51
|
Vu TQ, de Castro RMB, Qin L. Bridging the gap: microfluidic devices for short and long distance cell-cell communication. LAB ON A CHIP 2017; 17:1009-1023. [PMID: 28205652 PMCID: PMC5473339 DOI: 10.1039/c6lc01367h] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell-cell communication is a crucial component of many biological functions. For example, understanding how immune cells and cancer cells interact, both at the immunological synapse and through cytokine secretion, can help us understand and improve cancer immunotherapy. The study of how cells communicate and form synaptic connections is important in neuroscience, ophthalmology, and cancer research. But in order to increase our understanding of these cellular phenomena, better tools need to be developed that allow us to study cell-cell communication in a highly controlled manner. Some technical requirements for better communication studies include manipulating cells spatiotemporally, high resolution imaging, and integrating sensors. Microfluidics is a powerful platform that has the ability to address these requirements and other current limitations. In this review, we describe some new advances in microfluidic technologies that have provided researchers with novel methods to study intercellular communication. The advantages of microfluidics have allowed for new capabilities in both single cell-cell communication and population-based communication. This review highlights microfluidic communication devices categorized as "short distance", or primarily at the single cell level, and "long distance", which mostly encompasses population level studies. Future directions and translation/commercialization will also be discussed.
Collapse
Affiliation(s)
- Timothy Quang Vu
- Department of Bioengineering, Rice University, Houston, TX 77030, USA and Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Ricardo Miguel Bessa de Castro
- College of Engineering, Swansea University Singleton Park, Swansea, UK and Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA. and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
52
|
Jin F, Lin H, Gao S, Wang H, Yan H, Guo J, Hu Z, Jin C, Wang Y, Wang Z, Zhao Y, Liu Y, Zheng X, Tan Y, Li W, Dai Y, Yang Y. Characterization of IFNγ-producing natural killer cells induced by cytomegalovirus reactivation after haploidentical hematopoietic stem cell transplantation. Oncotarget 2017; 8:51-63. [PMID: 27980216 PMCID: PMC5352173 DOI: 10.18632/oncotarget.13916] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 12/02/2016] [Indexed: 02/05/2023] Open
Abstract
During human cytomegalovirus (CMV) infection after umbilical cord blood or HLA-matched hematopoietic stem cell transplantation (HSCT), a population of NKG2C-expressing natural killer (NK) cells expand and persist. The expanded NK cells express high levels of inhibitory killer immunoglobulin-like receptors (KIR) specific for self-HLA and potently produce IFNγ. However, it remains unknown whether similar events would occur after haploidentical HSCT (haplo-HSCT). Here, we demonstrated that IFNγ-producing NK cells were expanded in haplo-HSCT patients with CMV reactivation. We then identified these expanded cells as a subset of CD56dim NK cells that expressed higher levels of both NKG2C and KIR, but lower level of NKG2A. Functionally, the subset of NK cells expressing NKG2C and self-KIR in patients with CMV reactivation accounted for IFNγ production in response to K562 cells. However, these phenomena were not observed in patients without CMV reactivation. We therefore characterized a subset of NK cells with the CD56dim, NKG2C+, and self-KIR+ phenotype that expanded and were responsible for IFNγ production during CMV infection after haplo-HSCT. Together, these findings support a notion that CMV reactivation induces expansion of more mature NK cells with memory-like features, which contributes to long-term control of both CMV infection and leukemia relapse after haplo-HSCT.
Collapse
Affiliation(s)
- Fengyan Jin
- Department of Hematology, Cancer Center, the First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Hai Lin
- Department of Hematology, Cancer Center, the First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Sujun Gao
- Department of Hematology, Cancer Center, the First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Hengxiang Wang
- Department of Hematology, Air Force General Hospital, the Chinese People's Liberation Army, Beijing, China
| | - Hongmin Yan
- Department of Hematology, Air Force General Hospital, the Chinese People's Liberation Army, Beijing, China
| | - Jinglong Guo
- Institute of Translational Medicine, the First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Zheng Hu
- Institute of Translational Medicine, the First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Chunhui Jin
- Institute of Translational Medicine, the First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Yongqi Wang
- Department of Hematology, Air Force General Hospital, the Chinese People's Liberation Army, Beijing, China
| | - Zhidong Wang
- Department of Hematology, Air Force General Hospital, the Chinese People's Liberation Army, Beijing, China
| | - Yangzhi Zhao
- Department of Hematology, Cancer Center, the First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Liu
- Department of Hematology, Cancer Center, the First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoli Zheng
- Department of Hematology, Air Force General Hospital, the Chinese People's Liberation Army, Beijing, China
| | - Yehui Tan
- Department of Hematology, Cancer Center, the First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of Hematology, Cancer Center, the First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Yun Dai
- Department of Hematology, Cancer Center, the First Bethune Hospital of Jilin University, Changchun, Jilin, China
- Institute of Translational Medicine, the First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Yanping Yang
- Department of Hematology, Cancer Center, the First Bethune Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
53
|
Wałajtys-Rode E, Dzik JM. Monocyte/Macrophage: NK Cell Cooperation-Old Tools for New Functions. Results Probl Cell Differ 2017; 62:73-145. [PMID: 28455707 DOI: 10.1007/978-3-319-54090-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monocyte/macrophage and natural killer (NK) cells are partners from a phylogenetic standpoint of innate immune system development and its evolutionary progressive interaction with adaptive immunity. The equally conservative ways of development and differentiation of both invertebrate hemocytes and vertebrate macrophages are reviewed. Evolutionary conserved molecules occurring in macrophage receptors and effectors have been inherited by vertebrates after their common ancestor with invertebrates. Cytolytic functions of mammalian NK cells, which are rooted in immune cells of invertebrates, although certain NK cell receptors (NKRs) are mammalian new events, are characterized. Broad heterogeneity of macrophage and NK cell phenotypes that depends on surrounding microenvironment conditions and expression profiles of specific receptors and activation mechanisms of both cell types are discussed. The particular tissue specificity of macrophages and NK cells, as well as their plasticity and mechanisms of their polarization to different functional subtypes have been underlined. The chapter summarized studies revealing the specific molecular mechanisms and regulation of NK cells and macrophages that enable their highly specific cross-cooperation. Attention is given to the evolving role of human monocyte/macrophage and NK cell interaction in pathogenesis of hypersensitivity reaction-based disorders, including autoimmunity, as well as in cancer surveillance and progression.
