51
|
Yang C, Zhang W, Xiang S, Chen L, Chun J, Chen H. Navel orange peel essential oil inhibits the growth and progression of triple negative breast cancer. BMC Complement Med Ther 2024; 24:233. [PMID: 38877505 PMCID: PMC11177363 DOI: 10.1186/s12906-024-04525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Triple Negative Breast Cancer (TNBC) is a particular type of breast cancer with the highest mortality rate. Essential oils are concerned more and more as potential anti-cancer drugs. METHODS TNBC cells were treated with different concentrations of navel orange peel essential oil (NOPEO), and then a variety of experiments were performed to investigate the changes in the growth and progression of TNBC cells. MTT assay was performed to detect the proliferation of TNBC cells. The changes of cell cycle and apoptosis were analyzed by FACS. In order to explored the migration of TNBC cells, scratch wound assay was carried out. Western blotting and qPCR were used to examine the expression of proteins and mRNA of related genes. Furthermore, RNA-seq was used to analyze the altered genes and explored the possible signal pathway. RESULTS NOPEO demonstrated dose- and time-dependent suppression of TNBC cell growth. TNBC cells showed an increased percentage of G2/M-phase cells and the protein levels of CyclinB1 and CyclinD1 were decreased after NOPEO treatment. The apoptotic cells were increased in the NOPEO treated TNBC cells. The migration mobility was significantly inhibited by NOPEO. In total, 1376 genes were found to be up-regulated and 1335 genes were down-regulated after NOPEO treatment. According to KEGG and GO pathways, the differentially expressed genes were related to MAPK, Jak/stat and FoxQ signaling pathways. CONCLUSION This investigation explored the bio-activity and molecular mechanisms of NOPEO against TNBC cells. These results indicated that NOPEO could suppress TNBC growth and migration perhaps via the MAPK and Jak/stat signaling pathways, which may provide theoretical reference for anticancer drug development. NOPEO may be a potential natural product for the chemotherapeutic of TNBC.
Collapse
Affiliation(s)
- Chao Yang
- Oncology Research Center, Jiangxi Provincial Key Laboratory of Traditional Chinese Medicine Diagnosis and Rehabilitation of Malignant Tumors, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- College of Life Sciences, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, 341000, China
| | - Wenwen Zhang
- Oncology Research Center, Jiangxi Provincial Key Laboratory of Traditional Chinese Medicine Diagnosis and Rehabilitation of Malignant Tumors, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shi Xiang
- Oncology Research Center, Jiangxi Provincial Key Laboratory of Traditional Chinese Medicine Diagnosis and Rehabilitation of Malignant Tumors, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Lai Chen
- Oncology Research Center, Jiangxi Provincial Key Laboratory of Traditional Chinese Medicine Diagnosis and Rehabilitation of Malignant Tumors, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Jiong Chun
- College of Life Sciences, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, 341000, China.
| | - Hui Chen
- Oncology Research Center, Jiangxi Provincial Key Laboratory of Traditional Chinese Medicine Diagnosis and Rehabilitation of Malignant Tumors, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
- College of Life Sciences, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
52
|
Chaudhry Z, Boyadzhyan A, Sasaninia K, Rai V. Targeting Neoantigens in Cancer: Possibilities and Opportunities in Breast Cancer. Antibodies (Basel) 2024; 13:46. [PMID: 38920970 PMCID: PMC11200483 DOI: 10.3390/antib13020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
As one of the most prevalent forms of cancer worldwide, breast cancer has garnered significant attention within the clinical research setting. While traditional treatment employs a multidisciplinary approach including a variety of therapies such as chemotherapy, hormone therapy, and even surgery, researchers have since directed their attention to the budding role of neoantigens. Neoantigens are defined as tumor-specific antigens that result from a multitude of genetic alterations, the most prevalent of which is the single nucleotide variant. As a result of their foreign nature, neoantigens elicit immune responses upon presentation by Major Histocompatibility Complexes I and II followed by recognition by T cell receptors. Previously, researchers have been able to utilize these immunogenic properties and manufacture neoantigen-specific T-cells and neoantigen vaccines. Within the context of breast cancer, biomarkers such as tumor protein 53 (TP53), Survivin, Partner and Localizer of BRCA2 (PALB2), and protein tyrosine phosphatase receptor T (PTPRT) display exceeding potential to serve as neoantigens. However, despite their seemingly limitless potential, neoantigens must overcome various obstacles if they are to be fairly distributed to patients. For instance, a prolonged period between the identification of a neoantigen and the dispersal of treatment poses a serious risk within the context of breast cancer. Regardless of these current obstacles, it appears highly promising that future research into neoantigens will make an everlasting impact on the health outcomes within the realm of breast cancer. The purpose of this literature review is to comprehensively discuss the etiology of various forms of breast cancer and current treatment modalities followed by the significance of neoantigens in cancer therapeutics and their application to breast cancer. Further, we have discussed the limitations, future directions, and the role of transcriptomics in neoantigen identification and personalized medicine. The concepts discussed in the original and review articles were included in this review article.
Collapse
Affiliation(s)
| | | | | | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (Z.C.); (A.B.); (K.S.)
| |
Collapse
|
53
|
Kang Z, Jin Y, Yu H, Li S, Qi Y. Relative efficacy of antibody-drug conjugates and other anti-HER2 treatments on survival in HER2-positive advanced breast cancer: a systematic review and meta-analysis. BMC Cancer 2024; 24:708. [PMID: 38851684 PMCID: PMC11162572 DOI: 10.1186/s12885-024-12478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/04/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Novel antibody-drug conjugates (ADCs) drugs present a promising anti-cancer treatment, although survival benefits for HER2-positive advanced breast cancer (BC) remain controversial. The aim of this meta-analysis was to evaluate the comparative effect of ADCs and other anti-HER2 therapy on progression-free survival (PFS) and overall survival (OS) for treatment of HER2-positive locally advanced or metastatic BC. METHODS Relevant randomized controlled trials (RCTs) were retrieved from five databases. The risk of bias was assessed with the Cochrane Collaboration's tool for RCTs by RevMan5.4 software. The hazard ratio (HR) and 95% confidence intervals (CIs) were extracted to evaluate the benefit of ADCs on PFS and OS in HER2-positive advanced BC by meta-analysis. RESULTS Meta-analysis of six RCTs with 3870 patients revealed that ADCs significantly improved PFS (HR: 0.63, 95% CI: 0.49-0.80, P = 0.0002) and OS (HR: 0.79, 95% CI: 0.72-0.86, P < 0.0001) of patients with HER2-positive locally advanced or metastatic BC. Subgroup analysis showed that PFS and OS were obviously prolonged for patients who previously received HER2-targeted therapy. Sensitivity analysis and publication bias suggested that the results were stable and reliable. CONCLUSION Statistically significant benefits for PFS and OS were observed with ADCs in HER2-positive locally advanced or metastatic BC, especially for those who received prior anti-HER2 treatment.
Collapse
Affiliation(s)
- Zian Kang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, 110042, China
| | - Yuqing Jin
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Huihui Yu
- Department of Cancer Prevention and Control, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Su Li
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, 110042, China
| | - Yingjie Qi
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, 110042, China.
| |
Collapse
|
54
|
Dashti N, Akbari V, Varshosaz J, Soleimanbeigi M, Rostami M. Co-delivery of carboplatin and doxorubicin using ZIF-8 coated chitosan-poly(N-isopropyl acrylamide) nanoparticles through a dual pH/thermo responsive strategy to breast cancer cells. Int J Biol Macromol 2024; 269:131971. [PMID: 38705336 DOI: 10.1016/j.ijbiomac.2024.131971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
A dual pH/temperature sensitive core-shell nanoformulation has been developed based on ZIF-8 coated with chitosan-poly(N-isopropyl acrylamide) (CS-PNIPAAm) for co-delivery of doxorubicin (DOX) and carboplatin (CBP) in breast cancer cells. The resulting nanoparticles (NPs) had particle sizes around 200 nm and a zeta potential of about +30 mV. The CBP and DOX loading contents in the final NPs were 11.6 % and 55.54 %, respectively. NPs showed a pH and thermoresponsive drug release profile with a sustained prolonged release under physiological conditions. The in vitro cytotoxicity experiments showed a significant synergism of CBP and DOX to induce the IC50 of 1.96 μg/mL in MCF-7 cells and 4.54 μg/mL in MDA-MB-231 cells. Also, the final NPs were safer than free DOX and CBP on normal cells. The in vitro study confirmed the higher potency of the designed NPs in combination therapy against breast cancer cells with lower side effects than free drugs.
Collapse
Affiliation(s)
- Narges Dashti
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Monireh Soleimanbeigi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Center and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
55
|
Yu S, Yue Z, Liu Q. Pectinose induces cell cycle arrest in luminal A and triple-negative breast cancer cells by promoting autophagy through activation of the p38 MAPK signaling pathway. BMC Cancer 2024; 24:639. [PMID: 38789954 PMCID: PMC11127404 DOI: 10.1186/s12885-024-12293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer patients often have a poor prognosis largely due to lack of effective targeted therapy. It is now well established that monosaccharide enhances growth retardation and chemotherapy sensitivity in tumor cells. However, Pectinose whether has capability to restrict the proliferation of tumor cells remain unclear. Here, we report that Pectinose induced cytotoxicity is modulated by autophagy and p38 MAPK signaling pathway in breast cancer cell lines. The proliferation of cells was dramatically inhibited by Pectinose exposure in a dose-dependent manner, which was relevant to cell cycle arrest, as demonstrated by G2/M cell cycle restriction and ectopic expression of Cyclin A, Cyclin B, p21and p27. Mechanistically, we further identified that Pectinose is positively associated with autophagy and the activation of the p38 MAPK signaling in breast cancer. In contrast, 3-Ma or SB203580, the inhibitor of autophagy or p38 MAPK, reversed the efficacy of Pectinose suppressing on breast cancer cell lines proliferation and cell cycle process. Additionally, Pectinose in vivo treatment could significantly inhibit xenograft growth of breast cancer cells. Taken together, our findings were the first to reveal that Pectinose triggered cell cycle arrest by inducing autophagy through the activation of p38 MAPK signaling pathway in breast cancer cells,especially in luminal A and triple-negative breast cancer.
Collapse
Affiliation(s)
- Shilong Yu
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Zhaoyi Yue
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Qilun Liu
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
56
|
Tang Z, Song H, Qin S, Tian Z, Zhang C, Zhou Y, Cai R, Zhu Y. D-arabinose induces cell cycle arrest by promoting autophagy via p38 MAPK signaling pathway in breast cancer. Sci Rep 2024; 14:11219. [PMID: 38755221 PMCID: PMC11099026 DOI: 10.1038/s41598-024-61309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Breast cancer patients often have a poor prognosis largely due to lack of effective targeted therapy. It is now well established that monosaccharide enhances growth retardation and chemotherapy sensitivity in tumor cells. We investigated whether D-arabinose has capability to restrict the proliferation of tumor cells and its mechanism. Here, we report that D-arabinose induced cytotoxicity is modulated by autophagy and p38 MAPK signaling pathway in breast cancer cell lines. The proliferation of cells was evaluated by CCK-8 and Colony formation assay. The distribution of cells in cell cycle phases was analyzed by flow cytometry. Cell cycle, autophagy and MAPK signaling related proteins were detected by western blotting. Mouse xenograft model was used to evaluate the efficacy of D-arabinose in vivo. The proliferation of cells was dramatically inhibited by D-arabinose exposure in a dose-dependent manner, which was relevant to cell cycle arrest, as demonstrated by G2/M cell cycle restriction and ectopic expression of cell cycle related proteins. Mechanistically, we further identified that D-arabinose is positively associated with autophagy and the activation of the p38 MAPK signaling in breast cancer. In contrast, 3-Ma or SB203580, the inhibitor of autophagy or p38 MAPK, reversed the efficacy of D-arabinose. Additionally, D-arabinose in vivo treatment could significantly inhibit xenograft growth of breast cancer cells. Our findings were the first to reveal that D-arabinose triggered cell cycle arrest by inducing autophagy through the activation of p38 MAPK signaling pathway in breast cancer cells.
