγ production against leukemia targets, as well as equivalent control of leukemia in NSG mice. Thus, HFPCs represent a protein engineering approach that solves many problems associated with multisignal receptor engagement on immune cells, and HCW9201-primed NK cells can be advanced as an ideal approach for clinical GMP-grade memory-like NK cell production for cancer therapy.
Collapse
Affiliation(s)
| | | | - Ethan McClain
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | | | | | | | - Lynne I Marsala
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | - Mark Foster
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | - Timothy Schappe
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | - Jennifer Tran
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | - Sweta Desai
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | - Carly C Neal
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | - Patrick Pence
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | - Pamela Wong
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | - Julia A Wagner
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Todd A Fehniger
- Washington University School of Medicine, Division of Oncology, Saint Louis, Missouri.
| |
Collapse
|
58
|
Zhang W, An EK, Park HB, Hwang J, Dhananjay Y, Kim SJ, Eom HY, Oda T, Kwak M, Lee PCW, Jin JO. Ecklonia cava fucoidan has potential to stimulate natural killer cells in vivo. Int J Biol Macromol 2021; 185:111-121. [PMID: 34119543 DOI: 10.1016/j.ijbiomac.2021.06.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Fucoidan is a sulfated polysaccharide, derived from various marine brown seaweeds, that has immunomodulatory effects. In this study, we analyzed the effects of five different fucoidans, which were extracted from Ascophyllum nodosum, Undaria pinnatifida, Macrocystis pyrifera, Fucus vesiculosus, and Ecklonia cava, on natural killer (NK) cell activation in mice. Among these, E. cava fucoidan (ECF) promoted an increase in the number of NK cells in the spleen and had the strongest effect on the activation of NK cells. Additionally, we observed that DC stimulation was required for NK cell activation and that ECF had the most potent effect on splenic dendritic cells (DC). Finally, ECF treatment effectively prevented infiltration of CT-26 carcinoma cells in the lungs of BALB/c mice in an NK cell dependent manner. Collectively, these results suggest that ECF could be a suitable candidate for enhancing NK cell-mediated anti-cancer immunity.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Eun-Koung An
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hae-Bin Park
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Juyoung Hwang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yadav Dhananjay
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - So-Jung Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hee-Yun Eom
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tatsuya Oda
- Division of Biochemistry, Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Nagasaki 852-8521, Japan
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| | - Jun-O Jin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
59
|
Zaiatz Bittencourt V, Jones F, Tosetto M, Doherty GA, Ryan EJ. Dysregulation of Metabolic Pathways in Circulating Natural Killer Cells Isolated from Inflammatory Bowel Disease Patients. J Crohns Colitis 2021; 15:1316-1325. [PMID: 33460436 PMCID: PMC8328302 DOI: 10.1093/ecco-jcc/jjab014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases [IBD], comprising Crohn's disease [CD] and ulcerative colitis [UC], are chronic conditions characterized by severe dysregulation of innate and adaptive immunity resulting in the destruction of the intestinal mucosa. Natural killer [NK] cells play a pivotal role in the dynamic interaction between the innate and adaptive immune response. There is an increasing appreciation for the key role immunometabolism plays in the regulation of NK cell function, yet little remains known about the metabolic profile, cytokine secretion, and killing capacity of human NK cells during active IBD. METHODS Peripheral blood mononuclear cells were isolated from peripheral blood of patients with moderate to severely active IBD and healthy controls. NK cells were stained with a combination of cell surface receptors, intracellular cytokines, and proteins and analyzed by flow cytometry. For measurements of NK cell cytotoxicity, the calcein-AM release assay was performed. The metabolic profile was analyzed by an extracellular flux analyzer. RESULTS NK cells from IBD patients produce large quantities of pro-inflammatory cytokines, IL-17A and TNF-α ex vivo, but have limited killing capability. Furthermore, patient NK cells have reduced mitochondrial mass and oxidative phosphorylation. mTORC1, an important cell and metabolic regulator, demonstrated limited activity in both freshly isolated cells and cytokine-stimulated cells. CONCLUSIONS Our results demonstrate that circulating NK cells of IBD patients have an unbalanced metabolic profile, with faulty mitochondria and reduced capacity to kill. These aberrations in NK cell metabolism may contribute to defective killing and thus the secondary infections and increased risk of cancer observed in IBD patients.
Collapse
Affiliation(s)
- Vanessa Zaiatz Bittencourt
- Centre for Colorectal Disease, St Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Fiona Jones
- Centre for Colorectal Disease, St Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Miriam Tosetto
- Centre for Colorectal Disease, St Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Glen A Doherty
- Centre for Colorectal Disease, St Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, St Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
- Department of Biological Sciences, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
60
|
Liu X, Li L, Si F, Huang L, Zhao Y, Zhang C, Hoft DF, Peng G. NK and NKT cells have distinct properties and functions in cancer. Oncogene 2021; 40:4521-4537. [PMID: 34120141 DOI: 10.1038/s41388-021-01880-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023]
Abstract
Natural killer (NK) and natural killer T (NKT) cells are two important cell subsets of the innate immune system. NK and NKT cells share many phenotypes and functions for anti-tumor immunity; however, the dynamic changes in phenotypes and functional interactions within the tumor microenvironment during tumor development and progression are unknown. Here we report that NK and NKT cells have distinct properties, metabolic profiles, and functions during tumor development. Using the mouse E0771 breast cancer and B16 melanoma models, we found that both NK and NKT cells are dynamically involved in the immune responses to cancer but have distinct distributions and phenotypic profiles in tumor sites and other peripheral organs during the course of tumor development and progression. In the early stages of tumor development, both NK and NKT cells exhibit effector properties. In the later cancer stages, NK and NKT cells have impaired cytotoxic capacities and dysfunctional states. NK cells become senescent cells, while NKT cells, other than invariant NKT (iNKT) cells, are exhausted in the advanced cancers. In contrast, iNKT cells develop increases in activation and effector function within the breast tumor microenvironment. In addition, senescent NK cells have heightened glucose and lipid metabolism, but exhausted NKT cells display unbalanced metabolism in tumor microenvironments of both breast cancer and melanoma tumor models. These studies provide a better understanding of the dynamic and distinct functional roles of NK and NKT cells in anti-tumor immunity, which may facilitate the development of novel immunotherapies targeting NK and NKT cells for cancer treatment.
Collapse
Affiliation(s)
- Xia Liu
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Lingyun Li
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Fusheng Si
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Lan Huang
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Yangjing Zhao
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Chenchen Zhang
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Daniel F Hoft
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA.
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
61
|
Quamine AE, Olsen MR, Cho MM, Capitini CM. Approaches to Enhance Natural Killer Cell-Based Immunotherapy for Pediatric Solid Tumors. Cancers (Basel) 2021; 13:2796. [PMID: 34199783 PMCID: PMC8200074 DOI: 10.3390/cancers13112796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment of metastatic pediatric solid tumors remain a significant challenge, particularly in relapsed and refractory settings. Standard treatment has included surgical resection, radiation, chemotherapy, and, in the case of neuroblastoma, immunotherapy. Despite such intensive therapy, cancer recurrence is common, and most tumors become refractory to prior therapy, leaving patients with few conventional treatment options. Natural killer (NK) cells are non-major histocompatibility complex (MHC)-restricted lymphocytes that boast several complex killing mechanisms but at an added advantage of not causing graft-versus-host disease, making use of allogeneic NK cells a potential therapeutic option. On top of their killing capacity, NK cells also produce several cytokines and growth factors that act as key regulators of the adaptive immune system, positioning themselves as ideal effector cells for stimulating heavily pretreated immune systems. Despite this promise, clinical efficacy of adoptive NK cell therapy to date has been inconsistent, prompting a detailed understanding of the biological pathways within NK cells that can be leveraged to develop "next generation" NK cell therapies. Here, we review advances in current approaches to optimizing the NK cell antitumor response including combination with other immunotherapies, cytokines, checkpoint inhibition, and engineering NK cells with chimeric antigen receptors (CARs) for the treatment of pediatric solid tumors.
Collapse
Affiliation(s)
- Aicha E. Quamine
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
| | - Mallery R. Olsen
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
| | - Monica M. Cho
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
62
|
Liu B, Zhu X, Kong L, Wang M, Spanoudis C, Chaturvedi P, George V, Jiao JA, You L, Egan JO, Echeverri C, Gallo VL, Xing J, Ravelo K, Prendes C, Antolinez J, Denissova J, Muniz GJ, Jeng EK, Rhode PR, Wong HC. Bifunctional TGF-β trap/IL-15 Protein Complex Elicits Potent NK Cell and CD8 + T Cell Immunity Against Solid Tumors. Mol Ther 2021; 29:2949-2962. [PMID: 34091051 DOI: 10.1016/j.ymthe.2021.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022] Open
Abstract
Advances in immunostimulatory and anti-immunosuppressive therapeutics have revolutionized cancer treatment. However, novel immunotherapeutics with these dual functions are not frequently reported. Here we describe the creation of a heterodimeric bifunctional fusion molecule, HCW9218, constructed using our soluble tissue factor-based scaffold technology. This complex comprises extracellular domains of the human transforming growth factor-β (TGF-β) receptor II and a human interleukin (IL)-15/IL-15 receptor α complex. HCW9218 can be readily expressed in CHO cells and purified using antibody-based affinity chromatography in a large-scale manufacturing setting. HCW9218 potently activates mouse natural killer (NK) cells and CD8+ T cells in vitro and in vivo to enhance cell proliferation, metabolism and antitumor cytotoxic activities. Similarly, human immune cells become activated with increased cytotoxicity following incubation with HCW9218. This fusion complex also exhibits TGF-β neutralizing activity in vitro and sequesters plasma TGF-β in vivo. In a syngeneic B16F10 melanoma model, HCW9218 displayed strong antitumor activity mediated by NK cells and CD8+ T cells, and increased their infiltration into tumors. Repeat-dose subcutaneous administration of HCW9218 was well tolerated by mice, with a half-life sufficient to provide long lasting biological activity. Thus, HCW9218 may serve as a novel therapeutic to simultaneously provide immunostimulation and lessen immunosuppression associated with tumors.