Collapse
Affiliation(s)
- Elżbieta Wałajtys-Rode
- Faculty of Chemistry, Department of Drug Technology and Biotechnology, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland.
| | - Jolanta M Dzik
- Faculty of Agriculture and Biology, Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
54
|
Youness RA, Rahmoon MA, Assal RA, Gomaa AI, Hamza MT, Waked I, El Tayebi HM, Abdelaziz AI. Contradicting interplay between insulin-like growth factor-1 and miR-486-5p in primary NK cells and hepatoma cell lines with a contemporary inhibitory impact on HCC tumor progression. Growth Factors 2016; 34:128-140. [PMID: 27388576 DOI: 10.1080/08977194.2016.1200571] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/31/2016] [Indexed: 12/16/2022]
Abstract
In this study, an impaired natural killer (NK) cell cytolytic activity in 135 hepatocellular carcinoma (HCC) patients parallel to a reduced expression level of insulin-like growth factor (IGF)-1 in NK cells of HCC patients has been revealed. Ectopic expression of miR-486-5p, a direct upstream regulator of IGF-1, restored the endogenous level of IGF-1 in NK cells of HCC patients, thus augmenting its cytolytic activity against Huh7 cells in an opposite manner to the IGF-1 siRNAs. Unorthodoxly, over-expression of miR-486-5p in target hepatocytes resulted in the repression of IGF-1, suppression of Huh7 cells proliferation and viability in a similar pattern to the IGF-1 siRNAs. Therefore, this study highlights a potential role of IGF-1 in modulating cytolytic potential of NK cells of HCC patients. miR-486-5p acts in a cell-specific manner, differentially modulating IGF-1 expression in NK cells and their target hepatocytes with a contemporary inhibitory impact on HCC progression.
Collapse
Affiliation(s)
- Rana Ahmed Youness
- a Department of Pharmaceutical Biology , Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo , Egypt
| | - Mai Atef Rahmoon
- a Department of Pharmaceutical Biology , Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo , Egypt
| | - Reem Amr Assal
- b Department of Pharmacology and Toxicology , Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo , Egypt
| | - Asmaa Ibrahim Gomaa
- c Department of Hepatology , National Liver Institute, Menoufiya University , Shebin El-Kom , Egypt
| | - Mohamed Tarif Hamza
- d Department of Clinical Pathology , Ain Shams University , Cairo , Egypt , and
| | - Imam Waked
- c Department of Hepatology , National Liver Institute, Menoufiya University , Shebin El-Kom , Egypt
| | - Hend Mohamed El Tayebi
- b Department of Pharmacology and Toxicology , Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo , Egypt
| | | |
Collapse
|
55
|
Nakamura S, Suzuki K, Iijima H, Hata Y, Lim CR, Ishizawa Y, Kameda H, Amano K, Matsubara K, Matoba R, Takeuchi T. Identification of baseline gene expression signatures predicting therapeutic responses to three biologic agents in rheumatoid arthritis: a retrospective observational study. Arthritis Res Ther 2016; 18:159. [PMID: 27435242 PMCID: PMC4952232 DOI: 10.1186/s13075-016-1052-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022] Open
Abstract
Background According to EULAR recommendations, biologic DMARDs (bDMARDs) such as tumor necrosis factor inhibitor, tocilizumab (TCZ), and abatacept (ABT) are in parallel when prescribing to rheumatoid arthritis (RA) patients who have shown insufficient response to conventional synthetic DMARDs. However, most prediction studies of therapeutic response to bDMARDs using gene expression profiles were focused on a single bDMARD, and consideration of the results from the perspective of RA pathophysiology was insufficient. The aim of this study was to identify the specific molecular biological features predicting the therapeutic outcomes of three bDMARDs (infliximab [IFX], TCZ, and ABT) by studying blood gene expression signatures of patients before biologic treatment in a unified test platform. Methods RA patients who responded inadequately to methotrexate and were later commenced on any one of IFX (n = 140), TCZ (n = 38), or ABT (n = 31) as their first biologic between May 2007 and November 2011 were enrolled. Whole-blood gene expression data were obtained before biologic administration. Patients were categorized into remission (REM) and nonremission (NON-REM) groups according to CDAI at 6 months of biologic therapy. We employed Gene Set Enrichment Analysis (GSEA) to identify functional gene sets differentially expressed between these two groups for each biologic. Then, we compiled “signature scores” for these gene sets, and the prediction performances were assessed. Results GSEA showed that inflammasome genes were significantly upregulated with IFX in the NON-REM group compared with the REM group. With TCZ in the REM group, B-cell-specifically expressed genes were upregulated. RNA elongation, apoptosis-related, and NK-cell-specifically expressed genes were upregulated with ABT in the NON-REM group. Logistic regression analyses showed that “signature scores” of inflammasomes, B-cell-specifically expressed, and NK-cell-specifically expressed genes were significant, independently predictive factors for treatment outcome with IFX, TCZ, and ABT, respectively. The AUCs of ROC curves of these signature scores were 0.637, 0.796, and 0.768 for IFX, TCZ, and ABT, respectively. Conclusions We have identified original gene expression predictive signatures uniquely underlying the therapeutic effects of IFX, TCZ, and ABT. This is, to our knowledge, the first attempt to predict therapeutic effects of three drugs concomitantly using a unified gene expression test platform. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1052-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seiji Nakamura
- DNA Chip Research Inc., 1-15-1 Kaigan, Suzuebaydium 5F, Minato-ku, Tokyo, 105-0022, Japan.