Collapse
Affiliation(s)
- Zhenning Tang
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.
| | - Hanying Song
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Shaojie Qin
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Zengjian Tian
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Chaolin Zhang
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Yang Zhou
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Ruizhi Cai
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Yongzhao Zhu
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China.
| |
Collapse
|
57
|
Baylie T, Kasaw M, Getinet M, Getie G, Jemal M, Nigatu A, Ahmed H, Bogale M. The role of miRNAs as biomarkers in breast cancer. Front Oncol 2024; 14:1374821. [PMID: 38812786 PMCID: PMC11133523 DOI: 10.3389/fonc.2024.1374821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/08/2024] [Indexed: 05/31/2024] Open
Abstract
Breast cancer (BC) is the second most common cause of deaths reported in women worldwide, and therefore there is a need to identify BC patients at an early stage as timely diagnosis would help in effective management and appropriate monitoring of patients. This will allow for proper patient monitoring and effective care. However, the absence of a particular biomarker for BC early diagnosis and surveillance makes it difficult to accomplish these objectives. miRNAs have been identified as master regulators of the molecular pathways that are emphasized in various tumors and that lead to the advancement of malignancies. Small, non-coding RNA molecules known as miRNAs target particular mRNAs to control the expression of genes. miRNAs dysregulation has been linked to the start and development of a number of human malignancies, including BC, since there is compelling evidence that miRNAs can function as tumor suppressor genes or oncogenes. The current level of knowledge on the role of miRNAs in BC diagnosis, prognosis, and treatment is presented in this review. miRNAs can regulate the tumorigenesis of BC through targeting PI3K pathway and can be used as prognostic or diagnostic biomarkers for BC therapy. Some miRNAs, like miR-9, miR-10b, and miR-17-5p, are becoming known as biomarkers of BC for diagnosis, prognosis, and therapeutic outcome prediction. Other miRNAs, like miR-30c, miR-187, and miR-339-5p, play significant roles in the regulation of hallmark functions of BC, including invasion, metastasis, proliferation, resting death, apoptosis, and genomic instability. Other miRNAs, such as miR-155 and miR-210, are circulating in bodily fluids and are therefore of interest as novel, conveniently accessible, reasonably priced, non-invasive methods for the customized care of patients with BC.
Collapse
Affiliation(s)
- Temesgen Baylie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mulugeta Kasaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gedefaw Getie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Amare Nigatu
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, Woldia University, Woldia, Ethiopia
| | - Hassen Ahmed
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, Woldia University, Woldia, Ethiopia
| | - Mihiret Bogale
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, Wollo University, Wollo, Ethiopia
| |
Collapse
|
58
|
Abd Al Moaty M, El Kilany Y, Awad LF, Soliman SM, Barakat A, Ibrahim NA, Abu-Serie MM, Haukka M, El-Yazbi A, Teleb M. Triggering Breast Cancer Apoptosis via Cyclin-Dependent Kinase Inhibition and DNA Damage by Novel Pyrimidinone and 1,2,4-Triazolo[4,3- a]pyrimidinone Derivatives. ACS OMEGA 2024; 9:21042-21057. [PMID: 38764636 PMCID: PMC11097374 DOI: 10.1021/acsomega.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Combinations of apoptotic inducers are common clinical practice in breast cancer. However, their efficacy is limited by the heterogeneous pharmacokinetic profiles. An advantageous alternative is merging their molecular entities in hybrid multitargeted scaffolds exhibiting synergistic activities and uniform distribution. Herein, we report apoptotic inducers simultaneously targeting DNA and CDK-2 (cyclin-dependent kinase-2) inspired by studies revealing that CDK-2 inhibition sensitizes breast cancer to DNA-damaging agents. Accordingly, rationally substituted pyrimidines and triazolopyrimidines were synthesized and assayed by MTT against MCF-7, MDA-MB231, and Wi-38 cells compared to doxorubicin. The N-(4-amino-2-((2-hydrazinyl-2-oxoethyl)thio)-6-oxo-1,6-dihydropyrimidin-5-yl)acetamide 5 and its p-nitrophenylhydrazone 8 were the study hits against MCF-7 (IC50 = 0.050 and 0.146 μM) and MDA-MB231 (IC50 = 0.826 and 0.583 μM), induced DNA damage at 10.64 and 30.03 nM, and inhibited CDK-2 (IC50 = 0.172 and 0.189 μM). 5 induced MCF-7 apoptosis by 46.75% and disrupted cell cycle during S phase. Docking and MD simulations postulated their stable key interactions.
Collapse
Affiliation(s)
| | - Yeldez El Kilany
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Laila F. Awad
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Saied M. Soliman
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Assem Barakat
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box
2455, Riyadh 11451, Saudi Arabia
| | - Nihal A. Ibrahim
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Marwa M. Abu-Serie
- Medical
Biotechnology Department, Genetic Engineering and Biotechnology Research
Institute, City of Scientific Research and
Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä , Finland
| | - Amira El-Yazbi
- Department
of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed Teleb
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
59
|
Ren F, Ma Y, Zhang K, Luo Y, Pan R, Zhang J, Kan C, Hou N, Han F, Sun X. Exploring the multi-targeting phytoestrogen potential of Calycosin for cancer treatment: A review. Medicine (Baltimore) 2024; 103:e38023. [PMID: 38701310 PMCID: PMC11062656 DOI: 10.1097/md.0000000000038023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Cancer remains a significant challenge in the field of oncology, with the search for novel and effective treatments ongoing. Calycosin (CA), a phytoestrogen derived from traditional Chinese medicine, has garnered attention as a promising candidate. With its high targeting and low toxicity profile, CA has demonstrated medicinal potential across various diseases, including cancers, inflammation, and cardiovascular disease. Studies have revealed that CA possesses inhibitory effects against a diverse array of cancers. The underlying mechanism of action involves a reduction in tumor cell proliferation, induction of tumor cell apoptosis, and suppression of tumor cell migration and invasion. Furthermore, CA has been shown to enhance the efficacy of certain chemotherapeutic drugs, making it a potential component in treating malignant tumors. Given its high efficacy, low toxicity, and multi-targeting characteristics, CA holds considerable promise as a therapeutic agent for cancer treatment. The objective of this review is to present a synthesis of the current understanding of the antitumor mechanism of CA and its research progress.
Collapse
Affiliation(s)
- Fangbing Ren
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Youhong Luo
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
60
|
Yang Q, Yang G, Wu Y, Zhang L, Song Z, Yang D. Bioinformatics analysis and validation of genes related to paclitaxel's anti-breast cancer effect through immunogenic cell death. Heliyon 2024; 10:e28409. [PMID: 38560098 PMCID: PMC10979210 DOI: 10.1016/j.heliyon.2024.e28409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Research indicated that Paclitaxel (PTX) can induce immunogenic cell death (ICD) through immunogenic modulation. However, the combination of PTX and ICD has not been extensively studied in breast cancer (BRCA). The TCGA-BRCA and GSE20685 datasets were enrolled in this study. Samples from the TCGA-BRCA dataset were consistently clustered based on selected immunogenic cell death-related genes (ICD-RGs). Next, candidate genes were obtained by overlapping differentially expressed genes (DEGs) between BRCA and normal groups, intersecting genes common to DEGs between cluster1 and cluster2 and hub module genes, and target genes of PTX from five databases. The univariate Cox algorithm and the least absolute shrinkage and selection operator (LASSO) were performed to obtain biomarkers and build a risk model. Following observing the immune microenvironment in differential risk subgroups, single-gene gene set enrichment analysis (GSEA) was carried out in all biomarkers. Finally, the expression of biomarkers was analyzed. Enrichment analysis showed that 626 intersecting genes were linked with inflammatory response. Further five biomarkers (CHI3L1, IL18, PAPLN, SH2D2A, and UBE2L6) were identified and a risk model was built. The model's performance was validated using GSE20685 dataset. Furthermore, the biomarkers were enriched with adaptive immune response. Lastly, the experimental results indicated that the alterations in IL18, SH2D2A, and CHI3L1 expression after treatment matched those in the public database. In this study, Five PTX-ICD-related biomarkers (CHI3L1, IL18, PAPLN, SH2D2A, and UBE2L6) were identified to aid in predicting BRCA treatment outcomes.
Collapse
Affiliation(s)
- Qianmei Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
- Yunnan College of Modern Biomedical Industry, Kunming, Yunnan, 650500, PR China
| | - Guimei Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
- Yunnan College of Modern Biomedical Industry, Kunming, Yunnan, 650500, PR China
| | - Yi Wu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Lun Zhang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Zhuoyang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Dan Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| |
Collapse
|
61
|
Xiong S, Song K, Xiang H, Luo G. Dual-target inhibitors based on ERα: Novel therapeutic approaches for endocrine resistant breast cancer. Eur J Med Chem 2024; 270:116393. [PMID: 38588626 DOI: 10.1016/j.ejmech.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Estrogen receptor alpha (ERα), a nuclear transcription factor, is a well-validated therapeutic target for more than 70% of all breast cancers (BCs). Antagonizing ERα either by selective estrogen receptor modulators (SERMs) or selective estrogen receptor degraders (SERDs) forms the foundation of endocrine therapy and has achieved great success in the treatment of ERα positive (ERα+) BCs. Unfortunately, despite initial effectiveness, endocrine resistance eventually emerges in up to 30% of ERα+ BC patients and remains a significant medical challenge. Several mechanisms implicated in endocrine resistance have been extensively studied, including aberrantly activated growth factor receptors and downstream signaling pathways. Hence, the crosstalk between ERα and another oncogenic signaling has led to surge of interest to develop combination therapies and dual-target single agents. This review briefly introduces the synergisms between ERα and another anticancer target and summarizes the recent advances of ERα-based dual-targeting inhibitors from a medicinal chemistry perspective. Accordingly, their rational design strategies, structure-activity relationships (SARs) and biological activities are also dissected to provide some perspectives on future directions for ERα-based dual target drug discovery in BC therapy.
Collapse
Affiliation(s)
- Shuangshuang Xiong
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ke Song
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guoshun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
62
|
Huang Z, Zheng H, Wang H, Ning H, Che A, Cai C. Identification of potential therapeutic targets for breast cancer using Mendelian randomization analysis and drug target prediction. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 38581229 DOI: 10.1002/tox.24249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
Breast cancer stands as the foremost cause of cancer-related mortality among women, presenting a substantial economic impact on society. The limitations in current therapeutic options, coupled with poor patient tolerance, underscore the urgent need for novel treatments. Our study embarked on a genomic association exploration of breast cancer, leveraging whole-genome sequencing data from the Finngen database, complemented by expression quantitative trait loci (eQTL) insights from the eQTLGen and GTEx Consortiums. An initial investigation was conducted through summary-based Mendelian randomization (MR) to pinpoint primary eQTLs. Analysis of blood specimens revealed 103 eQTLs significantly correlated with breast cancer. Focusing our efforts, we identified 19 candidates with potential therapeutic significance. Further scrutiny via two-sample MR pinpointed UROD, LMO4, HORMAD1, and ZSWIM5 as promising targets for breast cancer therapy. Our research sheds light on new avenues for the treatment of breast cancer, highlighting the potential of genomic association studies in uncovering viable therapeutic targets.
Collapse
Affiliation(s)
- Zhulan Huang
- Department of Ultrasound Medicine, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Longgang Maternity and Child Institute of Shantou University Medical College, Shenzhen, China
| | - Hongping Zheng
- Department of Ultrasound Medicine, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Longgang Maternity and Child Institute of Shantou University Medical College, Shenzhen, China
| | - Haiyu Wang
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Haojie Ning
- Department of Ultrasound Medicine, South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Aiwen Che
- Department of Pathology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Longgang Maternity and Child Institute of Shantou University Medical College, Shenzhen, China
| | - Cuidan Cai
- Department of surgery, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Longgang Maternity and Child Institute of Shantou University Medical College, Shenzhen, China
| |
Collapse
|
63
|
Hassanzadeh F, Hejazi SH, Jafari E, fard AM, Sadeghi-aliabadi H. Molecular docking and synthesis of N-alkyl-isatin-3-imino aromatic amine derivatives and their antileishmanial and cytotoxic activities. Res Pharm Sci 2024; 19:238-250. [PMID: 39035577 PMCID: PMC11257207 DOI: 10.4103/rps.rps_244_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/06/2023] [Accepted: 03/17/2024] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Isatin derivatives have excited attention due to their biological attractions, especially, anticancer properties. Isatin analogs such as semaxanib and sunitinib were exposed to tyrosine kinase inhibitory properties. N-substituted isatins were reported to show cytotoxic activity. On the other, the extension of impressive and cost-effective agents against leishmaniasis is necessary in third-world countries. The capability of isatin derivatives to create novel anticancer and anti-leishmanial compounds has been identified in medicinal chemistry research. The current study aimed to synthesize N-alkyl-isatin-3-imino aromatic amine compounds and evaluate their biological effects. Experimental approach Synthesis started with the formation of 2-chloro-N-phenylacetamide derivatives by the reaction of aniline derivatives with chloroacetyl chloride. N-alkylation of isatin was performed in the presence of K2CO3 in N, N-dimethylformamide. Final products were prepared via the condensation of N-alkyl isatin derivatives with aromatic amines. Cell viability was checked out by using the MTT assay against cancer cells. Final compounds were screened for anti-leishmanial activity. The molecules were docked in the active sites of the epidermal growth factor receptor tyrosine kinase to define the possible interactions. Findings/Results Compounds 5c and 4d with IC50 value of 50 μΜ showed cytotoxic activity on the MCF-7 cell line. Compound 5b presented anti-leishmanial activity against promastigote form after 48 h (IC50:59 μΜ) and 72 h (IC50: 41 μΜ) incubations. The highest docking score was -7.33 kcal/mol for compound 4d. Conclusions and implications The nature of substitution in the N1 region of isatin seems to be able to influence the cytotoxic activity. Based on the obtained results of docking and cytotoxic tests, compound 4d seems to be a good compound for further investigations.