Collapse
Affiliation(s)
- Bai Liu
- HCW Biologics Inc., Miramar, FL, 33025 USA
| | | | - Lin Kong
- HCW Biologics Inc., Miramar, FL, 33025 USA
| | - Meng Wang
- HCW Biologics Inc., Miramar, FL, 33025 USA
| | | | | | | | | | - Lijing You
- HCW Biologics Inc., Miramar, FL, 33025 USA
| | | | | | | | - Jilan Xing
- HCW Biologics Inc., Miramar, FL, 33025 USA
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Bahadoran A, Bezavada L, Smallwood HS. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 2021; 295:140-166. [PMID: 32320072 DOI: 10.1111/imr.12851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies support the notion that glycolysis and oxidative phosphorylation are rheostats in immune cells whose bioenergetics have functional outputs in terms of their biology. Specific intrinsic and extrinsic molecular factors function as molecular potentiometers to adjust and control glycolytic to respiratory power output. In many cases, these potentiometers are used by influenza viruses and immune cells to support pathogenesis and the host immune response, respectively. Influenza virus infects the respiratory tract, providing a specific environmental niche, while immune cells encounter variable nutrient concentrations as they migrate in response to infection. Immune cell subsets have distinct metabolic programs that adjust to meet energetic and biosynthetic requirements to support effector functions, differentiation, and longevity in their ever-changing microenvironments. This review details how influenza coopts the host cell for metabolic reprogramming and describes the overlap of these regulatory controls in immune cells whose function and fate are dictated by metabolism. These details are contextualized with emerging evidence of the consequences of influenza-induced changes in metabolic homeostasis on disease progression.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
64
|
Pampalone M, Corrao S, Amico G, Vitale G, Alduino R, Conaldi PG, Pietrosi G. Human Amnion-Derived Mesenchymal Stromal Cells in Cirrhotic Patients with Refractory Ascites: A Possible Anti-Inflammatory Therapy for Preventing Spontaneous Bacterial Peritonitis. Stem Cell Rev Rep 2021; 17:981-998. [PMID: 33389680 PMCID: PMC8166706 DOI: 10.1007/s12015-020-10104-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/24/2022]
Abstract
Cirrhosis is associated with dysregulated immune cell activation and immune dysfunction. These conditions modify gut flora, facilitate bacterial translocation, and increase susceptibility to bacterial peritonitis and consequent systemic infections by dramatically affecting long-term patient survival. Human amnion-derived mesenchymal stromal cells (hA-MSCs) exert immunomodulatory potential benefit, and have the ability to modulate their actions, especially in situations requiring immune activation through mechanisms not fully understood. In this study, we aimed to investigate, in vitro, the immunostimulant or immunosuppressive effects of hA-MSCs on cellular components of ascitic fluid obtained from cirrhotic patients with refractory ascites. We found that hA-MSCs viability is not affected by ascitic fluid and, interestingly, hA-MSCs diminished the pro-inflammatory cytokine production, and promoted anti-inflammatory M2 macrophage polarization. Moreover, we found that there was no simultaneous significant decrease in the M1-like component, allowing a continual phagocytosis activity of macrophages and NK cells to restore a physiological condition. These data highlight the plasticity of hA-MSCs' immunomodulatory capacity, and pave the way to further understanding their role in conditions such as spontaneous bacterial peritonitis.
Collapse
Affiliation(s)
- Mariangela Pampalone
- Ri.MED Foundation, Palermo, Italy
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Simona Corrao
- Ri.MED Foundation, Palermo, Italy
- Section of Histology and Embryology, Department of Biomedicine Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Giandomenico Amico
- Ri.MED Foundation, Palermo, Italy
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Giampiero Vitale
- Ri.MED Foundation, Palermo, Italy
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Rossella Alduino
- Ri.MED Foundation, Palermo, Italy
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Pier Giulio Conaldi
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Giada Pietrosi
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- Hepatology Unit, Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS-ISMETT, Palermo, Italy
| |
Collapse
|
65
|
McFarland AP, Yalin A, Wang SY, Cortez VS, Landsberger T, Sudan R, Peng V, Miller HL, Ricci B, David E, Faccio R, Amit I, Colonna M. Multi-tissue single-cell analysis deconstructs the complex programs of mouse natural killer and type 1 innate lymphoid cells in tissues and circulation. Immunity 2021; 54:1320-1337.e4. [PMID: 33945787 PMCID: PMC8312473 DOI: 10.1016/j.immuni.2021.03.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/28/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022]
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1s) are heterogenous innate lymphocytes broadly defined in mice as Lin-NK1.1+NKp46+ cells that express the transcription factor T-BET and produce interferon-γ. The ILC1 definition primarily stems from studies on liver and small intestinal populations. However, NK1.1+NKp46+ cells in the salivary glands, uterus, adipose, and other tissues exhibit nonuniform programs that differ from those of liver or intestinal ILC1s or NK cells. Here, we performed single-cell RNA sequencing on murine NK1.1+NKp46+ cells from blood, spleen, various tissues, and solid tumors. We identified gene expression programs of tissue-specific ILC1s, tissue-specific NK cells, and non-tissue-specific populations in blood, spleen, and other tissues largely corresponding to circulating cells. Moreover, we found that circulating NK cell programs were reshaped in tumor-bearing mice. Core programs of circulating and tumor NK cells paralleled conserved human NK cells signatures, advancing our understanding of the human NK-ILC1 spectrum.
Collapse
Affiliation(s)
- Adelle P McFarland
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam Yalin
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shuang-Yin Wang
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Victor S Cortez
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tomer Landsberger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Raki Sudan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vincent Peng
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hannah L Miller
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Biancamaria Ricci
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Roberta Faccio
- Department of Orthopedics, Washington University School of Medicine, St. Louis, MO, USA; Shriners Children's Hospital in St. Louis, St. Louis, MO, USA
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
66
|
Perera Molligoda Arachchige AS. Human NK cells: From development to effector functions. Innate Immun 2021; 27:212-229. [PMID: 33761782 PMCID: PMC8054151 DOI: 10.1177/17534259211001512] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
NK cells are the major lymphocyte subset of the innate immune system that mediates antiviral and anti-tumor responses. It is well established that they develop mechanisms to distinguish self from non-self during the process of NK cell education. Unlike T and B cells, natural killer cells lack clonotypic receptors and are activated after recognizing their target via germline-encoded receptors through natural cytotoxicity, cytokine stimulation, and Ab-dependent cellular cytotoxicity. Subsequently, they utilize cytotoxic granules, death receptor ligands, and cytokines to perform their effector functions. In this review, we provide a general overview of human NK cells, as opposed to murine NK cells, discussing their ontogeny, maturation, receptor diversity, types of responses, and effector functions. Furthermore, we also describe recent advances in human NK cell biology, including tissue-resident NK cell populations, NK cell memory, and novel approaches used to target NK cells in cancer immunotherapy.
Collapse
|
67
|
Bhingardive V, Le Saux G, Edri A, Porgador A, Schvartzman M. Nanowire Based Guidance of the Morphology and Cytotoxic Activity of Natural Killer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007347. [PMID: 33719212 DOI: 10.1002/smll.202007347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The cytotoxic activity of natural killer (NK) cells is regulated by many chemical and physical cues, whose integration mechanism is still obscure. Here, a multifunctional platform is engineered for NK cell stimulation, to study the effect of the signal integration and spatial heterogeneity on NK cell function. The platform is based on nanowires, whose mechanical compliance and site-selective tip functionalization with antigens produce the physical and chemical stimuli, respectively. The nanowires are confined to micron-sized islands, which induce a splitting of the NK cells into two subpopulations with distinct morphologies and immune responses: NK cells atop the nanowire islands display symmetrical spreading and enhanced activation, whereas cells lying in the straits between the islands develop elongated profiles and show lower activation levels. The demonstrated tunability of NK cell cytotoxicity provides an important insight into the mechanism of their immune function and introduces a novel technological route for the ex vivo shaping of cytotoxic lymphocytes in immunotherapy.