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Iijima
- DNA Chip Research Inc., 1-15-1 Kaigan, Suzuebaydium 5F, Minato-ku, Tokyo, 105-0022, Japan
| | - Yuko Hata
- DNA Chip Research Inc., 1-15-1 Kaigan, Suzuebaydium 5F, Minato-ku, Tokyo, 105-0022, Japan
| | - Chun Ren Lim
- DNA Chip Research Inc., 1-15-1 Kaigan, Suzuebaydium 5F, Minato-ku, Tokyo, 105-0022, Japan
| | - Yohei Ishizawa
- DNA Chip Research Inc., 1-15-1 Kaigan, Suzuebaydium 5F, Minato-ku, Tokyo, 105-0022, Japan
| | - Hideto Kameda
- Division of Rheumatology, Department of Internal Medicine, Toho University Ohashi Medical Center, 2-17-6 Ohashi, Muguro-ku, Tokyo, 153-8515, Japan
| | - Koichi Amano
- Department of Rheumatology and Clinical Immunology, Saitama Medical Center, Saitama Medical University, 1981 Tsujido-machi Kamoda, Kawagoe-shi, Saitama, 350-8550, Japan
| | - Kenichi Matsubara
- DNA Chip Research Inc., 1-15-1 Kaigan, Suzuebaydium 5F, Minato-ku, Tokyo, 105-0022, Japan
| | - Ryo Matoba
- DNA Chip Research Inc., 1-15-1 Kaigan, Suzuebaydium 5F, Minato-ku, Tokyo, 105-0022, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
56
|
|
57
|
Leischner C, Burkard M, Pfeiffer MM, Lauer UM, Busch C, Venturelli S. Nutritional immunology: function of natural killer cells and their modulation by resveratrol for cancer prevention and treatment. Nutr J 2016; 15:47. [PMID: 27142426 PMCID: PMC4855330 DOI: 10.1186/s12937-016-0167-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells as part of the innate immune system represent the first line of defence against (virus-) infected and malignantly transformed cells. The emerging field of nutritional immunology focuses on compounds featuring immune-modulating activities in particular on NK cells, which e.g. can be exploited for cancer prevention and treatment. The plant-based nutrition resveratrol is a ternary hydroxylated stilbene, which is present in many foods and beverages, respectively. In humans it comprises a large variety of distinct biological activities. Interestingly, resveratrol strongly modulates the immune response including the activity of NK cells. This review will give an overview on NK cell functions and summarize the resveratrol-mediated modulation thereof.
Collapse
Affiliation(s)
- Christian Leischner
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany
| | - Markus Burkard
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany.,Division of Dermatologic Oncology, Department of Dermatology and Allergology, University of Tuebingen, Tuebingen, Germany
| | - Matthias M Pfeiffer
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany
| | - Christian Busch
- Division of Dermatologic Oncology, Department of Dermatology and Allergology, University of Tuebingen, Tuebingen, Germany.,Pallas Clinic, Olten, Switzerland
| | - Sascha Venturelli
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany.
| |
Collapse
|
58
|
Hromadnikova I, Li S, Kotlabova K, Dickinson AM. Influence of In Vitro IL-2 or IL-15 Alone or in Combination with Hsp 70 Derived 14-Mer Peptide (TKD) on the Expression of NK Cell Activatory and Inhibitory Receptors on Peripheral Blood T Cells, B Cells and NKT Cells. PLoS One 2016; 11:e0151535. [PMID: 26982331 PMCID: PMC4794217 DOI: 10.1371/journal.pone.0151535] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/28/2016] [Indexed: 11/26/2022] Open
Abstract
Previous studies from Multhoff and colleagues reported that plasma membrane Hsp70 acts as a tumour-specific recognition structure for activated NK cells, and that the incubation of NK cells with Hsp70 and/or a 14-mer peptide derived from the N-terminal sequence of Hsp70 (TKDNNLLGRFELSG, TKD, aa 450–463) plus a low dose of IL-2 triggers NK cell proliferation and migration, and their capacity to kill cancer cells expressing membrane Hsp70. Herein, we have used flow cytometry to determine the influence of in vitro stimulation of peripheral blood mononuclear cells from healthy individuals with IL-2 or IL-15, either alone or in combination with TKD peptide on the cell surface expression of CD94, NK cell activatory receptors (CD16, NK2D, NKG2C, NKp30, NKp44, NKp46, NKp80, KIR2DL4, DNAM-1 and LAMP1) and NK cell inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2 and NKR-P1A) by CD3+CD56+ (NKT), CD3+CD4+, CD3+CD8+ and CD19+ populations. NKG2D, DNAM-1, LAMP1 and NKR-P1A expression was upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD in NKT, CD8+ T cells and B cells. CD94 was upregulated in NKT and CD8+ T cells. Concurrently, an increase in a number of CD8+ T cells expressing LIR1/ILT-2 and CD4+ T cells positive for NKR-P1A was observed. The proportion of CD8+ T cells that expressed NKG2D was higher after IL-2/TKD treatment, when compared with IL-2 treatment alone. In comparison with IL-15 alone, IL-15/TKD treatment increased the proportion of NKT cells that were positive for CD94, LAMP1 and NKRP-1A. The more potent effect of IL-15/TKD on cell surface expression of NKG2D, LIR1/ILT-2 and NKRP-1A was observed in B cells compared with IL-15 alone. However, this increase was not of statistical significance. IL-2/TKD induced significant upregulation of LAMP1 in CD8+ T cells compared with IL-2 alone. Besides NK cells, other immunocompetent cells present within the fraction of peripheral blood mononuclear cells were influenced by the treatment with low-dose interleukins themselves or in combination with hsp70 derived (TKD) peptide.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, Prague, Ruska 87, 10 000 Prague 10, Czech Republic
- * E-mail:
| | - Shuang Li
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, Prague, Ruska 87, 10 000 Prague 10, Czech Republic
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, Prague, Ruska 87, 10 000 Prague 10, Czech Republic
| | - Anne M. Dickinson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
59
|
Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res 2016; 167:228-56. [PMID: 26408801 DOI: 10.1016/j.trsl.2015.08.011] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Obesity is a major public health problem worldwide, and it is associated with an increased risk of developing type 2 diabetes. It is now commonly accepted that chronic inflammation associated with obesity induces insulin resistance and β-cell dysfunction in diabetic patients. Obesity-associated inflammation is characterized by increased abundance of macrophages and enhanced production of inflammatory cytokines in adipose tissue. Adipose tissue macrophages are suggested to be the major source of local and systemic inflammatory mediators such as tumor necrosis factor α, interleukin (IL)-1β, and IL-6. These cytokines induce insulin resistance in insulin target tissues by activating the suppressors of cytokine signaling proteins, several kinases such as c-Jun N-terminal kinase, IκB kinase β, and protein kinase C, inducible nitric oxide synthase, extracellular signal-regulated kinase, and protein tyrosine phosphatases such as protein tyrosine phosphatase 1B. These activated factors impair the insulin signaling at the insulin receptor and the insulin receptor substrates levels. The same process most likely occurs in the pancreas as it contains a pool of tissue-resident macrophages. High concentrations of glucose or palmitate via the chemokine production promote further immune cell migration and infiltration into the islets. These events ultimately induce inflammatory responses leading to the apoptosis of the pancreatic β cells. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation are discussed, with particular attention being placed on the roles of the molecular players linking inflammation to insulin resistance and β-cell dysfunction.