Collapse
Affiliation(s)
- Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Seyed Hossein Hejazi
- Skin Disease and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Jafari
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Atefeh Mohammadi fard
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hojjat Sadeghi-aliabadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
64
|
Obeagu EI, Obeagu GU. Exploring neutrophil functionality in breast cancer progression: A review. Medicine (Baltimore) 2024; 103:e37654. [PMID: 38552040 PMCID: PMC10977563 DOI: 10.1097/md.0000000000037654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
Breast cancer remains a pressing global health concern, with a myriad of intricate factors contributing to its development, progression, and heterogeneity. Among these multifaceted elements, the role of immune cells within the tumor microenvironment is gaining increasing attention. In this context, neutrophils, traditionally regarded as the first responders to infections, are emerging as noteworthy participants in the complex landscape of breast cancer. This paper seeks to unravel the intricate and multifaceted role of neutrophils in breast cancer. Neutrophils, classically known for their phagocytic and pro-inflammatory functions, are now recognized for their involvement in promoting or restraining tumor growth. While their presence within the tumor microenvironment may exert antitumor effects through immune surveillance and cytotoxic activities, these innate immune cells can also facilitate tumor progression by fostering an immunosuppressive milieu, promoting angiogenesis, and aiding metastatic dissemination. The intricacies of neutrophil-tumor cell interactions, signaling pathways, and mechanisms governing their recruitment to the tumor site are explored in detail. Challenges and gaps in current knowledge are acknowledged, and future directions for research are outlined. This review underscores the dynamic and context-dependent role of neutrophils in breast cancer and emphasizes the significance of unraveling their multifaceted contributions. As we delve into the complexities of the immune landscape in breast cancer, a deeper understanding of the warriors within, the neutrophils, presents exciting prospects for the development of novel therapeutic strategies and a more comprehensive approach to breast cancer management.
Collapse
|
65
|
Luo H, Yin W, Wang J, Zhang G, Liang W, Luo J, Yan C. Drug-drug interactions prediction based on deep learning and knowledge graph: A review. iScience 2024; 27:109148. [PMID: 38405609 PMCID: PMC10884936 DOI: 10.1016/j.isci.2024.109148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Drug-drug interactions (DDIs) can produce unpredictable pharmacological effects and lead to adverse events that have the potential to cause irreversible damage to the organism. Traditional methods to detect DDIs through biological or pharmacological analysis are time-consuming and expensive, therefore, there is an urgent need to develop computational methods to effectively predict drug-drug interactions. Currently, deep learning and knowledge graph techniques which can effectively extract features of entities have been widely utilized to develop DDI prediction methods. In this research, we aim to systematically review DDI prediction researches applying deep learning and graph knowledge. The available biomedical data and public databases related to drugs are firstly summarized in this review. Then, we discuss the existing drug-drug interactions prediction methods which have utilized deep learning and knowledge graph techniques and group them into three main classes: deep learning-based methods, knowledge graph-based methods, and methods that combine deep learning with knowledge graph. We comprehensively analyze the commonly used drug related data and various DDI prediction methods, and compare these prediction methods on benchmark datasets. Finally, we briefly discuss the challenges related to drug-drug interactions prediction, including asymmetric DDIs prediction and high-order DDI prediction.
Collapse
Affiliation(s)
- Huimin Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Weijie Yin
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Zhengzhou, China
| | - Ge Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Wenjuan Liang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Junwei Luo
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Zhengzhou, China
| |
Collapse
|
66
|
Jafari H, Mahami-Oskouei M, Spotin A, Baradaran B, Shanehbandi D, Baghbanzadeh A, Alizadeh Z. MicroRNA-1 Inhibits the Growth of Breast Cancer Cells MDA-MB-231 and MCF-7 Treated with Hydatid Cyst Fluid. J Trop Med 2024; 2024:7474039. [PMID: 38504949 PMCID: PMC10950417 DOI: 10.1155/2024/7474039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024] Open
Abstract
Antigens in hydatid cyst fluid (HCF) have been discovered to bear a significant resemblance to antigens present in cancer cells. MicroRNA-1 (miR-1) is a well-known member of the tumor inhibitor miRNA family and has been shown to have pro-apoptotic and tumor-inhibitory functions. This study aimed to evaluate the ability of HCF to prevent breast cancer and to explore the underlying mechanisms that affect cancer cells. For this study, MDA-MB-231 and MCF-7 breast cancer cells were cultured and divided into two groups: one group received HCF treatment and the other group was untreated and served as the control group. The cytotoxicity and cell viability of various HCF concentrations on breast cancer cells were evaluated using the MTT assay. In addition, the expression level of miR-1 in HCF-treated and untreated breast cancer cells was analyzed using qRT-PCR. The study found that HCF treatment reduced the growth of MDA-MB-231 and MCF-7 breast cancer cells, indicating that it was cytotoxic to the cells. Specifically, the IC50 concentration of HCF after 24 hours of treatment was 7.32 µg/mL for MDA-MB-231 cells and 13.63 µg/mL for MCF-7 cells. In addition, qRT-PCR analysis revealed that the expression level of miR-1 was significantly increased in HCF-treated MDA-MB-231 (P=0.0203) and MCF-7 (P=0.0394) cell lines compared to untreated controls. Although HCF has been shown to inhibit the growth of breast cancer cells and to upregulate miR-1, a key tumor suppressor in cancer cells, the specific mechanisms responsible for this effect remain unclear. Further studies are needed to fully understand the molecular pathways underlying HCF's antitumor activity and its potential as a therapeutic agent in cancer therapy.
Collapse
Affiliation(s)
- Hadis Jafari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Mahami-Oskouei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Spotin
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Alizadeh
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
67
|
Liu Z, Wang J, Xie S, Zhang B, Yuan Y, Fu H, Hao H, Sun L, Yuan S, Ding J, Yu H, Yang M. Lasiokaurin Regulates PLK1 to Induce Breast Cancer Cell G2/M Phase Block and Apoptosis. J Cancer 2024; 15:2318-2328. [PMID: 38495493 PMCID: PMC10937283 DOI: 10.7150/jca.93621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Aim of the study: To investigate the anti-tumor effects of Lasiokaurin on breast cancer and explore its underlying molecular mechanism. Materials and methods: In this study, MTT assay, plate colony formation assays, soft agar assay, and EdU assay were employed to evaluate the anti-proliferation effects of LAS. Apoptosis and cell cycle distribution were detected by flow cytometry. The molecular mechanism was predicted by performing RNA sequencing and verified by using immunoblotting assays. Breast cancer organiods derived from patient-derived xenografts model and MDA-MB-231 xenograft mouse model were established to assess the effect of LAS. Results: Our study showed that LAS treatment significantly suppressed cell viability of 5 breast cancer cell lines, with the IC50 value of approximately 1-5 μM. LAS also inhibitied the clonogenic ability and DNA synthesis of breast cancer cells, Moreover, LAS induced apoptosis and G2/M cell cycle arrest in SK-BR-3 and MDA-MB-231 cells. Notably, transcriptomic analysis predicted the mechanistic involvement of PLK1 in LAS-suppressed breast cancer progression. Our experiment data further verified that LAS reduced PLK1 mRNA and protein expression in breast cancer, accompanied by downregulating CDC25C and AKT phosphorylation. Ultimately, we confirmed that LAS inhibit breast cancer growth via inhibiting PLK1 pathway in vivo. Conclusions: Collectively, our findings revealed that LAS inhibits breast cancer progression via regulating PLK1 pathway, which provids scientific evidence for the use of traditional Chinese medicine in cancer therapy.
Collapse
Affiliation(s)
- Zhengrui Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Jia Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Siman Xie
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Benteng Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Yan Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Huaizi Fu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Hongyun Hao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| | - Jian Ding
- Chinese Academy of Sciences Shanghai Institute of Materia Medica, Shanghai, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Mei Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- National key laboratory for multi-target natural drugs, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
68
|
Pengnam S, Jitkaroon W, Srisuphan R, Wongprayoon P, Rayanil KO, Charoensuksai P. Furanocoumarin compounds isolated from Dorstenia foetida potentiate irinotecan anticancer activity against colorectal cancer cells. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:67-79. [PMID: 38554381 DOI: 10.2478/acph-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 04/01/2024]
Abstract
Although the anticancer activity of Dorstenia foetida was already observed, the chemical entity responsible for this activity remained unidentified. In this study, the cytotoxic activity of two furanocoumarin compounds, i.e., 5-methoxy--3-(3-methyl-2,3-dihydroxybutyl)-psoralen (1) and 5-methoxy-3-(3-methyl-2,3-dihydroxybutyl)-psoralen diacetate (2) isolated from ethyl acetate fraction of D. foetida (whole plant) was investigated in several cancer cell lines including HN22, MDA-MB-231, HCT116, and HT29. The results revealed that compound 2 exhibited cytotoxic activity, particularly against colorectal cancer cell lines HCT116 and HT29. The interplay between compound 2 and irinotecan (Iri) showed synergism against HCT116, which was analyzed by CompuSyn software. The simulation revealed that, at the molar ratio of Iri:2 of 1:40, the concentration predicted to achieve a 90 % inhibitory effect when used in the combination would be ~28- and ~4-fold lower than the concentration of compound 2 and Iri, resp., when used individually. Finally, the percentage of apoptotic cells in the HCT116 line treated with the combination was markedly higher than in the cells treated with the individual agent (60 % apoptotic cells for the combination compared to 17 and 45 % for Iri and compound 2 monotherapy, resp). In conclusion, our results identified compound 2 as a plant-derived compound exhibiting anticancer properties that can act synergistically with Iri and warranted further research to assess the potential of this synergism for colorectal cancer treatment.
Collapse
Affiliation(s)
- Supusson Pengnam
- Department of Biomedicine and Health Informatics, Green Innovations Group (PDGIG), Faculty of Pharmacy Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Watcharapa Jitkaroon
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Roongtiwa Srisuphan
- Bioactives from Natural Resources Research Collaboration for Excellence in Pharmaceutical Sciences (BNEP) Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000 Thailand
| | - Pawaris Wongprayoon
- Department of Biomedicine and Health Informatics and Bioactives from Natural Resources Research Collaboration for Excellence in Pharmaceutical Sciences (BNEP), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000 Thailand
| | - Kanok-On Rayanil
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Purin Charoensuksai
- Department of Biomedicine and Health Informatics and Bioactives from Natural Resources Research Collaboration for Excellence in Pharmaceutical Sciences (BNEP), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000 Thailand
| |
Collapse
|
69
|
Taoma K, Ruengjitchatchawalya M, Liangruksa M, Laomettachit T. Boolean modeling of breast cancer signaling pathways uncovers mechanisms of drug synergy. PLoS One 2024; 19:e0298788. [PMID: 38394152 PMCID: PMC10889607 DOI: 10.1371/journal.pone.0298788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Breast cancer is one of the most common types of cancer in females. While drug combinations have shown potential in breast cancer treatments, identifying new effective drug pairs is challenging due to the vast number of possible combinations among available compounds. Efforts have been made to accelerate the process with in silico predictions. Here, we developed a Boolean model of signaling pathways in breast cancer. The model was tailored to represent five breast cancer cell lines by integrating information about cell-line specific mutations, gene expression, and drug treatments. The models reproduced cell-line specific protein activities and drug-response behaviors in agreement with experimental data. Next, we proposed a calculation of protein synergy scores (PSSs), determining the effect of drug combinations on individual proteins' activities. The PSSs of selected proteins were used to investigate the synergistic effects of 150 drug combinations across five cancer cell lines. The comparison of the highest single agent (HSA) synergy scores between experiments and model predictions from the MDA-MB-231 cell line achieved the highest Pearson's correlation coefficient of 0.58 with a great balance among the classification metrics (AUC = 0.74, sensitivity = 0.63, and specificity = 0.64). Finally, we clustered drug pairs into groups based on the selected PSSs to gain further insights into the mechanisms underlying the observed synergistic effects of drug pairs. Clustering analysis allowed us to identify distinct patterns in the protein activities that correspond to five different modes of synergy: 1) synergistic activation of FADD and BID (extrinsic apoptosis pathway), 2) synergistic inhibition of BCL2 (intrinsic apoptosis pathway), 3) synergistic inhibition of MTORC1, 4) synergistic inhibition of ESR1, and 5) synergistic inhibition of CYCLIN D. Our approach offers a mechanistic understanding of the efficacy of drug combinations and provides direction for selecting potential drug pairs worthy of further laboratory investigation.