Collapse
Affiliation(s)
- Viraj Bhingardive
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, The Shraga Segal Department of Microbiology, Immunology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, The Shraga Segal Department of Microbiology, Immunology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Avishay Edri
- Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Angel Porgador
- Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, The Shraga Segal Department of Microbiology, Immunology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| |
Collapse
|
68
|
Coulibaly A, Velásquez SY, Kassner N, Schulte J, Barbarossa MV, Lindner HA. STAT3 governs the HIF-1α response in IL-15 primed human NK cells. Sci Rep 2021; 11:7023. [PMID: 33782423 PMCID: PMC8007797 DOI: 10.1038/s41598-021-84916-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/01/2021] [Indexed: 02/01/2023] Open
Abstract
Natural killer (NK) cells mediate innate host defense against microbial infection and cancer. Hypoxia and low glucose are characteristic for these tissue lesions but do not affect early interferon (IFN) γ and CC chemokine release by interleukin 15 (IL-15) primed human NK cells in vitro. Hypoxia inducible factor 1α (HIF-1α) mediates cellular adaption to hypoxia. Its production is supported by mechanistic target of rapamycin complex 1 (mTORC1) and signal transducer and activator of transcription 3 (STAT3). We used chemical inhibition to probe the importance of mTORC1 and STAT3 for the hypoxia response and of STAT3 for the cytokine response in isolated and IL-15 primed human NK cells. Cellular responses were assayed by magnetic bead array, RT-PCR, western blotting, flow cytometry, and metabolic flux analysis. STAT3 but not mTORC1 activation was essential for HIF-1α accumulation, glycolysis, and oxygen consumption. In both primed normoxic and hypoxic NK cells, STAT3 inhibition reduced the secretion of CCL3, CCL4 and CCL5, and it interfered with IL-12/IL-18 stimulated IFNγ production, but it did not affect cytotoxic granule degranulation up on target cell contact. We conclude that IL-15 priming promotes the HIF-1α dependent hypoxia response and the early cytokine response in NK cells predominantly through STAT3 signaling.
Collapse
Affiliation(s)
- Anna Coulibaly
- grid.7700.00000 0001 2190 4373Department of Anesthesiology and Surgical Intensive Care Medicine, University Medical Center Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Sonia Y. Velásquez
- grid.7700.00000 0001 2190 4373Department of Anesthesiology and Surgical Intensive Care Medicine, University Medical Center Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Nina Kassner
- grid.7700.00000 0001 2190 4373Department of Anesthesiology and Surgical Intensive Care Medicine, University Medical Center Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Jutta Schulte
- grid.7700.00000 0001 2190 4373Department of Anesthesiology and Surgical Intensive Care Medicine, University Medical Center Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Maria Vittoria Barbarossa
- grid.7700.00000 0001 2190 4373Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany ,grid.417999.bFrankfurt Institute of Advanced Studies, 60438 Frankfurt, Germany
| | - Holger A. Lindner
- grid.7700.00000 0001 2190 4373Department of Anesthesiology and Surgical Intensive Care Medicine, University Medical Center Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
69
|
El Seedy GM, El-Shafey ES, Elsherbiny ES. Fortification of biscuit with sidr leaf and flaxseed mitigates immunosuppression and nephrotoxicity induced by cyclosporine A. J Food Biochem 2021; 45:e13655. [PMID: 33616983 DOI: 10.1111/jfbc.13655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 12/26/2022]
Abstract
The focus of consumers in healthy food turned to the possible health benefits of particular foods and food ingredients. This study aimed to evaluate the newly fortified biscuits supplemented with sidr leaves and flaxseed and to highlight their nutritional quality and health benefits against cyclosporine A-induced dexterous effects. Sidr leaves (SL), and flaxseed (FS) were used in the preparation of fortified biscuits. Proximate analysis and sensory evaluation were carried out on the biscuits. In in vivo study, 15 male albino mice were used for each group. Groups were divided into control, CsA, SL, FS, and SL+FS-treated groups. Hematological analysis, kidney function tests, oxidative stress, and anti-oxidant status were estimated. Flow cytometry was utilized to detect apoptosis and autophagy levels. The enzyme-linked immunosorbent assay (ELISA) was used for detection of interleukin-2 (IL-2), interferon-γ (IFN-γ), and transforming growth factor β1 (TGF-β1) levels. The composition of biscuits complemented by SL and FS demonstrated significant improvement in the nutritional value represented by the increase in overall protein, crude fat, crude fiber, ash, and carbohydrate contents. Treatment with SL and FS restored the disturbance in hematological, kidney function, oxidative, and antioxidant biomarkers. CsA-induced apoptotic and autophagic renal cell death was suppressed. Cytokines and pro-inflammatory markers were ameliorated. The use of SL and FS in dietary products can be recommended as a functional food. Moreover, they showed renal-protective, antioxidant, anti-inflammatory, and immune-enhancing activities. PRACTICAL APPLICATIONS: Sidr leaves (SL) and flaxseed (FS) were used in the preparation of fortified biscuits. The composition of biscuits complemented by SL and FS demonstrated a significant improvement in the nutritional values represented by the increase in overall protein, crude fat, crude fiber, ash, and carbohydrate contents. SL and FS showed a potential therapeutic activity in reversing CsA-induced dexterous side effects by acting as an antioxidant, antiapoptotic, antiautophagic, anti-inflammatory, renal-protective, and immune-enhancing agents. The use of sidr leaves and flaxseed in dietary products can be recommended as a functional food. Supplementation of SL and/or FS to the diet is recommended to ensure a good health. Moreover, introducing awareness for the patients utilizing CsA to use SL and FS in their diets.
Collapse
Affiliation(s)
- Ghada Mosad El Seedy
- Home Economics Department, Faculty of Specific Education, Damietta University, Damietta, Egypt
| | - Eman Salah El-Shafey
- Biochemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | | |
Collapse
|
70
|
Ivanchenko M, Thorlacius GE, Hedlund M, Ottosson V, Meneghel L, Björkander S, Ossoinak A, Tingström J, Bremme K, Sverremark-Ekström E, Gemzell-Danielsson K, Sonesson SE, Chemin K, Wahren-Herlenius M. Natural killer cells and type II interferon in Ro/SSA and La/SSB autoantibody-exposed newborns at risk of congenital heart block. Ann Rheum Dis 2021; 80:194-202. [PMID: 33004330 DOI: 10.1136/annrheumdis-2019-216786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Congenital heart block (CHB) with immune cell infiltration develops in the fetus after exposure to maternal Ro/La autoantibodies. CHB-related serology has been extensively studied, but reports on immune-cell profiles of anti-Ro/La-exposed neonates are lacking. In the current study, we characterised circulating immune-cell populations in anti-Ro/La+mothers and newborns, and explored potential downstream effects of skewed neonatal cell populations. METHODS In total, blood from mothers (n=43) and neonates (n=66) was sampled at birth from anti-Ro/La+ (n=36) and control (n=30) pregnancies with or without rheumatic disease and CHB. Flow cytometry, microarrays and ELISA were used for characterising cells and plasma. RESULTS Similar to non-pregnant systemic lupus erythematosus and Sjögren-patients, anti-Ro/La+mothers had altered B-cell subset frequencies, relative T-cell lymphopenia and lower natural killer (NK)-cell frequencies. Surprisingly, their anti-Ro/La exposed neonates presented higher frequencies of CD56dimCD16hi NK cells (p<0.01), but no other cell frequency differences compared with controls. Type I and II interferon (IFN) gene-signatures were revealed in neonates of anti-Ro/La+ pregnancy, and exposure of fetal cardiomyocytes to type I IFN induced upregulation of several NK-cell chemoattractants and activating ligands. Intracellular flow cytometry revealed IFNγ production by NK cells, CD8+ and CD4+ T cells in anti-Ro/La exposed neonates. IFNγ was also detectable in their plasma. CONCLUSION Our study demonstrates an increased frequency of NK cells in anti-Ro/La exposed neonates, footprints of type I and II IFN and an upregulation of ligands activating NK cells in fetal cardiac cells after type I IFN exposure. These novel observations demonstrate innate immune activation in neonates of anti-Ro/La+pregnancy, which could contribute to the risk of CHB.
Collapse
Affiliation(s)
- Margarita Ivanchenko
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Gudny Ella Thorlacius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Hedlund
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vijole Ottosson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lauro Meneghel
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sophia Björkander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Amina Ossoinak
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Joanna Tingström
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Katarina Bremme
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kristina Gemzell-Danielsson
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sven-Erik Sonesson
- Division of Pediatric Cardiology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Karine Chemin
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway
| |
Collapse
|
71
|
Menees KB, Earls RH, Chung J, Jernigan J, Filipov NM, Carpenter JM, Lee JK. Sex- and age-dependent alterations of splenic immune cell profile and NK cell phenotypes and function in C57BL/6J mice. IMMUNITY & AGEING 2021; 18:3. [PMID: 33419446 PMCID: PMC7791703 DOI: 10.1186/s12979-021-00214-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
Abstract
Background Physiological homeostasis decline, immunosenescence, and increased risk for multiple diseases, including neurodegeneration, are all hallmarks of ageing. Importantly, it is known that the ageing process is sex-biased. For example, there are sex differences in predisposition for multiple age-related diseases, including neurodegenerative and autoimmune diseases. However, sex differences in age-associated immune phenotypes are not clearly understood. Results Here, we examined the effects of age on immune cell phenotypes in both sexes of C57BL/6J mice with a particular focus on NK cells. We found female-specific spleen weight increases with age and concordant reduction in the number of splenocytes per gram of spleen weight compared to young females. To evaluate sex- and age-associated changes in splenic immune cell composition, we performed flow cytometry analysis. In male mice, we observed an age-associated reduction in the frequencies of monocytes and NK cells; female mice displayed a reduction in B cells, NK cells, and CD8 + T cells and increased frequency of monocytes and neutrophils with age. We then performed a whole blood stimulation assay and multiplex analyses of plasma cytokines and observed age- and sex-specific differences in immune cell reactivity and basal circulating cytokine concentrations. As we have previously illustrated a potential role of NK cells in Parkinson’s disease, an age-related neurodegenerative disease, we further analyzed age-associated changes in NK cell phenotypes and function. There were distinct differences between the sexes in age-associated changes in the expression of NK cell receptors, IFN-γ production, and impairment of α-synuclein endocytosis. Conclusions This study demonstrates sex- and age-specific alterations in splenic lymphocyte composition, circulating cytokine/chemokine profiles, and NK cell phenotype and effector functions. Our data provide evidence that age-related physiological perturbations differ between the sexes which may help elucidate sex differences in age-related diseases, including neurodegenerative diseases, particularly Parkinson’s disease, where immune dysfunction is implicated in their etiology.