Collapse
Affiliation(s)
- Hadi Khodabandehloo
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ghodratollah Panahi
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
60
|
Overexpression of CD158 and NKG2A Inhibitory Receptors and Underexpression of NKG2D and NKp46 Activating Receptors on NK Cells in Acute Myeloid Leukemia. Arch Med Res 2016; 47:55-64. [DOI: 10.1016/j.arcmed.2016.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 02/05/2016] [Indexed: 12/14/2022]
|
61
|
de Aquino MTP, Malhotra A, Mishra MK, Shanker A. Challenges and future perspectives of T cell immunotherapy in cancer. Immunol Lett 2015; 166:117-33. [PMID: 26096822 PMCID: PMC4499494 DOI: 10.1016/j.imlet.2015.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/10/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022]
Abstract
Since the formulation of the tumour immunosurveillance theory, considerable focus has been on enhancing the effectiveness of host antitumour immunity, particularly with respect to T cells. A cancer evades or alters the host immune response by various ways to ensure its development and survival. These include modifications of the immune cell metabolism and T cell signalling. An inhibitory cytokine milieu in the tumour microenvironment also leads to immune suppression and tumour progression within a host. This review traces the development in the field and attempts to summarize the hurdles that the approach of adoptive T cell immunotherapy against cancer faces, and discusses the conditions that must be improved to allow effective eradication of cancer.
Collapse
Affiliation(s)
- Maria Teresa P de Aquino
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Anshu Malhotra
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Manoj K Mishra
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; Tumor-Host Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
62
|
Xuan XY, Zhang JF, Hu GM, Li QR, Liu PP, Du Y. Upregulated expression of NKG2D and its ligands give potential therapeutic targets for patients with thymoma. Cancer Gene Ther 2015; 22:368-74. [PMID: 26113176 DOI: 10.1038/cgt.2015.29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023]
Abstract
The activating receptor NKG2D (natural killer group 2, member D) of natural killer (NK) cells promotes tumor immune surveillance by targeting ligands selectively induced on cancer cells, and thus having an important role in antitumor immune response. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present as useful target for immunotherapeutic approaches in cancer. In this study, to elucidate the role of NKG2D-NKG2D ligand interaction in thymoma tissues and to evaluate the potential role of NKG2D ligands as therapeutic target for thymoma, we examined the expression of NKG2D and its specific ligands: MICA (major histocompatibility complex class I chain-related protein A), MICB (major histocompatibility complex class I chain-related protein B) and ULBP (UL16-binding protein) in 36 thymomas (6 subtype A, 6 subtype AB, 8 subtype B1, 5 subtype B2, 6 subtype B3 and 5 subtype C), 15 thymic atrophy and 8 thymic hyperplasia by immunohistochemistry and reverse transcription-real-time-PCR methods. We demonstrated that both mRNA and protein levels of NKG2D, MICA, MICB and ULBP were upregulated in six types of thymomas compared with those in atrophic thymus or proliferating thymus. Furthermore, the NKG2D ligands were found to be frequently coexpressed on thymoma cells. Furthermore, the expression of MICA, MICB and ULBP in subtype C was higher compared with those in subtype A, AB, B1, B2 and B3. Thus, we concluded that high expressions of NKG2D, MICA, MICB and ULBP1 were shown in patients with thymoma, and this may enhance the recognition function of NK cells to eliminate tumor cells. MICA, MICB and ULBP presented an attractive target for thymoma therapy. The abnormal expression of NKG2D, MICA, MICB and ULBP1 can provide us with evidence of the occurrence of thymoma and could also be used as a target in the treatment of thymoma.
Collapse
Affiliation(s)
- X Y Xuan
- Department of Immunology and Microbiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - J F Zhang
- Department of Laboratory, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - G M Hu
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Q R Li
- Department of Immunology and Microbiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - P P Liu
- Department of Immunology and Microbiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Y Du
- Department of Immunology and Microbiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
63
|
"Adherent" versus Other Isolation Strategies for Expanding Purified, Potent, and Activated Human NK Cells for Cancer Immunotherapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:869547. [PMID: 26161419 PMCID: PMC4486741 DOI: 10.1155/2015/869547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/07/2014] [Indexed: 01/21/2023]
Abstract
Natural killer (NK) cells have long been hypothesized to play a central role in the development of new immunotherapies to combat a variety of cancers due to their intrinsic ability to lyse tumor cells. For the past several decades, various isolation and expansion methods have been developed to harness the full antitumor potential of NK cells. These protocols have varied greatly between laboratories and several have been optimized for large-scale clinical use despite associated complexity and high cost. Here, we present a simple method of "adherent" enrichment and expansion of NK cells, developed using both healthy donors' and cancer patients' peripheral blood mononuclear cells (PBMCs), and compare its effectiveness with various published protocols to highlight the pros and cons of their use in adoptive cell therapy. By building upon the concepts and data presented, future research can be adapted to provide simple, cost-effective, reproducible, and translatable procedures for personalized treatment with NK cells.