Collapse
Affiliation(s)
- Kittisak Taoma
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- School of Information Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Marasri Ruengjitchatchawalya
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Biotechnology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Monrudee Liangruksa
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Teeraphan Laomettachit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Theoretical and Computational Physics Group, Center of Excellence in Theoretical and Computational Science, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
70
|
Liu M, Srivastava G, Ramanujam J, Brylinski M. SynerGNet: A Graph Neural Network Model to Predict Anticancer Drug Synergy. Biomolecules 2024; 14:253. [PMID: 38540674 PMCID: PMC10967862 DOI: 10.3390/biom14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 01/03/2025] Open
Abstract
Drug combination therapy shows promise in cancer treatment by addressing drug resistance, reducing toxicity, and enhancing therapeutic efficacy. However, the intricate and dynamic nature of biological systems makes identifying potential synergistic drugs a costly and time-consuming endeavor. To facilitate the development of combination therapy, techniques employing artificial intelligence have emerged as a transformative solution, providing a sophisticated avenue for advancing existing therapeutic approaches. In this study, we developed SynerGNet, a graph neural network model designed to accurately predict the synergistic effect of drug pairs against cancer cell lines. SynerGNet utilizes cancer-specific featured graphs created by integrating heterogeneous biological features into the human protein-protein interaction network, followed by a reduction process to enhance topological diversity. Leveraging synergy data provided by AZ-DREAM Challenges, the model yields a balanced accuracy of 0.68, significantly outperforming traditional machine learning. Encouragingly, augmenting the training data with carefully constructed synthetic instances improved the balanced accuracy of SynerGNet to 0.73. Finally, the results of an independent validation conducted against DrugCombDB demonstrated that it exhibits a strong performance when applied to unseen data. SynerGNet shows a great potential in detecting drug synergy, positioning itself as a valuable tool that could contribute to the advancement of combination therapy for cancer treatment.
Collapse
Affiliation(s)
- Mengmeng Liu
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (M.L.)
| | - Gopal Srivastava
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - J. Ramanujam
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (M.L.)
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
71
|
Piergentili R, Marinelli E, Cucinella G, Lopez A, Napoletano G, Gullo G, Zaami S. miR-125 in Breast Cancer Etiopathogenesis: An Emerging Role as a Biomarker in Differential Diagnosis, Regenerative Medicine, and the Challenges of Personalized Medicine. Noncoding RNA 2024; 10:16. [PMID: 38525735 PMCID: PMC10961778 DOI: 10.3390/ncrna10020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Breast Cancer (BC) is one of the most common cancer types worldwide, and it is characterized by a complex etiopathogenesis, resulting in an equally complex classification of subtypes. MicroRNA (miRNA or miR) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to tumor development and angiogenesis in different types of cancer. Recently, complex interactions among coding and non-coding RNA have been elucidated, further shedding light on the complexity of the roles these molecules fulfill in cancer formation. In this context, knowledge about the role of miR in BC has significantly improved, highlighting the deregulation of these molecules as additional factors influencing BC occurrence, development and classification. A considerable number of papers has been published over the past few years regarding the role of miR-125 in human pathology in general and in several types of cancer formation in particular. Interestingly, miR-125 family members have been recently linked to BC formation as well, and complex interactions (competing endogenous RNA networks, or ceRNET) between this molecule and target mRNA have been described. In this review, we summarize the state-of-the-art about research on this topic.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy;
| | - Gaspare Cucinella
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Alessandra Lopez
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Gabriele Napoletano
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| |
Collapse
|
72
|
Alves RR, Marques VA, da Silva WA, Freitas-Junior R, da Cruz AM, Del Vecchio FB, Rosa VDL, Vieira CA. Effects of chemotherapy treatment on muscle strength indicators, functional capacity and biopsychosocial aspects of women with breast cancer. Am J Cancer Res 2024; 14:762-773. [PMID: 38455416 PMCID: PMC10915317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/04/2024] [Indexed: 03/09/2024] Open
Abstract
Evidences on the effects of chemotherapy treatment cycles on measures of muscle, mental state, social and cognitive performance are scarce. The objective of this study was to analyze the effects of chemotherapy cycles on muscle strength and activation, functional capacity, quality of life, fatigue and anxiety of women with breast cancer. Therefore, twenty-two women divided into a treatment group (n = 10; 46.6 ± 9.6 years) and control group (n = 12; 51.6 ± 7.0 years) participated in the study. Analysis of muscle performance, quality of life, fatigue and anxiety after the 2nd and 4th cycle of chemotherapy with anthracyclines were performed in women with breast cancer (TRA) and compared to healthy women (CTR). Two-way ANOVA was used to compare the variance of the means and the significance level was set as P≤0.05. The results showed Differences in the muscular activation of the vastus mediallis between the groups at post time (P = 0.038), as well as in the sit and stand test in the baseline (P<0.001) and post moment (P<0.001). Functional capacity performance was different between baseline (P<0.001) and post-time (P<0.001) groups. Additionally, the TRA group worsened the quality of life in the domains of functional capacity (P<0.001) and limitation of physical aspects (P = 0.002), besides presenting negative changes in fatigue. Thus, anthracycline chemotherapy cycles reduce muscular performance and affect biopsychosocial variables in women with breast cancer.
Collapse
Affiliation(s)
- Rafael Ribeiro Alves
- College of Physical Education and Dance, Federal University of GoiasGoias, Brazil
| | - Vitor Alves Marques
- College of Physical Education and Dance, Federal University of GoiasGoias, Brazil
| | - Weder Alves da Silva
- College of Physical Education and Dance, Federal University of GoiasGoias, Brazil
| | | | | | | | | | | |
Collapse
|
73
|
Chen L, Liu Q, Tan C, Wu T, Wu M, Tan X, Liu J, Wang J. The Age-Male-Albumin-Bilirubin-Platelets (aMAP) Risk Score Predicts Liver Metastasis Following Surgery for Breast Cancer in Chinese Population: A Retrospective Study. Immunotargets Ther 2024; 13:75-94. [PMID: 38352235 PMCID: PMC10861995 DOI: 10.2147/itt.s446545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Objective The current study is conducted to investigate the potential prognostic value of the age-male-albumin-bilirubin-platelets (aMAP) score in breast cancer patients with liver metastasis after surgery. Methods This is a retrospective study of 178 breast cancer patients who developed liver metastasis after surgery. These patients were treated and followed up from 2000 to 2018 at our hospital. The aMAP risk score was estimated in accordance with the following formula: . The optimal cutoff value of the aMAP was evaluated via X-tile. Kaplan-Meier, Log-rank and Cox proportional hazards regression models were applied to determine the clinical influence of the aMAP score on the survival outcomes. The nomogram models were established by multivariate analyses. The calibration curves and decision curve analysis were applied to evaluate the estimated performance of the nomogram models. Results A total of 178 breast cancer patients were divided into low aMAP score group (<47.6) and high aMAP score group (≥47.6) via X-tile plots. The aMAP score was a potential prognostic factor in multivariate analysis. The median disease free survival (p=0.0013) and overall survival (p=0.0003) in low aMAP score group were longer than in high aMAP score group. The nomograms were constructed to predict the DFS with a C-index of 0.722 (95% CI, 0.673-0.771), and the OS with a C-index of 0.708 (95% CI, 0.661-0.755). The aMAP-based nomograms had good predictive performance. Conclusion The aMAP score is a potential prognostic factor in breast cancer with liver metastasis after surgery. The aMAP score-based nomograms were conducive to discriminate patients at high risks of liver metastasis and develop adjuvant treatment and prevention strategies.
Collapse
Affiliation(s)
- Li Chen
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Qiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Chunlei Tan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Tiangen Wu
- Department of Hepatobiliary&Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Meng Wu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, People’s Republic of China
| | - Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, People’s Republic of China
| | - Jinwen Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| |
Collapse
|
74
|
Bahreyni A, Mohamud Y, Ashraf Nouhegar S, Zhang J, Luo H. Synergistic Viro-chemoimmunotherapy in Breast Cancer Enabled by Bioengineered Immunostimulatory Exosomes and Dual-Targeted Coxsackievirus B3. ACS NANO 2024; 18:4241-4255. [PMID: 38278522 PMCID: PMC10851665 DOI: 10.1021/acsnano.3c09491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Breast cancer's immunosuppressive environment hinders effective immunotherapy, but oncolytic viruses hold promise for addressing this challenge by targeting tumor cells and altering the microenvironment. Yet, neutralizing antibodies and immune clearance impede their clinical utility. This study explored microRNA-modified coxsackievirus B3 (miR-CVB3), an innovative oncolytic virus, and its potential in breast cancer treatment. It investigated miR-CVB3's impact on immune-related proteins and utilized exosomes as both protective shields and delivery carriers. Results demonstrated miR-CVB3's capacity to reshape immune-related protein profiles toward a more immunostimulatory state and enhance exosome-mediated immune cell activation. Notably, cancer cell-released exosomes encapsulating miR-CVB3 (ExomiR-CVB3) maintained its antitumor cytotoxicity and bolstered its immunostimulatory effects. Moreover, ExomiR-CVB3 shielded miR-CVB3 from neutralizing antibodies and rapid immune clearance when it was systemically administered. Building on these findings, ExomiR-CVB3 was engineered with the AS1411 aptamer and doxorubicin (ExomiR-CVB3/DoxApt), enhancing therapeutic efficacy. This notable approach, combining genomic modification, aptamer surface decoration, and doxorubicin addition, demonstrated safe delivery of CVB3 to cancer cells. Comprehensive in vitro and in vivo analyses revealed selective breast cancer cell targeting, cell death induction, and significant immune cell infiltration within the tumor microenvironment while sparing healthy organs. In summary, this study highlights ExomiR-CVB3/DoxApt as a pioneering breast cancer treatment strategy adaptable for diverse cancer types, offering a potent and versatile approach to reshaping cancer immunotherapy.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre
for Heart Lung Innovation, St Paul’s
Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department
of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Yasir Mohamud
- Centre
for Heart Lung Innovation, St Paul’s
Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department
of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Sanaz Ashraf Nouhegar
- Centre
for Heart Lung Innovation, St Paul’s
Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Jingchun Zhang
- Centre
for Heart Lung Innovation, St Paul’s
Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department
of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre
for Heart Lung Innovation, St Paul’s
Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department
of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
75
|
Nave O, Shor Y, Bar R, Segal EE, Sigron M. A new treatment for breast cancer using a combination of two drugs: AZD9496 and palbociclib. Sci Rep 2024; 14:1307. [PMID: 38225243 PMCID: PMC10789805 DOI: 10.1038/s41598-023-48305-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/24/2023] [Indexed: 01/17/2024] Open
Abstract
In this study, we examined a mathematical model of breast cancer (BC) treatment that combines an oral oestrogen receptor inhibitor, AZD9496 with Palbociclib, a selective inhibitor of cyclin- dependent kinases CDK4 and CDK6. Treatment is described by analytical functions that enable us to control the dosage and time interval of the treatment, thus personalising the treatment for each patient. Initially, we investigated the effect of each treatment separately, and finally, we investigated the combination of both treatments. By applying numerical simulations, we confirmed that the combination of AZD9496 with palbociclib was the optimal treatment for BC. The dosage of AZD9496 increased and decreased throughout the treatment period, while the intervals were constant between treatments. Palbociclib changed almost cyclically, whereas the time intervals remained constant. To investigate the mathematical model, we applied the singularly perturbed homotopy analysis method, which is a numerical algorithm. The significant advantage of this method is that the mathematical model does not have to contain a small parameter (as is standard in perturbation theory). However, it is possible to artificially introduce a small parameter into the system of equations, making it possible to study the model using asymptotic methods.