Collapse
Affiliation(s)
- Kelly B Menees
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Rachael H Earls
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Jaegwon Chung
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Janna Jernigan
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Jessica M Carpenter
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA.
| |
Collapse
|
72
|
Dysfunctional Immunometabolism in HIV Infection: Contributing Factors and Implications for Age-Related Comorbid Diseases. Curr HIV/AIDS Rep 2020; 17:125-137. [PMID: 32140979 DOI: 10.1007/s11904-020-00484-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW An increasing body of evidence indicates that persons living with HIV (PLWH) display dysfunctional immunometabolism. Here, we provide an updated review of this topic and its relationship to HIV-associated immune stimuli and age-related disease. RECENT FINDINGS HIV infection alters immunometabolism by increasing reliance on aerobic glycolysis for energy and productive infection and repurposing oxidative phosphorylation machinery for immune cell proliferation and survival. Recent studies in PLWH with diabetes mellitus or cardiovascular disease have identified an association with elevated T cell and monocyte glucose metabolism, respectively. Immunometabolic dysfunction has also been observed in PLWH in frailty and additional studies suggest a role for immunometabolism in non-AIDS defining cancers and neurocognitive disease. There is a plethora of HIV-associated immune stimuli that could drive immunometabolic dysfunction and age-related disease in PLWH, but studies directly examining their relationship are lacking. Immunometabolic dysfunction is characteristic of HIV infection and is a potential link between HIV-associated stimuli and age-related comorbidities.
Collapse
|
73
|
Ratha SK, Renuka N, Rawat I, Bux F. Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases. Nutrition 2020; 83:111089. [PMID: 33412367 PMCID: PMC7680017 DOI: 10.1016/j.nut.2020.111089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023]
Abstract
The outbreak of the coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 that has created huge trepidation worldwide, has a mortality rate of 0.5% to 1% and is growing incessantly. There are currently no therapies and/or vaccines that may help abate this viral disease, but the use of masks and social distancing can limit the spread. Boosting immunity has been a simple way to resist viral infection and limit fatalities. In this context, the use of nutraceuticals appears to be a potential panacea. The ability of algae-based nutraceuticals, mainly Spirulina, to boost immunity against viral diseases has already been reported clinically. Spirulina-based nutraceuticals boost the adaptive and innate immunity, and bioactive compounds, such as angiotensin-converting enzyme (ACE) inhibitor peptides, phycobiliproteins, sulfated polysaccharides, and calcium-Spirulan, can serve as antiviral agents. The presence of these molecules indicates its potential role in resisting infection and COVID-19 disease progression. This review focuses on the potential role of algal nutraceuticals as immune boosters to combat the human coronavirus and other viral diseases. The potential use of Spirulina-based nutraceuticals for combating COVID-19, its mechanism, and future directions have also been discussed.
Collapse
Affiliation(s)
- Sachitra K Ratha
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Nirmal Renuka
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa.
| |
Collapse
|
74
|
Pollard BS, BLANCOl JC, Pollard JR. Classical Drug Digitoxin Inhibits Influenza Cytokine Storm, With Implications for Covid-19 Therapy. In Vivo 2020; 34:3723-3730. [PMID: 33144490 PMCID: PMC7811644 DOI: 10.21873/invivo.12221] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM Influenza viruses, corona viruses and related pneumotropic viruses cause sickness and death partly by inducing cytokine storm, a hyper-proinflammatory host response by immune cells and cytokines in the host airway. Based on our in vivo experience with digitoxin as an inhibitor of TNFα-driven NFĸB signaling for cytokine expression in prostate cancer in rats and in cystic fibrosis in humans, we hypothesize that this drug will also block a virally-activated cytokine storm. Materials Methods: Digitoxin was administered intraperitoneally to cotton rats, followed by intranasal infection with 107TCID50/100 g of cotton rat with influenza strain A/Wuhan/H3N2/359/95. Daily digitoxin treatment continued until harvest on day 4 of the experiment. RESULTS The cardiac glycoside digitoxin significantly and differentially suppressed levels of the cytokines TNFα, GRO/KC, MIP2, MCP1, and IFNγ, in the cotton rat lung in the presence of influenza virus. CONCLUSION Since cytokine storm is a host response, we suggest that digitoxin may have a therapeutic potential not only for influenza and but also for coronavirus infections.
Collapse
Affiliation(s)
| | | | - John R Pollard
- Department of Neurology, University of Pennsylvania, Philadelphia PA (USA) and Christiana Care Epilepsy Center, Newark, DE, U.S.A
| |
Collapse
|
75
|
Zhu H, Blum RH, Bernareggi D, Ask EH, Wu Z, Hoel HJ, Meng Z, Wu C, Guan KL, Malmberg KJ, Kaufman DS. Metabolic Reprograming via Deletion of CISH in Human iPSC-Derived NK Cells Promotes In Vivo Persistence and Enhances Anti-tumor Activity. Cell Stem Cell 2020; 27:224-237.e6. [PMID: 32531207 PMCID: PMC7415618 DOI: 10.1016/j.stem.2020.05.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/22/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
Cytokine-inducible SH2-containing protein (CIS; encoded by the gene CISH) is a key negative regulator of interleukin-15 (IL-15) signaling in natural killer (NK) cells. Here, we develop human CISH-knockout (CISH-/-) NK cells using an induced pluripotent stem cell-derived NK cell (iPSC-NK cell) platform. CISH-/- iPSC-NK cells demonstrate increased IL-15-mediated JAK-STAT signaling activity. Consequently, CISH-/- iPSC-NK cells exhibit improved expansion and increased cytotoxic activity against multiple tumor cell lines when maintained at low cytokine concentrations. CISH-/- iPSC-NK cells display significantly increased in vivo persistence and inhibition of tumor progression in a leukemia xenograft model. Mechanistically, CISH-/- iPSC-NK cells display improved metabolic fitness characterized by increased basal glycolysis, glycolytic capacity, maximal mitochondrial respiration, ATP-linked respiration, and spare respiration capacity mediated by mammalian target of rapamycin (mTOR) signaling that directly contributes to enhanced NK cell function. Together, these studies demonstrate that CIS plays a key role to regulate human NK cell metabolic activity and thereby modulate anti-tumor activity.
Collapse
Affiliation(s)
- Huang Zhu
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Robert H Blum
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Davide Bernareggi
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eivind Heggernes Ask
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Zhengming Wu
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Hanna Julie Hoel
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Chengsheng Wu
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Dan S Kaufman
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
76
|
Sun B, Hyun H, Li LT, Wang AZ. Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment. Acta Pharmacol Sin 2020; 41:970-985. [PMID: 32424240 PMCID: PMC7470849 DOI: 10.1038/s41401-020-0424-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has received extensive attention due to its ability to activate the innate or adaptive immune systems of patients to combat tumors. Despite a few clinical successes, further endeavors are still needed to tackle unresolved issues, including limited response rates, development of resistance, and immune-related toxicities. Accumulating evidence has pinpointed the tumor microenvironment (TME) as one of the major obstacles in cancer immunotherapy due to its detrimental impacts on tumor-infiltrating immune cells. Nanomedicine has been battling with the TME in the past several decades, and the experience obtained could be exploited to improve current paradigms of immunotherapy. Here, we discuss the metabolic features of the TME and its influence on different types of immune cells. The recent progress in nanoenabled cancer immunotherapy has been summarized with a highlight on the modulation of immune cells, tumor stroma, cytokines and enzymes to reverse the immunosuppressive TME.
Collapse
Affiliation(s)
- Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Hyesun Hyun
- Laboratory of Nano and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lian-Tao Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Andrew Z Wang
- Laboratory of Nano and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
77
|
Enteroviral Pathogenesis of Type 1 Diabetes: The Role of Natural Killer Cells. Microorganisms 2020; 8:microorganisms8070989. [PMID: 32630332 PMCID: PMC7409131 DOI: 10.3390/microorganisms8070989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
Enteroviruses, especially group B coxsackieviruses (CV-B), have been associated with the development of chronic diseases such as type 1 diabetes (T1D). The pathological mechanisms that trigger virus-induced autoimmunity against islet antigens in T1D are not fully elucidated. Animal and human studies suggest that NK cells response to CV-B infection play a crucial role in the enteroviral pathogenesis of T1D. Indeed, CV-B-infected cells can escape from cytotoxic T cells recognition and destruction by inhibition of cell surface expression of HLA class I antigen through non-structural viral proteins, but they can nevertheless be killed by NK cells. Cytolytic activity of NK cells towards pancreatic beta cells persistently-infected with CV-B has been reported and defective viral clearance by NK cells of patients with T1D has been suggested as a mechanism leading to persistence of CV-B and triggering autoimmunity reported in these patients. The knowledge about host antiviral defense against CV-B infection is not only crucial to understand the susceptibility to virus-induced T1D but could also contribute to the design of new preventive or therapeutic approaches for individuals at risk for T1D or newly diagnosed patients.