Collapse
|
64
|
Yang H, Tang R, Li J, Liu Y, Ye L, Shao D, Jin M, Huang Q, Shi J. A New Ex Vivo Method for Effective Expansion and Activation of Human Natural Killer Cells for Anti-Tumor Immunotherapy. Cell Biochem Biophys 2015; 73:723-9. [DOI: 10.1007/s12013-015-0688-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
65
|
Sun C, Sun H, Zhang C, Tian Z. NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma. Cell Mol Immunol 2015; 12:292-302. [PMID: 25308752 PMCID: PMC4654321 DOI: 10.1038/cmi.2014.91] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is currently the third leading cause of cancer mortality and a common poor-prognosis malignancy due to postoperative recurrence and metastasis. There is a significant correlation between chronic hepatitis B virus (HBV) infection and hepatocarcinogenesis. As the first line of host defense against viral infections and tumors, natural killer (NK) cells express a large number of immune recognition receptors (NK receptors (NKRs)) to recognize ligands on hepatocytes, liver sinusoidal endothelial cells, stellate cells and Kupffer cells, which maintain the balance between immune response and immune tolerance of NK cells. Unfortunately, the percentage and absolute number of liver NK cells decrease significantly during the development and progression of HCC. The abnormal expression of NK cell receptors and dysfunction of liver NK cells contribute to the progression of chronic HBV infection and HCC and are significantly associated with poor prognosis for liver cancer. In this review, we focus on the role of NK cell receptors in anti-tumor immune responses in HCC, particularly HBV-related HCC. We discuss specifically how tumor cells evade attack from NK cells and how emerging understanding of NKRs may aid the development of novel treatments for HCC. Novel mono- and combination therapeutic strategies that target the NK cell receptor-ligand system may potentially lead to successful and effective immunotherapy in HCC.Cellular & Molecular Immunology advance online publication, 6 October 2014; doi:10.1038/cmi.2014.91.
Collapse
Affiliation(s)
- Cheng Sun
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Haoyu Sun
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
66
|
Yoon SR, Kim TD, Choi I. Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med 2015; 47:e141. [PMID: 25676064 PMCID: PMC4346487 DOI: 10.1038/emm.2014.114] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/17/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023] Open
Abstract
Cancer cells and the immune system are closely related and thus influence each other. Although immune cells can suppress cancer cell growth, cancer cells can evade immune cell attack via immune escape mechanisms. Natural killer (NK) cells kill cancer cells by secreting perforins and granzymes. Upon contact with cancer cells, NK cells form immune synapses to deliver the lethal hit. Mature NK cells are differentiated from hematopoietic stem cells in the bone marrow. They move to lymph nodes, where they are activated through interactions with dendritic cells. Interleukin-15 (IL-15) is a key molecule that activates mature NK cells. The adoptive transfer of NK cells to treat incurable cancer is an attractive approach. A certain number of activated NK cells are required for adoptive NK cell therapy. To prepare these NK cells, mature NK cells can be amplified to obtain sufficient numbers of NK cells. Alternatively, NK cells can be differentiated and amplified from hematopoietic stem cells. In addition, the selection of donors is important to achieve maximal efficacy. In this review, we discuss the overall procedures and strategies of NK cell therapy against cancer.
Collapse
Affiliation(s)
- Suk Ran Yoon
- 1] Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea [2] Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Tae-Don Kim
- 1] Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea [2] Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Inpyo Choi
- 1] Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea [2] Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
67
|
Bodduluru LN, Kasala ER, Madhana RMR, Sriram CS. Natural killer cells: the journey from puzzles in biology to treatment of cancer. Cancer Lett 2014; 357:454-67. [PMID: 25511743 DOI: 10.1016/j.canlet.2014.12.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 01/11/2023]
Abstract
Natural Killer (NK) cells are innate immune effectors that are primarily involved in immunosurveillance to spontaneously eliminate malignantly transformed and virally infected cells without prior sensitization. NK cells trigger targeted attack through release of cytotoxic granules, and secrete various cytokines and chemokines to promote subsequent adaptive immune responses. NK cells selectively attack target cells with diminished major histocompatibility complex (MHC) class I expression. This "Missing-self" recognition by NK cells at first puzzled researchers in the early 1990s, and the mystery was solved with the discovery of germ line encoded killer immunoglobulin receptors that recognize MHC-I molecules. This review summarizes the biology of NK cells detailing the phenotypes, receptors and functions; interactions of NK cells with dendritic cells (DCs), macrophages and T cells. Further we discuss the various strategies to modulate NK cell activity and the practice of NK cells in cancer immunotherapy employing NK cell lines, autologous, allogeneic and genetically engineered cell populations.
Collapse
Affiliation(s)
- Lakshmi Narendra Bodduluru
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India.
| | - Eshvendar Reddy Kasala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Rajaram Mohan Rao Madhana
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Chandra Shaker Sriram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| |
Collapse
|
68
|
Gasparoto TH, de Oliveira CE, de Freitas LT, Pinheiro CR, Hori JI, Garlet GP, Cavassani KA, Schillaci R, da Silva JS, Zamboni DS, Campanelli AP. Inflammasome activation is critical to the protective immune response during chemically induced squamous cell carcinoma. PLoS One 2014; 9:e107170. [PMID: 25268644 PMCID: PMC4182037 DOI: 10.1371/journal.pone.0107170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/07/2014] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation affects most stages of tumorigenesis, including initiation, promotion, malignant differentiation, invasion and metastasis. Inflammasomes have been described as involved with persistent inflammation and are known to exert both pro and antitumour effects. We evaluated the influence of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase (CASP)-1 in the antitumor immune response using a multistage model of squamous cell carcinoma (SCC) development. Absence of ASC and CASP-1 resulted in an earlier incidence and increased number of papilloma. Loss of inflammassome function in mice resulted in decreased presence of natural killer (NK), dendritic (DC), CD4+, CD8+ and CD45RB+ T cells in the tumor lesions as well as in lymph nodes (LN) compared with WT mice. Increased percentage of CD4+CD25+Foxp3+ T cells was associated with association with inflammasome loss of function. Moreover, significant differences were also found with neutrophils and macrophage infiltrating the lesions. Myeloperoxidase (MPO), but not elastase (ELA), activity oscillated among the groups during the SCC development. Levels of proinflammatory cytokines IL-1β, IL-18, Tumor Necrosis Factor (TNF)-α and Interferon (IFN)-γ were decreased in the tumor microenvironment in the absence of inflammasome proteins. These observations suggest a link between inflammasome function and SCC tumorigenesis, indicating an important role for inflammasome activation in the control of SCC development.