Collapse
Affiliation(s)
- Ophir Nave
- Department of Mathematics, Faculty of Science, Jerusalem College of Technology (JCT), Academic Level Centre, Jerusalem, Israel.
| | - Yehuda Shor
- Department of Computer Science, Jerusalem College of Technology (Mivchar), Jerusalem, Israel
| | - Raziel Bar
- Department of Computer Science, Jerusalem College of Technology (Mivchar), Jerusalem, Israel
| | - Eliezer Elimelech Segal
- Department of Computer Science, Jerusalem College of Technology (Mivchar), Jerusalem, Israel
| | - Moriah Sigron
- Department of Mathematics, Faculty of Science, Jerusalem College of Technology (JCT), Academic Level Centre, Jerusalem, Israel
| |
Collapse
|
76
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
77
|
Hassan AL-Saeedi R, Khalaj-Kondori M, Hosseinpour Feizi MA, Hajavi J. DOX-PLGA Nanoparticles Effectively Suppressed the Expression of Pro-Inflammatory Cytokines TNF-a, IL-6, iNOS, and IL-1β in MCF-7 Breast Cancer Cell Line. Rep Biochem Mol Biol 2024; 12:530-539. [PMID: 39086585 PMCID: PMC11288233 DOI: 10.61186/rbmb.12.4.530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/14/2024] [Indexed: 08/02/2024]
Abstract
Background Inflammation contributes to cancer pathobiology through different mechanisms. Higher levels of pro-inflammatory cytokines can lead to hyperinflammation and promote cancer development and metastasis. For cancer treatment, Doxorubicin (DOX) can be encapsulated into the poly-lactic-glycolic acid (PLGA) nanoparticles. This study aimed to investigate the impact of doxorubicin-loaded PLGA nanoparticles (DOX-PLGA NP) on the expression of pro-inflammatory genes TNF-α, IL-6, iNOS, and IL-1β in the MCF-7 cells. Methods The DOX-PLGA NP was prepared by loading doxorubicin into PLGA and characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM). The cytotoxic effect of the nanoparticles was determined by the MTT assay, and their impacts on the expression of pro-inflammatory genes were assessed by qRT-PCR. Results The encapsulation efficiency and loading capacity were 60±1.5 and 1.13±0.21 percent, respectively. The zeta potential and mean DOX-PLGA nanoparticle size were -18±0.550 mV and 172±55.6 nm, respectively. The 50% inhibitory concentration (IC50) of the DOX-PLGA NP on MCF-7 cell viability was 24.55 µg/mL after 72 hours of treatment. The qRT-PCR results revealed that the 20 µg/mL concentration of the DOX-PLGA NP significantly suppressed the expression of the pro-inflammatory genes TNF-α, IL-6, iNOS, and IL-1β compared to DOX alone (20 µg/mL). Additionally, the suppression effect of DOX-PLGA NP on the expression of these pro-inflammatory genes was dose-dependent. Conclusions These results show that DOX-PLGA NP efficiently suppressed the expression of pro-inflammatory genes. Furthermore, encapsulation of DOX into PLGA nanoparticles significantly improved the effectiveness of DOX in suppressing pro-inflammatory genes in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Rawan Hassan AL-Saeedi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | | - Jafar Hajavi
- Department of Microbiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Science, Gonabad, Iran.
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
78
|
Berti FCB, Tofolo MV, Nunes-Souza E, Marchi R, Okano LM, Ruthes M, Rosolen D, Malheiros D, Fonseca AS, Cavalli LR. Extracellular vesicles-associated miRNAs in triple-negative breast cancer: from tumor biology to clinical relevance. Life Sci 2024; 336:122332. [PMID: 38070862 DOI: 10.1016/j.lfs.2023.122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Breast cancer (BC), a heterogeneous group of diseases, is the most frequent type and the leading cause of cancer-related death among women worldwide. Tumor heterogeneity directly impacts cancer progression and treatment, as evidenced by the patients´ diverse prognosis and treatment responses across the distinct molecular subtypes. Triple-negative breast cancer (TNBC), which accounts for 10-20% of all diagnosed BC cases, is an aggressive BC subtype with a challenging prognosis. Current treatment options include systemic chemotherapy and/or target therapies based on PARP and PD-L1 inhibitors for eligible patients. MicroRNAs (miRNAs) are important regulatory non-coding RNAs (ncRNAs) in TNBC tumorigenesis. These molecules are present both intracellularly and released into biofluids, packaged into extracellular vesicles (EVs). Emerging evidence indicates that EVs-associated miRNAs (EVs-miRNAs), transferred from parental to recipient cells, are key mediators of cell-to-cell communication. Considering their stability and abundance in several biofluids, these molecules may reflect the epigenomic composition of their tumors of origin and contribute to mediate tumorigenesis, similar to their intracellular counterparts. This review provides the current knowledge on EVs-miRNAs in the TNBC subtype, focusing on their role in regulating mRNA targets involved in tumor phenotypes and their clinical relevance as promising biomarkers in liquid biopsies.
Collapse
Affiliation(s)
| | - Maria Vitoria Tofolo
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil.
| | - Emanuelle Nunes-Souza
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil.
| | - Rafael Marchi
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil.
| | - Larissa Miyuki Okano
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil.
| | - Mayara Ruthes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil.
| | - Daiane Rosolen
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil.
| | - Danielle Malheiros
- Department of Genetics, Universidade Federal do Paraná, Curitiba 80060-000, Brazil.
| | - Aline Simoneti Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil.
| | - Luciane Regina Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil; Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA.
| |
Collapse
|
79
|
Marwah H, Dewangan HK. Advancements in Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Breast Cancer Therapy. Curr Pharm Des 2024; 30:2922-2936. [PMID: 39150028 DOI: 10.2174/0113816128319233240725103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 08/17/2024]
Abstract
Solid Lipid Nanocarriers (SLNs) offer a promising avenue for breast cancer treatment, a disease that accounts for 12.5% of global cancer cases. Despite strides in combined therapies (surgery, chemotherapy, radiation, and endocrine therapy), challenges like systemic toxicity, drug resistance, and adverse effects persist. The manuscript offers several novel contributions to the field of breast cancer treatment through the use of SLNs, and these are innovative drug delivery systems, multifunctionality, and biocompatibility, the potential to overcome drug resistance, integration with emerging therapies, focus on personalized medicine, ongoing and future research directions and potential for reduced side effects. SLNs present a novel strategy due to their unique physicochemical properties. They can encapsulate both hydrophilic and hydrophobic drugs, ensuring controlled release and targeted delivery, thus enhancing solubility and bioavailability and reducing side effects. The multifunctional nature of SLNs improves drug delivery while their biocompatibility supports their potential in cancer therapy. Challenges for pharmacists include maintaining stability, effective drug loading, and timed delivery. Combining SLNs with emerging therapies like gene and immunotherapy holds promise for more effective breast cancer treatments. SLNs represent a significant advancement, providing precise drug delivery and fewer side effects, with the potential for overcoming drug resistance. Ongoing research will refine SLNs for breast cancer therapy, targeting cells with minimal side effects and integrating with other treatments for comprehensive approaches. Advances in nanotechnology and personalized medicine will tailor SLNs to specific breast cancer subtypes, enhancing effectiveness. Clinical trials and new treatment developments are crucial for realizing SLNs' full potential in breast cancer care. In conclusion, SLNs offer a transformative approach to breast cancer treatment, addressing issues of drug delivery and side effects. Ongoing research aims to optimize SLNs for targeted therapy, potentially revolutionizing breast cancer care and providing hope for patients.
Collapse
Affiliation(s)
- Harneet Marwah
- University Institute of Pharma Sciences (UIPS), Chandigarh University, NH-95 Chandigarh Ludhiana Highway, Mohali, Punjab, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University, NH-95 Chandigarh Ludhiana Highway, Mohali, Punjab, India
| |
Collapse
|
80
|
Deb S, Hopefl R. Simulation of drug-drug interactions between breast cancer chemotherapeutic agents and antiemetic drugs. Daru 2023; 31:95-105. [PMID: 37223851 PMCID: PMC10624783 DOI: 10.1007/s40199-023-00463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Chemotherapy-induced nausea and vomiting are commonly experienced side effects in breast cancer (BCa) patients. Antiemetic drugs used in BCa treatment are either inhibitors or inducers of cytochrome P450 (CYP) enzymes, while anticancer drugs are metabolized by CYPs. OBJECTIVES The purpose of the present work was to evaluate in silico drug-drug interaction (DDI) potential between BCa chemotherapeutic drugs and antiemetic agents. METHODS The Drug-Drug Interaction™ module of GastroPlus™ was employed to assess CYP-related interactions between antiemetic and anticancer therapy combinations. The CYP inhibitory or inducing parameters (IC50, Ki, EC50) used in simulations were obtained from the literature. RESULTS Analyses of twenty-three BCa drugs indicated that 22% of the chemotherapeutic drugs do not need an antiemetic agent due to their low emetogenicity, whereas 30% of the anticancer drugs are not metabolized by CYPs. The remaining eleven anticancer drugs metabolized by CYPs generated ninety-nine combinations with nine antiemetics. Simulation of DDIs suggest that about half of the pairs did not demonstrate any potential for DDI, whereas 30%, 10%, and 9% of the pairs showed weak, moderate, and strong interaction potential, respectively. In the present study, netupitant was the only antiemetic that showed strong inhibitory interactions (predicted AUC ratio > 5) with CYP3A4-metabolzied anticancer therapies (e.g., docetaxel, ribociclib, olaparib). Moderate to no interactions were observed with ondansetron, aprepitant, rolapitant, and dexamethasone in combination with anticancer agents. CONCLUSION It is critical to recognize that these interactions can get amplified in cancer patients because of the severity of the disease and chemotherapy toxicities. Clinicians need to be aware of the DDI likelihood of the drug combinations used in BCa treatment.
Collapse
Affiliation(s)
- Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| | - Robert Hopefl
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA
| |
Collapse
|
81
|
Zeng Y, Liao D, Kong X, Huang Q, Zhong M, Liu J, Nezamzadeh-Ejhieh A, Pan Y, Song H. Current status and prospect of ZIF-based materials for breast cancer treatment. Colloids Surf B Biointerfaces 2023; 232:113612. [PMID: 37898043 DOI: 10.1016/j.colsurfb.2023.113612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Breast cancer, one of the three most life-threatening cancers in modern times, must be explored for treatments with low side effects and practical efficacy. Metal organic framework materials (MOFs) is made by metal ions as the center for point and organic ligands as a bridge connecting a new type of porous nano-materials, among them, the zinc base zeolite imidazole skeleton material series (ZIFs) because of its excellent biocompatibility and pH slow controlled release ability, is widely used in the tumor microenvironment in basic research and achieved remarkable curative effect. Inspired by this, in this review, we focus on the recent research progress on the application of ZIFs in the treatment of breast cancer, mainly studying the structure of ZIFs such as ZIF-8, ZIF-90 and ZIF-67 and their application in novel therapies for breast cancer treatment, such as targeted drug delivery, photothermal therapy, immunotherapy and gene therapy.We will more fully demonstrate the potential of zif in breast cancer treatment, hoping to provide an avenue for exploring breast cancer treatment.