Collapse
|
78
|
Wang J, Matosevic S. Functional and metabolic targeting of natural killer cells to solid tumors. Cell Oncol (Dordr) 2020; 43:577-600. [PMID: 32488848 DOI: 10.1007/s13402-020-00523-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
|
79
|
Velásquez SY, Himmelhan BS, Kassner N, Coulibaly A, Schulte J, Brohm K, Lindner HA. Innate Cytokine Induced Early Release of IFNγ and CC Chemokines from Hypoxic Human NK Cells Is Independent of Glucose. Cells 2020; 9:cells9030734. [PMID: 32192004 PMCID: PMC7140646 DOI: 10.3390/cells9030734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells are among the first innate immune cells to arrive at sites of tissue inflammation and regulate the immune response to infection and tumors by the release of cytokines including interferon (IFN)γ. In vitro exposure to the innate cytokines interleukin 15 (IL-15) and IL-12/IL-18 enhances NK cell IFNγ production which, beyond 16 h of culture, was shown to depend on metabolic switching to glycolysis. NK effector responses are, however, rapid by comparison. Therefore, we sought to evaluate the importance of glycolysis for shorter-term IFNγ production, considering glucose deprivation and hypoxia as adverse tissue inflammation associated conditions. Treatments with IL-15 for 6 and 16 h were equally effective in priming early IFNγ production in human NK cells in response to secondary IL-12/IL-18 stimulation. Short-term priming was not associated with glycolytic switching but induced the release of IFNγ and, additionally, CCL3, CCL4 and CCL5 from both normoxic and hypoxic NK cells in an equally efficient and, unexpectedly, glucose independent manner. We conclude that release of IFNγ and CC chemokines in the early innate immune response is a metabolically autonomous NK effector program.
Collapse
|
80
|
Zafari P, Zarifian A, Alizadeh-Navaei R, Taghadosi M, Rafiei A. Association between polymorphisms of cytokine genes and brucellosis: A comprehensive systematic review and meta-analysis. Cytokine 2020; 127:154949. [PMID: 31816580 DOI: 10.1016/j.cyto.2019.154949] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Owing to involvement of host genetic factors in susceptibility to brucellosis infection and its outcome, this study aimed to carry out a comprehensive systematic review and meta-analysis to derive a precise evaluation of the association between the risk of brucellosis and its focal complication and all cytokines examined in case-control studies, including Interferon gamma (IFN-γ), Tumor Necrosis Factor (TNF)-α, TNF-β, Transforming Growth Factor(TGF)-β, IL-2, IL-4, IL-6, IL-10, IL-12B, IL-15, and IL-18 polymorphisms. METHODS A systematic literature search in PubMed, Web of Science, Google Scholar, and Scopus was performed to identify the relevant studies, and related information was extracted. The effect size (ES) and corresponding 95% confidence intervals (CIs) were calculated to estimate the association. RESULTS From 158 initial results, twenty-five eligible studies were included in the meta-analysis. Overall, the pooled results showed that the dominant models of IFN-γ UTR5644, TGF-β rs1800470 and rs1800471, TNF-α rs1800629, and IL-10 rs1800872 were significantly less frequent in brucellosis patients than the controls. Also, the pooled analysis of the mutant allele vs. wild allele of TGF-β rs1800471 and IL-10 rs1800872 showed negative association with brucellosis risk. On the other hand, our pooled analysis demonstrated that the mutant allele of IL-4 rs2243250 and IL-18 rs1946519 were associated with increased susceptibility to brucellosis. In addition, the IFN-γ UTR5644 and TGF-β rs1800470 were more frequent in the patients without focal forms. CONCLUSIONS IL-4 rs2243250 and IL-18 rs1946519 have a positive correlation with brucellosis whereas the IFN-γ UTR5644, TGF-β rs1800470 and rs1800471, TNF-α rs1800629, and IL-10 rs1800872 showed a negative association with this disease. The association between the other single nucleotide polymorphisms (SNP) and brucellosis risk was not confirmed in the current meta-analysis. PROSPERO Registration: CRD42018117203.
Collapse
Affiliation(s)
- Parisa Zafari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmadreza Zarifian
- Center for Excellence in Clinical Research, Mashhad University of Medical Sciences, Mashhad, Iran; Infection Control and Hand Hygiene Research Center, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Taghadosi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rafiei
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
81
|
Gentile ME, Li Y, Robertson A, Shah K, Fontes G, Kaufmann E, Polese B, Khan N, Parisien M, Munter HM, Mandl JN, Diatchenko L, Divangahi M, King IL. NK cell recruitment limits tissue damage during an enteric helminth infection. Mucosal Immunol 2020; 13:357-370. [PMID: 31776431 PMCID: PMC7039810 DOI: 10.1038/s41385-019-0231-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Parasitic helminths cause significant damage as they migrate through host tissues to complete their life cycle. While chronic helminth infections are characterized by a well-described Type 2 immune response, the early, tissue-invasive stages are not well understood. Here we investigate the immune pathways activated during the early stages of Heligmosomoides polygyrus bakeri (Hpb), a natural parasitic roundworm of mice. In contrast to the Type 2 immune response present at later stages of infection, a robust Type 1 immune signature including IFNg production was dominant at the time of parasite invasion and granuloma formation. This early response was associated with an accumulation of activated Natural Killer (NK) cells, with no increase of other innate lymphoid cell populations. Parabiosis and confocal microscopy studies indicated that NK cells were recruited from circulation to the small intestine, where they surrounded parasitic larvae. NK cell recruitment required IFNγ receptor signaling, but was independent of CXCR3 expression. The depletion of tissue-infiltrating NK cells altered neither worm burden nor parasite fitness, but increased vascular injury, suggesting a role for NK cells in mediating tissue protection. Together, these data identify an unexpected role for NK cells in promoting disease tolerance during the invasive stage of an enteric helminth infection.
Collapse
Affiliation(s)
- Maria E Gentile
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Yue Li
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Amicha Robertson
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
- NYU Medical School, 550 First Avenue, New York, NY, 10016, USA
| | - Kathleen Shah
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, England
| | - Ghislaine Fontes
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Eva Kaufmann
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- McGill International TB Centre, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Barbara Polese
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Nargis Khan
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- McGill International TB Centre, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, Department of Anesthesia, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Hans M Munter
- Department of Human Genetics, McGill University Innovation Centre, Montreal, QC, H3A 0G1, Canada
| | - Judith N Mandl
- Department of Physiology, Complex Traits Group, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, Department of Anesthesia, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
- McGill International TB Centre, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Irah L King
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
82
|
Mullane KM. Human Cytomegalovirus Prophylaxis and Treatment in Lung Transplantation in the Current Era. CURRENT PULMONOLOGY REPORTS 2020. [DOI: 10.1007/s13665-020-00246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
83
|
Dufresne S, Guéritat J, Chiavassa S, Noblet C, Assi M, Rioux‐Leclercq N, Rannou‐Bekono F, Lefeuvre‐Orfila L, Paris F, Rébillard A. Exercise training improves radiotherapy efficiency in a murine model of prostate cancer. FASEB J 2020; 34:4984-4996. [DOI: 10.1096/fj.201901728r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Suzanne Dufresne
- Movement, Sport, and Health Sciences Laboratory EA 1274 Université Rennes 2 ENS Rennes Bruz France
| | - Jordan Guéritat
- Movement, Sport, and Health Sciences Laboratory EA 1274 Université Rennes 2 ENS Rennes Bruz France
| | - Sophie Chiavassa
- CRCINA INSERM Université de Nantes Université d'Angers Nantes France
- Institut de Cancérologie de l'Ouest Centre René Gauducheau Saint Herblain France
| | - Caroline Noblet
- CRCINA INSERM Université de Nantes Université d'Angers Nantes France
- Institut de Cancérologie de l'Ouest Centre René Gauducheau Saint Herblain France
| | - Mohamad Assi
- Movement, Sport, and Health Sciences Laboratory EA 1274 Université Rennes 2 ENS Rennes Bruz France
| | | | - Françoise Rannou‐Bekono
- Movement, Sport, and Health Sciences Laboratory EA 1274 Université Rennes 2 ENS Rennes Bruz France
| | - Luz Lefeuvre‐Orfila
- Movement, Sport, and Health Sciences Laboratory EA 1274 Université Rennes 2 ENS Rennes Bruz France
| | - François Paris
- CRCINA INSERM Université de Nantes Université d'Angers Nantes France
- Institut de Cancérologie de l'Ouest Centre René Gauducheau Saint Herblain France
| | - Amélie Rébillard
- Movement, Sport, and Health Sciences Laboratory EA 1274 Université Rennes 2 ENS Rennes Bruz France
| |
Collapse
|
84
|
Lack of cell movement impairs survival of peripheral blood IL-2-stimulated natural killer cells originating from solid cancer and promotes red blood cells to induce their switch toward a regulatory phenotype. Immunol Lett 2020; 221:6-17. [PMID: 32027874 DOI: 10.1016/j.imlet.2020.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Red blood cells (RBCs) can have a modulatory effect on immune cells; so changes in their dynamism could considerably influence their physiology, and consequently the immune activities of neighbouring cells, like natural killer (NK) cells. Herein, we studied the effect of both RBCs and lack of cell movement on the proliferation, survival and regulation of peripheral IL-2-stimulated NK cells from normal and solid malignant conditions. METHODS Experiments were conducted on twelve cell culture groups, including NK cells from patients with solid malignant tumor or healthy controls, cultured alone or with autologous or nonautologous RBCs under shaking or no shaking conditions. RESULTS NK cells from neoplastic patients behaved differently depending on the culture conditions including shaking and/or RBCs presence. Therefore, NK cells survival was downregulated in the absence of shaking; whereas, shaking have not only upregulated cell survival, but also downregulated the levels of p53-related apoptosis. Moreover, RBCs enhanced NK cells proliferation; while, this effect was modulated by shaking. Furthermore, RBCs can generate opposite effects on the production and modulation of protumoral or immunosuppressive cytokines, depending on the origin of NK cells, i.e., whether they derive from healthy or solid malignant tumor conditions. Finally, NK cells become able to express Foxp3 regulatory marker when combining three main conditions that include (i) treatment with high dose of IL-2, (ii) presence of RBCs, and (iii) absence of shaking. CONCLUSIONS Our outcomes showed for the first time that cell stagnation would be markedly involved in peripheral NK cell apoptosis, as well as in switching toward a regulatory phenotype-induced Foxp3. Cell movement may be one of ex vivo potential approaches in boosting the activities and survival of such cells during solid cancer.