Collapse
Affiliation(s)
- Thais Helena Gasparoto
- Department of Biological Sciences - Microbiology and Immunology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Carine Ervolino de Oliveira
- Department of Biological Sciences - Microbiology and Immunology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
- Department of Stomatology - Oral Pathology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Luisa Thomazini de Freitas
- Department of Biological Sciences - Microbiology and Immunology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Claudia Ramos Pinheiro
- Department of Biological Sciences - Microbiology and Immunology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Juliana Issa Hori
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences - Microbiology and Immunology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Karen Angélica Cavassani
- Departament of Pathology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Roxana Schillaci
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires, Argentina
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dario Simões Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Paula Campanelli
- Department of Biological Sciences - Microbiology and Immunology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
- * E-mail:
| |
Collapse
|
69
|
Woo Y, Jeong D, Chung DH, Kim HY. The roles of innate lymphoid cells in the development of asthma. Immune Netw 2014; 14:171-81. [PMID: 25177249 PMCID: PMC4148487 DOI: 10.4110/in.2014.14.4.171] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/24/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023] Open
Abstract
Asthma is a common pulmonary disease with several different forms. The most studied form of asthma is the allergic form, which is mainly related to the function of Th2 cells and their production of cytokines (IL-4, IL-5, and IL-13) in association with allergen sensitization and adaptive immunity. Recently, there have been many advances in understanding non-allergic asthma, which seems to be related to environmental factors such as air pollution, infection, or even obesity. Cells of the innate immune system, including macrophages, neutrophils, and natural killer T cells as well as the newly described innate lymphoid cells, are effective producers of a variety of cytokines and seem to play important roles in the development of non-allergic asthma. In this review, we focus on recent findings regarding innate lymphoid cells and their roles in asthma.
Collapse
Affiliation(s)
- Yeonduk Woo
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Dongjin Jeong
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Hye Young Kim
- Department of Medical Science, Seoul National University College of Medicine and Hospital, Seoul 110-744, Korea
| |
Collapse
|
70
|
Guma SR, Lee DA, Ling Y, Gordon N, Kleinerman ES. Aerosol interleukin-2 induces natural killer cell proliferation in the lung and combination therapy improves the survival of mice with osteosarcoma lung metastasis. Pediatr Blood Cancer 2014; 61:1362-8. [PMID: 24610870 PMCID: PMC4144337 DOI: 10.1002/pbc.25019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/12/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND We have previously shown that aerosol interleukin-2 (IL-2) increased the number of intravenously injected human natural killer (NK) cells in the lungs. In this study we investigated whether this increase was secondary to NK cell proliferation and determined the site of the proliferation. MATERIALS AND METHODS Nude mice with osteosarcoma lung metastases were injected with NK cells and treated with aerosol IL-2 or aerosol PBS. BrdU was injected prior to euthanasia to identify proliferating NK cells. The percentage of proliferating NK cells in the lung, bone marrow, spleen, and liver was determined using flow cytometry. Survival studies for mice with osteosarcoma lung metastasis treated with aerosol PBS, aerosol IL-2 alone, aerosol PBS plus NK cells, and aerosol IL-2 plus NK cells were also performed. RESULTS Treatment with aerosol IL-2 induced the proliferation of injected NK cells in the lung. Aerosol IL-2 did not increase the proliferation of NK cells in the spleen and liver. Treatment with aerosol IL-2 and aerosol IL-2 plus NK cells increased the overall survival of mice with osteosarcoma lung metastasis. CONCLUSION Aerosol IL-2 increases lung NK cell numbers by stimulating local NK cell proliferation. Aerosol IL-2's effect on NK cell proliferation is organ specific, which makes it ideal for the specific targeting of lung metastasis. Aerosol IL-2 plus NK cell therapy induced metastatic regression and increased overall survival demonstrating the potential of this therapeutic approach for patients with osteosarcoma.
Collapse
Affiliation(s)
- Sergei R. Guma
- Division of Pediatrics; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Dean A. Lee
- Division of Pediatrics; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Yu Ling
- Division of Pediatrics; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Nancy Gordon
- Division of Pediatrics; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Eugenie S. Kleinerman
- Division of Pediatrics; The University of Texas MD Anderson Cancer Center; Houston Texas
| |
Collapse
|
71
|
Wang B, Song J, Yuan H, Nie C, Lv F, Liu L, Wang S. Multicellular assembly and light-regulation of cell-cell communication by conjugated polymer materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:2371-2375. [PMID: 24338667 DOI: 10.1002/adma.201304593] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/16/2013] [Indexed: 06/03/2023]
Abstract
Using cell-surface modification and biotin-streptavidin interactions, immune cells and target tumor cells are made to form multicellular assemblies. A polythiophene derivative can undergo cellular uptake, allowing the sensitization of oxygen under light irradiation. The subsequent generation of reactive oxygen species (ROS) regulates cell-cell communication in time and space.