Collapse
Affiliation(s)
- Yana Zeng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523700, China; Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Xiangyang Kong
- Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Qianying Huang
- Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Muyi Zhong
- Breast Department, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, China.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523700, China; Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | | | - Ying Pan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523700, China; Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| | - Hailiang Song
- Department of General Surgery, Dalang Hospital, Dongguan, Guangdong 523770, China.
| |
Collapse
|
82
|
Keshavarz S, Wall JR, Keshavarz S, Vojoudi E, Jafari-Shakib R. Breast cancer immunotherapy: a comprehensive review. Clin Exp Med 2023; 23:4431-4447. [PMID: 37658246 DOI: 10.1007/s10238-023-01177-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Cancer remains a major health problem despite numerous new medical interventions that have been introduced in recent years. One of the major choices for cancer therapy is so-called adoptive cell therapy (ACT). ACT can be performed using both innate immune cells, including dendritic cells (DCs), natural killer (NK) cells, and γδ T cells and acquired immune T cells. It has become possible to utilize these cells in both their native and modified states in clinical studies. Because of considerable success in cancer treatment, ACT now plays a role in advanced therapy protocols. Genetic engineering of autologous and allogeneic immune cells (T lymphocytes, NK cells, macrophages, etc.) with chimeric antigen receptors (CAR) is a powerful new tool to target specific antigens on cancer cells. The Food and Drug Administration (FDA) in the US has approved certain CAR-T cells for hematologic malignancies and it is hoped that their use can be extended to incorporate a variety of cells, in particular NK cells. However, the ACT method has some limitations, such as the risk of rejection in allogeneic engrafts. Accordingly, numerous efforts are being made to eliminate or minimize this and other complications. In the present review, we have developed a guide to breast cancer (BC) therapy from conventional therapy, through to cell-based approaches, in particular novel technologies including CAR with emphasis on NK cells as a new and safer candidate in this field as well as the more recent aptamer technology, which can play a major role in BC immunotherapy.
Collapse
Affiliation(s)
- Samaneh Keshavarz
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Jack R Wall
- University of Notre Dame Australia, Sydney, Australia
| | - Somayeh Keshavarz
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Vojoudi
- Regenerative Medicine, Organ Procurement and Transplantation Multidisciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Reza Jafari-Shakib
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
83
|
Maugeri S, Sibbitts J, Privitera A, Cardaci V, Di Pietro L, Leggio L, Iraci N, Lunte SM, Caruso G. The Anti-Cancer Activity of the Naturally Occurring Dipeptide Carnosine: Potential for Breast Cancer. Cells 2023; 12:2592. [PMID: 37998326 PMCID: PMC10670273 DOI: 10.3390/cells12222592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine, possessing a multimodal pharmacodynamic profile that includes anti-inflammatory and anti-oxidant activities. Carnosine has also shown its ability to modulate cell proliferation, cell cycle arrest, apoptosis, and even glycolytic energy metabolism, all processes playing a key role in the context of cancer. Cancer is one of the most dreaded diseases of the 20th and 21st centuries. Among the different types of cancer, breast cancer represents the most common non-skin cancer among women, accounting for an estimated 15% of all cancer-related deaths in women. The main aim of the present review was to provide an overview of studies on the anti-cancer activity of carnosine, and in particular its activity against breast cancer. We also highlighted the possible advantages and limitations involved in the use of this dipeptide. The first part of the review entailed a brief description of carnosine's biological activities and the pathophysiology of cancer, with a focus on breast cancer. The second part of the review described the anti-tumoral activity of carnosine, for which numerous studies have been carried out, especially at the preclinical level, showing promising results. However, only a few studies have investigated the therapeutic potential of this dipeptide for breast cancer prevention or treatment. In this context, carnosine has shown to be able to decrease the size of cancer cells and their viability. It also reduces the levels of vascular endothelial growth factor (VEGF), cyclin D1, NAD+, and ATP, as well as cytochrome c oxidase activity in vitro. When tested in mice with induced breast cancer, carnosine proved to be non-toxic to healthy cells and exhibited chemopreventive activity by reducing tumor growth. Some evidence has also been reported at the clinical level. A randomized phase III prospective placebo-controlled trial showed the ability of Zn-carnosine to prevent dysphagia in breast cancer patients undergoing adjuvant radiotherapy. Despite this evidence, more preclinical and clinical studies are needed to better understand carnosine's anti-tumoral activity, especially in the context of breast cancer.
Collapse
Affiliation(s)
- Salvatore Maugeri
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Jay Sibbitts
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Vincenzo Cardaci
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
- Vita-Salute San Raffaele University, 20132 Milano, Italy
| | - Lucia Di Pietro
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
84
|
Huang G, Wu Y, Gan H, Chu L. Overexpression of CD2/CD27 could inhibit the activation of nitrogen metabolism pathways and suppress M2 polarization of macrophages, thereby preventing brain metastasis of breast cancer. Transl Oncol 2023; 37:101768. [PMID: 37666207 PMCID: PMC10480780 DOI: 10.1016/j.tranon.2023.101768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
OBJECTIVE Our study aimed to reveal the possible molecular mechanisms of CD2 and CD27 in influencing the tumor microenvironment of breast cancer (BC) brain metastasis based on the TCGA (The Cancer Genome Atlas) and SRA (Sequence Read Archive) databases. METHODS We calculated the proportions of tumor-infiltrating immune cells and the immune and stromal cell scores in 1222 BC samples from the TCGA-BRCA dataset, followed by identification of candidate DEGs. We further screened for BC brain metastasis-related DEGs in the BC brain metastasis dataset SUB12911144 from the SRA database. Finally, we established a mouse breast cancer brain metastasis model for in vivo validation. RESULTS We further screened two immune-regulatory DEGs (CD2 and CD27). GSEA analysis showed that the downregulation of CD2 and CD27 expression was closely related to the activation of nitrogen metabolism pathways. CIBERSORT algorithm analysis showed a correlation between the expression of 16 types of tumor-infiltrating immune cells and CD2 and 19 types of tumor-infiltrating immune cells and CD27. In addition, CD2 and CD27 expression were negatively associated with the proportion of M2 macrophages. In vivo experimental results demonstrated that overexpression of CD2/CD27 could suppress the M2 polarization of macrophages and inhibit breast cancer brain metastasis. CONCLUSION In the tumor microenvironment, overexpression of CD2/CD27 inhibited the activation of nitrogen metabolism pathways and suppressed M2 polarization of macrophages, thereby preventing brain metastasis of breast cancer.
Collapse
Affiliation(s)
- Guanyou Huang
- Department of Neurosurgery, The Second People's Hospital of Guiyang (Jinyang Hospital), No.547 Jinyang South Road, Guanshanhu District, Guiyang 550081, China.
| | - Yujuan Wu
- Department of Neurology, The Second People's Hospital of Guiyang (Jinyang Hospital), No.547 Jinyang South Road, Guanshanhu District, Guiyang 550081, China
| | - Hongchuan Gan
- Department of Neurosurgery, The Second People's Hospital of Guiyang (Jinyang Hospital), No.547 Jinyang South Road, Guanshanhu District, Guiyang 550081, China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| |
Collapse
|
85
|
Zhao J, Tian XC, Zhang JQ, Li TT, Qiao S, Jiang SL. Tribulus terrestris L. induces cell apoptosis of breast cancer by regulating sphingolipid metabolism signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155014. [PMID: 37639811 DOI: 10.1016/j.phymed.2023.155014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Tribulus terrestris L. (TT) was initially documented in Shen-Nong-Ben-Cao-Jing and has been used for thousands of years in China as a herb to calm liver, dispel melancholy and wind, promote blood circulation, improve eyesight, and relieve itching. Moreover, it was also used to treat breast cancer in ancient China. However, the pharmacological activities of TT extract on breast cancer have received little attention. PURPOSE In this study, we investigated the anti-breast cancer effects and possible mechanisms of action of this herbal drug. METHODS Network pharmacology analysis the study of network pharmacology was done to analyze the possibility of TT's anti-breast cancer effect. And then, molecular docking between TT7/TT8 and vascular endothelial growth factor receptor 2 (VEGFR2) were performed by Autodock software as well as the related protein expressions were analyzed by western blot to verify this effect. In vivo experiment: The mouse model of breast cancer was established by injection of 4T1 cells. Then drugs were intragastrically administered to the mice once daily for fourteen days. Body weight, tumor size, and tumor weight were recorded at the end of the experiment. Moreover, tumor inhibitory rate was calculated. Finally, pathological changes and apoptosis of breast cancer tissues were respectively evaluated by HE and Hoechst staining. Proteomics and metabonomics analyses: The tumor tissues were chosen to perform conjoint analysis. Firstly, differential proteins and metabolites were found. Furthermore, the functional analyses of them were analyzed by software. At the last, immunofluorescent staining of SGPP1, SPHK1 and p-SPHK1 in tumor tissue were done. RESULTS 12 active ingredients of TT, 127 targets of active ingredients, 15,253 targets of breast cancer, 1,225 targets of Ru yan, and 123 overlapping genes were obtained in the network pharmacology study. There was firm conjunction between TT7/TT8 and VEGFR2. Besides, tumor size and weight were markedly reduced in TT groups compared to the model group. The tumor inhibitory rate was more than 26% in TTM group. After drug treatment, many adipocytes and cracks between tumor and apoptosis were discovered. The western blot results showed that TT aqueous extract lowered the levels of VEGFR2, ERK1/2, p-ERK1/2 (Thr202, Tyr204) and Bcl2, while increasing the levels of Bax and the ratio of Bax/Bcl2. Furthermore, 495 differential proteins and 76 differential metabolites were found between TTM and model groups with the sphingolipid metabolism pathway being enriched. At last, TT treatment significantly reduced the levels of SGPP1, SPHK1 and p-SPHK1 in tumor tissue. CONCLUSIONS In conclusion, TT demonstrates therapeutic effects in a mouse model of breast cancer, and its mechanism of action involves the regulations of sphingolipid metabolism signaling pathways. This study lends credence to the pharmacological potential of TT extract as a breast cancer therapy.
Collapse
Affiliation(s)
- Jing Zhao
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Xin-Chen Tian
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Jia-Qi Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Tan-Tan Li
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Sen Qiao
- Hepatological Surgery Department, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Shu-Long Jiang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China.
| |
Collapse
|
86
|
Gupta P, Neupane YR, Aqil M, Kohli K, Sultana Y. Lipid-based nanoparticle-mediated combination therapy for breast cancer management: a comprehensive review. Drug Deliv Transl Res 2023; 13:2739-2766. [PMID: 37261602 DOI: 10.1007/s13346-023-01366-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Breast cancer due to the unpredictable and complex etiopathology combined with the non-availability of any effective drug treatment has become the major root of concern for oncologists globally. The number of women affected by the said disease state is increasing at an alarming rate attributed to environmental and lifestyle changes indicating at the exploration of a novel treatment strategy that can eradicate this aggressive disease. So far, it is treated by promising nanomedicine monotherapy; however, according to the numerous studies conducted, the inadequacy of these nano monotherapies in terms of elevated toxicity and resistance has been reported. This review, therefore, puts forth a new multimodal strategic approach to lipid-based nanoparticle-mediated combination drug delivery in breast cancer, emphasizing the recent advancements. A basic overview about the combination therapy and its index is firstly given. Then, the various nano-based combinations of chemotherapeutics involving the combination delivery of synthetic and herbal agents are discussed along with their examples. Further, the recent exploration of chemotherapeutics co-delivery with small interfering RNA (siRNA) agents has also been explained herein. Finally, a section providing a brief description of the delivery of chemotherapeutic agents with monoclonal antibodies (mAbs) has been presented. From this review, we aim to provide the researchers with deep insight into the novel and much more effective combinational lipid-based nanoparticle-mediated nanomedicines tailored specifically for breast cancer treatment resulting in synergism, enhanced antitumor efficacy, and low toxic effects, subsequently overcoming the hurdles associated with conventional chemotherapy.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, 52242, USA
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
- Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201308, India.
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
87
|
Kotsifaki A, Alevizopoulos N, Dimopoulou V, Armakolas A. Unveiling the Immune Microenvironment's Role in Breast Cancer: A Glimpse into Promising Frontiers. Int J Mol Sci 2023; 24:15332. [PMID: 37895012 PMCID: PMC10607694 DOI: 10.3390/ijms242015332] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC), one of the most widespread and devastating diseases affecting women worldwide, presents a significant public health challenge. This review explores the emerging frontiers of research focused on deciphering the intricate interplay between BC cells and the immune microenvironment. Understanding the role of the immune system in BC is critical as it holds promise for novel therapeutic approaches and precision medicine strategies. This review delves into the current literature regarding the immune microenvironment's contribution to BC initiation, progression, and metastasis. It examines the complex mechanisms by which BC cells interact with various immune cell populations, including tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs). Furthermore, this review highlights the impact of immune-related factors, such as cytokines and immune checkpoint molecules. Additionally, this comprehensive analysis sheds light on the potential biomarkers associated with the immune response in BC, enabling early diagnosis and prognostic assessment. The therapeutic implications of targeting the immune microenvironment are also explored, encompassing immunotherapeutic strategies and combination therapies to enhance treatment efficacy. The significance of this review lies in its potential to pave the way for novel therapeutic interventions, providing clinicians and researchers with essential knowledge to design targeted and personalized treatment regimens for BC patients.