Collapse
|
85
|
Capuano C, Pighi C, Maggio R, Battella S, Morrone S, Palmieri G, Santoni A, Klein C, Galandrini R. CD16 pre-ligation by defucosylated tumor-targeting mAb sensitizes human NK cells to γ c cytokine stimulation via PI3K/mTOR axis. Cancer Immunol Immunother 2020; 69:501-512. [PMID: 31950225 PMCID: PMC7113231 DOI: 10.1007/s00262-020-02482-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/04/2020] [Indexed: 12/18/2022]
Abstract
Obinutuzumab is a glycoengineered tumor-targeting anti-CD20 mAb with a modified crystallizable fragment (Fc) domain designed to increase the affinity for the FcγRIIIA/CD16 receptor, which was recently approved for clinical use in CLL and follicular lymphoma. Here we extend our previous observation that, in human NK cells, the sustained CD16 ligation by obinutuzumab-opsonized targets leads to a markedly enhanced IFN-γ production upon a subsequent cytokine re-stimulation. The increased IFN-γ competence in response to IL-2 or IL-15 is attributable to post-transcriptional regulation, as it does not correlate with the upregulation of IFN-γ mRNA levels. Different from the reference molecule rituximab, we observe that the stimulation with obinutuzumab promotes the upregulation of microRNA (miR)-155 expression. A similar trend was also observed in NK cells from untreated CLL patients stimulated with obinutuzumab-opsonized autologous leukemia. miR-155 upregulation associates with reduced levels of SHIP-1 inositol phosphatase, which acts in constraining PI3K-dependent signals, by virtue of its ability to mediate phosphatidylinositol 3,4,5-trisphosphate (PIP3) de-phosphorylation. Downstream of PI3K, the phosphorylation status of mammalian target of rapamycin (mTOR) effector molecule, S6, results in amplified response to IL-2 or IL-15 stimulation in obinutuzumab-experienced cells. Importantly, NK cell treatment with the PI3K or mTOR inhibitors, idelalisib and rapamycin, respectively, prevents the enhanced cytokine responsiveness, thus, highlighting the relevance of the PI3K/mTOR axis in CD16-dependent priming. The enhanced IFN-γ competence may be envisaged to potentiate the immunoregulatory role of NK cells in a therapeutic setting.
Collapse
Affiliation(s)
- Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Chiara Pighi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Roberta Maggio
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy.,Clinical Cancer Research, Imperial College London, London, UK
| | - Simone Battella
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Stefania Morrone
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Christian Klein
- Roche Pharmaceutical Research and Early Development Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Ricciarda Galandrini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy.
| |
Collapse
|
86
|
Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O, Borrego F. NK Cell Metabolism and Tumor Microenvironment. Front Immunol 2019; 10:2278. [PMID: 31616440 PMCID: PMC6769035 DOI: 10.3389/fimmu.2019.02278] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022] Open
Abstract
Natural Killer (NK) cells are characterized by their potential to kill tumor cells by different means without previous sensitization and have, therefore, become a valuable tool in cancer immunotherapy. However, their efficacy against solid tumors is still poor and further studies are required to improve it. One of the major restrictions for NK cell activity is the immunosuppressive tumor microenvironment (TME). There, tumor and other immune cells create the appropriate conditions for tumor proliferation while, among others, preventing NK cell activation. Furthermore, NK cell metabolism is impaired in the TME, presumably due to nutrient and oxygen deprivation, and the higher concentration of tumor-derived metabolic end products, such as lactate. This metabolic restriction of NK cells limits their effector functions, and it could represent a potential target to focus on to improve the efficacy of NK cell-based therapies against solid tumors. In this review, we discuss the potential effect of TME into NK cell metabolism and its influence in NK cell effector functions.
Collapse
Affiliation(s)
- Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
87
|
Corradetti B, Pisano S, Conlan RS, Ferrari M. Nanotechnology and Immunotherapy in Ovarian Cancer: Tracing New Landscapes. J Pharmacol Exp Ther 2019; 370:636-646. [PMID: 30737357 PMCID: PMC6806629 DOI: 10.1124/jpet.118.254979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer (OC) is the seventh most common cancer in women worldwide. Standard therapeutic treatments involve debulking surgery combined with platinum-based chemotherapies. Of the patients with advanced-stage cancer who initially respond to current treatments, 50%-75% relapse. Immunotherapy-based approaches aimed at boosting antitumor immunity have recently emerged as promising tools to challenge tumor progression. Treatments with inhibitors of immune checkpoint molecules have shown impressive results in other types of tumors. However, only 15% of checkpoint inhibitors evaluated have proven successful in OC due to the immunosuppressive environment of the tumor and the transport barriers. This limits the efficacy of the existing immunotherapies. Nanotechnology-based delivery systems hold the potential to overcome such limitations. Various nanoformulations including polymeric, liposomes, and lipid-polymer hybrid nanoparticles have already been proposed to improve the biodistribution and targeting capabilities of drugs against tumor-associated immune cells, including dendritic cells and macrophages. In this review, we examine the impact of immunotherapeutic approaches that are currently under consideration for the treatment of OC. In this review, we also provide a comprehensive analysis of the existing nanoparticle-based synthetic strategies and their limitations and advantages over standard treatments. Furthermore, we discuss how the strength of the combination of nanotechnology with immunotherapy may help to overcome the current therapeutic limitations associated with their individual application and unravel a new paradigm in the treatment of this malignancy.
Collapse
Affiliation(s)
- Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas (B.C., S.P., R.S.C., M.F.); Swansea University Medical School, Singleton Park, Swansea, United Kingdom (B.C., S.P., R.S.C.); and Department of Medicine, Weill Cornell Medical College, New York, New York (M.F.)
| | - Simone Pisano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas (B.C., S.P., R.S.C., M.F.); Swansea University Medical School, Singleton Park, Swansea, United Kingdom (B.C., S.P., R.S.C.); and Department of Medicine, Weill Cornell Medical College, New York, New York (M.F.)
| | - Robert Steven Conlan
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas (B.C., S.P., R.S.C., M.F.); Swansea University Medical School, Singleton Park, Swansea, United Kingdom (B.C., S.P., R.S.C.); and Department of Medicine, Weill Cornell Medical College, New York, New York (M.F.)
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas (B.C., S.P., R.S.C., M.F.); Swansea University Medical School, Singleton Park, Swansea, United Kingdom (B.C., S.P., R.S.C.); and Department of Medicine, Weill Cornell Medical College, New York, New York (M.F.)
| |
Collapse
|
88
|
CD56 brightCD16 - natural killer cells are shifted toward an IFN-γ-promoting phenotype with reduced regulatory capacity in osteoarthritis. Hum Immunol 2019; 80:871-877. [PMID: 31326139 DOI: 10.1016/j.humimm.2019.07.283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/23/2019] [Accepted: 07/11/2019] [Indexed: 11/24/2022]
Abstract
A subset of natural killer (NK) cells with CD56+/brightCD16dim/- expression is recently shown to present critical regulatory functions. Functional characteristics of CD56+/bright NK cells in osteoarthritis (OA) patients remains unknown. Here, we remedied this problem by comparing the NK cells from healthy controls and OA patients. Data showed that the CD56brightCD16- NK subset was significantly enriched in OA patients. These CD56brightCD16- NK cells from OA patients presented significantly higher IFNG transcription and IFN-γ protein secretion than those from healthy controls, both directly ex vivo and after activation via various stimulating reagents, including IL-2/IL-15, K562, and PMA/ionomycin. On the other hand, the transcription and secretion of granzyme A (Gzm-A), Gzm-B, and perforin were significantly lower in CD56brightCD16- NK cells from OA patients than in CD56brightCD16- NK cells from healthy controls. Also, the CD56brightCD16- NK cells from OA patients were less capable of suppressing the proliferation of autologous CD4+ T cells, in a manner that was dependent on the expression of Gzm-B and perforin. Interestingly, CD4+ T cells co-incubated with CD56brightCD16- NK cells were prone to express a higher level of IFNG, and the CD56brightCD16- NK cells from OA patients were more potent at stimulating IFNG than the CD56brightCD16- NK cells from healthy controls. Overall, our investigation demonstrated that CD56brightCD16- NK cells from osteoarthritis patients were shifted toward an IFN-γ-promoting phenotype and with reduced regulatory functions.