Collapse
Affiliation(s)
- Bing Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | | | | | | | | | | | | |
Collapse
|
72
|
Beaulieu AM, Bezman NA, Lee JE, Matloubian M, Sun JC, Lanier LL. MicroRNA function in NK-cell biology. Immunol Rev 2013; 253:40-52. [PMID: 23550637 DOI: 10.1111/imr.12045] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The important role of microRNAs in directing immune responses has become increasingly clear. Here, we highlight discoveries uncovering the role of specific microRNAs in regulating the development and function of natural killer (NK) cells. Furthermore, we discuss the impact of NK cells on the entire immune system during global and specific microRNA ablation in the settings of inflammation, infection, and immune dysregulation.
Collapse
Affiliation(s)
- Aimee M Beaulieu
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
73
|
NOYA VERÓNICA, BAY SYLVIE, FESTARI MARÍAFLORENCIA, GARCÍA ENRIQUEP, RODRIGUEZ ERNESTO, CHIALE CAROLINA, GANNEAU CHRISTELLE, BALEUX FRANÇOISE, ASTRADA SOLEDAD, BOLLATI-FOGOLÍN MARIELA, OSINAGA EDUARDO, FREIRE TERESA. Mucin-like peptides from Echinococcus granulosus induce antitumor activity. Int J Oncol 2013; 43:775-84. [DOI: 10.3892/ijo.2013.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/30/2013] [Indexed: 11/06/2022] Open
|
74
|
Karimi K, Forsythe P. Natural killer cells in asthma. Front Immunol 2013; 4:159. [PMID: 23801996 PMCID: PMC3689036 DOI: 10.3389/fimmu.2013.00159] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 06/09/2013] [Indexed: 12/23/2022] Open
Abstract
The worldwide prevalence, morbidity, and mortality of asthma have dramatically increased over the last few decades and there is a clear need to identify new effective therapeutic and prophylactic strategies. Despite high numbers of NK cells in the lung and their ability to generate a variety of immunomodulatory mediators, the potential of NK cells as therapeutic targets in allergic airway disease has been largely overlooked. The fact that IgE, acting through FcγRIII, can activate NK cells resulting in cytokine/chemokine production implies that NK cells may contribute to IgE-mediated allergic responses. Indeed, current evidence suggests that NK cells can promote allergic airway responses during sensitization and ongoing inflammation. In animal models, increased NK cells are observed in the lung following antigen challenge and depletion of the cells before immunization inhibits allergic airway inflammation. Moreover, in asthmatics, NK cell phenotype is altered and may contribute to the promotion of a pro-inflammatory Th2-type environment. Conversely, driving NK cells toward an IFN-γ-secreting phenotype can reduce features of the allergic airway response in animal models. However, we have limited knowledge of the signals that drive the development of distinct subsets and functional phenotypes of NK cells in the lung and thus the role and therapeutic potential of NK cells in the allergic airway remains unclear. Here we review the potentially diverse role of NK cells in allergic airway disease, identify gaps in current knowledge, and discuss the potential of modulating NK cell function as a treatment strategy in asthma.
Collapse
Affiliation(s)
- Khalil Karimi
- Institut für Experimentelle Immunologie und Hepatologie, Universitätsklinikum Hamburg-Eppendorf , Hamburg , Germany ; Department of Medicine, Brain-Body Institute, McMaster University , Hamilton, ON , Canada
| | | |
Collapse
|
75
|
Ascierto ML, Idowu MO, Zhao Y, Khalak H, Payne KK, Wang XY, Dumur CI, Bedognetti D, Tomei S, Ascierto PA, Shanker A, Bear HD, Wang E, Marincola FM, De Maria A, Manjili MH. Molecular signatures mostly associated with NK cells are predictive of relapse free survival in breast cancer patients. J Transl Med 2013; 11:145. [PMID: 23758773 PMCID: PMC3694475 DOI: 10.1186/1479-5876-11-145] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/04/2013] [Indexed: 01/10/2023] Open
Abstract
Background Recent observations suggest that immune-mediated tissue destruction is dependent upon coordinate activation of immune genes expressed by cells of the innate and adaptive immune systems. Methods Here, we performed a retrospective pilot study to investigate whether the coordinate expression of molecular signature mostly associated with NK cells could be used to segregate breast cancer patients into relapse and relapse-free outcomes. Results By analyzing primary breast cancer specimens derived from patients who experienced either 58–116 months (~5-9 years) relapse-free survival or developed tumor relapse within 9–76 months (~1-6 years) we found that the expression of molecules involved in activating signaling of NK cells and in NK cells: target interaction is increased in patients with favorable prognosis. Conclusions The parameters identified in this study, together with the prognostic signature previously reported by our group, highlight the cooperation between the innate and adaptive immune components within the tumor microenvironment.
Collapse
|
76
|
Yang Y, Bazhin AV, Werner J, Karakhanova S. Reactive Oxygen Species in the Immune System. Int Rev Immunol 2013; 32:249-70. [DOI: 10.3109/08830185.2012.755176] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
77
|
Li Z, Jiang CM, An S, Cheng Q, Huang YF, Wang YT, Gou YC, Xiao L, Yu WJ, Wang J. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells. Oral Dis 2013; 20:25-34. [PMID: 23463961 DOI: 10.1111/odi.12086] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/20/2013] [Accepted: 02/09/2013] [Indexed: 12/13/2022]
Abstract
In addition to their well-established self-renewal and multipotent differentiation properties, mesenchymal stem cells (MSCs) also possess potent immunomodulatory functions both in vitro and in vivo, which render them a potential novel immunotherapeutic tool for a variety of autoimmune and inflammation-related diseases. The major mechanisms may involve (1) the secretion of an array of soluble factors such as prostaglandin E2 (PGE2 ), indoleamine 2, 3-dioxygenase (IDO), transforming growth factor-β (TGF-β), and human leukocyte antigen G5 (HLA-G5); (2) interactions between MSCs and immune cells such as T cells, B cells, macrophages, and dendritic cells. Recently, increasing evidence has supported that MSCs derived from dental tissues are promising alternative sources of multipotent MSCs. We here provide a thorough and extensive review about new findings in the immunomodulatory functions of MSCs derived from several dental tissues, including dental pulp, periodontal ligament, gingiva, exfoliated deciduous teeth, apical papilla, and dental follicle, respectively. The immunomodulatory properties of dental MSCs place them as a more accessible cell source than bone marrow-derived MSCs for cell-based therapy of immune and inflammation-related diseases.