Collapse
Affiliation(s)
| | | | | | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (N.A.); (V.D.)
| |
Collapse
|
88
|
Chen Y, Qi Y, Wang K. Neoadjuvant chemotherapy for breast cancer: an evaluation of its efficacy and research progress. Front Oncol 2023; 13:1169010. [PMID: 37854685 PMCID: PMC10579937 DOI: 10.3389/fonc.2023.1169010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) for breast cancer is widely used in the clinical setting to improve the chance of surgery, breast conservation and quality of life for patients with advanced breast cancer. A more accurate efficacy evaluation system is important for the decision of surgery timing and chemotherapy regimen implementation. However, current methods, encompassing imaging techniques such as ultrasound and MRI, along with non-imaging approaches like pathological evaluations, often fall short in accurately depicting the therapeutic effects of NAC. Imaging techniques are subjective and only reflect macroscopic morphological changes, while pathological evaluation is the gold standard for efficacy assessment but has the disadvantage of delayed results. In an effort to identify assessment methods that align more closely with real-world clinical demands, this paper provides an in-depth exploration of the principles and clinical applications of various assessment approaches in the neoadjuvant chemotherapy process.
Collapse
Affiliation(s)
- Yushi Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan, China
| | - Yu Qi
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan, China
| |
Collapse
|
89
|
Nanamiya R, Suzuki H, Kaneko MK, Kato Y. Development of an Anti-EphB4 Monoclonal Antibody for Multiple Applications Against Breast Cancers. Monoclon Antib Immunodiagn Immunother 2023; 42:166-177. [PMID: 37824755 DOI: 10.1089/mab.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptors are the largest receptor tyrosine kinase family. EphB4 is essential for cell adhesion and motility during embryogenesis. Pathologically, EphB4 is overexpressed and contributes to poor prognosis in various tumors. Therefore, specific monoclonal antibodies (mAbs) should be developed to predict the prognosis for multiple tumors with high EphB4 expression, including breast and gastric cancers. This study aimed to develop specific anti-EphB4 mAbs for multiple applications using the Cell-Based Immunization and Screening method. EphB4-overexpressed Chinese hamster ovary (CHO)-K1 (CHO/EphB4) cells were immunized into mice, and we established an anti-EphB4 mAb (clone B4Mab-7), which is applicable for flow cytometry, Western blot, and immunohistochemistry (IHC). B4Mab-7 reacted with endogenous EphB4-positive breast cancer cell line, MCF-7, but did not react with EphB4-knockout MCF-7 (BINDS-52) in flow cytometry. Dissociation constant (KD) values were determined to be 2.9 × 10-9 M and 1.3 × 10-9 M by flow cytometric analysis for CHO/EphB4 and MCF-7 cells, respectively. B4Mab-7 detected the EphB4 protein bands from breast cancer cells in Western blot, and stained breast cancer tissues in IHC. Altogether, B4Mab-7 is very useful for detecting EphB4 in various applications.
Collapse
Affiliation(s)
- Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
90
|
Zhang X, Mi ZH. Identification of potential diagnostic and prognostic biomarkers for breast cancer based on gene expression omnibus. World J Clin Cases 2023; 11:6344-6362. [PMID: 37900246 PMCID: PMC10600985 DOI: 10.12998/wjcc.v11.i27.6344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Breast cancer is regarded as a highly malignant neoplasm in the female population, posing a significant risk to women's overall well-being. The prevalence of breast cancer has been observed to rise in China, accompanied by an earlier age of onset when compared to Western countries. Breast cancer continues to be a prominent contributor to cancer-related mortality and morbidity among women, primarily due to its limited responsiveness to conventional treatment modalities. The diagnostic process is challenging due to the presence of non-specific clinical manifestations and the suboptimal precision of conventional diagnostic tests. There is a prevailing uncertainty regarding the most effective screening method and target populations, as well as the specificities and execution of screening programs. AIM To identify diagnostic and prognostic biomarkers for breast cancer. METHODS Overlapping differentially expressed genes were screened based on Gene Expression Omnibus (GSE36765, GSE10810, and GSE20086) and The Cancer Genome Atlas datasets. A protein-protein interaction network was applied to excavate the hub genes among these differentially expressed genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, as well as gene set enrichment analyses, were conducted to examine the functions of these genes and their potential mechanisms in the development of breast cancer. For clarification of the diagnostic and prognostic roles of these genes, Kaplan-Meier and Cox proportional hazards analyses were conducted. RESULTS This study demonstrated that calreticulin, heat shock protein family B member 1, insulin-like growth Factor 1, interleukin-1 receptor 1, Krüppel-like factor 4, suppressor of cytokine signaling 3, and triosephosphate isomerase 1 are potential diagnostic biomarkers of breast cancer as well as potential treatment targets with clinical implications. CONCLUSION The screening of biomarkers is of guiding significance for the diagnosis and prognosis of the diseases.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Pathology, HuLunBuir Peoples’s Hospital, HuLunBuir 010018, Nei Monggol Autonomous Region, China
| | - Zhi-Hui Mi
- Department of Research and Marketing, Inner Mongolia Di An Feng Xin Medical Technology Co., LTD, Huhhot 010010, Nei Monggol Autonomous Region, China
| |
Collapse
|
91
|
Soussi M, Hasselsweiller A, Gkika D. TRP Channels: The Neglected Culprits in Breast Cancer Chemotherapy Resistance? MEMBRANES 2023; 13:788. [PMID: 37755210 PMCID: PMC10536409 DOI: 10.3390/membranes13090788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Breast cancer is a major health concern worldwide, and resistance to therapies remains a significant challenge in treating this disease. In breast cancer, Transient Receptor Potential (TRP) channels are well studied and constitute key players in nearly all carcinogenesis hallmarks. Recently, they have also emerged as important actors in resistance to therapy by modulating the response to various pharmaceutical agents. Targeting TRP channels may represent a promising approach to overcome resistance to therapies in breast cancer patients.
Collapse
Affiliation(s)
| | | | - Dimitra Gkika
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.S.); (A.H.)
| |
Collapse
|
92
|
Zhang X, Liu H, Li N, Li J, Wang M, Ren X. A (Traditional Chinese Medicine) TCM-Inspired Doxorubicin Resistance Reversing Strategy: Preparation, Characterization, and Application of a Co-loaded pH-Sensitive Liposome. AAPS PharmSciTech 2023; 24:181. [PMID: 37697172 DOI: 10.1208/s12249-023-02630-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 09/13/2023] Open
Abstract
In this study, nano-strategy for combined medication of active compounds from traditional Chinese medicine herbs was proposed to achieve the synergistic effects of inhibiting the doxorubicin (DOX) resistance, reducing the cardio-toxicity, and improving the treatment efficacy simultaneously. Dihydroartemisinin (DHA) and tetrandrine (TET) were co-delivered for the first time to treat DOX resistance of breast cancer with multi-pathway mechanism. Tumor micro-environment sensitivity prescription was adopted to enhance the reversal effect of DOX resistance nearly 50 times (resistance index, RI was 46.70) and uptake ability. The DHA-TET pH-sensitive liposomes (DHA-TET pH-sensitive LPs) had a good spherical structure and a uniform dispersion structure with particle size, polydispersity index (PDI), and zeta potential of 112.20 ± 4.80 nm, 0.20 ± 0.02, and - 8.63 ± 0.74 Mv, and was stable until 14 days under the storage environment of 4°C and for 6 months at room temperature environment. With the DOX resistance reversing ability increased, the inhibition effect of DHA-TET pH-sensitive LPs on both MCF-7/ADR cells and MCF-7 cells was significantly enhanced; meanwhile, the toxicity on cardiac cell (H9c2) was lowered. Ferroptosis induced by the DHA was investigated showing that the intracellular reactive oxygen species (ROS) and lipid peroxidation were increased to promote the synergistic effect through the due-loaded nano-carrier, providing a promising alternative for future clinical application.
Collapse
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hua Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Na Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiayang Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meng Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
93
|
Okui N. Vaginal Laser Treatment for the Genitourinary Syndrome of Menopause in Breast Cancer Survivors: A Narrative Review. Cureus 2023; 15:e45495. [PMID: 37731685 PMCID: PMC10508706 DOI: 10.7759/cureus.45495] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 09/22/2023] Open
Abstract
Vulvovaginal atrophy (VVA) is a chronic condition resulting from reduced estrogen levels during menopause. The North American Menopause Society and the International Society for the Study of Women's Sexual Health suggested the term "genitourinary syndrome of menopause" (GSM) to indicate the broader aspects of VVA. Breast cancer treatments, such as chemotherapy and endocrine therapy, can induce early and abrupt menopausal symptoms, including GSM, which negatively affects sexual function and the quality of life of the survivors. Vaginal laser therapy has emerged as a safe and effective option for the management of GSM in breast cancer survivors (BCSs). Two main types of lasers, the non-ablative erbium:YAG laser and fractional microablative CO2 vaginal laser, have been evaluated for GSM treatment. While there are few randomized controlled trials (RCTs) on the subject of BCSs, a wealth of prospective and retrospective studies have highlighted the beneficial effects of vaginal laser therapy on the symptoms of VVA, vaginal health, sexual function, and overall quality of life. More comprehensive research is essential to confirm its enduring effectiveness and safety, with a focus on conducting standardized and meticulously controlled investigations. This study is a narrative review that summarizes clinical trials ranging from the earliest to the most recent ones on laser treatment for GSM in BCSs.
Collapse
Affiliation(s)
- Nobuo Okui
- Dentistry, Kanagawa Dental University, Yokosuka, JPN
| |
Collapse
|
94
|
Kucukbagriacik Y, Dastouri M, Yilmaz H, Altuntas EG. The apoptotic effect of the Lycopodium clavatum extracts on MCF-7 human breast cancer cells. Med Oncol 2023; 40:289. [PMID: 37658180 DOI: 10.1007/s12032-023-02159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/12/2023] [Indexed: 09/03/2023]
Abstract
Breast cancer is a significant health problem worldwide, and the search for effective treatments is critical. Side effects of cancer treatments such as surgery, radiotherapy, and chemotherapy reduce the patient's standard of living. Recently, natural compounds from plants have gained attention as potential anticancer agents due to their safety, low toxicity, and potential efficacy. Lycopodium Clavatum (LC) is an herb abundant in tropical regions and Europe and is known for its various medicinal properties. In this study, we investigated the cytotoxic and apoptotic effects of LC Water Extract (LC-WE) and LC Ethanol Extract (LC-EE) plant extracts on MCF-7 human breast cancer cells. Our results showed that LC treatment led to a dose and time-dependent cytotoxic effect on MCF-7 cells, indicating its potential as an anticancer agent against human breast cancer. Additionally, we observed that LC treatment activated apoptosis-related proteins, including BAX, Caspase-3, and Caspase-9. These results suggest that LC may induce apoptosis as a mechanism underlying its cytotoxic effect on MCF-7 human breast cancer cells. Previous studies have shown the anti-cancer potential of LC against different types of cancer. However, the anti-cancer effect of LC on human breast cancer cells has not been investigated to date. Therefore, our study provides novel insights into the potential of LC as an anti-cancer agent against breast cancer. Overall, our results highlight the potential of LC as a promising natural compound for breast cancer treatment.