Collapse
|
89
|
Hu CHD, Kosaka Y, Marcus P, Rashedi I, Keating A. Differential Immunomodulatory Effects of Human Bone Marrow-Derived Mesenchymal Stromal Cells on Natural Killer Cells. Stem Cells Dev 2019; 28:933-943. [DOI: 10.1089/scd.2019.0059] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Chia-Hsuan Donna Hu
- Cell Therapy Translational Research Laboratory, Princess Margaret Cancer Center, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yoko Kosaka
- Cell Therapy Translational Research Laboratory, Princess Margaret Cancer Center, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Paula Marcus
- Cell Therapy Translational Research Laboratory, Princess Margaret Cancer Center, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Iran Rashedi
- Cell Therapy Translational Research Laboratory, Princess Margaret Cancer Center, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Armand Keating
- Cell Therapy Translational Research Laboratory, Princess Margaret Cancer Center, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
90
|
Dou Y, Xing J, Kong G, Wang G, Lou X, Xiao X, Vivier E, Li XC, Zhang Z. Identification of the E3 Ligase TRIM29 as a Critical Checkpoint Regulator of NK Cell Functions. THE JOURNAL OF IMMUNOLOGY 2019; 203:873-880. [PMID: 31270148 DOI: 10.4049/jimmunol.1900171] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022]
Abstract
NK cells play an important role in immune surveillance and protective immunity, mainly through rapid cytokine release and cytolytic activities. But how such responses are negatively regulated remains poorly defined. In this study, we demonstrated that the E3 ubiquitin ligase TRIM29 is a crucial regulator of NK cell functions. We found that TRIM29 was not expressed in resting NK cells, but was readily upregulated following activation, especially after IL-12 plus IL-18 stimulation. The levels of TRIM29 expression were inversely correlated with IFN-γ production by NK cells, suggesting that TRIM29 inhibits NK cell functions. Indeed, deficiency of TRIM29, specifically in NK cells, resulted in an enhanced IFN-γ production and consequently protected mice from murine CMV infection. Mechanistically, we showed that once induced in NK cells, TRIM29 ubiquitinates and degrades the TGF-β-activated kinase 1 binding protein 2 (TAB2), a key adaptor protein in IFN-γ production by NK cells. These results identify TRIM29 as a negative regulator of NK cell functions and may have important clinical implications.
Collapse
Affiliation(s)
- Yaling Dou
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX 77030.,Department of Surgery, Houston Methodist Hospital, Houston, TX 77030
| | - Junji Xing
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX 77030.,Department of Surgery, Houston Methodist Hospital, Houston, TX 77030
| | - Gangcheng Kong
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX 77030.,Department of Surgery, Houston Methodist Hospital, Houston, TX 77030
| | - Guangchuan Wang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX 77030.,Department of Surgery, Houston Methodist Hospital, Houston, TX 77030
| | - Xiaohua Lou
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX 77030.,Department of Surgery, Houston Methodist Hospital, Houston, TX 77030
| | - Xiang Xiao
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX 77030.,Department of Surgery, Houston Methodist Hospital, Houston, TX 77030
| | - Eric Vivier
- Innate Pharma Research Labs, Innate Pharma, 13276 Marseille, France; and
| | - Xian C Li
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX 77030; .,Department of Surgery, Houston Methodist Hospital, Houston, TX 77030.,Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX 77030; .,Department of Surgery, Houston Methodist Hospital, Houston, TX 77030
| |
Collapse
|
91
|
Ansari H, Tahmasebi-Birgani M, Bijanzadeh M, Doosti A, Kargar M. Study of the immunogenicity of outer membrane protein A ( ompA) gene from Acinetobacter baumannii as DNA vaccine candidate in vivo. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:669-675. [PMID: 31231495 PMCID: PMC6570755 DOI: 10.22038/ijbms.2019.30799.7427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 12/10/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Acinetobacter baumannii is one the most dangerous opportunistic pathogens in hospitalized infections. This bacterium is resistant to 90% of commercial antibiotics. Therefore, developing new strategies to cure A. baumannii-infections is urgent. The DNA vaccines new approach in which the immunogen can be directly expressed inside the target cells through cloning of immunogen into an expression vector. The outer membrane protein A(OmpA) is one the critical factors in pathogenicity of A. baumannii which has been repeatedly described as a powerful immunogen to trigger the immune responses. As the pure form of the OmpA is insoluble, vaccine delivery is very hard. MATERIALS AND METHODS We previously cloned the ompA gene from A. baumannii into the eukaryotic expression vector pBudCE4.1 and observed that the OmpA protein has been considerably expressed in eukaryotic cell model. In current study, the immunogenic potential of pBudCE4.1-ompA has been evaluated in mice model of experimental. The serum levels of IgM, IgG, IL-2, IL-4, IL-12 and INF-γ were measured by enzyme-linked immunosorbent assay (ELISA) after immunization with ompA-vaccine. The protective efficiency of the designed-DNA vaccine was evaluated following intranasal administration of mice with toxic dose of A. baumannii. RESULTS Obtained data showed the elevated levels of IgM, IgG, IL-2, IL-4, IL-12 and INF-γ in serum following the vaccine administration and mice who immunized with recombinant vector were survived more than control group. CONCLUSION These findings indicate ompA-DNA vaccine is potent to trigger humoral and cellular immunity responses although further experiments are needed.
Collapse
Affiliation(s)
- Hossein Ansari
- Department of Genetics, Marvdasht branch, Islamic Azad University, Marvdasht, Iran
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Departments of Biotechnology, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Maryam Tahmasebi-Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Mahdi Bijanzadeh
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Kargar
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| |
Collapse
|
92
|
Kumar V. Natural killer cells in sepsis: Underprivileged innate immune cells. Eur J Cell Biol 2019; 98:81-93. [DOI: 10.1016/j.ejcb.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
|
93
|
Zhang W, Okimura T, Oda T, Jin JO. Ascophyllan Induces Activation of Natural Killer Cells in Mice In Vivo and In Vitro. Mar Drugs 2019; 17:E197. [PMID: 30925723 PMCID: PMC6521296 DOI: 10.3390/md17040197] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Natural marine polysaccharides have demonstrated immune stimulatory effects in both mice and humans. Our previous study compared the ability of ascophyllan and fucoidan to activate human and mouse dendritic cells (DCs). In this study, we further examined the effect of ascophyllan on the activation of mouse natural killer (NK) cells in vivo and in vitro and compared it to that of fucoidan, a well-studied natural marine polysaccharide. Specifically, administration of ascophyllan to C57BL/6 mice increased the number of NK cells in the spleen when compared to the number in PBS-treated mice. Moreover, the number of IFN-γ-producing NK cells and expression of CD69 were markedly upregulated by ascophyllan treatment. Ascophyllan treatment also induced IFN-γ production and CD69 upregulation in isolated NK cells, but did not promote cell proliferation. Finally, ascophyllan treatment increased the cytotoxicity of NK cells against Yac-1 cells. The effects of ascophyllan on NK cell activation were considerably stronger than those of fucoidan. These data demonstrated that ascophyllan promotes NK cell activation both in mice and in vitro, and its stimulatory effect on NK cells is stronger than that of fucoidan.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Ascophyllum/chemistry
- Cell Proliferation/drug effects
- Cytotoxicity Tests, Immunologic
- Interferon-gamma/metabolism
- Killer Cells, Natural/cytology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lectins, C-Type/metabolism
- Mice
- Mice, Inbred C57BL
- Polysaccharides/pharmacology
- Spleen/cytology
- Spleen/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Wei Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China.
| | - Takasi Okimura
- Research and Development Division, Hayashikane Sangyo Co., Ltd., Shimonoseki, Yamaguchi 750-8608, Japan.
| | - Tatsuya Oda
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan.
| | - Jun-O Jin
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China.