Collapse
Affiliation(s)
- Z Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Hromadnikova I, Pirkova P, Sedlackova L. Influence of in vitro IL-2 or IL-15 alone or in combination with Hsp-70-derived 14-mer peptide (TKD) on the expression of NK cell activatory and inhibitory receptors. Mediators Inflamm 2013; 2013:405295. [PMID: 23476104 PMCID: PMC3588175 DOI: 10.1155/2013/405295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/14/2013] [Indexed: 12/11/2022] Open
Abstract
NK cells represent a potential tool for adoptive immunotherapy against tumors. Membrane-bound Hsp70 acts as a tumor-specific marker enhancing NK cell activity. Using flow cytometry the effect of in vitro stimulation with IL-2 or IL-15 alone or in combination with Hsp70-derived 14-mer peptide (TKD) on cell surface expression of NK activatory receptors (CD16, NKG2D, NKG2C, NKp46, NKp44, NKp30, KIR2DL4, DNAM-1, and LAMP1) and NK inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2, and NKR-P1A) in healthy individuals was studied. Results were expressed as the percentage of receptor expressing cells and the amount of receptor expressed by CD3(-)CD56(+) cellular population. CD94, NKG2D, NKp44, NKp30, KIR2DL4, DNAM-1, LAMP1, NKG2A, and NKR-P1A were upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD. KIR2DL2/L3 was upregulated only by IL-15 and IL-15/TKD. Concurrently, an increase in a number of NK cells positive for CD94, NKp44, NKp30, KIR2DL4, and LAMP1 was observed. IL-15 and IL-15/TKD caused also cell number rise positive for KIR2DL2/L3 and NKR-P1A. Cell number positive for NKG2C and NKG2A was increased only by IL-2 and IL-2/TKD. The diverse effect of IL-2 or IL-15 w or w/o TKD on cell surface expression was observed in CD16, NKp46, and LIR1/ILT-2.
Collapse
MESH Headings
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cells, Cultured
- HSP70 Heat-Shock Proteins/chemistry
- Humans
- Interleukin-15/pharmacology
- Interleukin-2/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Lysosomal Membrane Proteins/metabolism
- NK Cell Lectin-Like Receptor Subfamily B/metabolism
- NK Cell Lectin-Like Receptor Subfamily C/metabolism
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Natural Cytotoxicity Triggering Receptor 1/metabolism
- Natural Cytotoxicity Triggering Receptor 2/metabolism
- Natural Cytotoxicity Triggering Receptor 3/metabolism
- Peptides/chemistry
- Peptides/pharmacology
- Receptors, IgG/metabolism
- Receptors, KIR2DL2
- Receptors, KIR2DL4/metabolism
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00 Prague, Czech Republic.
| | | | | |
Collapse
|
79
|
Wang L, Zhao Y, Shi S. Interplay between mesenchymal stem cells and lymphocytes: implications for immunotherapy and tissue regeneration. J Dent Res 2012; 91:1003-10. [PMID: 22988011 DOI: 10.1177/0022034512460404] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In addition to their potential for replacing damaged and diseased tissues by differentiating into tissue-specific cells, mesenchymal stem cells (MSCs) have been found to interact closely with immune cells, such as lymphocytes. In this review, we will discuss current research regarding the immunomodulatory properties of MSCs and the effects of lymphocytes on MSCs. We will suggest how these findings could be translated to potential clinical treatment. MSCs can regulate immune response by inducing activated T-cell apoptosis through the FAS ligand (FASL)/FAS-mediated death pathway via cell-cell contact, leading to up-regulation of regulatory T-cells (Tregs), which ultimately results in immune tolerance. Conversely, lymphocytes can impair survival and osteogenic differentiation of implanted MSCs by secreting the pro-inflammatory cytokines IFN-γ and TNF-α and/or through the FASL/FAS-mediated death pathway, thereby negatively affecting MSC-mediated tissue regeneration. One novel strategy to improve MSC-based tissue engineering involves the reduction of IFN-γ and TNF-α concentration by systemic infusion of Tregs or local application of aspirin. Further understanding of the mechanisms underlying the interplay between lymphocytes and MSCs may be helpful in the development of promising approaches to improve cell-based regenerative medicine and immune therapies.
Collapse
Affiliation(s)
- L Wang
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
80
|
Affiliation(s)
- Ena Wang
- Infectious Disease & Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center & trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
81
|
Orlik B, Handzlik G, Olszanecka-Glinianowicz M. [The role of adipokines and insulin resistance in the pathogenesis of nonalcoholic fatty liver disease]. Thromb Haemost 2010; 109:399-406. [PMID: 20498498 DOI: 10.1160/th12-09-0703] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/15/2012] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) develops in 17-33% of the population of developed countries. The incidence of NAFLD is constantly growing due to the increasing prevalence of obesity. It is estimated that one third of subjects with NAFLD suffer from nonalcoholic steatohepatitis (NASH) and 15% of them develop liver cirrhosis within a five-year period. In recent years this important complication of obesity became the subject of numerous studies. It, the pathogenesis of NAFLD is still unclear. A key role in the development of this disease was attributed to insulin resistance. Hormones and cytokines produced by adipose tissue called adipokines may be a link between obesity, insulin resistance, and NAFLD. However, it is well known that increased levels of adipokines such as TNF-alpha, IL-6, and resistin and a decreased level of adiponectin augment inflammation in the liver. Further studies are necessary to explain the roles of leptin, visfatin, retinol binding protein-4, omentin, and vaspin in the pathogenesis of NAFLD. The aim this paper is to introduce new areas of study on the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Bartłomiej Orlik
- Studenckie Koło Naukowe przy Katedrze Patofizjologii Slaskiego Uniwersytetu Medycznego w Katowicach
| | | | | |
Collapse
|