Collapse
Affiliation(s)
- Yusuf Kucukbagriacik
- Department of Biophysics, Gulhane Faculty of Medicine, Health Sciences University, Ankara, Turkey
- Yozgat Bozok University, Medical School, Yozgat, Turkey
| | - Mohammadreza Dastouri
- Faculty of Medical Biology, School of Medicine, Ankara Medipol University, Ankara, Turkey.
| | - Humeyra Yilmaz
- Department of Medical Biology, Institute of Health Sciences, Ankara Yildirim Beyazit University, Ankara, Turkey
| | | |
Collapse
|
95
|
Xu Y, Chao L, Wang J, Sun Y, Li C. Effect of different chemotherapy schemes on early-stage breast cancer patients with Low HER-2 expression. Pak J Med Sci 2023; 39:1355-1360. [PMID: 37680804 PMCID: PMC10480763 DOI: 10.12669/pjms.39.5.7446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/07/2023] [Accepted: 06/18/2023] [Indexed: 09/09/2023] Open
Abstract
Objective To explore the effect of different chemotherapy schemes on the prognosis, immune function and adverse reactions of breast cancer patients with low HER-2 expression after surgery. Methods A retrospective analysis was carried out on the clinical data of 60 breast cancer patients with low HER-2 expression in Wuxi No.2 people's Hospital from January 2018 to December 2019. The enrolled patients were divided into two groups according to the different chemotherapy schemes. Patients in the DC group were treated with polyethylene glycol-coated liposome-encapsulated doxorubicin+cyclophosphamide, and those in the TC group were treated with TC (docetaxel+cyclophosphamide). Further comparison was performed on the difference in prognosis, immune function and adverse reaction between the two groups after different chemotherapy schemes. Results After four courses of treatment, the IgG, CD4+ and CD4+/CD8+ values in the DC group after treatment were higher than those before treatment, while the IgG, CD3+ and CD4+values in the TC group after treatment were lower than those before treatment(P<0.05). Meanwhile, the IgG, CD4+ and CD4+/CD8+ values in the DC group were better than those in the TC group after treatment(P<0.05). During the treatment, the adverse reactions of leukopenia, alopecia, nausea and vomiting in the DC group were significantly lower than those in the TC group(P<0.05). Conclusion The chemotherapy combination of liposome-encapsulated doxorubicin+cyclophosphamide can significantly improve immune function and greatly reduce the occurrence of adverse reactions in early-stage breast cancer patients with low HER-2 expression after surgery. It has the same effect as docetaxel+cyclophosphamide in improving the prognosis of patients.
Collapse
Affiliation(s)
- Yurui Xu
- Yurui Xu, Department of Breast and Thyroid, Wuxi No.2 People’s, Hospital Affiliated Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Lin Chao
- Lin Chao, Department of Breast and Thyroid, Wuxi No.2 People’s, Hospital Affiliated Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Jianyu Wang
- Jianyu Wang, Department of Breast and Thyroid, Wuxi No.2 People’s, Hospital Affiliated Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Yonghong Sun
- Yonghong Sun, Department of Breast and Thyroid, Wuxi No.2 People’s, Hospital Affiliated Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Chen Li
- Chen Li, Department of Breast and Thyroid, Wuxi No.2 People’s, Hospital Affiliated Nanjing Medical University, Wuxi 214002, Jiangsu, China
| |
Collapse
|
96
|
Passos CLA, Polinati RM, Ferreira C, Dos Santos NAN, Lima DGV, da Silva JL, Fialho E. Curcumin and melphalan cotreatment induces cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells. Sci Rep 2023; 13:13446. [PMID: 37596331 PMCID: PMC10439215 DOI: 10.1038/s41598-023-40535-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/11/2023] [Indexed: 08/20/2023] Open
Abstract
Breast cancer is the second most common type of cancer worldwide and the leading cause of cancer death in women. Dietary bioactive compounds may act at different stages of carcinogenesis, including tumor initiation, promotion, and progression. Spices have been used for thousands of years and have many bioactive compounds with chemopreventive and chemotherapeutic properties. Curcumin has a multitude of beneficial biological properties, including anti-inflammatory and anticancer effects. This study investigated the effects of cotreatment with curcumin and the chemotherapeutic drug melphalan in cultured MDA-MB-231 breast cancer cells. When used alone, both curcumin and melphalan had a cytotoxic effect on breast cancer cells. Combined treatment with 11.65 µM of curcumin and 93.95 µM of melphalan (CURC/MEL) reduced cell viability by 28.64% and 72.43% after 24 h and 48 h, respectively. CURC/MEL reduced the number of colony-forming units and increased ROS levels by 1.36-fold. CURC/MEL alter cell cycle progression, induce apoptosis, and upregulate caspases-3, -7, and -9, in MDA-MB-231 cells. Cotreatment with curcumin and melphalan have anti-breast cancer cells effects and represent a promising candidate for clinical testing.
Collapse
Affiliation(s)
- Carlos Luan A Passos
- Functional Foods Laboratory, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Madureira Polinati
- Functional Foods Laboratory, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christian Ferreira
- Functional Foods Laboratory, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Daniel Galinis V Lima
- Functional Foods Laboratory, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson Lima da Silva
- Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliane Fialho
- Functional Foods Laboratory, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição Josué de Castro, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, Cidade Universitária, Ilha do Fundão, Caixa Postal 68041, Rio de Janeiro, CEP 21941-590, Brazil.
| |
Collapse
|
97
|
Franchina M, Pizzimenti C, Fiorentino V, Martini M, Ricciardi GRR, Silvestris N, Ieni A, Tuccari G. Low and Ultra-Low HER2 in Human Breast Cancer: An Effort to Define New Neoplastic Subtypes. Int J Mol Sci 2023; 24:12795. [PMID: 37628975 PMCID: PMC10454084 DOI: 10.3390/ijms241612795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
HER2-low and ultra-low breast cancer (BC) have been recently proposed as new subcategories of HER2 BC, supporting a re-consideration of immunohistochemical negative scores of 0, 1+ and the 2+/in situ hybridization (ISH) negative phenotype. In the present review, we outline the criteria needed to exactly distinguish HER2-low and ultra-low BC. Recent clinical trials have demonstrated significant clinical benefits of novel HER2 directing antibody-drug conjugates (ADCs) in treating these groups of tumors. In particular, trastuzumab-deruxtecan (T-Dxd), a HER2-directing ADC, has been recently approved by the US Food and Drug Administration as the first targeted therapy to treat HER2-low BC. Furthermore, ongoing trials, such as the DESTINY-Breast06 trial, are currently evaluating ADCs in patients with HER2-ultra low BC. Finally, we hope that new guidelines may help to codify HER2-low and ultra-low BC, increasing our knowledge of tumor biology and improving a targetable new therapeutical treatment.
Collapse
Affiliation(s)
- Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy;
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| | | | - Nicola Silvestris
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| |
Collapse
|
98
|
Riege D, Herschel S, Heintze L, Fenkl T, Wesseler F, Sievers S, Peifer C, Schade D. Identification of Maleimide-Fused Carbazoles as Novel Noncanonical Bone Morphogenetic Protein Synergizers. ACS Pharmacol Transl Sci 2023; 6:1207-1220. [PMID: 37588754 PMCID: PMC10426274 DOI: 10.1021/acsptsci.3c00103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 08/18/2023]
Abstract
Morphogenic signaling pathways govern embryonic development and tissue homeostasis on the cellular level. Precise control of such signaling events paves the way for innovative therapeutic approaches in the field of regenerative medicine. In line with these notions, bone morphogenic protein (BMP) is a major osteogenic driver and pharmacological stimulation of BMP signaling holds supreme potential for diseases and defects of the skeleton. Efforts to identify small-molecule modalities that activate or potentiate the BMP pathway have primarily been focused on the canonical signaling cascade. Here, we describe the phenotypic identification and development of specific carbazolomaleimides 2 as novel noncanonical BMP synergizers with submicromolar osteogenic cellular potency. The devised chemical tools are characterized to specifically regulate Id gene expression in a SMAD-independent, yet highly BMP-dependent fashion. Mechanistic studies revealed that GSK3 inhibition and increased β-catenin levels are partly responsible for this activity. The utility of the new BMP synergizer profile was further exemplified by showing how the synergistic action of canonical and noncanonical BMP enhancers additively amplifies BMP-dependent osteogenic outputs. Carbazolomaleimide 2b serves as a new and unique pharmacological tool for the modulation and study of the BMP pathway.
Collapse
Affiliation(s)
- Daniel Riege
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Sven Herschel
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Linda Heintze
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Teresa Fenkl
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Fabian Wesseler
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
- Compound Management and
Screening Center, Otto-Hahn-Strasse 11, 44227
Dortmund, Germany
| | - Sonja Sievers
- Compound Management and
Screening Center, Otto-Hahn-Strasse 11, 44227
Dortmund, Germany
| | - Christian Peifer
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Dennis Schade
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
- Partner Site Kiel, DZHK,
German Center for Cardiovascular Research, 24105
Kiel, Germany
| |
Collapse
|
99
|
Baljon KJ, Ramaiah P, Saleh EAM, Al-Dolaimy F, Al-Dami FH, Gandla K, Alkhafaji AT, Abbas AHR, Alsaalamy AH, Bisht YS. LncRNA PVT1: as a therapeutic target for breast cancer. Pathol Res Pract 2023; 248:154675. [PMID: 37531833 DOI: 10.1016/j.prp.2023.154675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
A significant number of women are identified with breast cancer (BC) every year, making it among the most prevalent malignancies and one of the leading causes of mortality globally. Despite significant progress in understanding BC pathogenesis and treatment options, there is still a need to identify new therapeutic targets and develop more effective treatments. LncRNAs have been discovered as biomarkers and a promising target for various cancers, including BC. PVT1 is a particular one of these lncRNAs, and research has indicated that it has a significant impact on the appearance and progression of BC.PVT1 is an attractive therapeutic target for BC due to its role in promoting cancer cell growth, metastasis and invasion. In addition to its potential as a treatment strategy, PVT1 may also have diagnostic value in BC. In this article, we will discuss targeting PVT1 as a treatment strategy for BC.
Collapse
Affiliation(s)
| | | | - Ebraheem Abdu Musad Saleh
- Department of Chemistry,College of Arts and Science, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawasir 11991, Saudi Arabia.
| | | | - Farqad Hassan Al-Dami
- Department of Medical Laboratory Techniques, Altoosi University College, Najaf, Iraq
| | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya Deemed to be University, Hanamkonda, India.
| | | | - Ahmed Hussien R Abbas
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Hashiem Alsaalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Yashwant Singh Bisht
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
100
|
Wang L, Hu Z, Chen C, Chen T, Yao Z, Li W, Yang Z. Low-dose aspirin can inhibit exosomal release induced by radiotherapy in breast cancer and attenuate its inhibitory effect on NK cell proliferation. Cancer Med 2023; 12:16386-16404. [PMID: 37392173 PMCID: PMC10469664 DOI: 10.1002/cam4.6274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Breast cancer (BC) seriously threatens women's health. Aspirin plays a key role in the treatment and prognosis of BC. OBJECTIVE To explore the effect of low-dose aspirin on BC radiotherapy through the mechanism of exosomes and natural killer (NK) cells. METHODS BC cells were injected into the left chest wall to establish a BC model in nude mice. Tumor morphology and size were observed. Immunohistochemical staining for Ki-67 was used to observe the proliferation of tumor cells. TUNEL was used to detect the apoptosis of cancer cells. Protein levels of exosomal biogenesis- and secretion-related genes (Rab 11, Rab27a, Rab27b, CD63, and Alix) were detected by Western blot. Flow cytometry was used to detect apoptosis. Transwell assays were used to detect cell migration. A clonogenic assay was used to detect cell proliferation. Exosomes of BT549 and 4T1-Luc cells were extracted and observed by electron microscopy. After the coculture of exosomes and NK cells, the activity of NK cells was detected by CCK-8. RESULTS The protein expression of genes related to exosomal genesis and secretion (Rab 11, Rab27a, Rab27b, CD63, and Alix) in BT549 and 4T1-Luc cells was upregulated under radiotherapy treatment. Low doses of aspirin inhibited exosome release from BT549 and 4T1-Luc cells and alleviated the inhibitory effect of BC cell exosomes on NK cell proliferation. In addition, knocking down Rab27a reduced the protein levels of exosome-related and secretion-related genes in BC cells, further enhancing the promotive effect of aspirin on NK cell proliferation, while overexpressing Rab27a had the opposite effect. Aspirin was combined at a radiotherapeutic dose of 10 Gy to enhance the radiotherapy sensitivity of radiotherapy-tolerant BC cells (BT549R and 4T1-LucR). Animal experiments have also verified that aspirin can promote the killing effect of radiotherapy on cancer cells and significantly inhibit tumor growth. CONCLUSION Low doses of aspirin can inhibit the release of BC exosomes induced by radiotherapy and weaken their inhibition of NK cell proliferation, promoting radiotherapy resistance.
Collapse
Affiliation(s)
- Li Wang
- Department of RadiotherapyThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Zaoxiu Hu
- Department of PathologyThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyKunmingChina
| | - Ting Chen
- Department of Nuclear MedicineThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research CenterThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Wenhui Li
- Department of RadiotherapyThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research CenterThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| |
Collapse
|