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
94
|
Alspach E, Lussier DM, Schreiber RD. Interferon γ and Its Important Roles in Promoting and Inhibiting Spontaneous and Therapeutic Cancer Immunity. Cold Spring Harb Perspect Biol 2019; 11:a028480. [PMID: 29661791 PMCID: PMC6396335 DOI: 10.1101/cshperspect.a028480] [Citation(s) in RCA: 362] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Originally identified in studies of cellular resistance to viral infection, interferon (IFN)-γ is now known to represent a distinct member of the IFN family and plays critical roles not only in orchestrating both innate and adaptive immune responses against viruses, bacteria, and tumors, but also in promoting pathologic inflammatory processes. IFN-γ production is largely restricted to T lymphocytes and natural killer (NK) cells and can ultimately lead to the generation of a polarized immune response composed of T helper (Th)1 CD4+ T cells and CD8+ cytolytic T cells. In contrast, the temporally distinct elaboration of IFN-γ in progressively growing tumors also promotes a state of adaptive resistance caused by the up-regulation of inhibitory molecules, such as programmed-death ligand 1 (PD-L1) on tumor cell targets, and additional host cells within the tumor microenvironment. This review focuses on the diverse positive and negative roles of IFN-γ in immune cell activation and differentiation leading to protective immune responses, as well as the paradoxical effects of IFN-γ within the tumor microenvironment that determine the ultimate fate of that tumor in a cancer-bearing individual.
Collapse
Affiliation(s)
- Elise Alspach
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Danielle M Lussier
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
95
|
Affiliation(s)
- Clair M. Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
96
|
Verhoeven D. Immunometabolism and innate immunity in the context of immunological maturation and respiratory pathogens in young children. J Leukoc Biol 2019; 106:301-308. [DOI: 10.1002/jlb.mr0518-204rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- David Verhoeven
- Department of Veterinary Microbiology and Preventative MedicineIowa State University Ames Iowa USA
| |
Collapse
|
97
|
RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses. Cell 2018; 175:387-399.e17. [PMID: 30270043 PMCID: PMC6176872 DOI: 10.1016/j.cell.2018.08.064] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/09/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022]
Abstract
HIV-1 broadly neutralizing antibodies (bnAbs) are difficult to induce with vaccines but are generated in ∼50% of HIV-1-infected individuals. Understanding the molecular mechanisms of host control of bnAb induction is critical to vaccine design. Here, we performed a transcriptome analysis of blood mononuclear cells from 47 HIV-1-infected individuals who made bnAbs and 46 HIV-1-infected individuals who did not and identified in bnAb individuals upregulation of RAB11FIP5, encoding a Rab effector protein associated with recycling endosomes. Natural killer (NK) cells had the highest differential expression of RAB11FIP5, which was associated with greater dysregulation of NK cell subsets in bnAb subjects. NK cells from bnAb individuals had a more adaptive/dysfunctional phenotype and exhibited impaired degranulation and cytokine production that correlated with RAB11FIP5 transcript levels. Moreover, RAB11FIP5 overexpression modulated the function of NK cells. These data suggest that NK cells and Rab11 recycling endosomal transport are involved in regulation of HIV-1 bnAb development. Elevated RAB11FIP5 expression is associated with HIV-1 bnAb induction NK cells show the highest differential RAB11FIP5 expression NK cell subsets are more dysregulated in individuals developing bnAbs Rab11Fip5 regulates NK cell function
Collapse
|
98
|
Brittoli A, Fallarini S, Zhang H, Pieters RJ, Lombardi G. "In vitro" studies on galectin-3 in human natural killer cells. Immunol Lett 2017; 194:4-12. [PMID: 29248489 DOI: 10.1016/j.imlet.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/12/2017] [Accepted: 12/11/2017] [Indexed: 01/01/2023]
Abstract
Galectin-3 (Gal-3) is a β-galactoside binding protein able to modulate both innate and adaptive immune responses. First identified in macrophages, Gal-3 has been studied widely in many mammalian immune cells, but scarcely in natural killer (NK) cells. The aim of this study was to analyze Gal-3 in human NK cells, isolated from peripheral blood mononuclear cells. Both PCR and RT-PCR analysis showed that resting human NK cells express Gal-3 mRNA, which can be modulated upon cytokine stimulation (100 U/ml IL-2 + 20 ng/ml IL-15) for different period of time (1-24 h). Western blot, cytofluorimetry, and confocal microscopy analysis clearly demonstrated that the Gal-3 gene can translate into the corresponding protein. From our results, resting NK cells, isolated from different healthy donors, can express high or low basal levels of Gal-3. In NK cells, Gal-3 was always intracellularly detected at both cytoplasm and nucleus levels, while never at the membrane surface, and its localization resulted independent from the cellular activation status. In addition, the intracellular Gal-3 can co-localize with perforin in exocytic vesicles. Cell treatment with a thiodigalactoside-based Gal-3 inhibitor (1-30 μM) slightly increased the number of degranulating NK cells, while it significantly increased the percentage of cells releasing high amounts of cytotoxic granules (+ 36 ± 3% vs. inhibitor-untreated cells at 30 μM Gal-3). In conclusion, our results demonstrate that human resting NK cells express Gal-3 at both gene and protein levels and that the Gal-3 expression can be modulated upon cytokine stimulation. In the same cells, Gal-3 always localizes intracellularly and functionally correlates with the degree of NK cell degranulation.
Collapse
Affiliation(s)
- Alvaro Brittoli
- Department of Pharmaceutical Sciences, University of "Piemonte Orientale, A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Silvia Fallarini
- Department of Pharmaceutical Sciences, University of "Piemonte Orientale, A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Hao Zhang
- Department of Medicinal Chemistry and Chemical Biology, Utrecht University, 3508 TB Utrecht, Netherlands.
| | - Roland J Pieters
- Department of Medicinal Chemistry and Chemical Biology, Utrecht University, 3508 TB Utrecht, Netherlands.
| | - Grazia Lombardi
- Department of Pharmaceutical Sciences, University of "Piemonte Orientale, A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| |
Collapse
|
99
|
Mah AY, Rashidi A, Keppel MP, Saucier N, Moore EK, Alinger JB, Tripathy SK, Agarwal SK, Jeng EK, Wong HC, Miller JS, Fehniger TA, Mace EM, French AR, Cooper MA. Glycolytic requirement for NK cell cytotoxicity and cytomegalovirus control. JCI Insight 2017; 2:95128. [PMID: 29212951 DOI: 10.1172/jci.insight.95128] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/26/2017] [Indexed: 01/19/2023] Open
Abstract
NK cell activation has been shown to be metabolically regulated in vitro; however, the role of metabolism during in vivo NK cell responses to infection is unknown. We examined the role of glycolysis in NK cell function during murine cytomegalovirus (MCMV) infection and the ability of IL-15 to prime NK cells during CMV infection. The glucose metabolism inhibitor 2-deoxy-ᴅ-glucose (2DG) impaired both mouse and human NK cell cytotoxicity following priming in vitro. Similarly, MCMV-infected mice treated with 2DG had impaired clearance of NK-specific targets in vivo, which was associated with higher viral burden and susceptibility to infection on the C57BL/6 background. IL-15 priming is known to alter NK cell metabolism and metabolic requirements for activation. Treatment with the IL-15 superagonist ALT-803 rescued mice from otherwise lethal infection in an NK-dependent manner. Consistent with this, treatment of a patient with ALT-803 for recurrent CMV reactivation after hematopoietic cell transplant was associated with clearance of viremia. These studies demonstrate that NK cell-mediated control of viral infection requires glucose metabolism and that IL-15 treatment in vivo can reduce this requirement and may be effective as an antiviral therapy.
Collapse
Affiliation(s)
- Annelise Y Mah
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Armin Rashidi
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Molly P Keppel
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nermina Saucier
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Emily K Moore
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua B Alinger
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sandeep K Tripathy
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sandeep K Agarwal
- Department of Medicine, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Todd A Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Emily M Mace
- Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony R French
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
100
|
Schmidt S, Tramsen L, Lehrnbecher T. Natural Killer Cells in Antifungal Immunity. Front Immunol 2017; 8:1623. [PMID: 29213274 PMCID: PMC5702641 DOI: 10.3389/fimmu.2017.01623] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/08/2017] [Indexed: 01/07/2023] Open
Abstract
Invasive fungal infections are still an important cause of morbidity and mortality in immunocompromised patients such as patients suffering from hematological malignancies or patients undergoing hematopoietic stem cell transplantion. In addition, other populations such as human immunodeficiency virus-patients are at higher risk for invasive fungal infection. Despite the availability of new antifungal compounds and better supportive care measures, the fatality rate of invasive fungal infection remained unacceptably high. It is therefore of major interest to improve our understanding of the host-pathogen interaction to develop new therapeutic approaches such as adoptive immunotherapy. As experimental methodologies have improved and we now better understand the complex network of the immune system, the insight in the interaction of the host with the fungus has significantly increased. It has become clear that host resistance to fungal infections is not only associated with strong innate immunity but that adaptive immunity (e.g., T cells) also plays an important role. The antifungal activity of natural killer (NK) cells has been underestimated for a long time. In vitro studies demonstrated that NK cells from murine and human origin are able to attack fungi of different genera and species. NK cells exhibit not only a direct antifungal activity via cytotoxic molecules but also an indirect antifungal activity via cytokines. However, it has been show that fungi exert immunosuppressive effects on NK cells. Whereas clinical data are scarce, animal models have clearly demonstrated that NK cells play an important role in the host response against invasive fungal infections. In this review, we summarize clinical data as well as results from in vitro and animal studies on the impact of NK cells on fungal pathogens.
Collapse
Affiliation(s)
- Stanislaw Schmidt
- Division for Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Lars Tramsen
- Division for Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Thomas Lehrnbecher
- Division for Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| |
Collapse
|